1
|
Hayes G, Sparks S, Pinto J, Bulte DP. Ramp protocol for non-linear cerebrovascular reactivity with transcranial doppler ultrasound. J Neurosci Methods 2025; 416:110381. [PMID: 39884440 DOI: 10.1016/j.jneumeth.2025.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) reflects the ability of cerebral blood vessels to adjust their diameter in response to vasoactive stimuli, which is crucial for maintaining brain health. Traditional CVR assessments commonly use a two-point measurement, assuming a linear relationship between cerebral blood flow (CBF) and arterial CO2. However, this approach fails to capture non-linear characteristics, particularly the plateaus at extreme CO2 levels. NEW METHOD This study introduces a cost-effective, ramp-based end-tidal CO2 (PETCO2) protocol to assess non-linear aspects of CVR. Using transcranial Doppler ultrasound, we monitored blood velocity responses to progressive increases in arterial CO2 levels in eleven healthy adults, covering a spectrum from hypocapnia to hypercapnia. RESULTS All eleven participants successfully completed the protocol, with an average PETCO2 range of 26 ± 4 mmHg and blood velocity changes from -29 % to + 50 % relative to baseline. Non-linear CVR characteristics were observed in all subjects. Sigmoid models provided significantly better fits to the CVR data than linear models, while Bayesian approaches followed expected physiological ranges more accurately than least squares regression methods. COMPARISON WITH EXISTING METHODS Unlike traditional CVR methods, this ramp protocol captures the full, non-linear CVR profile. The sigmoid modeling approach offers a more accurate representation of cerebrovascular dynamics, particularly at CO2 extremes. CONCLUSIONS The PETCO2 ramp protocol with non-linear CVR modeling shows promise as an accessible and reliable tool for assessing CBF dynamics. With high completion rates, straightforward implementation, and low equipment cost, this approach holds significant potential for clinical applications in cerebrovascular health evaluation.
Collapse
Affiliation(s)
- Genevieve Hayes
- IBME, Department of Engineering Science, University of Oxford, Oxford UK.
| | - Sierra Sparks
- IBME, Department of Engineering Science, University of Oxford, Oxford UK
| | - Joana Pinto
- IBME, Department of Engineering Science, University of Oxford, Oxford UK
| | - Daniel P Bulte
- IBME, Department of Engineering Science, University of Oxford, Oxford UK
| |
Collapse
|
2
|
Ranada SI, Baker JR, Wong C, Karalasingham K, Wilson RJA, Phillips AA, Sheldon RS, Edgell H, Raj SR. Effects of neck compression on chemoreflex sensitivity and cardiorespiratory hemodynamics in patients with postural orthostatic tachycardia syndrome (POTS). Clin Auton Res 2025:10.1007/s10286-025-01119-7. [PMID: 40000577 DOI: 10.1007/s10286-025-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Shaun I Ranada
- Department of Cardiac Sciences, University of Calgary, GAC70 HRIC Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jacquie R Baker
- Department of Cardiac Sciences, University of Calgary, GAC70 HRIC Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Cameron Wong
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Health Sciences, Queen's University, Kingston, Canada
| | - Kavithra Karalasingham
- Department of Cardiac Sciences, University of Calgary, GAC70 HRIC Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Richard J A Wilson
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Aaron A Phillips
- Department of Cardiac Sciences, University of Calgary, GAC70 HRIC Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Robert S Sheldon
- Department of Cardiac Sciences, University of Calgary, GAC70 HRIC Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Heather Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, Canada
- Muscle Health Research Centre, York University, Toronto, Canada
| | - Satish R Raj
- Department of Cardiac Sciences, University of Calgary, GAC70 HRIC Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Libin Cardiovascular Institute, University of Calgary, Calgary, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Raghavan V, Sobczyk O, Sayin ES, Poublanc J, Skanda A, Duffin J, Venkatraghavan L, Fisher JA, Mikulis DJ. Assessment of Cerebrovascular Reactivity Using CO 2-BOLD MRI: A 15-Year, Single Center Experience. J Magn Reson Imaging 2024; 60:954-961. [PMID: 38135486 DOI: 10.1002/jmri.29176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) is a measure of the change in cerebral blood flow (CBF) in response to a vasoactive challenge. It is a useful indicator of the brain's vascular health. PURPOSE To evaluate the factors that influence successful and unsuccessful CVR examinations using precise arterial and end-tidal partial pressure of CO2 control during blood oxygen level-dependent (BOLD) MRI. STUDY TYPE Retrospective. SUBJECTS Patients that underwent a CVR between October 2005 and May 2021 were studied (total of 1162 CVR examinations). The mean (±SD) age was 46.1 (±18.8) years, and 352 patients (43%) were female. FIELD STRENGTH/SEQUENCE 3 T; T1-weighted images, T2*-weighed two-dimensional gradient-echo sequence with standard echo-planar readout. ASSESSMENT Measurements were obtained following precise hypercapnic stimuli using BOLD MRI as a surrogate of CBF. Successful CVR examinations were defined as those where: 1) patients were able to complete CVR testing, and 2) a clinically useful CVR map was generated. Unsuccessful examinations were defined as those where patients were not able to complete the CVR examination or the CVR maps were judged to be unreliable due to, for example, excessive head motion, and poor PETCO2 targeting. STATISTICAL ANALYSIS Successful and unsuccessful CVR examinations between hypercapnic stimuli, and between different patterns of stimulus were compared with Chi-Square tests. Interobserver variability was determined by using the intraclass correlation coefficient (P < 0.05 is significant). RESULTS In total 1115 CVR tests in 662 patients were included in the final analysis. The success rate of generating CVR maps was 90.8% (1012 of 1115). Among the different hypercapnic stimuli, those containing a step plus a ramp protocol was the most successful (95.18%). Among the unsuccessful examinations (9.23%), most were patient related (89.3%), the most common of which was difficulty breathing. DATA CONCLUSION CO2-BOLD MRI CVR studies are well tolerated with a high success rate. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Vishvak Raghavan
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| | - Ece Su Sayin
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| | - Abby Skanda
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Joseph A Fisher
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Baker JR, Incognito AV, Ranada SI, Sheldon RS, Sharkey KA, Phillips AA, Wilson RJA, Raj SR. Reduced Stroke Volume and Brain Perfusion Drive Postural Hyperventilation in Postural Orthostatic Tachycardia Syndrome. JACC Basic Transl Sci 2024; 9:939-953. [PMID: 39297140 PMCID: PMC11405806 DOI: 10.1016/j.jacbts.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 09/21/2024]
Abstract
Postural hyperventilation has been implicated as a cause of postural orthostatic tachycardia syndrome (POTS), yet the precise mechanisms underlying the heightened breathing response remain unclear. This study challenges current hypotheses by revealing that exaggerated peripheral chemoreceptor activity is not the primary driver of postural hyperventilation. Instead, significant contributions from reduced stroke volume and compromised brain perfusion during orthostatic stress were identified. These findings shed light on our understanding of POTS pathophysiology, emphasizing the critical roles of systemic hemodynamic status. Further research should explore interventions targeting stroke volume and brain perfusion for more effective clinical management of POTS.
Collapse
Affiliation(s)
- Jacquie R Baker
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony V Incognito
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shaun I Ranada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Robert S Sheldon
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Phillips
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
| | - Satish R Raj
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
- Vanderbilt Autonomic Dysfunction Center, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Duffin J, Sayin ES, Sobczyk O, Poublanc J, Mikulis DJ, Fisher JA. Cerebral perfusion metrics calculated directly from a hypoxia-induced step change in deoxyhemoglobin. Sci Rep 2024; 14:17121. [PMID: 39054379 PMCID: PMC11272773 DOI: 10.1038/s41598-024-68047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Resting cerebral perfusion metrics can be calculated from the MRI ΔR2* signal during the first passage of an intravascular bolus of a Gadolinium-based contrast agent (GBCA), or more recently, a transient hypoxia-induced change in the concentration of deoxyhemoglobin ([dOHb]). Conventional analysis follows a proxy process that includes deconvolution of an arterial input function (AIF) in a tracer kinetic model. We hypothesized that the step reduction in magnetic susceptibility accompanying a step decrease in [dOHb] that occurs when a single breath of oxygen terminates a brief episode of lung hypoxia permits direct calculation of relative perfusion metrics. The time course of the ΔR2* signal response enables both the discrimination of blood arrival times and the time course of voxel filling. We calculated the perfusion metrics implied by this step signal change in seven healthy volunteers and compared them to those from conventional analyses of GBCA and dOHb using their AIF and indicator dilution theory. Voxel-wise maps of relative cerebral blood flow and relative cerebral blood volume had a high spatial and magnitude congruence for all three analyses (r > 0.9) and were similar in appearance to published maps. The mean (SD) transit times (s) in grey and white matter respectively for the step response (7.4 (1.1), 8.05 (1.71)) were greater than those for GBCA (2.6 (0.45), 3.54 (0.83)) attributable to the nature of their respective calculation models. In conclusion we believe these calculations of perfusion metrics derived directly from ΔR2* have superior merit to calculations via AIF by virtue of being calculated from a direct signal rather than through a proxy model which encompasses errors inherent in designating an AIF and performing deconvolution calculations.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Plitman E, Venkatraghavan L, Agrawal S, Raghavan V, Chowdhury T, Sobczyk O, Sayin ES, Poublanc J, Duffin J, Mikulis D, Fisher J. Variability of Resting Carbon Dioxide Tension in Patients with Intracranial Steno-occlusive Disease. Asian J Neurosurg 2024; 19:235-241. [PMID: 38974441 PMCID: PMC11226286 DOI: 10.1055/s-0044-1786699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Introduction Controlling the partial pressure of carbon dioxide (PaCO 2 ) is an important consideration in patients with intracranial steno-occlusive disease to avoid reductions in critical perfusion from vasoconstriction due to hypocapnia, or reductions in blood flow due to steal physiology during hypercapnia. However, the normal range for resting PCO 2 in this patient population is not known. Therefore, we investigated the variability in resting end-tidal PCO 2 (P ET CO 2 ) in patients with intracranial steno-occlusive disease and the impact of revascularization on resting P ET CO 2 in these patients. Setting and Design Tertiary care center, retrospective chart review Materials and Methods We collected resting P ET CO 2 values in adult patients with intracranial steno-occlusive disease who presented to our institution between January 2010 and June 2021. We also explored postrevascularization changes in resting P ET CO 2 in a subset of patients. Results Two hundred and twenty-seven patients were included [moyamoya vasculopathy ( n = 98) and intracranial atherosclerotic disease ( n = 129)]. In the whole cohort, mean ± standard deviation resting P ET CO 2 was 37.8 ± 3.9 mm Hg (range: 26-47). In patients with moyamoya vasculopathy and intracranial atherosclerotic disease, resting P ET CO 2 was 38.4 ± 3.6 mm Hg (range: 28-47) and 37.4 ± 4.1 mm Hg (range: 26-46), respectively. A trend was identified suggesting increasing resting P ET CO 2 after revascularization in patients with low preoperative resting P ET CO 2 (<38 mm Hg) and decreasing resting P ET CO 2 after revascularization in patients with high preoperative resting P ET CO 2 (>38 mm Hg). Conclusion This study demonstrates that resting P ET CO 2 in patients with intracranial steno-occlusive disease is highly variable. In some patients, there was a change in resting P ET CO 2 after a revascularization procedure.
Collapse
Affiliation(s)
- Eric Plitman
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sanket Agrawal
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vishvak Raghavan
- Department of Computer Science, Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Tumul Chowdhury
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ece Su Sayin
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Joseph Fisher
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Mikulis DJ. Cerebrovascular Reserve Imaging: Problems and Solutions. Magn Reson Imaging Clin N Am 2024; 32:93-109. [PMID: 38007286 DOI: 10.1016/j.mric.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The current standard of practice for assessing patients with cerebrovascular steno-occlusive disease is based on measuring resting blood flow metrics using MR imaging and CT perfusion imaging. However, the reliability of these methods decreases as the degree and number of stenoses increase. The reason for this is that measures of adequate baseline blood flow in highly collateralized circulations do not account for possible shortfalls in recruitable blood flow or increased metabolic demand. The following offers a clinically tested solution for this purpose using cerebrovascular reactivity methodology that applies a quantifiable vasodilatory stimulus improving reproducibility and repeatability essential for optimizing patient management.
Collapse
Affiliation(s)
- David J Mikulis
- The Krembil Brain Institute, Institute of Medcial Science, Department of Medical Imaging, The University of Toronto, The University Health Network, The Toronto Western Hospital, 399 Bathurst Street, Room 3MC-431, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
8
|
Dent MR, Rose JJ, Tejero J, Gladwin MT. Carbon Monoxide Poisoning: From Microbes to Therapeutics. Annu Rev Med 2024; 75:337-351. [PMID: 37582490 PMCID: PMC11160397 DOI: 10.1146/annurev-med-052422-020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Carbon monoxide (CO) poisoning leads to 50,000-100,000 emergency room visits and 1,500-2,000 deaths each year in the United States alone. Even with treatment, survivors often suffer from long-term cardiac and neurocognitive deficits, highlighting a clear unmet medical need for novel therapeutic strategies that reduce morbidity and mortality associated with CO poisoning. This review examines the prevalence and impact of CO poisoning and pathophysiology in humans and highlights recent advances in therapeutic strategies that accelerate CO clearance and mitigate toxicity. We focus on recent developments of high-affinity molecules that take advantage of the uniquely strong interaction between CO and heme to selectively bind and sequester CO in preclinical models. These scavengers, which employ heme-binding scaffolds ranging from organic small molecules to hemoproteins derived from humans and potentially even microorganisms, show promise as field-deployable antidotes that may rapidly accelerate CO clearance and improve outcomes for survivors of acute CO poisoning.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| |
Collapse
|
9
|
Sayin ES, Duffin J, Stumpo V, Bellomo J, Piccirelli M, Poublanc J, Wijeya V, Para A, Pangalu A, Bink A, Nemeth B, Kulcsar Z, Mikulis DJ, Fisher JA, Sobczyk O, Fierstra J. Assessing Perfusion in Steno-Occlusive Cerebrovascular Disease Using Transient Hypoxia-Induced Deoxyhemoglobin as a Dynamic Susceptibility Contrast Agent. AJNR Am J Neuroradiol 2023; 45:37-43. [PMID: 38164571 PMCID: PMC10756578 DOI: 10.3174/ajnr.a8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND PURPOSE Resting brain tissue perfusion in cerebral steno-occlusive vascular disease can be assessed by MR imaging using gadolinium-based susceptibility contrast agents. Recently, transient hypoxia-induced deoxyhemoglobin has been investigated as a noninvasive MR imaging contrast agent. Here we present a comparison of resting perfusion metrics using transient hypoxia-induced deoxyhemoglobin and gadolinium-based contrast agents in patients with known cerebrovascular steno-occlusive disease. MATERIALS AND METHODS Twelve patients with steno-occlusive disease underwent DSC MR imaging using a standard bolus of gadolinium-based contrast agent compared with transient hypoxia-induced deoxyhemoglobin generated in the lungs using an automated gas blender. A conventional multi-slice 2D gradient echo sequence was used to acquire the perfusion data and analyzed using a standard tracer kinetic model. MTT, relative CBF, and relative CBV maps were generated and compared between contrast agents. RESULTS The spatial distributions of the perfusion metrics generated with both contrast agents were consistent. Perfusion metrics in GM and WM were not statistically different except for WM MTT. CONCLUSIONS Cerebral perfusion metrics generated with noninvasive transient hypoxia-induced changes in deoxyhemoglobin are very similar to those generated using a gadolinium-based contrast agent in patients with cerebrovascular steno-occlusive disease.
Collapse
Affiliation(s)
- Ece Su Sayin
- From the Department of Physiology (E.S.S., J.D., J.A.F.), University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab (E.S.S., J.P., V.W., A. Para, D.J.M., O.S.), University Health Network, Toronto, Ontario, Canada
| | - James Duffin
- From the Department of Physiology (E.S.S., J.D., J.A.F.), University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Management (J.D., J.A.F.), University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vittorio Stumpo
- Department of Neurosurgery (V.S., J.B. J.F.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jacopo Bellomo
- Department of Neurosurgery (V.S., J.B. J.F.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology and Clinical Neuroscience Center (M.P., A. Pangalu, A.B., B.N., Z.K.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab (E.S.S., J.P., V.W., A. Para, D.J.M., O.S.), University Health Network, Toronto, Ontario, Canada
| | - Vepeson Wijeya
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab (E.S.S., J.P., V.W., A. Para, D.J.M., O.S.), University Health Network, Toronto, Ontario, Canada
| | - Andrea Para
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab (E.S.S., J.P., V.W., A. Para, D.J.M., O.S.), University Health Network, Toronto, Ontario, Canada
| | - Athina Pangalu
- Department of Neuroradiology and Clinical Neuroscience Center (M.P., A. Pangalu, A.B., B.N., Z.K.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology and Clinical Neuroscience Center (M.P., A. Pangalu, A.B., B.N., Z.K.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bence Nemeth
- Department of Neuroradiology and Clinical Neuroscience Center (M.P., A. Pangalu, A.B., B.N., Z.K.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology and Clinical Neuroscience Center (M.P., A. Pangalu, A.B., B.N., Z.K.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David J Mikulis
- Department of Medical Biophysics (D.J.M.), University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab (E.S.S., J.P., V.W., A. Para, D.J.M., O.S.), University Health Network, Toronto, Ontario, Canada
| | - Joseph A Fisher
- From the Department of Physiology (E.S.S., J.D., J.A.F.), University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Management (J.D., J.A.F.), University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab (E.S.S., J.P., V.W., A. Para, D.J.M., O.S.), University Health Network, Toronto, Ontario, Canada
| | - Jorn Fierstra
- Department of Neurosurgery (V.S., J.B. J.F.), University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
11
|
Hoiland RL, MacLeod DB, Stacey BS, Caldwell HG, Howe CA, Nowak-Flück D, Carr JMJR, Tymko MM, Coombs GB, Patrician A, Tremblay JC, Van Mierlo M, Gasho C, Stembridge M, Sekhon MS, Bailey DM, Ainslie PN. Hemoglobin and cerebral hypoxic vasodilation in humans: Evidence for nitric oxide-dependent and S-nitrosothiol mediated signal transduction. J Cereb Blood Flow Metab 2023; 43:1519-1531. [PMID: 37042194 PMCID: PMC10414015 DOI: 10.1177/0271678x231169579] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Cerebral hypoxic vasodilation is poorly understood in humans, which undermines the development of therapeutics to optimize cerebral oxygen delivery. Across four investigations (total n = 195) we investigated the role of nitric oxide (NO) and hemoglobin-based S-nitrosothiol (RSNO) and nitrite (NO 2 - ) signaling in the regulation of cerebral hypoxic vasodilation. We conducted hemodilution (n = 10) and NO synthase inhibition experiments (n = 11) as well as hemoglobin oxygen desaturation protocols, wherein we measured cerebral blood flow (CBF), intra-arterial blood pressure, and in subsets of participants trans-cerebral release/uptake of RSNO and NO 2 - . Higher CBF during hypoxia was associated with greater trans-cerebral RSNO release but not NO 2 - , while NO synthase inhibition reduced cerebral hypoxic vasodilation. Hemodilution increased the magnitude of cerebral hypoxic vasodilation following acute hemodilution, while in 134 participants tested under normal conditions, hypoxic cerebral vasodilation was inversely correlated to arterial hemoglobin concentration. These studies were replicated in a sample of polycythemic high-altitude native Andeans suffering from excessive erythrocytosis (n = 40), where cerebral hypoxic vasodilation was inversely correlated to hemoglobin concentration, and improved with hemodilution (n = 6). Collectively, our data indicate that cerebral hypoxic vasodilation is partially NO-dependent, associated with trans-cerebral RSNO release, and place hemoglobin-based NO signaling as a central mechanism of cerebral hypoxic vasodilation in humans.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Hannah G Caldwell
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Geoff B Coombs
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Alexander Patrician
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michelle Van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Chris Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
12
|
Sayin ES, Sobczyk O, Poublanc J, Mikulis DJ, Fisher JA, Duffin J. Transfer function analysis assesses resting cerebral perfusion metrics using hypoxia-induced deoxyhemoglobin as a contrast agent. Front Physiol 2023; 14:1167857. [PMID: 37250139 PMCID: PMC10213962 DOI: 10.3389/fphys.2023.1167857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Use of contrast in determining hemodynamic measures requires the deconvolution of an arterial input function (AIF) selected over a voxel in the middle cerebral artery to calculate voxel wise perfusion metrics. Transfer function analysis (TFA) offers an alternative analytic approach that does not require identifying an AIF. We hypothesised that TFA metrics Gain, Lag, and their ratio, Gain/Lag, correspond to conventional AIF resting perfusion metrics relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF), respectively. Methods: 24 healthy participants (17 M) and 1 patient with steno-occlusive disease were recruited. We used non-invasive transient hypoxia-induced deoxyhemoglobin as an MRI contrast. TFA and conventional AIF analyses were used to calculate averages of whole brain and smaller regions of interest. Results: Maps of these average metrics had colour scales adjusted to enhance contrast and identify areas of high congruence. Regional gray matter/white matter (GM/WM) ratios for MTT and Lag, rCBF and Gain/Lag, and rCBV and Gain were compared. The GM/WM ratios were greater for TFA metrics compared to those from AIF analysis indicating an improved regional discrimination. Discussion: Resting perfusion measures generated by The BOLD analysis resulting from a transient hypoxia induced variations in deoxyhemoglobin analyzed by TFA are congruent with those analyzed by conventional AIF analysis.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
| | - Olivia Sobczyk
- Departments of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Wang HY, Lin C, Chen CC, Teng WN, Chen KH, Lo MT, Ting CK. Improvement in vocal-cord visualization with Trachway video intubating stylet using direct oxygen flow and effective analysis of the fraction of inspired oxygen: a bench study. J Clin Monit Comput 2022; 36:1723-1730. [PMID: 35244821 DOI: 10.1007/s10877-022-00818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/21/2022] [Indexed: 10/18/2022]
Abstract
The Trachway video intubating stylet device facilitates the visualization of the airways of patients from the tip of an endotracheal tube (ETT) during intubation. The major limitations of Trachway are the restricted view due to secretions and the risk of a prolonged apnea during intubation. We conducted a bench study to verify the performance of an alternative, easily applicable airway device that allows better visualization of trackways during Trachway-assisted intubation and prevents the detrimental effects of apnea-related hypoxia. We conducted a bench study to thoroughly evaluate the oral-secretion-elimination ability of a newly designed oxygen delivery device (ODD) to improve vocal-cord visualization using the three commonly used ETT sizes (i.e., 7, 7.5, and 8 mm). Moreover, we measured the fraction of inspired oxygen (FiO2) under different, continuous oxygen-flow supplies (1-10 L/min) during intubation. Each condition was analyzed for a 2 min video-stylet-intubation period. The supplemental oxygen flow and FiO2 fraction achieved using our ODD were higher, and smaller ETTs exhibited better secretion elimination. The ODD, which can be easily coupled with Trachway stylets, enabled high-quality visualization during oxygen flows of 6-8 L/min, and higher FiO2 fractions were achieved at higher oxygen flow rates. The use of the ODD improved the visualization of the airways during video stylet-assisted intubations using the additional FiO2 supply. The ODD developed in this study improves the visualization of airways with Trachway stylets and enhances the safety of intubation.
Collapse
Affiliation(s)
- Hsin-Yi Wang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC
- Department of Biomedical Sciences and Engineering, National Central University, Chungli, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Chungli, Taiwan
| | - Chien-Chang Chen
- Department of Biomedical Sciences and Engineering, National Central University, Chungli, Taiwan
| | - Wei-Nung Teng
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC
| | - Kun-Hui Chen
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital and National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering, National Central University, Chungli, Taiwan
| | - Chien-Kun Ting
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC.
| |
Collapse
|
14
|
Sayin ES, Schulman J, Poublanc J, Levine HT, Raghavan LV, Uludag K, Duffin J, Fisher JA, Mikulis DJ, Sobczyk O. Investigations of hypoxia-induced deoxyhemoglobin as a contrast agent for cerebral perfusion imaging. Hum Brain Mapp 2022; 44:1019-1029. [PMID: 36308389 PMCID: PMC9875930 DOI: 10.1002/hbm.26131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 01/28/2023] Open
Abstract
The assessment of resting perfusion measures (mean transit time, cerebral blood flow, and cerebral blood volume) with magnetic resonance imaging currently requires the presence of a susceptibility contrast agent such as gadolinium. Here, we present an initial comparison between perfusion measures obtained using hypoxia-induced deoxyhemoglobin and gadolinium in healthy study participants. We hypothesize that resting cerebral perfusion measures obtained using precise changes of deoxyhemoglobin concentration will generate images comparable to those obtained using a clinical standard, gadolinium. Eight healthy study participants were recruited (6F; age 23-60). The study was performed using a 3-Tesla scanner with an eight-channel head coil. The experimental protocol consisted of a high-resolution T1-weighted scan followed by two BOLD sequence scans in which each participant underwent a controlled bolus of transient pulmonary hypoxia, and subsequently received an intravenous bolus of gadolinium. The resting perfusion measures calculated using hypoxia-induced deoxyhemoglobin and gadolinium yielded maps that looked spatially comparable. There was no statistical difference between methods in the average voxel-wise measures of mean transit time, relative cerebral blood flow and relative cerebral blood volume, in the gray matter or white matter within each participant. We conclude that perfusion measures generated with hypoxia-induced deoxyhemoglobin are spatially and quantitatively comparable to those generated from a gadolinium injection in the same healthy participant.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Jacob Schulman
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada,Techna Institute, University Health NetworkTorontoCanada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada
| | - Harrison T. Levine
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Lakshmikumar Venkat Raghavan
- Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Kamil Uludag
- Techna Institute, University Health NetworkTorontoCanada,Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada,Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - James Duffin
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Joseph A. Fisher
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - David J. Mikulis
- Techna Institute, University Health NetworkTorontoCanada,Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada,Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
15
|
Sayin ES, Sobczyk O, Poublanc J, Mikulis DJ, Fisher JA, Kuo KHM, Duffin J. Assessment of cerebrovascular function in patients with sickle cell disease using transfer function analysis. Physiol Rep 2022; 10:e15472. [PMID: 36200271 PMCID: PMC9535348 DOI: 10.14814/phy2.15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
In patients with sickle cell disease (SCD), the delivery of oxygen to the brain is compromised by anemia, abnormal rheology, and steno-occlusive vascular disease. Successful compensation depends on an increase in oxygen supply such as that provided by an increase in cerebral blood flow (CBF). We used magnetic resonance imaging to provide a high-resolution assessment of the ability of SCD patients to respond to a vasoactive stimulus in middle, anterior, and posterior cerebral artery territories for both white and gray matter. Cerebrovascular reactivity (CVR) was measured as the blood oxygen level dependent signal (a surrogate for CBF) response to an increase in the end tidal partial pressure of CO2 (PET CO2 ). The dynamic aspect of the response was measured as the time constant of the first order response kinetics (tau). To confirm and support these findings we used an alternative examination of the response, transfer function analysis (TFA), to measure the responsiveness (gain), the speed of response (phase), and the consistency of the response over time (coherence). We tested 34 patients with SCD and compared the results to those of 24 healthy controls participants. The results from a three-way ANOVA showed that patients with SCD have reduced CVR (p < 0.001) and lower coherence (p < 0.001) in gray matter and white matter and reduced gain in gray matter only (p < 0.001). In terms of the speed of the response to CO2 , tau (p < 0.001) and TFA phase (p < 0.001) were increased in SCD patients compared to healthy control subjects. These findings show that the cerebrovascular responsiveness to CO2 in patients with SCD is both decreased and slowed compared to healthy controls.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Departments of Anaesthesia and Pain ManagementUniversity Health NetworkTorontoCanada
| | - Olivia Sobczyk
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Departments of Anaesthesia and Pain ManagementUniversity Health NetworkTorontoCanada
- Joint Department of Medical Imaging and the Functional Neuroimaging LaboratoryUniversity Health NetworkTorontoCanada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging LaboratoryUniversity Health NetworkTorontoCanada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging LaboratoryUniversity Health NetworkTorontoCanada
- Institute of Medical SciencesUniversity of TorontoTorontoCanada
| | - Joseph A. Fisher
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Departments of Anaesthesia and Pain ManagementUniversity Health NetworkTorontoCanada
| | - Kevin H. M. Kuo
- Division of Medical Oncology and Hematology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - James Duffin
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Departments of Anaesthesia and Pain ManagementUniversity Health NetworkTorontoCanada
| |
Collapse
|
16
|
Hampson JP, Lacuey N, Rani MRS, Hampson JS, Simeone KA, Simeone TA, Narayana PA, Lemieux L, Lhatoo SD. Functional MRI Correlates of Carbon Dioxide Chemosensing in Persons With Epilepsy. Front Neurol 2022; 13:896204. [PMID: 35873766 PMCID: PMC9301231 DOI: 10.3389/fneur.2022.896204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Sudden unexpected death in epilepsy (SUDEP) is a catastrophic epilepsy outcome for which there are no reliable premortem imaging biomarkers of risk. Percival respiratory depression is seen in monitored SUDEP and near SUDEP cases, and abnormal chemosensing of raised blood carbon dioxide (CO2) is thought to contribute. Damage to brainstem respiratory control and chemosensing structures has been demonstrated in structural imaging and neuropathological studies of SUDEP. We hypothesized that functional MRI (fMRI) correlates of abnormal chemosensing are detectable in brainstems of persons with epilepsy (PWE) and are different from healthy controls (HC). Methods We analyzed fMRI BOLD activation and brain connectivity in 10 PWE and 10 age- and sex-matched HCs during precisely metered iso-oxic, hypercapnic breathing challenges. Segmented brainstem responses were of particular interest, along with characterization of functional connectivity metrics between these structures. Regional BOLD activations during hypercapnic challenges were convolved with hemodynamic responses, and the resulting activation maps were passed on to group-level analyses. For the functional connectivity analysis, significant clusters from BOLD results were used as seeds. Each individual seed time-series activation map was extracted for bivariate correlation coefficient analyses to study changes in brain connectivity between PWE and HCs. Results (1) Greater brainstem BOLD activations in PWE were observed compared to HC during hypercapnic challenges in several structures with respiratory/chemosensing properties. Group comparison between PWE vs. HC showed significantly greater activation in the dorsal raphe among PWE (p < 0.05) compared to HCs. (2) PWE had significantly greater seed-seed connectivity and recruited more structures during hypercapnia compared to HC. Significance The results of this study show that BOLD responses to hypercapnia in human brainstem are detectable and different in PWE compared to HC. Increased dorsal raphe BOLD activation in PWE and increased seed-seed connectivity between brainstem and adjacent subcortical areas may indicate abnormal chemosensing in these individuals. Imaging investigation of brainstem respiratory centers involved in respiratory regulation in PWE is an important step toward identifying suspected dysfunction of brainstem breathing control that culminates in SUDEP and deserve further study as potential imaging SUDEP biomarkers.
Collapse
Affiliation(s)
- Johnson P. Hampson
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nuria Lacuey
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - MR Sandhya Rani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaison S. Hampson
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristina A. Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Timothy A. Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Samden D. Lhatoo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
17
|
Liu F, Jiang X, Zhang M. Global burden analysis and AutoGluon prediction of accidental carbon monoxide poisoning by Global Burden of Disease Study 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6911-6928. [PMID: 34467490 DOI: 10.1007/s11356-021-15895-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Accidental carbon monoxide poisoning (ACOP) is the most common occupational toxic disease, but related data are scarce or non-existent in many countries. This article investigates the global burden of ACOP based on the Global Burden of Disease Study 2019 (GBD 2019) and the World Bank database. In our study, numbers and age-standardized rates of ACOP prevalence, incidence, deaths, disability-adjusted life years (DALYs), years lived with disability (YLDs), and years of life lost (YLLs) were analyzed at global, regional, and national level. Besides, the estimated annual percentage change (EAPC) of age-standardized rates were calculated by generalizing the linear model. Age, sex, and Socio-demographic Index (SDI) are included to access their internal relevance. Globally, in 2019, there were approximately 0.97 million ACOP incidence cases (95% CI 0.66 million to 1.4 million), and 41,142 (95% UI 32,957 to 45,934) people died from it. Compared with 1990, the morbidity and mortality of ACOP in 2019 are on a downward trend. By sexes, from 1990 to 2019, females have higher morbidity and lower mortality. This correlation enables us to evaluate the level and status of public health services in various countries. We also evaluated the correlation between ACOP and economic parameters and use newly released machine learning tool-AutoGluon to predict the epidemiology of ACOP. The results of this study can be used by the health authorities to consider the burden of ACOP that could be addressed with preventive and therapeutic measures.
Collapse
Affiliation(s)
- Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Disease, Hangzhou, China
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Disease, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Disease, Hangzhou, China.
| |
Collapse
|
18
|
Sayin ES, Davidian A, Levine H, Venkatraghavan L, Mikulis DJ, Fisher JA, Sobczyk O, Duffin J. Does breathing pattern affect cerebrovascular reactivity? Exp Physiol 2021; 107:183-191. [PMID: 34961983 DOI: 10.1113/ep090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is cerebrovascular reactivity affected by isocapnic changes in breathing pattern? What is the main finding and its importance? The main finding is that cerebrovascular reactivity does not change with isocapnic variations in tidal volume and frequency. ABSTRACT Deviations of arterial carbon dioxide tension from resting values affect cerebral blood vessel tone and thereby cerebral blood flow. Arterial carbon dioxide tension also affects central respiratory chemoreceptors, adjusting respiratory drive. This coincidence raises the question whether respiratory drive also affects the cerebral blood flow response to carbon dioxide. A change in cerebral blood flow for a given change in the arterial carbon dioxide tension is defined as cerebrovascular reactivity. Two studies have reached conflicting conclusions on this question, using voluntary control of breathing as a disturbing factor during measurements of cerebrovascular reactivity. Here we address some of the methodological limitations of both studies by using sequential gas delivery and targeted control of carbon dioxide and oxygen to enable a separation of the effects of carbon dioxide on cerebrovascular reactivity from breathing vigor. We confirm there is no detectable superimposed effect of breathing efforts on cerebrovascular reactivity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Anahis Davidian
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Harrison Levine
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - David J Mikulis
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Computational model of trachea-alveoli gas movement during spontaneous breathing. Respir Physiol Neurobiol 2021; 294:103767. [PMID: 34329768 DOI: 10.1016/j.resp.2021.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 11/23/2022]
Abstract
A computational model of the transport of gases involved in spontaneous breathing, from the trachea inlet to the alveoli was developed for healthy patients. Convective and diffusive transport mechanisms were considered simultaneously, using a diffusion coefficient (D) that has considered the four main species of gases present in the exchange carried out by the human lung, nitrogen (N2), oxygen (O2), carbon dioxide (CO2) and water vapor (H2O). A Matlab® script was programmed to simulate the trachea-alveolus gas exchange model under three respiratory frequencies: 12, 24 and 40 breaths per minute (BPM), each with three diaphragmatic movements of 2 cm, 4 cm, and 6 cm. During the simulations, the CO2 inlet concentrations in the alveoli and the O2 concentration at the inlet of the trachea were kept constant. A simplified but stable model of mass transport between the trachea and alveoli was obtained, allowing the concentrations to be determined dynamically at the selected test points in the airway.
Collapse
|
20
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
21
|
Sobczyk O, Fierstra J, Venkatraghavan L, Poublanc J, Duffin J, Fisher JA, Mikulis DJ. Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Front Physiol 2021; 12:665049. [PMID: 34305634 PMCID: PMC8294324 DOI: 10.3389/fphys.2021.665049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
An increase in arterial PCO2 is the most common stressor used to increase cerebral blood flow for assessing cerebral vascular reactivity (CVR). That CO2 is readily obtained, inexpensive, easy to administer, and safe to inhale belies the difficulties in extracting scientifically and clinically relevant information from the resulting flow responses. Over the past two decades, we have studied more than 2,000 individuals, most with cervical and cerebral vascular pathology using CO2 as the vasoactive agent and blood oxygen-level-dependent magnetic resonance imaging signal as the flow surrogate. The ability to deliver different forms of precise hypercapnic stimuli enabled systematic exploration of the blood flow-related signal changes. We learned the effect on CVR of particular aspects of the stimulus such as the arterial partial pressure of oxygen, the baseline PCO2, and the magnitude, rate, and pattern of its change. Similarly, we learned to interpret aspects of the flow response such as its magnitude, and the speed and direction of change. Finally, we were able to test whether the response falls into a normal range. Here, we present a review of our accumulated insight as 16 “lessons learned.” We hope many of these insights are sufficiently general to apply to a range of types of CO2-based vasoactive stimuli and perfusion metrics used for CVR.
Collapse
Affiliation(s)
- Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Zürich, Switzerland
| | - Lakshmikumar Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Differential regional cerebral blood flow reactivity to alterations in end-tidal gases in healthy volunteers. Can J Anaesth 2021; 68:1497-1506. [PMID: 34105067 DOI: 10.1007/s12630-021-02042-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Anesthesia is associated with alterations in end-tidal (ET) respiratory gases from the awake state. These alterations result in marked vasoactive changes in regional cerebral blood flow (rCBF). Altered regional cerebrovascular reactivity (rCVR) is linked to neurologic dysfunction. We examined these differences in reactivity from prior work by focusing on the ratio of vasoconstriction with hyperoxia/hypocapnia (HO/hc):vasodilation with hypercapnia (HC) using magnetic resonance imaging pseudo-continuous arterial spin labelling (pCASL) to measure rCBF and compare rCVR The distribution and magnitude of these ratios could provide insights into rCBF during clinical anesthesia and inform future research into the origins of postoperative delirium (POD). METHODS Ten healthy subjects underwent cerebral blood flow (CBF) studies using pCASL with computer-controlled delivery of ET gases to assess flow effects of hyperoxia, hypercapnia, and hyperoxia/hypocapnia as part of a larger study into cerebrovascular reactivity. The vasoconstrictor stimulus was compared with the vasodilator stimulus by the ratio HO/hc:HC. RESULTS Hyperoxia minimally decreased whole brain CBF by - 0.6%/100 mm Hg increase in ETO2. Hypercapnia increased CBF by +4.6%/mm Hg carbon dioxide (CO2) and with HO/hc CBF decreased by - 5.1%/mm Hg CO2. The brain exhibited markedly different rCVR-regional HO/hc:HC ratios varied from 7.2:1 (greater response to vasoconstriction) to 0.49:1 (greater response to vasodilation). Many of the ratios greater than 1, where vasoconstriction predominated, were seen in regions associated with memory, cognition, and executive function, including the entorhinal cortex, hippocampus, parahippocampus, and dorsolateral prefrontal cortex. CONCLUSIONS In awake humans, marked rCBF changes occurred with alterations in ET respiratory gases common under anesthesia. Such heterogeneous reactivity may be relevant to future studies to identify those at risk of POD.
Collapse
|
23
|
McKetton L, Sam K, Poublanc J, Crawley AP, Sobczyk O, Venkatraghavan L, Duffin J, Fisher JA, Mikulis DJ. The Effect of CO 2 on Resting-State Functional Connectivity: Isocapnia vs. Poikilocapnia. Front Physiol 2021; 12:639782. [PMID: 34054565 PMCID: PMC8155504 DOI: 10.3389/fphys.2021.639782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The normal variability in breath size and frequency results in breath-to-breath variability of end-tidal PCO2 (PETCO2), the measured variable, and arterial partial pressure of carbon dioxide (PaCO2), the independent variable affecting cerebral blood flow (CBF). This study examines the effect of variability in PaCO2 on the pattern of resting-state functional MRI (rs-fMRI) connectivity. A region of interest (ROI)-to-ROI and Seed-to-Voxel first-level bivariate correlation, hemodynamic response function (hrf)-weighted analysis for measuring rs-fMRI connectivity was performed during two resting-state conditions: (a) normal breathing associated with breath-to-breath variation in PaCO2 (poikilocapnia), and (b) normal breathing with breath-to-breath variability of PETCO2 dampened using sequential rebreathing (isocapnia). End-tidal PCO2 (PETCO2) was used as a measurable surrogate for fluctuations of PaCO2. During poikilocapnia, enhanced functional connections were found between the cerebellum and inferior frontal and supramarginal gyrus (SG), visual cortex and occipital fusiform gyrus; and between the primary visual network (PVN) and the hippocampal formation. During isocapnia, these associations were not seen, rather enhanced functional connections were identified in the corticostriatal pathway between the putamen and intracalacarine cortex, supracalcarine cortex (SCC), and precuneus cortex. We conclude that vascular responses to variations in PETCO2, account for at least some of the observed resting state synchronization of blood oxygenation level-dependent (BOLD) signals.
Collapse
Affiliation(s)
- Larissa McKetton
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Kevin Sam
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,The Russell H. Morgan Department of Radiology & Radiological Science, The John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julien Poublanc
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Adrian P Crawley
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| | | | - James Duffin
- Department of Physiology, The University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Management, University Health Network, Toronto, ON, Canada.,Department of Physiology, The University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Fisher JA, Mikulis DJ. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation - A Personal 20-Year Odyssey of (Re)searching. Front Physiol 2021; 12:629651. [PMID: 33868001 PMCID: PMC8047146 DOI: 10.3389/fphys.2021.629651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
The brain is a neurovascular organ. A stimulus-response approach is effective in interrogating the physiology of its vasculature. Ideally, the stimulus is standardized across patients, and in a single patient over time. We developed a standard stimulus and attempted to measure, classify, and interpret the many forms of responses. Over the past 20 years, our work has delivered nuanced insights into normal cerebral vascular physiology, as well as adaptive physiological responses in the presence of disease. The trajectory of our understanding did not follow a logical linear progression; rather, it emerged as a coalescence of new, old, and previously dismissed, ideas that had accumulated over time. In this essay, we review what we believe were our most valuable - and sometimes controversial insights during our two decades-long journey.
Collapse
Affiliation(s)
- Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
- The Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| |
Collapse
|
25
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Klostranec JM, Vucevic D, Crawley AP, Venkatraghavan L, Sobczyk O, Duffin J, Sam K, Holmes R, Fedorko L, Mikulis DJ, Fisher JA. Accelerated ethanol elimination via the lungs. Sci Rep 2020; 10:19249. [PMID: 33184355 PMCID: PMC7665168 DOI: 10.1038/s41598-020-76233-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
Ethanol poisoning is endemic the world over. Morbidity and mortality depend on blood ethanol levels which in turn depend on the balance between its rates of absorption and clearance. Clearance of ethanol is mostly at a constant rate via enzymatic metabolism. We hypothesized that isocapnic hyperpnea (IH), previously shown to be effective in acceleration of clearance of vapour anesthetics and carbon monoxide, would also accelerate the clearance of ethanol. In this proof-of-concept pilot study, five healthy male subjects were brought to a mildly elevated blood ethanol concentration (~ 0.1%) and ethanol clearance monitored during normal ventilation and IH on different days. IH increased elimination rate of ethanol in proportion to blood levels, increasing the elimination rate more than three-fold. Increased veno-arterial ethanol concentration differences during IH verified the efficacy of ethanol clearance via the lung. These data indicate that IH is a nonpharmacologic means to accelerate the elimination of ethanol by superimposing first order elimination kinetics on underlying zero order liver metabolism. Such kinetics may prove useful in treating acute severe ethanol intoxication.
Collapse
Affiliation(s)
- Jesse M Klostranec
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Diagnostic and Interventional Neuroradiology, Montreal Neurological Institute and Hospital, McGill University Health Centre, Montréal, QC, Canada
| | - Diana Vucevic
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Materials Science and Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Adrian P Crawley
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Management, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| | | | - James Duffin
- Thornhill Medical Inc., Toronto, ON, Canada.,Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, 200 Elizabeth St., Toronto, ON, M5C 2E4, Canada
| | - Kevin Sam
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Royce Holmes
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ludwik Fedorko
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada.,Thornhill Medical Inc., Toronto, ON, Canada.,Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, 200 Elizabeth St., Toronto, ON, M5C 2E4, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada. .,Thornhill Medical Inc., Toronto, ON, Canada. .,Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, 200 Elizabeth St., Toronto, ON, M5C 2E4, Canada.
| |
Collapse
|
27
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
28
|
Milej D, Abdalmalak A, Rajaram A, St. Lawrence K. Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism. NEUROPHOTONICS 2020; 7:045002. [PMID: 33062801 PMCID: PMC7540337 DOI: 10.1117/1.nph.7.4.045002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Significance: Near-infrared spectroscopy (NIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), oxygenation, and oxygen metabolism. However, these methods are vulnerable to signal contamination from the scalp. Our work evaluated methods of reducing the impact of this contamination using time-resolved (TR) NIRS and multidistance (MD) DCS. Aim: The magnitude of scalp contamination was evaluated by measuring the flow, oxygenation, and metabolic responses to a global hemodynamic challenge. Contamination was assessed by collecting data with and without impeding scalp blood flow. Approach: Experiments involved healthy participants. A pneumatic tourniquet was used to cause scalp ischemia, as confirmed by contrast-enhanced NIRS, and a computerized gas system to generate a hypercapnic challenge. Results: Comparing responses acquired with and without the tourniquet demonstrated that the TR-NIRS technique could reduce scalp contributions in hemodynamic signals up to 4 times (r SD = 3 cm ) and 6 times (r SD = 4 cm ). Similarly, blood flow responses from the scalp and brain could be separated by analyzing MD DCS data with a multilayer model. Using these techniques, there was no change in metabolism during hypercapnia, as expected, despite large increases in CBF and oxygenation. Conclusion: NIRS/DCS can accurately monitor CBF and metabolism with the appropriate enhancement to depth sensitivity, highlighting the potential of these techniques for neuromonitoring.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
29
|
Howe CA, Caldwell HG, Carr J, Nowak‐Flück D, Ainslie PN, Hoiland RL. Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide. Exp Physiol 2020; 105:904-915. [DOI: 10.1113/ep088192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Connor A. Howe
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Hannah G. Caldwell
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Jay Carr
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Daniela Nowak‐Flück
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Philip N. Ainslie
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Ryan L. Hoiland
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
- Department of Anesthesiology, Pharmacology, and TherapeuticsVancouver General HospitalWest 12th Avenue, University of British Columbia Vancouver BC Canada V5Z 1M9
| |
Collapse
|
30
|
Mutch WAC, El-Gabalawy R, Ryner L, Puig J, Essig M, Kilborn K, Fidler K, Graham MR. Brain BOLD MRI O 2 and CO 2 stress testing: implications for perioperative neurocognitive disorder following surgery. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:76. [PMID: 32131878 PMCID: PMC7057494 DOI: 10.1186/s13054-020-2800-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
Abstract
Background Mechanical ventilation to alter and improve respiratory gases is a fundamental feature of critical care and intraoperative anesthesia management. The range of inspired O2 and expired CO2 during patient management can significantly deviate from values in the healthy awake state. It has long been appreciated that hyperoxia can have deleterious effects on organs, especially the lung and retina. Recent work shows intraoperative end-tidal (ET) CO2 management influences the incidence of perioperative neurocognitive disorder (POND). The interaction of O2 and CO2 on cerebral blood flow (CBF) and oxygenation with alterations common in the critical care and operating room environments has not been well studied. Methods We examine the effects of controlled alterations in both ET O2 and CO2 on cerebral blood flow (CBF) in awake adults using blood oxygenation level-dependent (BOLD) and pseudo-continuous arterial spin labeling (pCASL) MRI. Twelve healthy adults had BOLD and CBF responses measured to alterations in ET CO2 and O2 in various combinations commonly observed during anesthesia. Results Dynamic alterations in regional BOLD and CBF were seen in all subjects with expected and inverse brain voxel responses to both stimuli. These effects were incremental and rapid (within seconds). The most dramatic effects were seen with combined hyperoxia and hypocapnia. Inverse responses increased with age suggesting greater risk. Conclusions Human CBF responds dramatically to alterations in ET gas tensions commonly seen during anesthesia and in critical care. Such alterations may contribute to delirium following surgery and under certain circumstances in the critical care environment. Trial registration ClincialTrials.gov NCT02126215 for some components of the study. First registered April 29, 2014.
Collapse
Affiliation(s)
- W Alan C Mutch
- Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Manitoba, 2nd Floor, Harry Medovy House, 671 William Ave., Winnipeg, MB, R3E 0Z2, Canada. .,Canada North Concussion Network, .
| | - Renée El-Gabalawy
- Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Manitoba, 2nd Floor, Harry Medovy House, 671 William Ave., Winnipeg, MB, R3E 0Z2, Canada.,Department of Clinical Health Psychology, University of Manitoba, Winnipeg, Canada
| | - Lawrence Ryner
- Canada North Concussion Network.,Department of Radiology, University of Manitoba, Winnipeg, Canada.,Department of Physics, University of Manitoba, Winnipeg, Canada
| | - Josep Puig
- Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Marco Essig
- Canada North Concussion Network.,Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Kayla Kilborn
- Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Manitoba, 2nd Floor, Harry Medovy House, 671 William Ave., Winnipeg, MB, R3E 0Z2, Canada
| | - Kelsi Fidler
- Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Manitoba, 2nd Floor, Harry Medovy House, 671 William Ave., Winnipeg, MB, R3E 0Z2, Canada
| | - M Ruth Graham
- Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Manitoba, 2nd Floor, Harry Medovy House, 671 William Ave., Winnipeg, MB, R3E 0Z2, Canada.,Canada North Concussion Network
| |
Collapse
|
31
|
Evanoff NG, Mueller BA, Marlatt KL, Geijer JR, Lim KO, Dengel DR. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40:183-189. [PMID: 31984617 DOI: 10.1111/cpf.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
Though individual differences in arterial carbon dioxide and oxygen levels inherently exist, the degree of their influence on cerebral vascular reactivity (CVR) is less clear. We examined the reproducibility of BOLD signal changes to an iso-oxic ramping Pet CO2 protocol. CVR changes were induced by altering Pet CO2 while holding Pet O2 constant using a computer-controlled sequential gas delivery (SGD) device. Two MRI scans, each including a linear change in Pet CO2 , were performed using a 3-Tesla (3T) scanner. This ramp sequence consisted of 1 min at 30 mmHg followed by 4 min period during where Pet CO2 was linearly increased from 30 to 50 mmHg, 1 min at 51 mmHg, and concluded with 4 min at baseline. The protocol was repeated at a separate visit with 3 days between visits (minimum). Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to verify reproducibility. Eleven subjects (6 females; mean age 26.5 ± 5.7 years) completed the full testing protocol. Good reproducibility was observed for the within-visit ramp sequence (Visit 1: ICC = 0.82, CV = 6.5%; Visit 2: ICC = 0.74, CV = 6.4%). Similarly, ramp sequence were reproducible between visits (Scan 1: ICC = 0.74, CV = 6.5%; Scan 2: ICC = 0.66, CV = 6.1%). Establishing reproducible methodologies for measuring BOLD signal changes in response to Pet CO2 alterations using a ramp protocol will allow researchers to study CVR functionality. Finally, adding a ramping protocol to CVR studies could provide information about changes in CVR over a broad range of Pet CO2 .
Collapse
Affiliation(s)
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin R Geijer
- Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Fisher JA, Venkatraghavan L, Mikulis DJ. Magnetic Resonance Imaging–Based Cerebrovascular Reactivity and Hemodynamic Reserve. Stroke 2018; 49:2011-2018. [DOI: 10.1161/strokeaha.118.021012] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joseph A. Fisher
- From the Department of Anesthesia and Pain Management and the Toronto General Hospital Research Institute (J.A.F., L.V.)
- Department of Anesthesiology (J.A.F., L.V.)
- Institute of Medical Sciences (J.A.F., D.J.M.)
- Department of Physiology (J.A.F.), University of Toronto, Canada
| | - Lashmi Venkatraghavan
- From the Department of Anesthesia and Pain Management and the Toronto General Hospital Research Institute (J.A.F., L.V.)
- Department of Anesthesiology (J.A.F., L.V.)
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory (D.J.M.), University Health Network, Toronto, Canada
- Institute of Medical Sciences (J.A.F., D.J.M.)
| |
Collapse
|
34
|
Novel mandibular advancement bite block with supplemental oxygen to both nasal and oral cavity improves oxygenation during esophagogastroduodenoscopy: a bench comparison. J Clin Monit Comput 2018; 33:523-530. [PMID: 29974302 DOI: 10.1007/s10877-018-0173-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
Drug-induced respiratory depression is a major cause of serious adverse events. Adequate oxygenation is very important during sedated esophagogastroduodenoscopy (EGD). Nasal breathing often shifts to oral breathing during open mouth EGD. A mandibular advancement bite block was developed for EGD using computer-assisted design and three-dimensional printing techniques. The mandible is advanced when using this bite block to facilitate airway opening. The device is composed of an oxygen inlet with one opening directed towards the nostril and another opening directed towards the oral cavity. The aim of this bench study was to compare the inspired oxygen concentration (FiO2) provided by the different nasal cannulas, masks, and bite blocks commonly used in sedated EGD. A manikin head was connected to one side of a two-compartment lung model by a 7.0 mm endotracheal tube with its opening in the nasopharyngeal position. The other compartment was driven by a ventilator to mimic "patient" inspiratory effort. Using this spontaneously breathing lung model, we evaluated five nasal cannulas, two face masks, and four new oral bite blocks at different oxygen flow rates and different mouth opening sizes. The respiratory rate was set at 12/min with a tidal volume of 500 mL and 8/min with a tidal volume of 300 mL. Several Pneuflo resistors of different sizes were used in the mouth of the manikin head to generate different degrees of mouth opening. FiO2 was evaluated continuously via the endotracheal tube. All parameters were evaluated using a Datex anesthesia monitoring system. The mandibular advancement bite block provided the highest FiO2 under the same supplemental oxygen flow. The FiO2 was higher for devices with oxygen flow provided via an oral bite block than that provided via the nasal route. Under the same supplemental oxygen flow, the tidal volume and respiratory rate also played an important role in the FiO2. A low respiratory rate with a smaller tidal volume has a relative high FiO2. The ratio of nasal to oral breathing played an important role in the FiO2 under hypoventilation but less role under normal ventilation. Bite blocks deliver a higher FiO2 during EGD. The ratio of nasal to oral breathing, supplemental oxygen flow, tidal volume, and respiratory rate influenced the FiO2 in most of the supplemental oxygen devices tested, which are often used for conscious sedation in patients undergoing EGD and colonoscopy.
Collapse
|
35
|
Duffin J, Sobczyk O, McKetton L, Crawley A, Poublanc J, Venkatraghavan L, Sam K, Mutch WA, Mikulis D, Fisher JA. Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity. Front Neurosci 2018; 12:409. [PMID: 29973862 PMCID: PMC6020782 DOI: 10.3389/fnins.2018.00409] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
The cerebral vascular network regulates blood flow distribution by adjusting vessel diameters, and consequently resistance to flow, in response to metabolic demands (neurovascular coupling) and changes in perfusion pressure (autoregulation). Deliberate changes in carbon dioxide (CO2) partial pressure may be used to challenge this regulation and assess its performance since CO2 also acts to change vessel diameter. Cerebrovascular reactivity (CVR), the ratio of cerebral blood flow (CBF) response to CO2 stimulus is currently used as a performance metric. However, the ability of CVR to reflect the responsiveness of a particular vascular region is confounded by that region’s inclusion in the cerebral vascular network, where all regions respond to the global CO2 stimulus. Consequently, local CBF responses reflect not only changes in the local vascular resistance but also the effect of changes in local perfusion pressure resulting from redistribution of flow within the network. As a result, the CBF responses to CO2 take on various non-linear patterns that are not well-described by straight lines. We propose a method using a simple model to convert these CBF response patterns to the pattern of resistance responses that underlie them. The model, which has been used previously to explain the steal phenomenon, consists of two vascular branches in parallel fed by a major artery with a fixed resistance unchanging with CO2. One branch has a reference resistance with a sigmoidal response to CO2, representative of a voxel with a robust response. The other branch has a CBF equal to the measured CBF response to CO2 of any voxel under examination. Using the model to calculate resistance response patterns of the examined branch showed sigmoidal patterns of resistance response, regardless of the measured CBF response patterns. The sigmoid parameters of the resistance response pattern of examined voxels may be mapped to their anatomical location. We show an example for a healthy subject and for a patient with steno-occlusive disease to illustrate. We suggest that these maps provide physiological insight into the regulation of CBF distribution.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Adrian Crawley
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kevin Sam
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - W Alan Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David Mikulis
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Pelletier-Galarneau M, deKemp RA, Hunter CR, Klein R, Klein M, Ironstone J, Fisher JA, Ruddy TD. Effects of Hypercapnia on Myocardial Blood Flow in Healthy Human Subjects. J Nucl Med 2017; 59:100-106. [DOI: 10.2967/jnumed.117.194308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022] Open
|
37
|
Rose JJ, Wang L, Xu Q, McTiernan CF, Shiva S, Tejero J, Gladwin MT. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am J Respir Crit Care Med 2017; 195:596-606. [PMID: 27753502 PMCID: PMC5363978 DOI: 10.1164/rccm.201606-1275ci] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide (CO) poisoning affects 50,000 people a year in the United States. The clinical presentation runs a spectrum, ranging from headache and dizziness to coma and death, with a mortality rate ranging from 1 to 3%. A significant number of patients who survive CO poisoning suffer from long-term neurological and affective sequelae. The neurologic deficits do not necessarily correlate with blood CO levels but likely result from the pleiotropic effects of CO on cellular mitochondrial respiration, cellular energy utilization, inflammation, and free radical generation, especially in the brain and heart. Long-term neurocognitive deficits occur in 15-40% of patients, whereas approximately one-third of moderate to severely poisoned patients exhibit cardiac dysfunction, including arrhythmia, left ventricular systolic dysfunction, and myocardial infarction. Imaging studies reveal cerebral white matter hyperintensities, with delayed posthypoxic leukoencephalopathy or diffuse brain atrophy. Management of these patients requires the identification of accompanying drug ingestions, especially in the setting of intentional poisoning, fire-related toxic gas exposures, and inhalational injuries. Conventional therapy is limited to normobaric and hyperbaric oxygen, with no available antidotal therapy. Although hyperbaric oxygen significantly reduces the permanent neurological and affective effects of CO poisoning, a portion of survivors still have substantial morbidity. There has been some early success in therapies targeting the downstream inflammatory and oxidative effects of CO poisoning. New methods to directly target the toxic effect of CO, such as CO scavenging agents, are currently under development.
Collapse
Affiliation(s)
- Jason J. Rose
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| | - Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
| | | | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Department of Pharmacology and Chemical, and
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pennsylvania
| | - Jesus Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| |
Collapse
|
38
|
Dinsmore M, Han JS, Fisher JA, Chan VWS, Venkatraghavan L. Effects of acute controlled changes in end-tidal carbon dioxide on the diameter of the optic nerve sheath: a transorbital ultrasonographic study in healthy volunteers. Anaesthesia 2017; 72:618-623. [PMID: 28177116 DOI: 10.1111/anae.13784] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 02/03/2023]
Abstract
Transorbital ultrasonographic measurement of the diameter of the optic nerve sheath is a non-invasive, bed-side examination for detecting raised intracranial pressure. However, the ability of the optic nerve sheath diameter to predict acute changes in intracranial pressures remains unknown. The aim of this study was to examine the dynamic changes of the optic nerve sheath diameter in response to mild fluctuations in cerebral blood volume induced by changes in end-tidal carbon dioxide. We studied 11 healthy volunteers. End-tidal carbon dioxide was controlled by a model-based prospective end-tidal targeting system (RespirAct™). The volunteers' end-tidal carbon dioxide was targeted and maintained for 10 min each at normocapnia (baseline); hypercapnia (6.5 kPa); normocapnia (baseline 1); hypocapnia (3.9 kPa) and on return to normocapnia (baseline 2). A single investigator repeatedly measured the optic nerve sheath diameter for 10 min at each level of carbon dioxide. With hypercapnia, there was a significant increase in optic nerve sheath diameter, with a mean (SD) increase from baseline 4.2 (0.7) mm to 4.8 (0.8) mm; p < 0.001. On return to normocapnia, the optic nerve sheath diameter rapidly reverted back to baseline values. This study confirms dynamic changes in the optic nerve sheath diameter with corresponding changes in carbon dioxide, and their reversibly with normocapnia.
Collapse
Affiliation(s)
- M Dinsmore
- Department of Anaesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - J S Han
- Department of Anaesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - J A Fisher
- Department of Anaesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - V W S Chan
- Department of Anaesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - L Venkatraghavan
- Department of Anaesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Sam K, Crawley AP, Conklin J, Poublanc J, Sobczyk O, Mandell DM, Venkatraghavan L, Duffin J, Fisher JA, Black SE, Mikulis DJ. Development of White Matter Hyperintensity Is Preceded by Reduced Cerebrovascular Reactivity. Ann Neurol 2016; 80:277-85. [DOI: 10.1002/ana.24712] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Kevin Sam
- Department of Physiology; University of Toronto; Toronto Ontario Canada
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
| | - Adrian P. Crawley
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
- Department of Medical Imaging; University of Toronto; Toronto Ontario Canada
- Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | - John Conklin
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
| | - Julien Poublanc
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
| | - Olivia Sobczyk
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
- Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | - Daniel M. Mandell
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
- Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | | | - James Duffin
- Department of Physiology; University of Toronto; Toronto Ontario Canada
- Department of Anesthesiology; University Health Network; Toronto Ontario Canada
| | - Joseph A. Fisher
- Department of Physiology; University of Toronto; Toronto Ontario Canada
- Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
- Department of Anesthesiology; University Health Network; Toronto Ontario Canada
| | - Sandra E. Black
- Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
- LC Campbell Cognitive Neurology Research Unit; Sunnybrook Health Sciences Centre; Toronto Ontario Canada
| | - David J. Mikulis
- Division of Neuroradiology, Joint Department of Medical Imaging; University Health Network; Toronto Ontario Canada
- Department of Medical Imaging; University of Toronto; Toronto Ontario Canada
- Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
40
|
Fisher JA. The CO2 stimulus for cerebrovascular reactivity: Fixing inspired concentrations vs. targeting end-tidal partial pressures. J Cereb Blood Flow Metab 2016; 36:1004-11. [PMID: 27000209 PMCID: PMC4908627 DOI: 10.1177/0271678x16639326] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/20/2016] [Indexed: 11/15/2022]
Abstract
Cerebrovascular reactivity (CVR) studies have elucidated the physiology and pathophysiology of cerebral blood flow regulation. A non-invasive, high spatial resolution approach uses carbon dioxide (CO2) as the vasoactive stimulus and magnetic resonance techniques to estimate the cerebral blood flow response. CVR is assessed as the ratio response change to stimulus change. Precise control of the stimulus is sought to minimize CVR variability between tests, and show functional differences. Computerized methods targeting end-tidal CO2 partial pressures are precise, but expensive. Simpler, improvised methods that fix the inspired CO2 concentrations have been recommended as less expensive, and so more widely accessible. However, these methods have drawbacks that have not been previously presented by those that advocate their use, or those that employ them in their studies. As one of the developers of a computerized method, I provide my perspective on the trade-offs between these two methods. The main concern is that declaring the precision of fixed inspired concentration of CO2 is misleading: it does not, as implied, translate to precise control of the actual vasoactive stimulus - the arterial partial pressure of CO2 The inherent test-to-test, and therefore subject-to-subject variability, precludes clinical application of findings. Moreover, improvised methods imply widespread duplication of development, assembly time and costs, yet lack uniformity and quality control. A tabular comparison between approaches is provided.
Collapse
Affiliation(s)
- Joseph A Fisher
- Department of Anesthesiology University Health Network, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Farra SD, Kessler C, Duffin J, Wells GD, Jacobs I. Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen. Respir Physiol Neurobiol 2016; 231:28-36. [PMID: 27236039 DOI: 10.1016/j.resp.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/31/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
Exercise- and hypoxia-induced hyperventilation decreases the partial pressure of end-tidal carbon dioxide (PETCO2), which in turn exerts many physiological effects. Several breathing circuits that control PETCO2 have been previously described, but their designs are not satisfactory for exercise studies where changes in inspired oxygen (FIO2) may be desired. This study is the first report of a breathing system that can maintain PETCO2 constant within a single session of graded submaximal exercise and graded hypoxia. Thirteen fit and healthy subjects completed two bouts of exercise consisting of three 3min stages on a cycle ergometer with increasing exercise intensity in normoxia (Part A; 142±14, 167±14, 192±14W) or with decreasing FIO2 at a constant exercise intensity (Part B; 21, 18, and 14%). One bout was a control (CON) where PETCO2 was not manipulated, while during the other bout the investigator clamped PETCO2 within 2mmHg (CO2Clamp) using sequential gas delivery (SGD). During the final 30s of each exercise stage during CO2Clamp, PETCO2 was successfully maintained in Part A (43±4, 44±4, 44±3mmHg; P=0.44) and Part B (45±3, 46±3, 45±3mmHg; P=0.68) despite the increases in ventilation due to exercise. These findings demonstrate that this SGD circuit can be used to maintain isocapania in exercising humans during progressively increasing exercise intensities and changing FIO2.
Collapse
Affiliation(s)
- Saro D Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Cathie Kessler
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Greg D Wells
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada.
| |
Collapse
|