1
|
Lazarov NE, Atanasova DY. Carotid Body Dysfunction and Mechanisms of Disease. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:123-138. [PMID: 37946080 DOI: 10.1007/978-3-031-44757-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
2
|
Klinnikova AA, Danilova GA, Aleksandrova NP. Role of Nitric Oxide Synthase Pathways in the Effects of Proinflammatory Cytokines on the Respiratory Pattern and Hypoxic Ventilatory Response. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Iturriaga R, Del Rio R, Alcayaga J. Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology (Bethesda) 2021; 37:128-140. [PMID: 34866399 DOI: 10.1152/physiol.00031.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emergent evidence indicates that the carotid body (CB) chemoreceptors may sense systemic inflammatory molecules, and is an afferent-arm of the anti-inflammatory reflex. Moreover, a pro-inflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physio-pathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiologia. Departamento de Fisiologia. Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Pontificia Universidad Catolica de Chile, Santiago-1, Región, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile
| | - Rodrigo Del Rio
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Santiago, Chile.,Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Abu Jawdeh EG, Huang H, Westgate PM, Patwardhan A, Bada H, Bauer JA, Giannone P. Intermittent Hypoxemia in Preterm Infants: A Potential Proinflammatory Process. Am J Perinatol 2021; 38:1313-1319. [PMID: 32512605 DOI: 10.1055/s-0040-1712951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE A major consequence of prematurity is intermittent hypoxemia (IH). Data from both adult studies and neonatal animal models suggest that IH is proinflammatory; however, there is limited data in preterm infants. Here, we assess the relationship between IH and systemic inflammation, namely, serum C-reactive protein (CRP) in preterm infants. STUDY DESIGN Serum CRP was measured at 30 days of life, at the time of peak IH frequency. IH measures (e.g., per cent time in hypoxemia, frequency, duration) were calculated the week prior to CRP collection. Statistical analyses were based on Spearman's correlation. RESULTS A total of 26 infants were included. Median gestational age and birth weight were 274/7 weeks and 980 g, respectively. There were positive correlations between primary IH measures and CRP levels, especially for events longer than 1-minute duration (r range: 0.56-0.74, all p < 0.01). CONCLUSION We demonstrate that IH is associated with increased CRP for the first time in preterm infants. Our findings are consistent with studies from adults and neonatal animal models suggesting that IH is a proinflammatory process. KEY POINTS · IH events are common.. · IH is associated with elevated C-reactive protein.. · Longer IH events (>1 min) are of most significance..
Collapse
Affiliation(s)
- Elie G Abu Jawdeh
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Hong Huang
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Philip M Westgate
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Abhijit Patwardhan
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, Kentucky
| | - Henrietta Bada
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - John A Bauer
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Peter Giannone
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Zuzarte I, Sternad D, Paydarfar D. Predicting apneic events in preterm infants using cardio-respiratory and movement features. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106321. [PMID: 34380078 PMCID: PMC8898595 DOI: 10.1016/j.cmpb.2021.106321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Preterm neonates are prone to episodes of apnea, bradycardia and hypoxia (ABH) that can lead to neurological morbidities or even death. There is broad interest in developing methods for real-time prediction of ABH events to inform interventions that prevent or reduce their incidence and severity. Using advances in machine learning methods, this study develops an algorithm to predict ABH events. METHODS Following previous studies showing that respiratory instabilities are closely associated with bouts of movement, we present a modeling framework that can predict ABH events using both movement and cardio-respiratory features derived from routine clinical recordings. In 10 preterm infants, movement onsets and durations were estimated with a wavelet-based algorithm that quantified artifactual distortions of the photoplethysmogram signal. For prediction, cardio-respiratory features were created from time-delayed correlations of inter-beat and inter-breath intervals with past values; movement features were derived from time-delayed correlations with inter-breath intervals. Gaussian Mixture Models and Logistic Regression were used to develop predictive models of apneic events. Performance of the models was evaluated with ROC curves. RESULTS Performance of the prediction framework (mean AUC) was 0.77 ± 0.04 for 66 ABH events on training data from 7 infants. When grouped by the severity of the associated bradycardia during the ABH event, the framework was able to predict 83% and 75% of the most severe episodes in the 7-infant training set and 3-infant test set, respectively. Notably, inclusion of movement features significantly improved the predictions compared with modeling with only cardio-respiratory signals. CONCLUSIONS Our findings suggest that recordings of movement provide important information for predicting ABH events in preterm infants, and can inform preemptive interventions designed to reduce the incidence and severity of ABH events.
Collapse
Affiliation(s)
- Ian Zuzarte
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Dagmar Sternad
- Departments of Biology, Electrical and Computer Engineering & Physics, Northeastern University, Boston, MA 02115, United States
| | - David Paydarfar
- Department of Neurology, Dell Medical School, Austin, TX 78712, United States; Oden Institute for Computational Sciences and Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
6
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Zuzarte I, Paydarfar D, Sternad D. Effect of spontaneous movement on respiration in preterm infants. Exp Physiol 2021; 106:1285-1302. [PMID: 33675125 PMCID: PMC8087648 DOI: 10.1113/ep089143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The respiratory centres in the brainstem that control respiration receive inputs from various sources, including proprioceptors in muscles and joints and suprapontine centres, which all affect limb movements. What is the effect of spontaneous movement on respiration in preterm infants? What is the main finding and its importance? Apnoeic events tend to be preceded by movements. These activity bursts can cause respiratory instability that leads to an apnoeic event. These findings show promise that infant movements might serve as potential predictors of life-threatening apnoeic episodes, but more research is required. ABSTRACT A common condition in preterm infants (<37 weeks' gestational age) is apnoea resulting from immaturity and instability of the respiratory system. As apnoeas are implicated in several acute and long-term complications, prediction of apnoeas may preempt their onset and subsequent complications. This study tests the hypothesis that infant movements are a predictive marker for apnoeic episodes and examines the relation between movement and respiration. Movement was detected using a wavelet algorithm applied to the photoplethysmographic signal. Respiratory activity was measured in nine infants using respiratory inductance plethysmography; in an additional eight infants, respiration and partial pressure of airway carbon dioxide ( P C O 2 ) were measured by a nasal cannula with side-stream capnometry. In the first cohort, the distribution of movements before and after the onset of 370 apnoeic events was compared. Results showed that apnoeic events were associated with longer movement duration occurring before apnoea onsets compared to after. In the second cohort, respiration was analysed in relation to movement, comparing standard deviation of inter-breath intervals (IBI) before and after apnoeas. Poincaré maps of the respiratory activity quantified variability of airway P C O 2 in phase space. Movement significantly increased the variability of IBI and P C O 2 . Moreover, destabilization of respiration was dependent on the duration of movement. These findings support that bodily movements of the infants precede respiratory instability. Further research is warranted to explore the predictive value of movement for life-threatening events, useful for clinical management and risk stratification.
Collapse
Affiliation(s)
- Ian Zuzarte
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - David Paydarfar
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Sciences and Engineering, University of Texas at Austin, Austin, TX, USA
| | - Dagmar Sternad
- Departments of Biology, Electrical and Computer Engineering & Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Aleksandrova NP, Klinnikova AA, Danilova GA. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats. Respir Physiol Neurobiol 2020; 284:103567. [PMID: 33161117 DOI: 10.1016/j.resp.2020.103567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 10/25/2020] [Indexed: 01/22/2023]
Abstract
TNF-α is the key inflammatory cytokine. TNF-α receptors are expressed in brain stem regions involved in respiratory control and also in the carotid bodies, which are the sensory organs monitoring arterial blood O2. We hypothesised that the circulating tumour necrosis factor (TNF)-α may affect the lung ventilation and modulate the hypoxic ventilatory response via activation of cyclooxygenase (COX) and nitric oxide synthase (NOS) pathways. The aim of the current study was to compare the respiratory effects of TNF-α before and after pretreatment with diclofenac or L-NG-nitro arginine methyl ester (L-NAME) nonspecific inhibitors of COX and NOS, respectively. The hypoxic ventilatory response was measured in anaesthetised rats using rebreathing techniques. We found that TNF-α increased the lung ventilation in normoxia but decreased the ventilatory response to hypoxia. Pretreatment with each of these inhibitors reduced respiratory effects of TNF-α. We believe that activation of COX and NOS-related pathways and also "cross-talk" between them mediates the TNF-α respiratory effects and underlies the impact of inflammation on the respiratory function.
Collapse
Affiliation(s)
- Nina Pavlovna Aleksandrova
- Head of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| | - Anna Andreevna Klinnikova
- Researcher of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| | - Galina Anatolevna Danilova
- Researcher of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| |
Collapse
|
10
|
Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020; 21:ijms21103518. [PMID: 32429235 PMCID: PMC7279029 DOI: 10.3390/ijms21103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- A. Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
- Correspondence:
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| |
Collapse
|
11
|
Ventilatory and carotid body responses to acute hypoxia in rats exposed to chronic hypoxia during the first and second postnatal weeks. Respir Physiol Neurobiol 2020; 275:103400. [PMID: 32006667 DOI: 10.1016/j.resp.2020.103400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023]
Abstract
Chronic hypoxia (CH) during postnatal development causes a blunted hypoxic ventilatory response (HVR) in neonatal mammals. The magnitude of the HVR generally increases with age, so CH could blunt the HVR by delaying this process. Accordingly, we predicted that CH would have different effects on the respiratory control of neonatal rats if initiated at birth versus initiated later in postnatal development (i.e., after the HVR has had time to mature). Rats had blunted ventilatory and carotid body responses to hypoxia whether CH (12 % O2) occurred for the first postnatal week (P0 to P7) or second postnatal week (P7 to P14). However, if initiated at P0, CH also caused the HVR to retain the "biphasic" shape characteristic of newborn mammals; CH during the second postnatal week did not result in a biphasic HVR. CH from birth delayed the transition from a biphasic HVR to a sustained HVR until at least P9-11, but the HVR attained a sustained (albeit blunted) phenotype by P13-15. Since delayed maturation of the HVR did not completely explain the blunted HVR, we tested the alternative hypothesis that the blunted HVR was caused by an inflammatory response to CH. Daily administration of the anti-inflammatory drug ibuprofen (4 mg kg-1, i.p.) did not alter the effects of CH on the HVR. Collectively, these data suggest that CH blunts the HVR in neonatal rats by impairing carotid body responses to hypoxia and by delaying (but not preventing) postnatal maturation of the biphasic HVR. The mechanisms underlying this plasticity require further investigation.
Collapse
|
12
|
Mitchell L, MacFarlane PM. Mechanistic actions of oxygen and methylxanthines on respiratory neural control and for the treatment of neonatal apnea. Respir Physiol Neurobiol 2020; 273:103318. [PMID: 31626973 PMCID: PMC6986994 DOI: 10.1016/j.resp.2019.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Apnea remains one of the most concerning and prevalent respiratory disorders spanning all ages from infants (particularly those born preterm) to adults. Although the pathophysiological consequences of apnea are fairly well described, the neural mechanisms underlying the etiology of the different types of apnea (central, obstructive, and mixed) still remain incompletely understood. From a developmental perspective, however, research into the respiratory neural control system of immature animals has shed light on both central and peripheral neural pathways underlying apnea of prematurity (AOP), a highly prevalent respiratory disorder of preterm infants. Animal studies have also been fundamental in furthering our understanding of how clinical interventions (e.g. pharmacological and mechanical) exert their beneficial effects in the clinical treatment of apnea. Although current clinical interventions such as supplemental O2 and positive pressure respiratory support are critically important for the infant in respiratory distress, they are not fully effective and can also come with unfortunate, unintended (and long-term) side-effects. In this review, we have chosen AOP as one of the most common clinical scenarios involving apnea to highlight the mechanistic basis behind how some of the interventions could be both beneficial and also deleterious to the respiratory neural control system. We have included a section on infants with critical congenital heart diseases (CCHD), in whom apnea can be a clinical concern due to treatment with prostaglandin, and who may benefit from some of the treatments used for AOP.
Collapse
Affiliation(s)
- Lisa Mitchell
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
14
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
15
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
16
|
Elliot-Portal E, Laouafa S, Arias-Reyes C, Janes TA, Joseph V, Soliz J. Brain-derived erythropoietin protects from intermittent hypoxia-induced cardiorespiratory dysfunction and oxidative stress in mice. Sleep 2018; 41:4985474. [PMID: 29697839 PMCID: PMC6047438 DOI: 10.1093/sleep/zsy072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Study Objectives Based on the fact that erythropoietin (Epo) administration in rodents protects against spatial learning and cognitive deficits induced by chronic intermittent hypoxia (CIH)-mediated oxidative damage, here we tested the hypothesis that Epo in the brain protects against cardiorespiratory disorders and oxidative stress induced by CIH in adult mice. Methods Adult control and transgenic mice overexpressing Epo in the brain only (Tg21) were exposed to CIH (21%-10% O2-10 cycles/hour-8 hours/day-7 days) or room air. After CIH exposure, we used the tail cuff method to measure arterial pressure, and whole-body plethysmography to assess the frequency of apneic episodes at rest, minute ventilation, and ventilatory responses to hypoxia and hypercapnia. Finally, the activity of pro-oxidant (XO-xanthine oxidase, and NADPH) and antioxidant (super oxide dismutase) enzymes was evaluated in the cerebral cortex and brainstem. Results Exposure of control mice to CIH significantly increased the heart rate and arterial pressure, the number of apneic events, and the ventilatory response to hypoxia and hypercapnia. Furthermore, CIH increased the ratio of pro-oxidant to antioxidant enzymes in cortex and brainstem tissues. Both physiological and molecular changes induced by CIH were prevented in transgenic Tg21 mice. Conclusions We conclude that the neuroprotective effect of Epo prevents oxidative damage in the brain and cardiorespiratory disorders induced by CIH. Considering that Epo is used in clinics to treat chronic kidney disease and stroke, our data show convincing evidence suggesting that Epo may be a promising alternative drug to treat sleep-disorder breathing.
Collapse
Affiliation(s)
- Elizabeth Elliot-Portal
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Tara Adele Janes
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire, de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
17
|
Fairchild KD, Lake DE. Cross-Correlation of Heart Rate and Oxygen Saturation in Very Low Birthweight Infants: Association with Apnea and Adverse Events. Am J Perinatol 2018; 35:463-469. [PMID: 29141263 PMCID: PMC6543270 DOI: 10.1055/s-0037-1608709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Analysis of subtle vital sign changes could facilitate earlier treatment of acute inflammatory illnesses. We previously showed that high cross-correlation of heart rate and oxygen saturation (XCorr-HR-SpO2) occurs in some very low birthweight (VLBW) infants with sepsis, and hypothesized that this corresponds to apnea. METHODS In 629 VLBW infants, we analyzed XCorr-HR-SpO2 in relation to central apnea with bradycardia and desaturation (ABD), BD with or without central apnea (BD), and percent time in periodic breathing (PB) throughout the neonatal intensive care unit (NICU) stay (75 infant-years). We reviewed 100 days with extremely high XCorr-HR-SpO2 (>0.7) and control days for clinical associations. Next, we identified all cases of late-onset septicemia (LOS) and necrotizing enterocolitis (NEC) and analyzed change in XCorr-HR-SpO2 before diagnosis. RESULTS Mean XCorr-HR-SpO2 was ∼0.10, and increasing XCorr-HR-SpO2 was associated with increasing ABD, BD, and PB (correlation coefficients >0.93). Days with maximum XCorr-HR-SpO2 >0.7 were more likely to have an adverse event than control days (49% versus 13%). In 93 cases of LOS or NEC, there was a 67% increase in XCorr-HR-SpO2 in the 24-hour period prior to diagnosis compared with the previous day (p < 0.01). CONCLUSION High XCorr-HR-SpO2 is associated with apnea and adverse events including LOS and NEC.
Collapse
Affiliation(s)
- Karen D. Fairchild
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Douglas E. Lake
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
18
|
Ribeiro A, Mayer C, Wilson C, Martin R, MacFarlane P. Intratracheal LPS administration attenuates the acute hypoxic ventilatory response: Role of brainstem IL-1β receptors. Respir Physiol Neurobiol 2017; 242:45-51. [DOI: 10.1016/j.resp.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
|
19
|
Aleksandrova NP, Danilova GA, Aleksandrov VG. Interleukin-1beta suppresses the ventilatory hypoxic response in rats via prostaglandin-dependent pathways. Can J Physiol Pharmacol 2017; 95:681-685. [DOI: 10.1139/cjpp-2016-0419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of the major inflammatory cytokine interleukin-1beta (IL-1β) on the ventilatory response to hypoxia. The goal was to test the hypothesis that IL-1β impairs the hypoxic ventilatory response in vivo by indirectly inhibiting respiratory neurons in the brainstem via prostaglandins. Thus, IL-1β was delivered by cerebroventricular injection, and the ventilatory hypoxic response was assessed in anesthetized, spontaneously breathing rats pretreated with or without diclofenac, a nonspecific inhibitor of prostaglandin synthesis. We found that the slope of the ventilatory response to hypoxia decreased almost 2-fold from 10.4 ± 3.02 to 4.06 ± 0.86 mL·min−1·(mm Hg)−1 (–61%) 90 min after administration of IL-1β (p < 0.05). The slope of tidal volume and mean inspiratory flow also decreased from 0.074 ± 0.02 to 0.039 ± 0.01 mL·(mm Hg)−1 (–45%, p < 0.05), and from 0.36 ± 0.07 to 0.2 ± 0.04 mL·s−1·(mm Hg)−1 (–46%, p < 0.05), respectively. Pretreatment with diclofenac blocked these effects. Thus, the data indicate that IL-1β degrades the ventilatory hypoxic response by stimulating production of prostaglandin. The increase of cerebral levels of IL-1β, which is induced by the activation of immune cells in the brain, may impair respiratory chemoreflexes.
Collapse
Affiliation(s)
- Nina P. Aleksandrova
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
| | - Galina A. Danilova
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
| | - Viacheslav G. Aleksandrov
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
- Respiratory Physiology Lab, Pavlov Institute of Physiology RAS, nab. Makarova, 6, Saint-Petersburg, 199034, Russian Federation
| |
Collapse
|
20
|
Stokes JA, Arbogast TE, Moya EA, Fu Z, Powell FL. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia. J Neurophysiol 2017; 117:1625-1635. [PMID: 28100653 DOI: 10.1152/jn.00525.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia.NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization.
Collapse
Affiliation(s)
- Jennifer A Stokes
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Tara E Arbogast
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Esteban A Moya
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Zhenxing Fu
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| | - Frank L Powell
- Division of Physiology, Department of Medicine; University of California, San Diego, La Jolla, California
| |
Collapse
|
21
|
Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017; 287:243-253. [PMID: 27476100 PMCID: PMC5121034 DOI: 10.1016/j.expneurol.2016.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jennifer A Stokes
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
| |
Collapse
|
22
|
Rourke KS, Mayer CA, MacFarlane PM. A critical postnatal period of heightened vulnerability to lipopolysaccharide. Respir Physiol Neurobiol 2016; 232:26-34. [DOI: 10.1016/j.resp.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
23
|
Chan C, Bode L, Kim J. Galectin-3 binding protein in human preterm infant umbilical cord plasma. J Neonatal Perinatal Med 2016; 8:99-104. [PMID: 26410432 DOI: 10.3233/npm-15814055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Galectin-3 binding protein (Gal3BP) is a glycoprotein isolated in colostrum that may be an immunologically active component with effects on the neonatal immune system. This compound has been found in the blood of term newborn infants, but has not been studied in preterm infants. OBJECTIVE Compare umbilical cord plasma Gal3BP concentration between preterm and term infants. STUDY DESIGN Observational study of mother-infant pairs consented at UCSD Medical Center comparing umbilical cord plasma Gal3BP concentration in preterm and term infants. Umbilical cord plasma was collected at birth and stored at -80°C before Gal3BP analysis by ELISA. This study was powered to evaluate differences in preterm and term infant Gal3BP concentration. The secondary aim was to determine the effect of maternal and infant clinical factors on Gal3BP concentration. RESULTS A total of 64 preterm and 30 term umbilical cord plasma samples were analyzed. By univariate analysis, Gal3BP concentration was elevated in the setting of prematurity, maternal diabetes, antenatal steroid exposure, and increasing maternal parity (p < 0.05); and decreased in chorioamnionitis (p = 0.03). Using a multiple linear regression model prematurity, chorioamnionitis and maternal diabetes remained significant. CONCLUSIONS Umbilical cord plasma Gal3BP concentration is elevated in prematurity. This may reflect inflammatory states in infant and mother, but further study is warranted.
Collapse
MESH Headings
- Adult
- Female
- Fetal Blood/immunology
- Fetal Blood/metabolism
- Galectin 3/blood
- Humans
- Immunity, Innate/immunology
- Immunity, Maternally-Acquired/immunology
- Infant, Newborn
- Infant, Newborn, Diseases/blood
- Infant, Newborn, Diseases/immunology
- Infant, Premature
- Male
- Predictive Value of Tests
- Pregnancy
- Shock, Septic/blood
- Shock, Septic/prevention & control
- Umbilical Cord/immunology
- Umbilical Cord/metabolism
Collapse
|
24
|
Master ZR, Porzionato A, Kesavan K, Mason A, Chavez-Valdez R, Shirahata M, Gauda EB. Lipopolysaccharide exposure during the early postnatal period adversely affects the structure and function of the developing rat carotid body. J Appl Physiol (1985) 2016; 121:816-827. [PMID: 27418689 DOI: 10.1152/japplphysiol.01094.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
The carotid body (CB) substantially influences breathing in premature infants by affecting the frequency of apnea and periodic breathing. In adult animals, inflammation alters the structure and chemosensitivity of the CB, yet it is not known if this pertains to neonates. We hypothesized that early postnatal inflammation leads to morphological and functional changes in the developing rat CB, which persists for 1 wk after the initial provoking insult. To test our hypothesis, we exposed rat pups at postnatal day 2 (P2) to lipopolysaccharide (LPS; 100 μg/kg) or saline (SAL) intraperitoneally. At P9-10 (1 wk after treatment), LPS-exposed animals had significantly more spontaneous intermittent hypoxic (IH) events, attenuated ventilatory responses to changes in oxygen tension (measured by whole body plethysmography), and attenuated hypoxic chemosensitivity of the carotid sinus nerve (measured in vitro), compared with SAL-exposed controls. These functional changes were associated with the following: 1) increased inflammatory cytokine mRNA levels; 2) decreased volume of supportive type II cells; and 3) elevated dopamine levels (a major inhibitory neuromodulator) within the CB. These findings suggest that early postnatal inflammation in newborn rats adversely affects the structure and function of the CB and is associated with increased frequency of intermittent desaturations, similar to the phenomenon observed in premature infants. Furthermore, this is the first newborn model of spontaneous intermittent desaturations that may be used to understand the mechanisms contributing to IH events in newborns.
Collapse
Affiliation(s)
- Zankhana R Master
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea Porzionato
- Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Kalpashri Kesavan
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ariel Mason
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Machiko Shirahata
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
25
|
Cardiorespiratory events in preterm infants: etiology and monitoring technologies. J Perinatol 2016; 36:165-71. [PMID: 26583939 DOI: 10.1038/jp.2015.164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Every year, an estimated 15 million infants are born prematurely (<37 weeks gestation) with premature birth rates ranging from 5 to 18% across 184 countries. Although there are a multitude of reasons for this high rate of preterm birth, once birth occurs, a major challenge of infant care includes the stabilization of respiration and oxygenation. Clinical care of this vulnerable infant population continues to improve, yet there are major areas that have yet to be resolved including the identification of optimal respiratory support modalities and oxygen saturation targets, and reduction of associated short- and long-term morbidities. As intermittent hypoxemia is a consequence of immature respiratory control and resultant apnea superimposed upon an immature lung, improvements in clinical care must include a thorough knowledge of premature lung development and pathophysiology that is unique to premature birth. In Part 1 of a two-part review, we summarize early lung development and diagnostic methods for cardiorespiratory monitoring.
Collapse
|
26
|
MacFarlane PM, Mayer CA, Litvin DG. Microglia modulate brainstem serotonergic expression following neonatal sustained hypoxia exposure: implications for sudden infant death syndrome. J Physiol 2016; 594:3079-94. [PMID: 26659585 DOI: 10.1113/jp271845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neonatal sustained hypoxia exposure modifies brainstem microglia and serotonin expression. The altered brainstem neurochemistry is associated with impaired ventilatory responses to acute hypoxia and mortality. The deleterious effects of sustained hypoxia exposure can be prevented by an inhibitor of activated microglia. These observations demonstrate a potential cause of the brainstem serotonin abnormalities thought to be involved in sudden infant death syndrome. ABSTRACT We showed previously that the end of the second postnatal week (days P11-15) represents a period of development during which the respiratory neural control system exhibits a heightened vulnerability to sustained hypoxia (SH, 11% O2 , 5 days) exposure. In the current study, we investigated whether the vulnerability to SH during the same developmental time period is associated with changes in brainstem serotonin (5-HT) expression and whether it can be prevented by the microglia inhibitor minocycline. Using whole-body plethysmography, SH attenuated the acute (5 min) hypoxic ventilatory response (HVR) and caused a high incidence of mortality compared to normoxia rats. SH also increased microglia cell numbers and decreased 5-HT immunoreactivity in the nucleus of the solitary tract (nTS) and dorsal motor nucleus of the vagus (DMNV). The attenuated HVR, mortality, and changes in nTS and DMNV immunoreactivity was prevented by minocycline (25 mg kg(-1) /2 days during SH). These data demonstrate that the 5-HT abnormalities in distinct respiratory neural control regions can be initiated by prolonged hypoxia exposure and may be modulated by microglia activity. These observations share several commonalities with the risk factors thought to underlie the aetiology of sudden infant death syndrome, including: (1) a vulnerable neonate; (2) a critical period of development; (3) evidence of hypoxia; (4) brainstem gliosis (particularly the nTS and DMNV); and (5) 5-HT abnormalities.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - C A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - D G Litvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
27
|
Golubeva AV, Crampton S, Desbonnet L, Edge D, O'Sullivan O, Lomasney KW, Zhdanov AV, Crispie F, Moloney RD, Borre YE, Cotter PD, Hyland NP, O'Halloran KD, Dinan TG, O'Keeffe GW, Cryan JF. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 2015; 60:58-74. [PMID: 26135201 DOI: 10.1016/j.psyneuen.2015.06.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.
Collapse
Affiliation(s)
- Anna V Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Sean Crampton
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Lieve Desbonnet
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Deirdre Edge
- Department of Physiology, University College Cork, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Kevin W Lomasney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Rachel D Moloney
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Yuliya E Borre
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark Fermoy, County Cork, Ireland
| | - Niall P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; Irish Centre for Foetal and Neonatal Translational Research (INFANT), CUMH, Cork, Ireland.
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
28
|
Cyclooxygenase pathway in modulation of the ventilatory response to hypercapnia by interleukin-1β in rats. Respir Physiol Neurobiol 2015; 209:85-90. [DOI: 10.1016/j.resp.2014.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/07/2014] [Accepted: 12/07/2014] [Indexed: 01/08/2023]
|
29
|
Shirahata M, Tang WY, Kostuk EW. A Short-Term Fasting in Neonates Induces Breathing Instability and Epigenetic Modification in the Carotid Body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:187-93. [PMID: 26303480 PMCID: PMC4793897 DOI: 10.1007/978-3-319-18440-1_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The respiratory control system is not fully developed in newborn, and data suggest that adequate nutrition is important for the development of the respiratory control system. Infants need to be fed every 2-4 h to maintain appropriate energy levels, but a skip of feeding can occur due to social economical reasons or mild sickness of infants. Here, we asked questions if a short-term fasting (1) alters carotid body (CB) chemoreceptor activity and integrated function of the respiratory control system; (2) causes epigenetic modification within the respiratory control system. Mouse pups (
Collapse
Affiliation(s)
- Machiko Shirahata
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Eric W. Kostuk
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Effect of Lipopolysaccharide Exposure on Structure and Function of the Carotid Body in Newborn Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:115-21. [DOI: 10.1007/978-3-319-18440-1_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Siljehav V, Shvarev Y, Herlenius E. Il-1β and prostaglandin E2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice. J Appl Physiol (1985) 2014; 117:1027-36. [DOI: 10.1152/japplphysiol.00542.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prostaglandin E2 (PGE2) serves as a critical mediator of hypoxia, infection, and apnea in term and preterm babies. We hypothesized that the prostaglandin E receptor type 3 (EP3R) is the receptor responsible for PGE2-induced apneas. Plethysmographic recordings revealed that IL-1β (ip) attenuated the hypercapnic response in C57BL/6J wild-type (WT) but not in neonatal (P9) EP3R−/− mice ( P < 0.05). The hypercapnic responses in brain stem spinal cord en bloc preparations also differed depending on EP3R expression whereby the response was attenuated in EP3R−/− preparations ( P < 0.05). After severe hypoxic exposure in vivo, IL-1β prolonged time to autoresuscitation in WT but not in EP3R−/− mice. Moreover, during severe hypoxic stress EP3R−/− mice had an increased gasping duration ( P < 0.01) as well as number of gasps ( P < 0.01), irrespective of intraperitoneal treatment, compared with WT mice. Furthermore, EP3R−/− mice exhibited longer hyperpneic breathing efforts when exposed to severe hypoxia ( P < 0.01). This was then followed by a longer period of secondary apnea before autoresuscitation occurred in EP3R−/− mice ( P < 0.05). In vitro, EP3R−/− brain stem spinal cord preparations had a prolonged respiratory burst activity during severe hypoxia accompanied by a prolonged neuronal arrest during recovery in oxygenated medium ( P < 0.05). In conclusion, PGE2 exerts its effects on respiration via EP3R activation that attenuates the respiratory response to hypercapnia as well as severe hypoxia. Modulation of the EP3R may serve as a potential therapeutic target for treatment of inflammatory and hypoxic-induced detrimental apneas and respiratory disorders in neonates.
Collapse
Affiliation(s)
- Veronica Siljehav
- Neonatal Research Unit Q2:07, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Yuri Shvarev
- Neonatal Research Unit Q2:07, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Eric Herlenius
- Neonatal Research Unit Q2:07, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
32
|
Pathogenic roles of the carotid body inflammation in sleep apnea. Mediators Inflamm 2014; 2014:354279. [PMID: 25276055 PMCID: PMC4170702 DOI: 10.1155/2014/354279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022] Open
Abstract
Breathing difficulties in sleep are a hallmark of sleep-disordered breathing commonly observed in patients with sleep disorders. The pathophysiology of sleep apnea is in part due to an augmented activity of the carotid body chemoreflex. Arterial chemoreceptors in the carotid body are sensitive to inflammatory cytokines and immunogenic molecules in the circulation, because cytokine receptors are expressed in the carotid body in experimental animals and human. Intriguingly, proinflammatory cytokines are also locally produced and released in the carotid body. Also, there are significant increases in the expression of proinflammatory cytokines, cytokine receptors, and inflammatory mediators in the carotid body under hypoxic conditions, suggesting an inflammatory response of the carotid body. These upregulated cytokine signaling pathways could enhance the carotid chemoreceptor activity, leading to an overactivity of the chemoreflex adversely effecting breathing instability and autonomic imbalance. This review aims to summarize findings of the literature relevant to inflammation in the carotid body, with highlights on the pathophysiological impact in sleep apnea. It is concluded that local inflammation in the carotid body plays a pathogenic role in sleep apnea, which could potentially be a therapeutic target for the treatment of the pathophysiological consequence of sleep apnea.
Collapse
|
33
|
Kåhlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 2014; 99:1089-98. [PMID: 24887113 DOI: 10.1113/expphysiol.2014.078873] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1β, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.
Collapse
Affiliation(s)
- Jessica Kåhlin
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nordlander
- Department of Otorhinolaryngology (ENT), Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nanduri Prabhakar
- Institute for Integrative Physiology & Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Mayer CA, Di Fiore JM, Martin RJ, Macfarlane PM. Vulnerability of neonatal respiratory neural control to sustained hypoxia during a uniquely sensitive window of development. J Appl Physiol (1985) 2013; 116:514-21. [PMID: 24371020 DOI: 10.1152/japplphysiol.00976.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The first postnatal weeks represent a period of development in the rat during which the respiratory neural control system may be vulnerable to aberrant environmental stressors. In the present study, we investigated whether sustained hypoxia (SH; 11% O2) exposure starting at different postnatal ages differentially modifies the acute hypoxic (HVR) and hypercapnic ventilatory response (HCVR). Three different groups of rat pups were exposed to 5 days of SH, starting at either postnatal age 1 (SH1-5), 11 (SH11-15), or 21 (SH21-25) days. Whole body plethysmography was used to assess the HVR and HCVR the day after SH exposure ended. The primary results indicated that 1) the HVR and HCVR of SH11-15 rats were absent or attenuated (respectively) compared with age-matched rats raised in normoxia; 2) there was a profoundly high (∼84% of pups) incidence of unexplained mortality in the SH11-15 rats; and 3) these phenomena were unique to the SH11-15 group with no comparable effect of the SH exposure on the HVR, HCVR, or mortality in the younger (SH1-5) or older (SH21-25) rats. These results share several commonalities with the risk factors thought to underlie the etiology of sudden infant death syndrome, including 1) a vulnerable neonate; 2) a critical period of development; and 3) an environmental stressor.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | | | | |
Collapse
|
35
|
Bierman AM, Tankersley CG, Wilson CG, Chavez-Valdez R, Gauda EB. Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups. J Appl Physiol (1985) 2013; 116:47-53. [PMID: 24157524 DOI: 10.1152/japplphysiol.00224.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perinatal exposure to hyperoxia (30-60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.
Collapse
Affiliation(s)
- Alexis M Bierman
- Department of Pediatrics, Neonatology Research Laboratories, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
36
|
Apnea of prematurity--perfect storm. Respir Physiol Neurobiol 2013; 189:213-22. [PMID: 23727228 DOI: 10.1016/j.resp.2013.05.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022]
Abstract
With increased survival of preterm infants as young as 23 weeks gestation, maintaining adequate respiration and corresponding oxygenation represents a clinical challenge in this unique patient cohort. Respiratory instability characterized by apnea and periodic breathing occurs in premature infants because of immature development of the respiratory network. While short respiratory pauses and apnea may be of minimal consequence if oxygenation is maintained, they can be problematic if accompanied by chronic intermittent hypoxemia. Underdevelopment of the lung and the resultant lung injury that occurs in this population concurrent with respiratory instability creates the perfect storm leading to frequent episodes of profound and recurrent hypoxemia. Chronic intermittent hypoxemia contributes to the immediate and long term co-morbidities that occur in this population. In this review we discuss the pathophysiology leading to the perfect storm, diagnostic assessment of breathing instability in this unique population and therapeutic interventions that aim to stabilize breathing without contributing to tissue injury.
Collapse
|
37
|
Chintamaneni K, Bruder ED, Raff H. Effects of age on ACTH, corticosterone, glucose, insulin, and mRNA levels during intermittent hypoxia in the neonatal rat. Am J Physiol Regul Integr Comp Physiol 2013; 304:R782-9. [PMID: 23485866 DOI: 10.1152/ajpregu.00073.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apnea, the temporary cessation of respiratory airflow, is a common cause of intermittent hypoxia (IH) in premature infants. We hypothesized that IH elicits a stress response and alters glucose homeostasis in the neonatal rat. Rat pups were studied on postnatal day (PD) 2, 8, 10, 12, and 14. Pups were exposed to normoxia (control) or six cycles consisting of 30-s exposures to hypoxia (FiO2 = 3%) over a 60-min period. Blood samples were obtained at baseline, after the third cycle (~30 min), and after the sixth cycle (~60 min). Tissue samples were collected following the sixth cycle. Plasma ACTH, corticosterone, glucose, and insulin were analyzed at all ages. Hypothalamic, pituitary, and adrenal mRNA expression was evaluated by quantitative PCR in PD2, PD8, and PD12 pups. Exposure to IH elicited significant increases in plasma ACTH and corticosterone at all ages studied. The largest increase in corticosterone occurred in PD2 pups, despite only a very small increase in plasma ACTH. This ACTH-independent increase in corticosterone in PD2 pups was associated with increases in adrenal Ldlr and Star mRNA expression. Additionally, IH caused hyperglycemia and hyperinsulinemia at all ages. We conclude that IH elicits a significant pituitary-adrenal response and significantly alters glucose homeostasis. Furthermore, the quantitative and qualitative characteristics of these responses depend on developmental age.
Collapse
Affiliation(s)
- Kathan Chintamaneni
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, WI 53215, USA
| | | | | |
Collapse
|
38
|
Porzionato A, Macchi V, De Caro R, Di Giulio C. Inflammatory and immunomodulatory mechanisms in the carotid body. Respir Physiol Neurobiol 2013; 187:31-40. [PMID: 23485800 DOI: 10.1016/j.resp.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Evidence is available about the role of inflammatory/immunological factors in the physiology and plasticity of the carotid body, with potential clinical implications in obstructive sleep apnea syndrome and sudden infant death syndrome. In humans, lymphomonocytic aggregations (chronic carotid glomitis) have been reported in aging and opiate addiction. Glomus cells produce prostaglandin E2 and the cytokines interleukin 1β, interleukin 6 and TNF-α, with corresponding receptors. These factors modulate glomus cell excitability, catecholamine release and/or chemoreceptor discharge. The above cytokines are up-regulated in chronic sustained or intermittent hypoxia, and prevention of these changes, with ibuprofen or dexamethasone, may modulate hypoxia-induced changes in carotid body chemosensitivity. The main transcription factors considered to be involved are NF-kB and HIFs. Circulating immunogens (lipopolysaccharide) and cytokines may also affect peripheral arterial chemoreception, with the carotid body exerting an immunosensing function.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
39
|
Carroll JL, Donnelly DF, Bairam A. Foreword. Development of the carotid body. Respir Physiol Neurobiol 2013; 185:1-2. [PMID: 23078973 DOI: 10.1016/j.resp.2012.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
Affiliation(s)
- John L Carroll
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|