1
|
Steinberg A. Emergent Management of Hypoxic-Ischemic Brain Injury. Continuum (Minneap Minn) 2024; 30:588-610. [PMID: 38830064 DOI: 10.1212/con.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article outlines interventions used to improve outcomes for patients with hypoxic-ischemic brain injury after cardiac arrest. LATEST DEVELOPMENTS Emergent management of patients after cardiac arrest requires prevention and treatment of primary and secondary brain injury. Primary brain injury is minimized by excellent initial resuscitative efforts. Secondary brain injury prevention requires the detection and correction of many pathophysiologic processes that may develop in the hours to days after the initial arrest. Key physiologic parameters important to secondary brain injury prevention include optimization of mean arterial pressure, cerebral perfusion, oxygenation and ventilation, intracranial pressure, temperature, and cortical hyperexcitability. This article outlines recent data regarding the treatment and prevention of secondary brain injury. Different patients likely benefit from different treatment strategies, so an individualized approach to treatment and prevention of secondary brain injury is advisable. Clinicians must use multimodal sources of data to prognosticate outcomes after cardiac arrest while recognizing that all prognostic tools have shortcomings. ESSENTIAL POINTS Neurologists should be involved in the postarrest care of patients with hypoxic-ischemic brain injury to improve their outcomes. Postarrest care requires nuanced and patient-centered approaches to the prevention and treatment of primary and secondary brain injury and neuroprognostication.
Collapse
|
2
|
Chen G, Douglas HF, Li Z, Cleveland WJ, Balzer C, Yannopolous D, Chen IYL, Obal D, Riess ML. Cardioprotection by Poloxamer 188 is Mediated through Increased Endothelial Nitric Oxide Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.593838. [PMID: 38826479 PMCID: PMC11142105 DOI: 10.1101/2024.05.18.593838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ischemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a nonionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell function and nitric oxide (NO) production. We employed human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) to elucidate the effects of P188 on cellular survival, function, and NO secretion under simulated I/R conditions. iPSC-CMs contractility and iPSC-ECs' NO production were assessed following exposure to P188. Further, an isolated heart model using Brown Norway rats subjected to I/R injury was utilized to evaluate the ex-vivo cardioprotective effects of P188, examining cardiac function and NO production, with and without the administration of a NO inhibitor. In iPSC-derived models, P188 significantly preserved CM contractile function and enhanced cell viability after hypoxia/reoxygenation. Remarkably, P188 treatment led to a pronounced increase in NO secretion in iPSC-ECs, a novel finding demonstrating endothelial protective effects beyond membrane stabilization. In the rat isolated heart model, administration of P188 during reperfusion notably improved cardiac function and reduced I/R injury markers. This cardioprotective effect was abrogated by NO inhibition, underscoring the pivotal role of NO. Additionally, a dose-dependent increase in NO production was observed in non-ischemic rat hearts treated with P188, further establishing the critical function of NO in P188 induced cardioprotection. In conclusion, our comprehensive study unveils a novel role of NO in mediating the protective effects of P188 against I/R injury. This mechanism is evident in both cellular models and intact rat hearts, highlighting the potential of P188 as a therapeutic agent against I/R injury. Our findings pave the way for further investigation into P188's therapeutic mechanisms and its potential application in clinical settings to mitigate I/R-related cardiac dysfunction.
Collapse
|
3
|
Park JS, You Y, Kang C, Jeong W, Ahn HJ, Min JH, In YN, Jeon SY. The agreement between jugular bulb and cerebrospinal fluid lactate levels in patients with out-of-hospital cardiac arrest. Sci Rep 2024; 14:9219. [PMID: 38649477 PMCID: PMC11035618 DOI: 10.1038/s41598-024-59986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
We investigated the agreement between the jugular bulb (JB) and cerebrospinal fluid (CSF) lactate levels. The study was conducted from July 2021 to June 2023 as a prospective observational cohort study at a single center. The right jugular vein was accessed, and the placement of JB catheter tip was confirmed using lateral cervical spine X-ray. A lumbar catheter was inserted between the 3rd and 4th lumbar spine of the patient. Lactate levels were measured immediately, 24 h, 48 h, and 72 h after ROSC. In patients with a good neurological prognosis, kappa between JB and CSF lactate levels measured immediately, at 24 h, 48 h, and 72 h after ROSC were 0.08, 0.36, 0.14, - 0.05 (p = 0.65, 0.06, 0.48, and 0.75, respectively). However, in patients with a poor neurological prognosis, kappa between JB and CSF lactate levels measured immediately, at 24 h, 48 h, and 72 h after ROSC were 0.38, 0.21, 0.22, 0.12 (p = 0.001, 0.04, 0.04, and 0.27, respectively). This study demonstrated that JB lactate levels exhibited significant agreement with arterial lactate levels, compared to CSF lactate levels. Therefore, this should be considered when using JB lactate to monitor cerebral metabolism.
Collapse
Affiliation(s)
- Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - So Young Jeon
- Department of Emergency Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| |
Collapse
|
4
|
Katsandres SC, Hall J, Danielson K, Sakr S, Dean SG, Carlbom DJ, Wurfel MM, Bhatraju PK, Hippensteel JA, Schmidt EP, Oshima K, Counts CR, Sayre MR, Henning DJ, Johnson NJ. Inflammation, endothelial injury, and the acute respiratory distress syndrome after out-of-hospital cardiac arrest. Resusc Plus 2024; 17:100590. [PMID: 38463638 PMCID: PMC10924201 DOI: 10.1016/j.resplu.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is often seen in patients resuscitated from out-of-hospital cardiac arrest (OHCA). We aim to test whether inflammatory or endothelial injury markers are associated with the development of ARDS in patients hospitalized after OHCA. Methods We conducted a prospective, cohort, pilot study at an urban academic medical center in 2019 that included a convenience sample of adults with non-traumatic OHCA. Blood and pulmonary edema fluid (PEF) were collected within 12 hours of hospital arrival. Samples were assayed for cytokines (interleukin [IL]-1, tumor necrosis factor-α [TNF-α], tumor necrosis factor receptor1 [TNFR1], IL-6), epithelial injury markers (pulmonary surfactant-associated protein D), endothelial injury markers (Angiopoietin-2 [Ang-2] and glycocalyx degradation products), and other proteins (matrix metallopeptidase-9 and myeloperoxidase). Patients were followed for 7 days for development of ARDS, as adjudicated by 3 blinded reviewers, and through hospital discharge for mortality and neurological outcome. We examined associations between biomarker concentrations and ARDS, hospital mortality, and neurological outcome using multivariable logistic regression. Latent phase analysis was used to identify distinct biological classes associated with outcomes. Results 41 patients were enrolled. Mean age was 58 years, 29% were female, and 22% had a respiratory etiology for cardiac arrest. Seven patients (17%) developed ARDS within 7 days. There were no significant associations between individual biomarkers and development of ARDS in adjusted analyses, nor survival or neurologic status after adjusting for use of targeted temperature management (TTM) and initial cardiac arrest rhythm. Elevated Ang-2 and TNFR-1 were associated with decreased survival (RR = 0.6, 95% CI = 0.3-1.0; RR = 0.5, 95% CI = 0.3-0.9; respectively), and poor neurologic status at discharge (RR = 0.4, 95% CI = 0.2-0.8; RR = 0.4, 95% CI = 0.2-0.9) in unadjusted associations. Conclusion OHCA patients have markedly elevated plasma and pulmonary edema fluid biomarker concentrations, indicating widespread inflammation, epithelial injury, and endothelial activation. Biomarker concentrations were not associated with ARDS development, though several distinct biological phenotypes warrant further exploration. Latent phase analysis demonstrated that patients with low biomarker levels aside from TNF-α and TNFR-1 (Class 2) fared worse than other patients. Future research may benefit from considering other tools to predict and prevent development of ARDS in this population.
Collapse
Affiliation(s)
- Sarah C. Katsandres
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Jane Hall
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
| | - Kyle Danielson
- Airlift Northwest, University of Washington, Seattle, WA, United States
| | - Sana Sakr
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Sarah G. Dean
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - David J. Carlbom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Joseph A. Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, United States
| | - Eric P. Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Catherine R. Counts
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
- Seattle Fire Department, Seattle, WA, United States
| | - Michael R. Sayre
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
- Seattle Fire Department, Seattle, WA, United States
| | | | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Tachino J, Nonomiya Y, Taniuchi S, Shintani A, Nakao S, Takegawa R, Hirose T, Sakai T, Ohnishi M, Shimazu T, Shiozaki T. Association between time-dependent changes in cerebrovascular autoregulation after cardiac arrest and outcomes: A prospective cohort study. J Cereb Blood Flow Metab 2023; 43:1942-1950. [PMID: 37377095 PMCID: PMC10676135 DOI: 10.1177/0271678x231185658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
This prospective observational single-center cohort study aimed to determine an association between cerebrovascular autoregulation (CVAR) and outcomes in hypoxic-ischemic brain injury post-cardiac arrest (CA), and assessed 100 consecutive post-CA patients in Japan between June 2017 and May 2020 who experienced a return of spontaneous circulation. Continuous monitoring was performed for 96 h to determine CVAR presence. A moving Pearson correlation coefficient was calculated from the mean arterial pressure and cerebral regional oxygen saturation. The association between CVAR and outcomes was evaluated using the Cox proportional hazard model; non-CVAR time percent was the time-dependent, age-adjusted covariate. The non-linear effect of target temperature management (TTM) was assessed using a restricted cubic spline. Of the 100 participants, CVAR was detected using the cerebral performance category (CPC) in all patients with a good neurological outcome (CPC 1-2) and in 65 patients (88%) with a poor outcome (CPC 3-5). Survival probability decreased significantly with increasing non-CVAR time percent. The TTM versus the non-TTM group had a significantly lower probability of a poor neurological outcome at 6 months with a non-CVAR time of 18%-37% (p < 0.05). Longer non-CVAR time may be associated with significantly increased mortality in hypoxic-ischemic brain injury post-CA.
Collapse
Affiliation(s)
- Jotaro Tachino
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Nonomiya
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Taniuchi
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
| | - Tomoya Hirose
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiko Sakai
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mitsuo Ohnishi
- Department of Acute Medicine and Critical Care Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | | | - Tadahiko Shiozaki
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Holzer M, Poole JE, Lascarrou JB, Fujise K, Nichol G. A Commentary on the Effect of Targeted Temperature Management in Patients Resuscitated from Cardiac Arrest. Ther Hypothermia Temp Manag 2023; 13:102-111. [PMID: 36378270 PMCID: PMC10625468 DOI: 10.1089/ther.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The members of the International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force have written a comprehensive summary of trials of the effectiveness of induced hypothermia (IH) or targeted temperature management (TTM) in comatose patients after cardiac arrest (CA). However, in-depth analysis of these studies is incomplete, especially since there was no significant difference in primary outcome between hypothermia versus normothermia in the recently reported TTM2 trial. We critically appraise trials of IH/TTM versus normothermia to characterize reasons for the lack of treatment effect, based on a previously published framework for what to consider when the primary outcome fails. We found a strong biologic rationale and external clinical evidence that IH treatment is beneficial. Recent TTM trials mainly included unselected patients with a high rate of bystander cardiopulmonary resuscitation. The treatment was not applied as intended, which led to a large delay in achievement of target temperature. While receiving intensive care, sedative drugs were likely used that might have led to increased neurologic damage as were antiplatelet drugs that could be associated with increased acute stent thrombosis in hypothermic patients. It is reasonable to still use or evaluate IH treatment in patients who are comatose after CA as there are multiple plausible reasons why IH compared to normothermia did not significantly improve neurologic outcome in the TTM trials.
Collapse
Affiliation(s)
- Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeanne E. Poole
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | | | - Ken Fujise
- Harborview Medical Center, Heart Institute, University of Washington, Seattle, Washington, USA
| | - Graham Nichol
- Departments of Medicine and Emergency Medicine, University of Washington-Harborview Center for Prehospital Emergency Care, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Cai J, Abudou H, Chen Y, Wang H, Wang Y, Li W, Li D, Niu Y, Chen X, Liu Y, Li Y, Liu Z, Meng X, Fan H. The effects of ECMO on neurological function recovery of critical patients: A double-edged sword. Front Med (Lausanne) 2023; 10:1117214. [PMID: 37064022 PMCID: PMC10098123 DOI: 10.3389/fmed.2023.1117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) played an important role in the treatment of patients with critical care such as cardiac arrest (CA) and acute respiratory distress syndrome. ECMO is gradually showing its advantages in terms of speed and effectiveness of circulatory support, as it provides adequate cerebral blood flow (CBF) to the patient and ensures the perfusion of organs. ECMO enhances patient survival and improves their neurological prognosis. However, ECMO-related brain complications are also important because of the high risk of death and the associated poor outcomes. We summarized the reported complications related to ECMO for patients with CA, such as north–south syndrome, hypoxic–ischemic brain injury, cerebral ischemia–reperfusion injury, impaired intracranial vascular autoregulation, embolic stroke, intracranial hemorrhage, and brain death. The exact mechanism of ECMO on the role of brain function is unclear. Here we review the pathophysiological mechanisms associated with ECMO in the protection of neurologic function in recent years, as well as the ECMO-related complications in brain and the means to improve it, to provide ideas for the treatment of brain function protection in CA patients.
Collapse
Affiliation(s)
- Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Halidan Abudou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yiping Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Wenli Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanxiang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xin Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yongmao Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
- *Correspondence: Ziquan Liu,
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
- Xiangyan Meng,
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
- Haojun Fan,
| |
Collapse
|
8
|
The Neuroprotective Effects of Administration of Methylprednisolone in Cardiopulmonary Resuscitation in Experimental Cardiac Arrest Model. Cell Mol Neurobiol 2022:10.1007/s10571-022-01300-w. [DOI: 10.1007/s10571-022-01300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
9
|
Elmer J, Guyette FX. Early Oxygen Supplementation After Resuscitation From Cardiac Arrest. JAMA 2022; 328:1811-1813. [PMID: 36286079 DOI: 10.1001/jama.2022.18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Yang CJ, Li X, Feng XQ, Chen Y, Feng JG, Jia J, Wei JC, Zhou J. Activation of LRP1 Ameliorates Cerebral Ischemia/Reperfusion Injury and Cognitive Decline by Suppressing Neuroinflammation and Oxidative Stress through TXNIP/NLRP3 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8729398. [PMID: 36035210 PMCID: PMC9410841 DOI: 10.1155/2022/8729398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a clinical event associated with high morbidity and mortality. Neuroinflammation plays a crucial role in the pathogenesis of I/R-induced brain injury and cognitive decline. Low-density lipoprotein receptor-related protein-1 (LRP1) can exert strong neuroprotection in experimental intracerebral hemorrhage. However, whether LRP1 can confer neuroprotective effects after cerebral I/R is yet to be elucidated. The present study is aimed at investigating the effects of LRP1 activation on cerebral I/R injury and deducing the underlying mechanism involving TXNIP/NLRP3 signaling pathway. Cerebral I/R injury was induced in mice by bilateral common carotid artery occlusion. LPR1 ligand, apoE-mimic peptide COG1410, was administered intraperitoneally. To elucidate the underlying mechanism, overexpression of TXNIP was achieved via the hippocampal injection of AAV-TXNIP before COG1410 treatment. Neurobehavioral tests, brain water content, immunofluorescence, Western blot, enzyme-linked immunosorbent assay, HE, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining were performed. Our results showed that the expressions of endogenous LRP1, TXNIP, NLRP3, procaspase-1, and cleaved caspase-1 were increased after cerebral I/R. COG1410 significantly ameliorated cerebral I/R-induced neurobehavioral deficits, brain edema, histopathological damage, and poor survival rate. Interestingly, COG1410 inhibited microglia proinflammatory polarization and promoted anti-inflammatory polarization, decreased oxidative stress, attenuated apoptosis, and inhibited the expression of the TXNIP/NLRP3 signaling pathway. However, the benefits of COG1410 were abolished by TXNIP overexpression. Thus, our study suggested that LRP1 activation with COG1410 attenuated cerebral I/R injury at least partially related to modulating microglial polarization through TXNIP/NLRP3 signaling pathway in mice. Thus, COG1410 treatment might serve as a promising therapeutic approach in the management of cerebral I/R patients.
Collapse
Affiliation(s)
- Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xin Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Xiao-Qing Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ji-Cheng Wei
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Kim S, Park I, Lee JH, Kim S, Jang DH, Jo YH. Vagus Nerve Stimulation Improves Mitochondrial Dysfunction in Post–cardiac Arrest Syndrome in the Asphyxial Cardiac Arrest Model in Rats. Front Neurosci 2022; 16:762007. [PMID: 35692415 PMCID: PMC9178208 DOI: 10.3389/fnins.2022.762007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral mitochondrial dysfunction during post–cardiac arrest syndrome (PCAS) remains unclear, resulting in a lack of therapeutic options that protect against cerebral ischemia–reperfusion injury. We aimed to assess mitochondrial dysfunction in the hippocampus after cardiac arrest and whether vagus nerve stimulation (VNS) can improve mitochondrial dysfunction and neurological outcomes. In an asphyxial cardiac arrest model, male Sprague–Dawley rats were assigned to the vagus nerve isolation (CA) or VNS (CA + VNS) group. Cardiopulmonary resuscitation was performed 450 s after pulseless electrical activity. After the return of spontaneous circulation (ROSC), left cervical VNS was performed for 3 h in the CA + VNS group. Mitochondrial respiratory function was evaluated using high-resolution respirometry of the hippocampal tissue. The neurologic deficit score (NDS) and overall performance category (OPC) were assessed at 24, 48, and 72 h after resuscitation. The leak respiration and oxidative phosphorylation capacity of complex I (OXPHOS CI) at 6 h after ROSC were significantly higher in the CA + VNS group than in the CA group (p = 0.0308 and 0.0401, respectively). Compared with the trends of NDS and OPC in the CA group, the trends of those in the CA + VNS group were significantly different, thus suggesting a favorable neurological outcome in the CA + VNS group (p = 0.0087 and 0.0064 between times × groups interaction, respectively). VNS ameliorated mitochondrial dysfunction after ROSC and improved neurological outcomes in an asphyxial cardiac arrest rat model.
Collapse
Affiliation(s)
- Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Jae Hyuk Lee,
| | - Serin Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Dong-Hyun Jang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Zheng WL, Amorim E, Jing J, Wu O, Ghassemi M, Lee JW, Sivaraju A, Pang T, Herman ST, Gaspard N, Ruijter BJ, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM, Westover MB. Predicting Neurological Outcome From Electroencephalogram Dynamics in Comatose Patients After Cardiac Arrest With Deep Learning. IEEE Trans Biomed Eng 2022; 69:1813-1825. [PMID: 34962860 PMCID: PMC9087641 DOI: 10.1109/tbme.2021.3139007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Most cardiac arrest patients who are successfully resuscitated are initially comatose due to hypoxic-ischemic brain injury. Quantitative electroencephalography (EEG) provides valuable prognostic information. However, prior approaches largely rely on snapshots of the EEG, without taking advantage of temporal information. METHODS We present a recurrent deep neural network with the goal of capturing temporal dynamics from longitudinal EEG data to predict long-term neurological outcomes. We utilized a large international dataset of continuous EEG recordings from 1,038 cardiac arrest patients from seven hospitals in Europe and the US. Poor outcome was defined as a Cerebral Performance Category (CPC) score of 3-5, and good outcome as CPC score 0-2 at 3 to 6-months after cardiac arrest. Model performance is evaluated using 5-fold cross validation. RESULTS The proposed approach provides predictions which improve over time, beginning from an area under the receiver operating characteristic curve (AUC-ROC) of 0.78 (95% CI: 0.72-0.81) at 12 hours, and reaching 0.88 (95% CI: 0.85-0.91) by 66 h after cardiac arrest. At 66 h, (sensitivity, specificity) points of interest on the ROC curve for predicting poor outcomes were (32,99)%, (55,95)%, and (62,90)%, (99,23)%, (95,47)%, and (90,62)%; whereas for predicting good outcome, the corresponding operating points were (17,99)%, (47,95)%, (62,90)%, (99,19)%, (95,48)%, (70,90)%. Moreover, the model provides predicted probabilities that closely match the observed frequencies of good and poor outcomes (calibration error 0.04). CONCLUSIONS AND SIGNIFICANCE These findings suggest that accounting for EEG trend information can substantially improve prediction of neurologic outcomes for patients with coma following cardiac arrest.
Collapse
|
13
|
Kohlhauer M, Panel M, Roches MVD, Faucher E, Abi Zeid Daou Y, Boissady E, Lidouren F, Ghaleh B, Morin D, Tissier R. Brain and Myocardial Mitochondria Follow Different Patterns of Dysfunction After Cardiac Arrest. Shock 2021; 56:857-864. [PMID: 33978607 DOI: 10.1097/shk.0000000000001793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Mitochondria is often considered as the common nexus of cardiac and cerebral dysfunction after cardiac arrest. Here, our goal was to determine whether the time course of cardiac and cerebral mitochondrial dysfunction is similar after shockable versus non-shockable cardiac arrest in rabbits. Anesthetized rabbits were submitted to 10 min of no-flow by ventricular fibrillation (VF group) or asphyxia (non-shockable group). They were euthanized at the end of the no-flow period or 30 min, 120 min, or 24 h after resuscitation for in vitro evaluation of oxygen consumption and calcium retention capacity. In the brain (cortex and hippocampus), moderate mitochondrial dysfunction was evidenced at the end of the no-flow period after both causes of cardiac arrest versus baseline. It partly recovered at 30 and 120 min after cardiac arrest, with lower calcium retention capacity and higher substrate-dependant oxygen consumption after VF versus non-shockable cardiac arrest. However, after 24 h of follow-up, mitochondrial dysfunction dramatically increased after both VF and non-shockable cardiac arrest, despite greater neurological dysfunction after the latter one. In the heart, mitochondrial dysfunction was also maximal after 24 h following resuscitation, with no significant difference among the causes of the cardiac arrest. During the earlier timing of evaluation, calcium retention capacity and ADP-dependant oxygen consumption were lower and higher, respectively, after non-shockable cardiac arrest versus VF. In conclusion, the kinetics of cardiac and cerebral mitochondrial dysfunction suggests that mitochondrial function does not play a major role in the early phase of the post-resuscitation process but is only involved in the longer pathophysiological events.
Collapse
Affiliation(s)
- Matthias Kohlhauer
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Mathieu Panel
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Marine Vermot des Roches
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Estelle Faucher
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Yara Abi Zeid Daou
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Emilie Boissady
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Fanny Lidouren
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Bijan Ghaleh
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Didier Morin
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - Renaud Tissier
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Ecole nationale vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| |
Collapse
|
14
|
Wilcox C, Choi CW, Cho SM. Brain injury in extracorporeal cardiopulmonary resuscitation: translational to clinical research. JOURNAL OF NEUROCRITICAL CARE 2021. [DOI: 10.18700/jnc.210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The addition of extracorporeal membrane oxygenation (ECMO) to conventional cardiopulmonary resuscitation (CPR), termed extracorporeal cardiopulmonary resuscitation (ECPR), has significantly improved survival in selected patient populations. Despite this advancement, significant neurological impairment persists in approximately half of survivors. ECPR represents a potential advancement for patients who experience refractory cardiac arrest (CA) due to a reversible etiology and do not regain spontaneous circulation. Important risk factors for acute brain injury (ABI) in ECPR include lack of perfusion, reperfusion, and altered cerebral autoregulation. The initial hypoxic-ischemic injury caused by no-flow and low-flow states after CA and during CPR is compounded by reperfusion, hyperoxia during ECMO support, and nonpulsatile blood flow. Additionally, ECPR patients are at risk for Harlequin syndrome with peripheral cannulation, which can lead to preferential perfusion of cerebral vessels with deoxygenated blood. Lastly, the oxygenator membrane is prothrombotic and requires systemic anticoagulation. The two competing phenomena result in thrombus formation, hemolysis, and thrombocytopenia, increasing the risk of ischemic and hemorrhagic ABI. In addition to clinical studies, we assessed available ECPR animal models to identify the mechanisms underlying ABI at the cellular level. Standardized multimodal neurological monitoring may facilitate early detection of and intervention for ABI. With the increasing use of ECPR, it is critical to understand the pathophysiology of ABI, its prevention, and the management strategies for improving the outcomes of ECPR. Translational and clinical research focusing on acute ABI immediately after ECMO cannulation and its short- and long-term neurological outcomes are warranted.
Collapse
|
15
|
Kwon WY, Jung YS, Suh GJ, Kim T, Kwak H, Kim T, Kim JY, Lee MS, Kim KS, Shin J, Lee HJ, You KM. Regional cerebral oxygen saturation in cardiac arrest survivors undergoing targeted temperature management 36℃ versus 33℃: A randomized clinical trial. Resuscitation 2021; 167:362-371. [PMID: 34331985 DOI: 10.1016/j.resuscitation.2021.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
AIM of study To investigate whether regional cerebral oxygen saturation (rSO2) differs in out-of-hospital cardiac arrest (OHCA) survivors undergoing targeted temperature management (TTM) 36℃ versus 33℃. METHODS A randomized clinical trial was conducted at intensive care units in two referral hospitals. Fifty-seven comatose OHCA survivors were randomized into either a 36℃ or 33℃ group. Patients were cooled and maintained at an oesophageal temperature of either 36℃ or 33℃ for 24 hours, rewarmed at a rate of 0.25℃/hour, and maintained at < 37.5℃ until 72 hours. During 72 hours of TTM, rSO2 was continuously monitored on the left forehead using near-infrared spectroscopy (INVOSTM 5100C). The rSO2 level at 72 hours was compared between the two groups. Next, serial rSO2 levels for 72 hours were compared using mixed effects regression. The association between rSO2 levels and 6-month neurological outcomes was also evaluated. RESULTS There were no significant differences in the rSO2 level at 72 hours between the 36℃ and 33℃ groups (p = 0.372). Furthermore, serial rSO2 levels for 72 hours of TTM were not different between the two groups (p = 0.733). However, low rSO2 levels, particularly at 24 hours of TTM, were significantly associated with poor 6-month neurological outcomes (odds ratio = 0.899, 95% confidence interval: 0.831 - 0.974). The area under the receiver operating characteristic curve of the rSO2 level at 24 hours for poor neurological outcomes was 0.800. CONCLUSIONS Regardless of target temperatures, low rSO2 levels during TTM were significantly associated with poor 6-month neurological outcomes in OHCA survivors.
Collapse
Affiliation(s)
- Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Taekyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Hyeongkyu Kwak
- Department of Emergency Medicine, Uijeongbu Eulji University Hospital/Eulji University School of Medicine, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Taekwon Kim
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jeong Yeon Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Min Sung Lee
- Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jonghwan Shin
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Hui Jai Lee
- Department of Emergency Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Kyung Min You
- Department of Emergency Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| |
Collapse
|
16
|
Katz A, Brosnahan SB, Papadopoulos J, Parnia S, Lam JQ. Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest. Ann N Y Acad Sci 2021; 1507:49-59. [PMID: 34060087 DOI: 10.1111/nyas.14613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
Cardiac arrest has many implications for morbidity and mortality. Few interventions have been shown to improve return of spontaneous circulation (ROSC) and long-term outcomes after cardiac arrest. Ischemic-reperfusion injury upon achieving ROSC creates an imbalance between oxygen supply and demand. Multiple events occur in the postcardiac arrest period, including excitotoxicity, mitochondrial dysfunction, and oxidative stress and inflammation, all of which contribute to ongoing brain injury and cellular death. Given that complex pathophysiology underlies global brain hypoxic ischemia, neuroprotective strategies targeting multiple stages of the neuropathologic cascade should be considered as a means of mitigating secondary neuronal injury and improving neurologic outcomes and survival in cardiac arrest victims. In this review article, we discuss a number of different pharmacologic agents that may have a potential role in targeting these injurious pathways following cardiac arrest. Pharmacologic therapies most relevant for discussion currently include memantine, perampanel, magnesium, propofol, thiamine, methylene blue, vitamin C, vitamin E, coenzyme Q10 , minocycline, steroids, and aspirin.
Collapse
Affiliation(s)
- Alyson Katz
- Department of Pharmacy, NYU Langone Health, New York, New York
| | - Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York
| | | | - Sam Parnia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York
| | - Jason Q Lam
- Division of Pulmonary and Critical Care, Department of Medicine, Kaiser Permanente South Sacramento Medical Center, Sacramento, California
| |
Collapse
|
17
|
Nielsen N. Is the intra-arrest period the hot-spot for cooling? Resuscitation 2021; 162:426-427. [PMID: 33766664 DOI: 10.1016/j.resuscitation.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Niklas Nielsen
- Lund University, Helsingborg Hospital, Department of Clinical Sciences Lund, Anesthesiology and Intensive Care, Lund, Sweden.
| |
Collapse
|
18
|
Pille JA, Riess ML. Potential Effects of Poloxamer 188 on Rat Isolated Brain Mitochondria after Oxidative Stress In Vivo and In Vitro. Brain Sci 2021; 11:brainsci11010122. [PMID: 33477541 PMCID: PMC7831103 DOI: 10.3390/brainsci11010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Outcome after cerebral ischemia is often dismal. Reperfusion adds significantly to the ischemic injury itself. Therefore, new strategies targeting ischemia/reperfusion (I/R) injury are critically needed. Poloxamer (P)188, an amphiphilic triblock copolymer, is a highly promising pharmacological therapeutic as its capability to insert into injured cell membranes has been reported to protect against I/R injury in various models. Although mitochondrial function particularly profits from P188 treatment after I/R, it remains unclear if this beneficial effect occurs directly or indirectly. Here, rat isolated brain mitochondria underwent oxidative stress in vivo by asphyxial cardiac arrest or in vitro by the addition of hydrogen peroxide (H2O2) after isolation. Mitochondrial function was assessed by adenosine triphosphate synthesis, oxygen consumption, and calcium retention capacity. Both asphyxia and H2O2 exposure significantly impaired mitochondrial function. P188 did not preserve mitochondrial function after either injury mechanism. Further research is indicated.
Collapse
Affiliation(s)
- Johannes A Pille
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
19
|
Ahn JH, Lee TK, Tae HJ, Kim B, Sim H, Lee JC, Kim DW, Kim YS, Shin MC, Park Y, Cho JH, Park JH, Lee CH, Choi SY, Won MH. Neuronal Death in the CNS Autonomic Control Center Comes Very Early after Cardiac Arrest and Is Not Significantly Attenuated by Prompt Hypothermic Treatment in Rats. Cells 2021; 10:E60. [PMID: 33401719 PMCID: PMC7824613 DOI: 10.3390/cells10010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Autonomic dysfunction in the central nervous system (CNS) can cause death after recovery from a cardiac arrest (CA). However, few studies on histopathological changes in animal models of CA have been reported. In this study, we investigated the prevalence of neuronal death and damage in various brain regions and the spinal cord at early times after asphyxial CA and we studied the relationship between the mortality rate and neuronal damage following hypothermic treatment after CA. Rats were subjected to 7-8 min of asphyxial CA, followed by resuscitation and prompt hypothermic treatment. Eight regions related to autonomic control (the cingulate cortex, hippocampus, thalamus, hypothalamus, myelencephalon, and spinal cord) were examined using cresyl violet (a marker for Nissl substance) and Fluoro-Jade B (a marker for neuronal death). The survival rate was 44.5% 1 day post-CA, 18.2% 2 days post-CA and 0% 5 days post-CA. Neuronal death started 12 h post-CA in the gigantocellular reticular nucleus and caudoventrolateral reticular nucleus in the myelencephalon and lamina VII in the cervical, thoracic, lumbar, and sacral spinal cord, of which neurons are related to autonomic lower motor neurons. In these regions, Iba-1 immunoreactivity indicating microglial activation (microgliosis) was gradually increased with time after CA. Prompt hypothermic treatment increased the survival rate at 5 days after CA with an attenuation of neuronal damages and death in the damaged regions. However, the survival rate was 0% at 12 days after CA. Taken together, our study suggests that the early damage and death of neurons related to autonomic lower motor neurons was significantly related to the high mortality rate after CA and that prompt hypothermic therapy could increase the survival rate temporarily after CA, but could not ultimately save the animal.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Yoon Sung Kim
- Department of Emergency Medicine, Samcheok Medical Center, Samcheok 25920, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (M.C.S.); (Y.P.); (J.H.C.)
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| |
Collapse
|
20
|
Yamamoto R, Yoshizawa J. Oxygen administration in patients recovering from cardiac arrest: a narrative review. J Intensive Care 2020; 8:60. [PMID: 32832091 PMCID: PMC7419438 DOI: 10.1186/s40560-020-00477-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
High oxygen tension in blood and/or tissue affects clinical outcomes in several diseases. Thus, the optimal target PaO2 for patients recovering from cardiac arrest (CA) has been extensively examined. Many patients develop hypoxic brain injury after the return of spontaneous circulation (ROSC); this supports the need for oxygen administration in patients after CA. Insufficient oxygen delivery due to decreased blood flow to cerebral tissue during CA results in hypoxic brain injury. By contrast, hyperoxia may increase dissolved oxygen in the blood and, subsequently, generate reactive oxygen species that are harmful to neuronal cells. This secondary brain injury is particularly concerning. Although several clinical studies demonstrated that hyperoxia during post-CA care was associated with poor neurological outcomes, considerable debate is ongoing because of inconsistent results. Potential reasons for the conflicting results include differences in the definition of hyperoxia, the timing of exposure to hyperoxia, and PaO2 values used in analyses. Despite the conflicts, exposure to PaO2 > 300 mmHg through administration of unnecessary oxygen should be avoided because no obvious benefit has been demonstrated. The feasibility of titrating oxygen administration by targeting SpO2 at approximately 94% in patients recovering from CA has been demonstrated in pilot randomized controlled trials (RCTs). Such protocols should be further examined.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| | - Jo Yoshizawa
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582 Japan
| |
Collapse
|
21
|
Association between hyperoxemia and mortality in patients treated by eCPR after out-of-hospital cardiac arrest. Am J Emerg Med 2020; 38:900-905. [DOI: 10.1016/j.ajem.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/26/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023] Open
|
22
|
Cheskes S, Koh M, Turner L, Heslegrave R, Verbeek R, Dorian P, Scales DC, Singh B, Amlani S, Natarajan M, Morrison LJ, Kakar P, Nowickyj R, Lawrence M, Cameron J, Ko DT. Field Implementation of Remote Ischemic Conditioning in ST-Segment-Elevation Myocardial Infarction: The FIRST Study. Can J Cardiol 2019; 36:1278-1288. [PMID: 32305146 DOI: 10.1016/j.cjca.2019.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is a noninvasive therapeutic strategy that uses brief cycles of blood pressure cuff inflation and deflation to protect the myocardium against ischemia-reperfusion injury. We sought to compare major adverse cardiovascular events (MACE) for patients who received RIC before PCI for ST-segment-elevation myocardial infarction (STEMI) compared with standard care. METHODS We conducted a pre- and postimplementation study. In the preimplementation phase, STEMI patients were taken directly to the PCI lab. After implementation, STEMI patients received 4 cycles of RIC by paramedics or emergency department staff before PCI. The primary outcome was MACE at 90 days. Secondary outcomes included MACE at 30, 60, and 180 days. Inverse probability of treatment weighting using propensity scores estimated causal effects independent from baseline covariables. RESULTS A total of 1667 (866 preimplementation, 801 postimplementation) patients were included. In the preimplementation phase, 13.4% had MACE at 90 days compared with 11.8% in the postimplementation phase (odds ratio [OR] 0.86, 95% CI 0.62-1.21). There were no significant differences in MACE at 30, 60, and 180 days. Patients presenting with cardiogenic shock or cardiac arrest before PCI were less likely to have MACE at 90 days (42.7% pre vs 27.8% post) if they received RIC before PCI (OR 0.52, 95% CI 0.27-0.98). CONCLUSIONS A strategy of RIC before PCI for STEMI did not reduce 90-day MACE. Future research should explore the impact of RIC before PCI for longer-term clinical outcomes and for patients presenting with cardiogenic shock or cardiac arrest.
Collapse
Affiliation(s)
- Sheldon Cheskes
- Division of Emergency Medicine, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Centre for Prehospital Medicine, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St Michaels Hospital, Toronto, Ontario, Canada.
| | - Maria Koh
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Linda Turner
- Sunnybrook Centre for Prehospital Medicine, Toronto, Ontario, Canada
| | | | - Richard Verbeek
- Sunnybrook Centre for Prehospital Medicine, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Dorian
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; St Michaels Hospital, Toronto, Ontario, Canada
| | - Damon C Scales
- Li Ka Shing Knowledge Institute, St Michaels Hospital, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Bob Singh
- Trillium Health Partners, Mississauga, Ontario, Canada
| | - Shy Amlani
- William Osler Health System, Brampton, Ontario, Canada
| | | | - Laurie J Morrison
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priya Kakar
- Peel Regional Paramedic Service, Ontario, Canada
| | | | | | | | - Dennis T Ko
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Bartlett ES, Valenzuela T, Idris A, Deye N, Glover G, Gillies MA, Taccone FS, Sunde K, Flint AC, Thiele H, Arrich J, Hemphill C, Holzer M, Skrifvars MB, Pittl U, Polderman KH, Ong MEH, Kim KH, Oh SH, Do Shin S, Kirkegaard H, Nichol G. Systematic review and meta-analysis of intravascular temperature management vs. surface cooling in comatose patients resuscitated from cardiac arrest. Resuscitation 2019; 146:82-95. [PMID: 31730898 DOI: 10.1016/j.resuscitation.2019.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To systematically review the effectiveness and safety of intravascular temperature management (IVTM) vs. surface cooling methods (SCM) for induced hypothermia (IH). METHODS Systematic review and meta-analysis. English-language PubMed, Embase and the Cochrane Database of Systematic Reviews were searched on May 27, 2019. The quality of included observational studies was graded using the Newcastle-Ottawa Quality Assessment tool. The quality of included randomized trials was evaluated using the Cochrane Collaboration's risk of bias tool. Random effects modeling was used to calculate risk differences for each outcome. Statistical heterogeneity and publication bias were assessed using standard methods. ELIGIBILITY Observational or randomized studies comparing survival and/or neurologic outcomes in adults aged 18 years or greater resuscitated from out-of-hospital cardiac arrest receiving IH via IVTM vs. SCM were eligible for inclusion. RESULTS In total, 12 studies met inclusion criteria. These enrolled 1573 patients who received IVTM; and 4008 who received SCM. Survival was 55.0% in the IVTM group and 51.2% in the SCM group [pooled risk difference 2% (95% CI -1%, 5%)]. Good neurological outcome was achieved in 40.9% in the IVTM and 29.5% in the surface group [pooled risk difference 5% (95% CI 2%, 8%)]. There was a 6% (95% CI 11%, 2%) lower risk of arrhythmia with use of IVTM and 15% (95% CI 22%, 7%) decreased risk of overcooling with use of IVTM vs. SCM. There was no significant difference in other evaluated adverse events between groups. CONCLUSIONS IVTM was associated with improved neurological outcomes vs. SCM among survivors resuscitated following cardiac arrest. These results may have implications for care of patients in the emergency department and intensive care settings after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Emily S Bartlett
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States.
| | - Terence Valenzuela
- Department of Emergency Medicine, University of Arizona, Tucson, AZ, United States; Tucson Fire Department, Tucson, AZ, United States
| | - Ahamed Idris
- Departments of Emergency and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nicolas Deye
- Medical Intensive Care Unit, Inserm U942, Lariboisiere Hospital, APHP, F-75010, Paris, France
| | - Guy Glover
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Michael A Gillies
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Fabio S Taccone
- Department of Intensive Care, Cliniques Universitaires de Bruxelles Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kjetil Sunde
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexander C Flint
- Divison of Research, Kaiser Permanente, Oakland, CA, United States; Neuroscience Department, Kaiser Permanente, Redwood City, CA, United States
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Jasmin Arrich
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria; Center of Emergency Medicine, University of Jena, Faculty of Medicine, Jena, Germany
| | - Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Undine Pittl
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Kees H Polderman
- Essex Cardiothoracic Centre, Basildon, Essex, SS16 5NL, United Kingdom; Anglia Ruskin School of Medicine, Chelmsford, CM1 1SQ, United Kingdom; United General Hospital, Houston, TX, United States
| | - Marcus E H Ong
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore; Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
| | - Ki Hong Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Hoon Oh
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Do Shin
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hans Kirkegaard
- Research Center for Emergency Medicine, Department of Emergency Medicine and Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Graham Nichol
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States; Department of Internal Medicine, University of Washington, Seattle, WA, United States; University of Washington-Harborview Center for Prehospital Emergency Care, Seattle, WA, United States
| |
Collapse
|
24
|
Cerebral Edema After Cardiopulmonary Resuscitation: A Therapeutic Target Following Cardiac Arrest? Neurocrit Care 2019; 28:276-287. [PMID: 29080068 DOI: 10.1007/s12028-017-0474-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We sought to review the role that cerebral edema plays in neurologic outcome following cardiac arrest, to understand whether cerebral edema might be an appropriate therapeutic target for neuroprotection in patients who survive cardiopulmonary resuscitation. Articles indexed in PubMed and written in English. Following cardiac arrest, cerebral edema is a cardinal feature of brain injury and is a powerful prognosticator of neurologic outcome. Like other conditions characterized by cerebral ischemia/reperfusion, neuroprotection after cardiac arrest has proven to be difficult to achieve. Neuroprotection after cardiac arrest generally has focused on protecting neurons, not the microvascular endothelium or blood-brain barrier. Limited preclinical data suggest that strategies to reduce cerebral edema may improve neurologic outcome. Ongoing research will be necessary to determine whether targeting cerebral edema will improve patient outcomes after cardiac arrest.
Collapse
|
25
|
Ahmed N. Cardioprotective mechanism of FTY720 in ischemia reperfusion injury. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2019-0063. [PMID: 31469655 DOI: 10.1515/jbcpp-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022]
Abstract
Cardioprotection is a very challenging area in the field of cardiovascular sciences. Myocardial damage accounts for nearly 50% of injury due to reperfusion, yet there is no effective strategy to prevent this to reduce the burden of heart failure. During last couple of decades, by combining genetic and bimolecular studies, many new drugs have been developed to treat hypertension, heart failure, and cancer. The use of percutaneous coronary intervention has reduced the mortality and morbidity of acute coronary syndrome dramatically. However, there is no standard therapy available that can mitigate cardiac reperfusion injury, which contributes to up to half of myocardial infarcts. Literature shows that the activation of sphingosine receptors, which are G protein-coupled receptors, induces cardioprotection both in vitro and in vivo. The exact mechanism of this protection is not clear yet. In this review, we discuss the mechanism of ischemia reperfusion injury and the role of the FDA-approved sphingosine 1 phosphate drug fingolimod in cardioprotection.
Collapse
Affiliation(s)
- Naseer Ahmed
- The Aga Khan University, Medical College, Karachi, Pakistan, Phone: +92 21 3486 4465
| |
Collapse
|
26
|
Yuan J, Yang MC, Wu MJ, Gou YS. Sedative depth on neurological outcomes in a juvenile rat model of cardiopulmonary resuscitation. Med Hypotheses 2019; 132:109233. [PMID: 31606702 DOI: 10.1016/j.mehy.2019.109233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 01/26/2023]
Abstract
The guidelines for cardiopulmonary resuscitation (CPR) in pediatric advanced life support suggest that midazolam is the preferred agent for sedation in patients with mild hypothermia, whereas children with cardiac arrest (CA) are at a crucial stage regarding their immature nervous system. Studies have shown that midazolam may have a detrimental effect on the developmental of the pediatric nervous system. Our previous study found that midazolam induced neuronal damage after CPR in young rats. It is speculated that: midazolam causes the potential injury of neurons by inhibiting mitochondrial autophagy expression and is an important factor for the poor prognosis in children after successful CPR. This project intends to adopt the modified asphyxiant CPR model in juvenile rats. Survival rate, neurological function and histopathological changes were evaluated to determine the protective effects of appropriate sedation depth on cerebral ischemia-reperfusion injury in juvenile rats after CPR. Combined with cell biology and molecular biology related technologies, the mechanism by which the mitochondrial pinkl-parkin signaling pathway induces autophagy to inhibit neuronal apoptosis may be key factor in the protective effects of sedation depth on the brain. The aim of this study is to provide experimental evidence and elucidate the mechanisms of improvement of cerebral ischemia-reperfusion injury by sedation depth in children after successful CPR and to lay a theoretical and experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Jing Yuan
- The Third People(')s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, China
| | - Meng-Chang Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Meng-Jun Wu
- Department of Anesthesiology, Chengdu Women and Children(')s Central Hospital, Chengdu 610041, Sichuan, China.
| | - Yong-Sheng Gou
- Department of Orthopedics, Shuangliu First People's Hospital, Chengdu 610200, Sichuan, China.
| |
Collapse
|
27
|
Remote Ischemic Postconditioning Improves Myocardial Dysfunction Via the Risk and Safe Pathways in a Rat Model of Severe Hemorrhagic Shock. Shock 2019; 49:460-465. [PMID: 28682943 DOI: 10.1097/shk.0000000000000940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patients who have been resuscitated after severe hemorrhagic shock still have a high mortality rate. Previously published literature has suggested that remote ischemic postconditioning (RIPostC) has a cardioprotective effect, but few studies have focused on RIPostC performed after severe hemorrhagic shock. In this study, we aim to explore the effects and mechanism of RIPostC on myocardial ischemia and reperfusion injuries after hemorrhagic shock. METHODS Fifty male rats were randomized into four groups: sham, control, remote ischemic per-conditioning (RIPerC), and RIPostC. Hemorrhagic shock was induced by removing 45% of the estimated total blood volume. Remote ischemic conditioning (RIC) was induced by four cycles of limb ischemia for 5 min followed by 5 min of reperfusion, during and after resuscitation for the RIPerC and RIPostC groups, respectively. Myocardial function, survival rate, IL-6, IL-10, and SOD were detected. Myocardial damage was histopathologically analyzed, and proteins related to the reperfusion injury salvage kinase (RISK) pathway (Akt, MEK, ERK1/2) and the survival activating factor enhancement (SAFE) pathway (STAT-3 and STAT5) were measured. RESULTS Compared with the control group, the ejection fraction and myocardial performance indexes were significantly better in both RIC groups 2 h after resuscitation. Myocardial damage was attenuated and survival time increased significantly in the RIC groups. IL-6 and cardiac troponin I (cTnI) levels were notably reduced in both RIC groups. Only RIPostC had significantly increased levels of SOD and IL-10. The SAFE and RISK pathways were activated by RIPostC, whereas the effect of RIPerC was not significant. CONCLUSIONS RIPostC attenuated myocardial dysfunction and survival outcomes via the activation of the SAFE and RISK pathways in this rat model of hemorrhagic shock. RIPerC improves myocardial dysfunction, but might not do so via the SAFE and RISK pathways.
Collapse
|
28
|
Zhang WF, Jin YC, Li XM, Yang Z, Wang D, Cui JJ. Protective effects of leptin against cerebral ischemia/reperfusion injury. Exp Ther Med 2019; 17:3282-3290. [PMID: 30988703 PMCID: PMC6447799 DOI: 10.3892/etm.2019.7377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
In recent years, the use of thrombolytic therapy for treating ischemia/reperfusion injury has resulted in damage to the self-regulatory mechanisms of the brain. This is due to the increased production of free radicals, excitatory amino acids and pro-inflammatory cytokines causing secondary damage to the brain. Simple thrombolytic therapy has not been the best approach for treating ischemia/reperfusion injury. Excessive perfusion leads to failure of the body's self-regulatory functions, which in turn increases the area of cerebral edema and aggravates cerebral ischemia. Previous studies have evaluated the satiety hormone leptin as a link between energy expenditure and obesity. Of note, leptin, which is involved in brain development, synaptic transmission and angiogenesis following ischemia/reperfusion injury, has been considered an important factor for treating ischemia/reperfusion injury. The present review outlines the discovery of leptin and discusses its association with cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Wen-Fang Zhang
- Department of Biomedical Research Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Yin-Chuan Jin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Zhi Yang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Dong Wang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing-Jing Cui
- Department of Medical Affairs, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
29
|
Nichol G, Polderman KH, Friberg H, Kurz M, Kapinos G. Perspectives on Temperature Management. Ther Hypothermia Temp Manag 2018; 8:188-194. [DOI: 10.1089/ther.2018.29052.gjn] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Graham Nichol
- University of Washington-Harborview Center for Prehospital Emergency Care, Division of Internal Medicine, Seattle, Washington
| | - Kees H. Polderman
- The Essex Cardiothoracic Centre, Basildon and Thurrock University Hospitals NHS Foundation Trust, Basildon, United Kingdom
| | - Hans Friberg
- Department of Emergency Medicine, Skane University Hospital, Lund University, Lund, Sweden
| | - Michael Kurz
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory Kapinos
- Departments of Neurology, Neurosurgery and Emergency Medicine, Kings County Hospital/SUNY Downstate College of Medicine, Brooklyn, New York
| |
Collapse
|
30
|
Post-cardiac arrest syndrome: pathological processes, biomarkers and vasopressor support, and potential therapeutic targets. Resuscitation 2017; 121:A12-A14. [DOI: 10.1016/j.resuscitation.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
|
31
|
Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator Management and Respiratory Care After Cardiac Arrest: Oxygenation, Ventilation, Infection, and Injury. Chest 2017; 153:1466-1477. [PMID: 29175085 DOI: 10.1016/j.chest.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 01/14/2023] Open
Abstract
Return of spontaneous circulation after cardiac arrest results in a systemic inflammatory state called the post-cardiac arrest syndrome, which is characterized by oxidative stress, coagulopathy, neuronal injury, and organ dysfunction. Perturbations in oxygenation and ventilation may exacerbate secondary injury after cardiac arrest and have been shown to be associated with poor outcome. Further, patients who experience cardiac arrest are at risk for a number of other pulmonary complications. Up to 70% of patients experience early infection after cardiac arrest, and the respiratory tract is the most common source. Vigilance for early-onset pneumonia, as well as aggressive diagnosis and early antimicrobial agent administration are important components of critical care in this population. Patients who experience cardiac arrest are at risk for the development of ARDS. Risk factors include aspiration, pulmonary contusions (from chest compressions), systemic inflammation, and reperfusion injury. Early evidence suggests that they may benefit from ventilation with low tidal volumes. Meticulous attention to mechanical ventilation, early assessment and optimization of respiratory gas exchange, and therapies targeted at potential pulmonary complications may improve outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA.
| | - David J Carlbom
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | - David F Gaieski
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
32
|
Stöckl M, Testori C, Sterz F, Holzer M, Weiser C, Schober A, Nichol G, Frossard M, Herkner H, Kechvar J, Losert H. Continuous versus intermittent neuromuscular blockade in patients during targeted temperature management after resuscitation from cardiac arrest-A randomized, double blinded, double dummy, clinical trial. Resuscitation 2017; 120:14-19. [PMID: 28860012 DOI: 10.1016/j.resuscitation.2017.08.238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 01/19/2023]
Abstract
AIM OF THE STUDY Current guidelines recommend targeted temperature management to improve neurological outcome after cardiac arrest. Evidence regarding an ideal sedative/analgesic regimen including skeletal muscle paralysis is limited. METHODS Patients were randomized to either a continuous administration of rocuronium (continuous-NMB-group) or to a continuous administration of saline supplemented by rocuronium bolus administration if demanded (bolus-NMB-group). The primary outcome was the number of shivering episodes. Secondary outcomes included survival and neurological status one year after cardiac arrest, time to awakening, length of stay as well as required cumulative dose of rocuronium, midazolam and fentanyl. RESULTS Sixty-three patients (32 continuous-NMB-group; 31 bolus-NMB-group) were enrolled. Differences in baseline characteristics were not significant. Shivering episodes were detected in 94% of the patients in the bolus-NMB-group compared to 25% of the patients receiving continuous rocuronium infusion (p<0.01). The continuous-NMB-group received significant lower doses of midazolam (4.3±0.8mg/kg vs. 5.1±0.9mg/kg, p<0.01) and fentanyl (62±14μg/kg vs. 71±7μg/kg, p<0.01), but higher cumulative doses of rocuronium (7.8±1.8mg/kg vs. 2.3±1.6mg/kg, p<0.01). Earlier awakening (2 [IQR 2;3] vs. 4 [IQR 2;7.5] days, p=0.04) and decreased length of stay at the ICU (6 [IQR 3;5.9] vs. 10 [IQR 5;15] days, p=0.03) were observed in the continuous-NMB-group. There were no significant differences in survival and quality of life 12 months after cardiac arrest. CONCLUSIONS Continuous neuromuscular blockade during the first day after resuscitation reduced shivering, midazolam and fentanyl requirement, time to awakening and discharge from intensive care unit. There were no differences in overall survival, cooling rate and time to target temperature.
Collapse
Affiliation(s)
- Mathias Stöckl
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Brothers of Saint John of God Hospital, Eisenstadt, Austria
| | - Christoph Testori
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Fritz Sterz
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Weiser
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Schober
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Graham Nichol
- Harborview Center for Prehospital Emergency Care, University of Washington, Seattle, WA, USA
| | - Martin Frossard
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Jasmin Kechvar
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Heidrun Losert
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Muengtaweepongsa S, Srivilaithon W. Targeted temperature management in neurological intensive care unit. World J Methodol 2017; 7:55-67. [PMID: 28706860 PMCID: PMC5489424 DOI: 10.5662/wjm.v7.i2.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Targeted temperature management (TTM) shows the most promising neuroprotective therapy against hypoxic/ischemic encephalopathy (HIE). In addition, TTM is also useful for treatment of elevated intracranial pressure (ICP). HIE and elevated ICP are common catastrophic conditions in patients admitted in Neurologic intensive care unit (ICU). The most common cause of HIE is cardiac arrest. Randomized control trials demonstrate clinical benefits of TTM in patients with post-cardiac arrest. Although clinical benefit of ICP control by TTM in some specific critical condition, for an example in traumatic brain injury, is still controversial, efficacy of ICP control by TTM is confirmed by both in vivo and in vitro studies. Several methods of TTM have been reported in the literature. TTM can apply to various clinical conditions associated with hypoxic/ischemic brain injury and elevated ICP in Neurologic ICU.
Collapse
|
34
|
McLeod SL, Iansavichene A, Cheskes S. Remote Ischemic Perconditioning to Reduce Reperfusion Injury During Acute ST-Segment-Elevation Myocardial Infarction: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2017; 6:JAHA.117.005522. [PMID: 28515120 PMCID: PMC5524098 DOI: 10.1161/jaha.117.005522] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Remote ischemic conditioning (RIC) is a noninvasive therapeutic strategy that uses brief cycles of blood pressure cuff inflation and deflation to protect the myocardium against ischemia–reperfusion injury. The objective of this systematic review was to determine the impact of RIC on myocardial salvage index, infarct size, and major adverse cardiovascular events when initiated before catheterization. Methods and Results Electronic searches of Medline, Embase, and Cochrane Central Register of Controlled Trials were conducted and reference lists were hand searched. Randomized controlled trials comparing percutaneous coronary intervention (PCI) with and without RIC for patients with ST‐segment–elevation myocardial infarction were included. Two reviewers independently screened abstracts, assessed quality of the studies, and extracted data. Data were pooled using random‐effects models and reported as mean differences and relative risk with 95% confidence intervals. Eleven articles (9 randomized controlled trials) were included with a total of 1220 patients (RIC+PCI=643, PCI=577). Studies with no events were excluded from meta‐analysis. The myocardial salvage index was higher in the RIC+PCI group compared with the PCI group (mean difference: 0.08; 95% confidence interval, 0.02–0.14). Infarct size was reduced in the RIC+PCI group compared with the PCI group (mean difference: −2.46; 95% confidence interval, −4.66 to −0.26). Major adverse cardiovascular events were lower in the RIC+PCI group (9.5%) compared with the PCI group (17.0%; relative risk: 0.57; 95% confidence interval, 0.40–0.82). Conclusions RIC appears to be a promising adjunctive treatment to PCI for the prevention of reperfusion injury in patients with ST‐segment–elevation myocardial infarction; however, additional high‐quality research is required before a change in practice can be considered.
Collapse
Affiliation(s)
- Shelley L McLeod
- Division of Emergency Medicine, Department of Family and Community Medicine, University of Toronto, Ontario, Canada.,Schwartz/Reisman Emergency Medicine Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Sheldon Cheskes
- Division of Emergency Medicine, Department of Family and Community Medicine, University of Toronto, Ontario, Canada .,Sunnybrook Centre for Prehospital Medicine, Toronto, Ontario, Canada.,Rescu, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a "two-hit" model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:90. [PMID: 28403909 PMCID: PMC5390465 DOI: 10.1186/s13054-017-1670-9] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxic ischemic brain injury (HIBI) after cardiac arrest (CA) is a leading cause of mortality and long-term neurologic disability in survivors. The pathophysiology of HIBI encompasses a heterogeneous cascade that culminates in secondary brain injury and neuronal cell death. This begins with primary injury to the brain caused by the immediate cessation of cerebral blood flow following CA. Thereafter, the secondary injury of HIBI takes place in the hours and days following the initial CA and reperfusion. Among factors that may be implicated in this secondary injury include reperfusion injury, microcirculatory dysfunction, impaired cerebral autoregulation, hypoxemia, hyperoxia, hyperthermia, fluctuations in arterial carbon dioxide, and concomitant anemia.Clarifying the underlying pathophysiology of HIBI is imperative and has been the focus of considerable research to identify therapeutic targets. Most notably, targeted temperature management has been studied rigorously in preventing secondary injury after HIBI and is associated with improved outcome compared with hyperthermia. Recent advances point to important roles of anemia, carbon dioxide perturbations, hypoxemia, hyperoxia, and cerebral edema as contributing to secondary injury after HIBI and adverse outcomes. Furthermore, breakthroughs in the individualization of perfusion targets for patients with HIBI using cerebral autoregulation monitoring represent an attractive area of future work with therapeutic implications.We provide an in-depth review of the pathophysiology of HIBI to critically evaluate current approaches for the early treatment of HIBI secondary to CA. Potential therapeutic targets and future research directions are summarized.
Collapse
Affiliation(s)
- Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Room 2438, Jim Pattison Pavilion, 2nd Floor, 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada. .,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada.
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Donald E Griesdale
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Room 2438, Jim Pattison Pavilion, 2nd Floor, 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada.,Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada.,Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, 899 West 12th Avenue, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
36
|
Tolins ML, Henning DJ, Gaieski DF, Grossestreuer AV, Jaworski A, Johnson NJ. Initial arterial carbon dioxide tension is associated with neurological outcome after resuscitation from cardiac arrest. Resuscitation 2017; 114:53-58. [PMID: 28268187 DOI: 10.1016/j.resuscitation.2017.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
STUDY OBJECTIVES To determine the relationships between partial pressure of arterial carbon dioxide (PaCO2), prescribed minute ventilation (MV), and neurologic outcome in patients resuscitated from cardiac arrest. METHODS This was a retrospective cohort study utilizing a multicenter database of adult patients with return of spontaneous circulation (ROSC) after cardiac arrest. The primary outcome was neurologic status at hospital discharge, defined by Cerebral Performance Category (CPC) score: CPC 1-2 was favorable, CPC 3-5 was poor. We compared rates of initial normocarbia (PaCO2 31-49mmHg) and mean sequential PaCO2 measurements obtained over the first 24h. We also assessed the influence of MV on the PaCO2 at initial, 6, 12, 18, and 24h after cardiac arrest using univariate linear regression. RESULTS One hundred and fourteen patients from 3 institutions met inclusion criteria. Overall, 46/114 (40.4%, 95% CI: 31.4-49.4%) patients survived to hospital discharge, and 33/114 (28.9%, 20.6-37.2%) had CPC 1-2 at the time of discharge. A total of 38.9% (95% CI: 29.9-47.9%) of patients had initial normocarbia; 43.2% (28.6-57.8%) of these patients were discharged with CPC 1-2, compared with 20.3% (10.8-29.8%) of dyscarbic patients. By 6h, neurologic outcomes were not significantly associated with PaCO2. Prescribed MV was not associated with PaCO2 at any time point with the exception of a weak correlation at hour 18. CONCLUSION Initial normocarbia was associated with favorable neurological outcome in patients resuscitated from cardiac arrest. This relationship was not seen at subsequent time points. There was no significant association between prescribed MV and PaCO2 or neurologic outcome.
Collapse
Affiliation(s)
- Molly L Tolins
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle WA, United States.
| | - Daniel J Henning
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle WA, United States
| | - David F Gaieski
- Department of Emergency Medicine, Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anne V Grossestreuer
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Alison Jaworski
- Department of Emergency Medicine, Boston Medical Center, Boston, MA, United States
| | - Nicholas J Johnson
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle WA, United States; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
37
|
Mouton R, Soar J. Remote ischaemic preconditioning: an intervention for anaesthetists? Br J Anaesth 2017; 118:288-291. [DOI: 10.1093/bja/aew409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
38
|
Zhang Q, An R, Tian X, Yang M, Li M, Lou J, Xu L, Dong Z. β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway. Neurochem Res 2017; 42:1459-1469. [PMID: 28236211 DOI: 10.1007/s11064-017-2202-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/28/2017] [Accepted: 02/09/2017] [Indexed: 12/29/2022]
Abstract
β-Caryophyllene (BCP) has been reported to be protective against focal cerebral ischemia-reperfusion (I/R) injury by its anti-oxidative and anti-inflammatory features. Recent study demonstrates that the BCP exhibits potential neuroprotection against I/R injury induced apoptosis, however, the mechanism remains unknown. Therefore, we investigate the underlying anti-apoptotic mechanism of BCP pretreatment in I/R injury. Sprague-Dawley rats (pretreated with BCP suspensions or solvent orally for 7 days) were subjected to transient Middle Cerebral Artery Occlusion (MCAO) for 90 min, followed by 24 h reperfusion. Results showed that BCP pretreatment improved the neurologic deficit score, lowered the infarct volume and decreased number of apoptotic cells in the hippocampus. Moreover, in western blot and RT-qPCR detections, BCP pretreatment down-regulated the expressions of Bax and p53, up-regulated the expression of Bcl-2, and enhanced the phosphorylation of Akt on Ser473. Blockage of PI3K activity by wortmannin not only abolished the BCP-induced decreases in infarct volume and neurologic deficit score, but also dramatically abrogated the enhancement of AKt phosphorylation. Our results suggested that BCP pre-treatment protects against I/R injury partly by suppressing apoptosis via PI3K/AKt signaling pathway activation.
Collapse
Affiliation(s)
- Qian Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Ruidi An
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Mei Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Minghang Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Jie Lou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| | - Lu Xu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
39
|
Ratano D, Oddo M. [Not Available]. PRAXIS 2017; 106:1169-1174. [PMID: 29041846 DOI: 10.1024/1661-8157/a002819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zusammenfassung. Die therapeutische Hypothermie oder gezieltes Temperaturmanagement ist eine wirksame und einfache neuroprotektive Technik. Der Haupteffekt ist eine Milderung der Nebenhirnschädigungen, die mit dem Ischämie-Reperfusions-Phänomen nach einem Herzstillstand auftreten. Die therapeutische Hypothermie hat sich auch für die Neugeborenen-Hypoxie als wirksam erwiesen. Die modernen und automatisierten Geräte erlauben eine sehr strenge Temperaturkontrolle. In diesem Review werden die verschiedenen Aspekte der therapeutische Hypothermie diskutiert und die jüngsten veröffentlichten Empfehlungen und Ergebnisse zusammengefasst.
Collapse
Affiliation(s)
- Damian Ratano
- 1 Service de médecine intensive adulte, SMIA, Centre hospitalier universitaire vaudois (CHUV), Lausanne
| | - Mauro Oddo
- 1 Service de médecine intensive adulte, SMIA, Centre hospitalier universitaire vaudois (CHUV), Lausanne
| |
Collapse
|
40
|
Urocortin Treatment Improves Acute Hemodynamic Instability and Reduces Myocardial Damage in Post-Cardiac Arrest Myocardial Dysfunction. PLoS One 2016; 11:e0166324. [PMID: 27832152 PMCID: PMC5104489 DOI: 10.1371/journal.pone.0166324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Aims Hemodynamic instability occurs following cardiac arrest and is associated with high mortality during the post-cardiac period. Urocortin is a novel peptide and a member of the corticotrophin-releasing factor family. Urocortin has the potential to improve acute cardiac dysfunction, as well as to reduce the myocardial damage sustained after ischemia reperfusion injury. The effects of urocortin in post-cardiac arrest myocardial dysfunction remain unclear. Methods and Results We developed a preclinical cardiac arrest model and investigated the effects of urocortin. After cardiac arrest induced by 6.5 min asphyxia, male Wistar rats were resuscitated and randomized to either the urocortin treatment group or the control group. Urocortin (10 μg/kg) was administrated intravenously upon onset of resuscitation in the experimental group. The rate of return of spontaneous circulation (ROSC) was similar between the urocortin group (76%) and the control group (72%) after resuscitation. The left ventricular systolic (dP/dt40) and diastolic (maximal negative dP/dt) functions, and cardiac output, were ameliorated within 4 h after ROSC in the urocortin-treated group compared to the control group (P<0.01). The neurological function of surviving animals was better at 6 h after ROSC in the urocortin-treated group (p = 0.023). The 72-h survival rate was greater in the urocortin-treated group compared to the control group (p = 0.044 by log-rank test). Cardiomyocyte apoptosis was lower in the urocortin-treated group (39.9±8.6 vs. 17.5±4.6% of TUNEL positive nuclei, P<0.05) with significantly increased Akt, ERK and STAT-3 activation and phosphorylation in the myocardium (P<0.05). Conclusions Urocortin treatment can improve acute hemodynamic instability as well as reducing myocardial damage in post-cardiac arrest myocardial dysfunction.
Collapse
|