1
|
Zeng F, Pang G, Hu L, Sun Y, Peng W, Chen Y, Xu D, Xia Q, Zhao L, Li Y, He M. Subway Fine Particles (PM 2.5 )-Induced Pro-Inflammatory Response Triggers Airway Epithelial Barrier Damage Through the TLRs/NF-κB-Dependent Pathway In Vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:5296-5308. [PMID: 39189708 DOI: 10.1002/tox.24403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
Subways are widely used in major cities around the world, and subway fine particulate matter (PM2.5) is the main source of daily PM2.5 exposure for urban residents. Exposure to subway PM2.5 leads to acute inflammatory damage in humans, which has been confirmed in mouse in vivo studies. However, the concrete mechanism by which subway PM2.5 causes airway damage remains obscure. In this study, we found that subway PM2.5 triggered release of pro-inflammatory cytokines such as interleukin 17E, tumor necrosis factor α, transforming growth factor β, and thymic stromal lymphopoietin from human bronchial epithelial cells (BEAS-2B) in a dose-effect relationship. Subsequently, supernatant recovered from the subway PM2.5 group significantly increased expression of the aforementioned cytokines in BEAS-2B cells compared with the subway PM2.5 group. Additionally, tight junctions (TJs) of BEAS-2B cells including zonula occludens-1, E-cadherin, and occludin were decreased by subway PM2.5 in a dose-dependent manner. Moreover, supernatant recovered from the subway PM2.5 group markedly decreased the expression of these TJs compared with the control group. Furthermore, inhibitors of toll-like receptors (TLRs) and nuclear factor-kappa B (NF-κB), as well as chelate resins (e.g., chelex) and deferoxamine, remarkably ameliorated the observed changes of cytokines and TJs caused by subway PM2.5 in BEAS-2B cells. Therefore, these results suggest that subway PM2.5 induced a decline of TJs after an initial ascent of cytokine expression, and subway PM2.5 altered expression of both cytokines and TJs by activating TLRs/NF-κB-dependent pathway in BEAS-2B cells. The metal components of subway PM2.5 may contribute to the airway epithelial injury.
Collapse
Affiliation(s)
- Fanmei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Guanhua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuwei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Luwei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yifei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang, China
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
2
|
Luglio DG, Farrell KR, Gordon T. A pilot study of the cardiopulmonary effects in healthy volunteers after exposure to high levels of PM 2.5 in a New York City subway station. Part Fibre Toxicol 2024; 21:42. [PMID: 39379984 PMCID: PMC11460011 DOI: 10.1186/s12989-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Subway systems are becoming increasingly common worldwide transporting large populations in major cities. PM2.5 concentrations have been demonstrated to be exceptionally high when underground, however. Studies on the impact of subway PM exposure on cardiopulmonary health in the United States are limited. METHODS Healthy volunteers in New York City were exposed to a 2-h visit on the 9th Street Station platform on the Port Authority Trans-Hudson train system. Blood pressure, heart rate variability (HRV), spirometry, and forced impulse oscillometry were measured, and urine, blood spot, and nasal swab biosamples were collected for cytokine analysis at the end of the 2-h exposure period. These endpoints were compared against individual control measurements collected after 2-h in a "clean" control space. In addition to paired comparisons, mixed effects models with subject as a random effect were employed to investigate the effect of the PM2.5 concentrations and visit type (i.e., subway vs. control). RESULTS Mean PM2.5 concentrations on the platform and during the control visit were 293.6 ± 65.7 (SD) and 4.6 ± 1.9 µg/m3, respectively. There was no change in any of the health metrics, but there was a non-significant trend for SDNN to be lower after subway exposure compared to control exposure. Total symptomatic scores did increase post-subway exposure compared to reported values prior to exposure or after the control visit. No significant changes in cytokine concentrations in any specimen type were observed. Mixed-effects models mostly corroborated these paired comparisons. CONCLUSIONS Acute exposures to PM on a subway platform do not cause measurable cardiopulmonary effects apart from reductions in HRV and increases in symptoms in healthy volunteers. These findings match other studies that found little to no changes in lung function and blood pressure after exposure in underground subway stations. Future work should still target potentially more vulnerable populations, such as individuals with asthma or those who spend increased time underground on the subway such as transit workers.
Collapse
Affiliation(s)
- David G Luglio
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Kayla Rae Farrell
- Division of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Terry Gordon
- Division of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Guseva Canu I, Wild P, Charreau T, Freund R, Toto A, Pralong J, Sakthithasan K, Jouannique V, Debatisse A, Suarez G. Long-term exposure to PM 10 and respiratory health among Parisian subway workers. Int J Hyg Environ Health 2024; 256:114316. [PMID: 38159498 DOI: 10.1016/j.ijheh.2023.114316] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Exposure to ambient PM10 may increase the risk of chronic obstructive pulmonary disease (COPD) and lung function decline. We evaluated the long-term exposure to PM10 and its relationship with COPD prevalence and lung function in Parisian subway workers. Participants were randomly selected from a 15,000-subway worker cohort. Individual annual external exposure to PM10 (ePM10) was estimated using a company-specific job-exposure-matrix based on PM10 measurements conducted between 2004 and 2019 in the Parisian subway network. Mean annual inhaled PM10 exposure (iPM10) was modeled as function of ePM10 exposure, inhalation rate, and filtration efficiency of the respiratory protection used. COPD diagnosis was performed in March-May 2021 based on post-bronchodilator spirometry. The relationship between iPM10 and outcomes was assessed using logistic and linear regression models, adjusted for exposure duration and potential confounders. Amongst 254 participants with complete data, 17 were diagnosed as COPD. The mean employment duration was 23.2 ± 7.3years, with annual mean ePM10 of 71.8 ± 33.7 μg/m3 and iPM10 of 0.59 ± 0.27 μg/shift, respectively. A positive but statistically non-significant association was found for COPD prevalence with iPM10 (OR = 1.034, 95%-CI = 0.781; 1.369, per 100 ng/shift) and ePM10 (OR = 1.029, 95%-CI = 0.879; 1.207, per 10 μg/m3). No decline in lung function was associated with PM10 exposure. However, forced expiratory volume during the first second and forced vital capacity lower than normal were positively associated with exposure duration (OR = 1.125, 95%-CI = 1.004; 1.260 and OR = 1.171, 95%-CI = 0.989; 1.386 per year, respectively). Current smoking was strongly associated with COPD prevalence (OR = 6.85, 95%-CI = 1.87; 25.10) and most lung function parameters. This is the first study assessing the relationship between long-term exposure to subway PM10 and respiratory health in subway workers. The risk estimates related with subway PM10 exposure are compatible with those related to outdoor PM10 exposure in the large recent studies. Large cohorts of subway workers are necessary to confirm these findings.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| | - Pascal Wild
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Thomas Charreau
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Romain Freund
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Antonio Toto
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Jacques Pralong
- Faculty of Medicine, University of Geneva, Switzerland; SwissMedPro Health Services, Switzerland; Hôpital de la Tour, Geneva, Switzerland
| | | | | | | | - Guillaume Suarez
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| |
Collapse
|
4
|
Wang J, Xue R, Li C, Hu L, Li Q, Sun Y, Chen Y, Yuan W, Xia Q, Hu L, Wei Y, He M. Inhalation of subway fine particles induces murine extrapulmonary organs damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163181. [PMID: 37001660 DOI: 10.1016/j.scitotenv.2023.163181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Because of its speed and convenience, the subway has become the first choice for travel by many residents. However, the concentration of fine particles (PM2.5) in the air of a subway platform is higher than that of the ground level or carriage. Moreover, the composition and source of subway PM2.5 differ from those of atmospheric PM2.5. Currently, there is insufficient research on the impact of subway PM2.5 on health. In this study, intratracheally subway PM2.5-inoculated wild type (WT) and Rag1-/- mice, lacking functional T cells and B cells, were used to investigate the potential of subway PM2.5 exposure to cause extrapulmonary organ injuries. Subway PM2.5 increased inflammatory cells infiltration, tumor necrosis factor (TNF)-α, interleukin (IL)-6, as well as monocyte chemotactic protein (MCP)-1 gene and protein expression, cyclooxygenase-2 (COX-2) induction, and Toll-like receptor (TLR)-2, TLR4, myeloid differentiation factor 88 (MyD88), and nuclear factor (NF)-κB levels in liver, kidney, spleen, and thymus in a dose-dependent fashion in WT mice. Subway PM2.5 exposure resulted in slight macrophage (F4/80+) and neutrophil (Ly6G+) infiltration and caused no increase in the protein levels of TNF-α, IL-6, MCP-1, or COX-2 in the liver, kidneys, spleen, and thymus of Rag1-/- mice. These results demonstrate a dose-response manner between subway PM2.5 exposure and inflammatory injuries of extrapulmonary organs, which could be related to the TLR/MyD88/NF-κB signaling pathway. Subway PM2.5-induced extrapulmonary organ damage was dependent on T cells and B cells; this finding may provide insight for research on the mechanisms responsible for the health hazards posed by air pollution.
Collapse
Affiliation(s)
- Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qidian Li
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Chang L, Chong WT, Wang X, Pei F, Zhang X, Wang T, Wang C, Pan S. Recent progress in research on PM 2.5 in subways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:642-663. [PMID: 33889885 DOI: 10.1039/d1em00002k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nowadays, PM2.5 concentrations greatly influence indoor air quality in subways and threaten passenger and staff health because PM2.5 not only contains heavy metal elements, but can also carry toxic and harmful substances due to its small size and large specific surface area. Exploring the physicochemical and distribution characteristics of PM2.5 in subways is necessary to limit its concentration and remove it. At present, there are numerous studies on PM2.5 in subways around the world, yet, there is no comprehensive and well-organized review available on this topic. This paper reviews the nearly twenty years of research and over 130 published studies on PM2.5 in subway stations, including aspects such as concentration levels and their influencing factors, physicochemical properties, sources, impacts on health, and mitigation measures. Although many determinants of station PM2.5 concentration have been reported in current studies, e.g., the season, outdoor environment, and station depth, their relative influence is uncertain. The sources of subway PM2.5 include those from the exterior (e.g., road traffic and fuel oil) and the interior (e.g., steel wheels and rails and metallic brake pads), but the proportion of these sources is also unknown. Control strategies of PM mainly include adequate ventilation and filtration, but these measures are often inefficient in removing PM2.5. The impacts of PM2.5 from subways on human health are still poorly understood. Further research should focus on long-term data collection, influencing factors, the mechanism of health impacts, and PM2.5 standards or regulations.
Collapse
Affiliation(s)
- Li Chang
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Wen Tong Chong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Xinru Wang
- College of Emergency Technology and Management, North China Institute of Science and Technology, Hebei 065201, China
| | - Fei Pei
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xingxing Zhang
- Department of Energy, Forest and Built Environment, Dalarna University, Falun, 79188, Sweden
| | - Tongzhao Wang
- Rizhao Fire and Rescue Station, Rizhao, 276800, China
| | - Chunqing Wang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Jilin, 130118, China
| | - Song Pan
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
6
|
Smith JD, Barratt BM, Fuller GW, Kelly FJ, Loxham M, Nicolosi E, Priestman M, Tremper AH, Green DC. PM 2.5 on the London Underground. ENVIRONMENT INTERNATIONAL 2020; 134:105188. [PMID: 31787325 PMCID: PMC6902242 DOI: 10.1016/j.envint.2019.105188] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Despite the London Underground (LU) handling on average 2.8 million passenger journeys per day, the characteristics and potential health effects of the elevated concentrations of metal-rich PM2.5 found in this subway system are not well understood. METHODS Spatial monitoring campaigns were carried out to characterise the health-relevant chemical and physical properties of PM2.5 across the LU network, including diurnal and day-to-day variability and spatial distribution (above ground, depth below ground and subway line). Population-weighted station PM2.5 rankings were produced to understand the relative importance of concentrations at different stations and on different lines. RESULTS The PM2.5 mass in the LU (mean 88 μg m-3, median 28 μg m-3) was greater than at ambient background locations (mean 19 μg m-3, median 14 μg m-3) and roadside environments in central London (mean 22 μg m-3, median 14 μg m-3). Concentrations varied between lines and locations, with the deepest and shallowest submerged lines being the District (median 4 μg m-3) and Victoria (median 361 μg m-3 but up to 885 μg m-3). Broadly in agreement with other subway systems around the world, sampled LU PM2.5 comprised 47% iron oxide, 7% elemental carbon, 11% organic carbon, and 14% metallic and mineral oxides. Although a relationship between line depth and air quality inside the tube trains was evident, there were clear influences relating to the distance from cleaner outside air and the exchange with cabin air when the doors open. The passenger population-weighted exposure analysis demonstrated a method to identify stations that should be prioritised for remediation to improve air quality. CONCLUSION PM2.5 concentrations in the LU are many times higher than in other London transport Environments. Failure to include this environment in epidemiological studies of the relationship between PM2.5 and health in London is therefore likely to lead to a large exposure misclassification error. Given the significant contribution of underground PM2.5 to daily exposure, and the differences in composition compared to urban PM2.5, there is a clear need for well-designed studies to better understand the health effects of underground exposure.
Collapse
Affiliation(s)
- J D Smith
- MRC Centre for Environment & Health, King's College London, UK
| | - B M Barratt
- MRC Centre for Environment & Health, King's College London, UK; NIHR Health Impact of Environmental Hazards HPRU, King's College London, UK
| | - G W Fuller
- MRC Centre for Environment & Health, King's College London, UK
| | - F J Kelly
- MRC Centre for Environment & Health, King's College London, UK; NIHR Health Impact of Environmental Hazards HPRU, King's College London, UK
| | - M Loxham
- Faculty of Medicine, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, Southampton, UK
| | - E Nicolosi
- MRC Centre for Environment & Health, King's College London, UK
| | - M Priestman
- MRC Centre for Environment & Health, King's College London, UK
| | - A H Tremper
- MRC Centre for Environment & Health, King's College London, UK
| | - D C Green
- MRC Centre for Environment & Health, King's College London, UK.
| |
Collapse
|
7
|
Cooper DM, Loxham M. Particulate matter and the airway epithelium: the special case of the underground? Eur Respir Rev 2019; 28:28/153/190066. [PMID: 31554704 PMCID: PMC9488653 DOI: 10.1183/16000617.0066-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Airborne particulate matter (PM) is a leading driver of premature mortality and cardiopulmonary morbidity, associated with exacerbations of asthma and chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung cancer. The airway epithelium, as the principal site of PM deposition, is critical to the effects of, and initial response to, PM. A key mechanism by which PM exerts its effects is the generation of reactive oxygen species (ROS), inducing antioxidant and inflammatory responses in exposed epithelial cells. However, much of what is known about the effects of PM is based on research using particulates from urban air. PM from underground railways is compositionally highly distinct from urban PM, being rich in metals associated with wheel, rail and brake wear and electrical arcing and component wear, which endows underground PM with potent ROS-generating capacity. In addition, underground PM appears to be more inflammogenic than urban PM in epithelial cells, but there is a lack of research into effects on exposed individuals, especially those with underlying health conditions. This review summarises current knowledge about the effects of PM on the airway epithelium, how the effects of underground PM may be different to urban PM and the potential health consequences and mitigation strategies for commuters and workers in underground railways. Airborne particulate matter in underground railways is much more concentrated and metal-rich than that found above ground. The evidence surrounding what this might mean for effects on the airways of exposed commuters and staff is limited and inconsistent.http://bit.ly/2KtcorT
Collapse
Affiliation(s)
- Dawn M Cooper
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.,Southampton Marine and Maritime Institute, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Plato N, Bigert C, Larsson BM, Alderling M, Svartengren M, Gustavsson P. Exposure to Particles and Nitrogen Dioxide Among Workers in the Stockholm Underground Train System. Saf Health Work 2019; 10:377-383. [PMID: 31497336 PMCID: PMC6717932 DOI: 10.1016/j.shaw.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 11/03/2022] Open
Abstract
Objectives Exposure to fine particles in urban air has been associated with a number of negative health effects. High levels of fine particles have been detected at underground stations in big cities. We investigated the exposure conditions in four occupational groups in the Stockholm underground train system to identify high-exposed groups and study variations in exposure. Methods PM1 and PM2.5 were measured during three full work shifts on 44 underground workers. Fluctuations in exposure were monitored by a real-time particle monitoring instrument, pDR, DataRAM. Qualitative analysis of particle content was performed using inductively coupled plasma mass spectrometry. Nitrogen dioxide was measured using passive monitors. Results For all underground workers, the geometric mean (GM) of PM1 was 18 μg/m3 and of PM2.5 was 37 μg/m3. The particle exposure was highest for cleaners/platform workers, and the GM of PM1 was 31.6 μg/m3 [geometric standard deviation (GSD), 1.6] and of PM2.5 was 76.5 μg/m3 (GSD, 1.3); the particle exposure was lowest for ticket sellers, and the GM of PM1 was 4.9 μg/m3 (GSD, 2.1) and of PM2.5 was 9.3 μg/m3 (GSD, 1.5). The PM1 and PM2.5 levels were five times higher in the underground system than at the street level, and the particles in the underground had high iron content. The train driver's nitrogen dioxide exposure level was 64.1 μg/m3 (GSD, 1.5). Conclusions Cleaners and other platform workers were statistically significantly more exposed to particles than train drivers or ticket sellers. Particle concentrations (PM2.5) in the Stockholm underground system were within the same range as in the New York underground system but were much lower than in several older underground systems around the world.
Collapse
Affiliation(s)
- N Plato
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Bigert
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Sweden
| | - B-M Larsson
- The Swedish Work Environment Authority, Stockholm, Sweden
| | - M Alderling
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Sweden
| | - M Svartengren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - P Gustavsson
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Sweden
| |
Collapse
|
9
|
Zhang Y, Chu M, Zhang J, Duan J, Hu D, Zhang W, Yang X, Jia X, Deng F, Sun Z. Urine metabolites associated with cardiovascular effects from exposure of size-fractioned particulate matter in a subway environment: A randomized crossover study. ENVIRONMENT INTERNATIONAL 2019; 130:104920. [PMID: 31228782 DOI: 10.1016/j.envint.2019.104920] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) is closely associated with morbidity and mortality from cardiovascular disease. Urine metabolites can be used as a non-invasive means to explore biological mechanisms for such associations, yet has not been performed in relation to different sizes of PM. In this randomized crossover study, we used metabolomics approach to explore the urine biomarkers linked with cardiovascular effects after PM exposure in a subway environment. METHODS AND RESULTS Thirty-nine subjects were exposed to PM for 4 h in subway system, with either a respirator intervention phase (RIP) with facemask and no intervention phase (NIP) in random order with a 2-week washout period. Electrocardiogram (ECG) parameters and ambulatory blood pressure (BP) were monitored during the whole riding period and urine samples were collected for metabolomics analysis. After exposure to PM for 4 h in subway system, 4 urine metabolites in male and 7 urine metabolites in female were screened out by UPLC/Q-TOF MS/MS-based metabolomics approach. Cardiovascular parameters (HRV and HR) predominantly decreased in response to all size-fractions of PM and were more sensitive in response to different size-fractioned PM in males than females. Besides LF/HF, most of the HRV indices decrease induced by the increase of all size-fractioned PM while PM1.0 was found as the most influential one on indicators of cardiovascular effects and urine metabolites both genders. Prolyl-arginine and 8-OHdG were found to have opposing role regards to HRV and HR in male. CONCLUSION Our data indicated that short-term exposure to PM in a subway environment may increase the risk of cardiovascular disease as well as affect urine metabolites in a size dependent manner (besides PM0.5), and male were more prone to trigger the cardiovascular events than female after exposure to PM; whereas wearing facemask could effectively reduce the adverse effects caused by PM.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter air pollution in underground railway systems - a critical review of the evidence. Part Fibre Toxicol 2019; 16:12. [PMID: 30841934 PMCID: PMC6404319 DOI: 10.1186/s12989-019-0296-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exposure to ambient airborne particulate matter is a major risk factor for mortality and morbidity, associated with asthma, lung cancer, heart disease, myocardial infarction, and stroke, and more recently type 2 diabetes, dementia and loss of cognitive function. Less is understood about differential effects of particulate matter from different sources. Underground railways are used by millions of people on a daily basis in many cities. Poor air exchange with the outside environment means that underground railways often have an unusually high concentration of airborne particulate matter, while a high degree of railway-associated mechanical activity produces particulate matter which is physicochemically highly distinct from ambient particulate matter. The implications of this for the health of exposed commuters and employees is unclear. MAIN BODY A literature search found 27 publications directly assessing the potential health effects of underground particulate matter, including in vivo exposure studies, in vitro toxicology studies, and studies of particulate matter which might be similar to that found in underground railways. The methodology, findings, and conclusions of these studies were reviewed in depth, along with further publications directly relevant to the initial search results. In vitro studies suggest that underground particulate matter may be more toxic than exposure to ambient/urban particulate matter, especially in terms of endpoints related to reactive oxygen species generation and oxidative stress. This appears to be predominantly a result of the metal-rich nature of underground particulate matter, which is suggestive of increased health risks. However, while there are measureable effects on a variety of endpoints following exposure in vivo, there is a lack of evidence for these effects being clinically significant as may be implied by the in vitro evidence. CONCLUSION There is little direct evidence that underground railway particulate matter exposure is more harmful than ambient particulate matter exposure. This may be due to disparities between in vivo exposures and in vitro models, and differences in exposure doses, as well as statistical under powering of in vivo studies of chronic exposure. Future research should focus on outcomes of chronic in vivo exposure, as well as further work to understand mechanisms and potential biomarkers of exposure.
Collapse
Affiliation(s)
- Matthew Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 888, Level F, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK. .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Southampton Marine and Maritime Institute, University of Southampton, Southampton, UK.
| | - Mark J Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
11
|
Zheng HL, Deng WJ, Cheng Y, Guo W. Characteristics of PM 2.5, CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:739-750. [PMID: 27325017 DOI: 10.1007/s10653-016-9844-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7-9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.
Collapse
Affiliation(s)
- Hai-Long Zheng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China.
| | - Yan Cheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wei Guo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Bisig C, Roth M, Müller L, Comte P, Heeb N, Mayer A, Czerwinski J, Petri-Fink A, Rothen-Rutishauser B. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. ENVIRONMENTAL RESEARCH 2016; 151:789-796. [PMID: 27670152 DOI: 10.1016/j.envres.2016.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×102 #/cm3 (E0), 1×105 #/cm3 (E10), 3×103 #/cm3 (E85), and 2.8×106 #/cm3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1 (IDO-1), transcription factor NFE2-related factor 2 (NFE2L2), and NAD(P)H dehydrogenase [quinone] 1 (NQO1). Finally, no DNA damage was observed with the OxyDNA assay. On the other hand, cell death, oxidative stress, as well as an increase in pro-inflammatory cytokines was observed for cells exposed to diesel exhaust, confirming the results of other studies and the applicability of our exposure system. In conclusion, the tested exhausts from a flex-fuel gasoline vehicle using different ethanol-gasoline blends did not induce adverse cell responses in this acute exposure. So far ethanol-gasoline blends can promptly be used, though further studies, e.g. chronic and in vivo studies, are needed.
Collapse
Affiliation(s)
- Christoph Bisig
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michèle Roth
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4031 Basel, Switzerland
| | - Loretta Müller
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4031 Basel, Switzerland
| | - Pierre Comte
- Bern University for Applied Sciences (UASB), Gwerdtstrasse 25, 2560 Nidau, Switzerland
| | - Norbert Heeb
- Swiss Federal Laboratories for Materials Testing and Research (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Andreas Mayer
- Technik Thermischer Maschinen (TTM), Fohrhölzlistrasse 14B, 5443 Niederrohrdorf, Switzerland
| | - Jan Czerwinski
- Bern University for Applied Sciences (UASB), Gwerdtstrasse 25, 2560 Nidau, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
13
|
Scarpa MC, Kulkarni N, Maestrelli P. The role of non-invasive biomarkers in detecting acute respiratory effects of traffic-related air pollution. Clin Exp Allergy 2015; 44:1100-18. [PMID: 25040251 DOI: 10.1111/cea.12373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of non-invasive methods in the investigation of acute effects of traffic-related air pollution is not clearly established. We evaluated the usefulness of non-invasive biomarkers in detecting acute air pollution effects according to the age of participants, the disease status, their sensitivity compared with lung function tests and their specificity for a type of pollutant. Search terms lead to 535 titles, among them 128 had potentially relevant abstracts. Sixtynine full papers were reviewed, while 59 articles were excluded as they did not meet the selection criteria. Methods used to assess short-term effects of air pollution included analysis of nasal lavage (NAL) for the upper airways, and induced sputum (IS), exhaled breath condensate (EBC) and exhaled nitric oxide (FeNO) for central and lower airways. There is strong evidence that FeNO evaluation is useful independently from subject age, while IS analysis is suitable almost for adults. Biomarker changes are generally observed upon pollutant exposure irrespective of the disease status of the participants. None of the biomarkers identified are specific for a type of pollutant exposure. Based on experimental exposure studies, there is moderate evidence that IS analysis is more sensitive than lung function tests, whereas this is not the case for biomarkers obtained by NAL or EBC. Cells and some cytokines (IL-6, IL-8 and myeloperoxidase) have been measured both in the upper respiratory tract (NAL) and in the lower airways (IS). Overall, the response to traffic exposure seems different in the two compartments. In conclusion, this survey of current literature displays the complexity of this research field, highlights the significance of short-term studies on traffic pollution and gives important tips when planning studies to detect acute respiratory effects of air pollution in a non-invasive way.
Collapse
Affiliation(s)
- M C Scarpa
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
14
|
Loxham M, Morgan-Walsh RJ, Cooper MJ, Blume C, Swindle EJ, Dennison PW, Howarth PH, Cassee FR, Teagle DAH, Palmer MR, Davies DE. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station. Toxicol Sci 2015; 145:98-107. [PMID: 25673499 PMCID: PMC4408962 DOI: 10.1093/toxsci/kfv034] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.
Collapse
Affiliation(s)
- Matthew Loxham
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Rebecca J Morgan-Walsh
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Matthew J Cooper
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Cornelia Blume
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Emily J Swindle
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Patrick W Dennison
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Peter H Howarth
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Flemming R Cassee
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Damon A H Teagle
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Martin R Palmer
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands
| | - Donna E Davies
- *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Centre for Sustainability, Environment, and Health, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands and Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508TC Utrecht, The Netherlands *Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, United Kingdom, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, United Kingdom, Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, United K
| |
Collapse
|
15
|
Steenhof M, Janssen NAH, Strak M, Hoek G, Gosens I, Mudway IS, Kelly FJ, Harrison RM, Pieters RHH, Cassee FR, Brunekreef B. Air pollution exposure affects circulating white blood cell counts in healthy subjects: the role of particle composition, oxidative potential and gaseous pollutants - the RAPTES project. Inhal Toxicol 2014; 26:141-65. [PMID: 24517839 DOI: 10.3109/08958378.2013.861884] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies have linked air pollution exposure to cardiovascular health effects, but it is not clear which components drive these effects. We examined the associations between air pollution exposure and circulating white blood cell (WBC) counts in humans. To investigate independent contributions of particulate matter (PM) characteristics, we exposed 31 healthy volunteers at five locations with high contrast and reduced correlations amongst pollutant components: two traffic sites, an underground train station, a farm and an urban background site. Each volunteer visited at least three sites and was exposed for 5 h with intermittent exercise. Exposure measurements on-site included PM mass and number concentration, oxidative potential (OP), elemental- and organic carbon, metals, O3 and NO2. Total and differential WBC counts were performed on blood collected before and 2 and 18 h post-exposure (PE). Changes in total WBC counts (2 and 18 h PE), number of neutrophils (2 h PE) and monocytes (18 h PE) were positively associated with PM characteristics that were high at the underground site. These time-dependent changes reflect an inflammatory response, but the characteristic driving this effect could not be isolated. Negative associations were observed for NO2 with lymphocytes and eosinophils. These associations were robust and did not change after adjustment for a large suite of PM characteristics, suggesting an independent effect of NO2. We conclude that short-term air pollution exposure at real-world locations can induce changes in WBC counts in healthy subjects. Future studies should indicate if air pollution exposure-induced changes in blood cell counts results in adverse cardiovascular effects in susceptible individuals.
Collapse
Affiliation(s)
- Maaike Steenhof
- Division of Toxicology and Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University , Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Levänen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M, Grunewald J, Gabrielsson S, Eklund A, Larsson BM, Woodruff PG, Erle DJ, Wheelock ÅM. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 2013; 131:894-903. [PMID: 23333113 PMCID: PMC4013392 DOI: 10.1016/j.jaci.2012.11.039] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma is characterized by increased airway narrowing in response to nonspecific stimuli. The disorder is influenced by both environmental and genetic factors. Exosomes are nanosized vesicles of endosomal origin released from inflammatory and epithelial cells that have been implicated in asthma. In this study we characterized the microRNA (miRNA) content of exosomes in healthy control subjects and patients with mild intermittent asthma both at unprovoked baseline and in response to environmental challenge. OBJECTIVE To investigate alterations in bronchoalveolar lavage fluid (BALF) exosomal miRNA profiles due to asthma, and following subway air exposure. METHODS Exosomes were isolated from BALF from healthy control subjects (n = 10) and patients with mild intermittent asthma (n = 10) after subway and control exposures. Exosomal RNA was analyzed by using microarrays containing probes for 894 human miRNAs, and selected findings were validated with quantitative RT-PCR. Results were analyzed by using multivariate modeling. RESULTS The presence of miRNAs was confirmed in exosomes from BALF of both asthmatic patients and healthy control subjects. Significant differences in BALF exosomal miRNA was detected for 24 miRNAs with a subset of 16 miRNAs, including members of the let-7 and miRNA-200 families, providing robust classification of patients with mild nonsymptomatic asthma from healthy subjects with 72% cross-validated predictive power (Q(2) = 0.72). In contrast, subway exposure did not cause any significant alterations in miRNA profiles. CONCLUSION These studies demonstrate substantial differences in exosomal miRNA profiles between healthy subjects and patients with unprovoked, mild, stable asthma. These changes might be important in the inflammatory response leading to bronchial hyperresponsiveness and asthma.
Collapse
Affiliation(s)
- Bettina Levänen
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Nirav R. Bhakta
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | | | | | - Stefanie Hiltbrunner
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | | | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Magnus Svartengren
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| | - Britt-Marie Larsson
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
| | - David J. Erle
- Division of Pulmonary and Critical Care, Department of Medicine and Cardiovascular Research Institute, University of California–San Francisco
- Lung Biology Center, University of California–San Francisco
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine, and the Center for Molecular Medicine, Karolinska Institutet, Stockholm
| |
Collapse
|
17
|
Lundström SL, Levänen B, Nording M, Klepczynska-Nyström A, Sköld M, Haeggström JZ, Grunewald J, Svartengren M, Hammock BD, Larsson BM, Eklund A, Wheelock ÅM, Wheelock CE. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS One 2011; 6:e23864. [PMID: 21897859 PMCID: PMC3163588 DOI: 10.1371/journal.pone.0023864] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/26/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. OBJECTIVES This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. METHODS Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. RESULTS Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. CONCLUSIONS Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.
Collapse
Affiliation(s)
- Susanna L. Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Levänen
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Malin Nording
- Department of Entomology and Cancer Research Center, University of California Davis, Davis, California, United States of America
- Department of Public Health and Clinical Medicine, Respiratory Medicine and Allergy, Umeå University, Umeå, Sweden
| | - Anna Klepczynska-Nyström
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Sköld
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Svartengren
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Britt-Marie Larsson
- Division of Occupational and Environmental Medicine, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M. Wheelock
- Division of Respiratory Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CEW); (AMW)
| | - Craig E. Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CEW); (AMW)
| |
Collapse
|