1
|
Pereira FL, de Oliveira UA, de Andrade MD, Figueiredo FC, Santos BR, Carvalho M, Barbosa S. Biosolid as an alternative source of nutrients in chrysanthemum cultivation. Sci Rep 2024; 14:20539. [PMID: 39232009 PMCID: PMC11375063 DOI: 10.1038/s41598-024-66040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/26/2024] [Indexed: 09/06/2024] Open
Abstract
The objective was to evaluate the biosolids as an alternative source of nutrients in the production of chrysanthemums by adding increasing doses to the cultivation substrate. The experimental design was in blocks with 6 treatments and 5 replications. The treatments consisted of the mixture (commercial substrate + biosolid) at the concentrations: 20%, 40%, 60% and 80% of biosolid + two controls (100% of biosolid and 100% of substrate). The experiment was conducted in a greenhouse for 90 days. Physiological parameters, number of flower buds, dry biomass and nutrient accumulation were evaluated. Physiological parameters were evaluated using the Infrared Gas Analyzer. The number of flower buds was evaluated by counting. Biomass was determined after drying the structures and then calculated the accumulation of nutrients. A total of 90 plants were evaluated. Concentrations of up to 40% of biosolid promoted a greater number of flower buds, dry biomass and nutrient accumulation. Concentrations above 60% lower number of buds, biomass increment and nutrient accumulation. It is concluded that the biosolid has potential as an alternative source of nutrients in the cultivation of chrysanthemums, indicating concentrations of up to 40% and the nutrient content of each batch generated must be verified.
Collapse
Affiliation(s)
- Frederico Luiz Pereira
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil.
| | | | - Márcio Donizetti de Andrade
- Laboratório de Solos e Tecido Vegetal, Cooperativa Regional de Cafeicultores em Guaxupé, Guaxupé, MG, 37800-000, Brazil
| | - Felipe Campos Figueiredo
- Laboratório de Biotecnologia e Cultura de Tecidos, Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - Campus Muzambinho, Muzambinho, MG, 37890-000, Brazil
| | - Breno Régis Santos
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil
| | - Marília Carvalho
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil
| | - Sandro Barbosa
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, MG, 37130-000, Brazil
| |
Collapse
|
2
|
Sadeq AM, Homod RZ, Hussein AK, Togun H, Mahmoodi A, Isleem HF, Patil AR, Moghaddam AH. Hydrogen energy systems: Technologies, trends, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173622. [PMID: 38821273 DOI: 10.1016/j.scitotenv.2024.173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
This review critically examines hydrogen energy systems, highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg, providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential, the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently, electrolysis efficiencies range between 60 % and 80 %, with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally, hydrogen storage poses its own challenges, requiring conditions of up to 700 bar or temperatures below -253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges, supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.
Collapse
Affiliation(s)
- Abdellatif M Sadeq
- Qatar University, Mechanical and Industrial Engineering Department, Doha, Qatar.
| | - Raad Z Homod
- Department of Oil and Gas Engineering, Basrah University for Oil and Gas, Basra, Iraq
| | - Ahmed Kadhim Hussein
- College of Engineering, Mechanical Engineering Department, University of Babylon, Babylon City, Hilla, Iraq
| | - Hussein Togun
- Department of Mechanical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Armin Mahmoodi
- Department of Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada.
| | - Haytham F Isleem
- School of Applied Technologies, Qujing Normal University, Qujing 655011, Yunnan, China.
| | - Amit R Patil
- Mechanical Engineering Department, M. E. S. Wadia College of Engineering, Pune, MH, India
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
4
|
Braine MF, Kearnes M, Khan SJ. Quality and risk management frameworks for biosolids: An assessment of current international practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169953. [PMID: 38215849 DOI: 10.1016/j.scitotenv.2024.169953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Biosolids, a product of wastewater treatment, provide a valuable resource, but to optimize the use of this resource it is necessary to manage risks posed to public health and the environment. Key requirements include identifying contaminant sources and providing barriers to ensure containment and treatment while maintaining the viability and value of biosolids products. Responsibility for managing biosolids is the remit of many stakeholders but primarily it rests with private and public wastewater facilities. The global variabilities in the way biosolids resources are acknowledged, applied, and managed are substantial. For example, some countries are increasing incineration because of their ability to remove contaminants while others have experienced a proportional decrease in incineration dependent on industrial resources or regarding resource recovery costs and needs. Some jurisdictions focus on energy recovery and others on land application. A risk management framework is a tool that may provide a suitable holistic approach to biosolids management. With this focus, current instruments in practice globally to manage biosolids were assessed for the degree to which they have adopted a risk management framework. To form a basis for this assessment a set of criteria was established by concept mapping several internationally recognized standards. Guidelines for a range of developed and developing countries were then assessed against these criteria. That process enabled the identification of which current practices were holistic in terms of applying biosolids risk management principles from production to end-use. Through this process, risk management gaps and vulnerabilities were identified. The results reveal that the incorporation of risk standards into risk management frameworks around the world is variable for the presence of risk criteria and the scale of detail provided. Contaminant concentrations need perspective within the changing risk landscape for stakeholders and the environment while jointly the opportunities and contaminant challenges require solutions that balance risks.
Collapse
Affiliation(s)
- Marilyn F Braine
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Matthew Kearnes
- School of Humanities & Language, University of New South Wales, NSW 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia; School of Civil Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Dobre Batista LG, Lorenzo Montero L, Shinzato MC. Millipedes and earthworms: a comparison of their efficiency and the quality of the resulting products. ENVIRONMENTAL TECHNOLOGY 2024; 45:569-580. [PMID: 35980358 DOI: 10.1080/09593330.2022.2114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACTMillicomposting (MIL, with millipedes), vermicomposting (VER, with earthworms) and composting without invertebrates (CNT, control) were compared for the first time in a replicated controlled experiment to evaluate their efficiency and the quality of their products. Vegetal waste was degraded in small closed digesters to emulate household-scale composting. Temperature profiles were similar in the three composting types. Ninety-two days were enough to complete composting and obtain well-stabilized products (humus with C/N< 20; pH from 7 to 7.8). The mean final volume loss was about 8% higher in VER than MIL and CNT (P < 0.01) and it stabilized between the 32nd and 67th days (51.4% in VER, 43% MIL and 44% in CNT). Both invertebrates promoted gains in humus Ca content (about 34.5% higher compared to CNT), whereas the highest K and Mg contents were observed in VER humus. pH, P2O5, and S contents were also higher in VER humus than in CNT (all P < 0.05). The leachate volumes, electrical conductivity and Na+ and PO43- contents were similar (P > 0.05), while pH and contents of K+ and NH4+ were higher and NO3- was lower in VER than in MIL (all P < 0.01). This resulted in higher maturity degrees in MIL than VER (NH4+/NO3- = 0.01 and 0.93, respectively). Although all three composting types were efficient in producing mature high-quality organic fertilizers, this study showed that the addition of invertebrates improved the composting efficiency and the quality of the final products.
Collapse
Affiliation(s)
- Lorena Gonzaga Dobre Batista
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo (ICAQF/UNIFESP), Diadema, Brazil
| | - Leda Lorenzo Montero
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo (ICAQF/UNIFESP), Diadema, Brazil
| | - Mirian Chieko Shinzato
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo (ICAQF/UNIFESP), Diadema, Brazil
| |
Collapse
|
6
|
Weldon S, Rivier PA, Joner EJ, Coutris C, Budai A. Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost. ENVIRONMENTAL TECHNOLOGY 2023; 44:4261-4271. [PMID: 35727051 DOI: 10.1080/09593330.2022.2089057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative N2O emission by 65-70%, but had no significant effect on CO2 and CH4 emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants.
Collapse
Affiliation(s)
- Simon Weldon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Pierre-Adrien Rivier
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Erik J Joner
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Claire Coutris
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Alice Budai
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, Ås, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| |
Collapse
|
7
|
Li W, Chen J, Pang L, Lu Y, Yang P. Dosage effect of micron zero-valent iron during thermophilic anaerobic digestion of waste activated sludge: Performance and functional community. ENVIRONMENTAL RESEARCH 2023; 237:116997. [PMID: 37634689 DOI: 10.1016/j.envres.2023.116997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
This work examined the performance and microbial traits in a thermophilic anaerobic digestion (TAD) of waste activated sludge that was impacted by micron zero valent iron (mZVI). Results showed that methane production was promoted by 0.8, 11.9, and 12.0 times, respectively, when mZVI was at dosages of 25, 100, and 250 mg/g total solid (TS). Also, the consumption of volatile fatty acids was increased by mZVI at higher dosages (100 and 250 mg/g TS). Furthermore, 16S rRNA sequencing demonstrated that microbial community stabilized after day 18 regardless of the dosage of mZVI, and that different dosages of mZVI induced different shifts in the functional community of the archaea rather than the bacteria involved in TAD. As a result, mZVI at 100 mg/g TS could increase the relative abundance of archaeal genera Methanothermobacter the most, increasing by 22.8% at the end of TAD compared to CK. Besides, redundancy analysis revealed that the physicochemical properties explained 79.65% and 89.10% of the variations of bacterial and archaeal abundance, respectively. Also, the findings of the correlation analysis revealed that total dissolved iron, ferrous iron, pH, and ammonium nitrogen, may be the key divers of altering functional communities, particularly archaea. Moreover, mZVI at 100 and 250 mg/g TS boosted the metabolic pathways of environmental information processing (ABC transporters) in bacteria and carbon metabolism and methane metabolism for archaea, as well as relative abundances of enzymes and their activities involved in various methanogenic pathways. This study provides new perspectives on the application of mZVI in solid wastes treatments.
Collapse
Affiliation(s)
- Wenqian Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Jianglin Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| | - Yuanyuan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
8
|
Zhang M, Yang Y, Mou H, Pan A, Su X, Chen J, Lin H, Sun F. Enhanced methane yield in anaerobic digestion of waste activated sludge by combined pretreatment with fungal mash and free nitrous acid. BIORESOURCE TECHNOLOGY 2023; 385:129441. [PMID: 37399961 DOI: 10.1016/j.biortech.2023.129441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study explores a novel approach for enhancing anaerobic digestion of waste activated sludge (WAS) through the combined pretreatment of fungal mash and free nitrous acid (FNA). Aspergillus PAD-2, a fungal strain with superior hydrolase secretion, was isolated from WAS and cultivated in-situ on food waste to produce fungal mash. The solubilization of WAS by fungal mash achieved a high soluble chemical oxygen demand release rate of 548 mg L-1 h-1 within first 3 h. The combined pretreatment of fungal mash and FNA further improved the sludge solubilization by 2-fold and resulted in a doubled methane production rate of 416±11 mL CH4 g-1 volatile solids. The Gompertz model analysis revealed a higher maximum specific methane production rate and shortened lag time by the combined pretreatment. These results demonstrate that the combined fungal mash and FNA pretreatment offers a promising alternative for fast anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Min Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yuwei Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huaqian Mou
- Jinhua Water Treatment Co. Ltd., Jinhua 321017, China
| | - Aodong Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
9
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
10
|
Unuofin JO, Iwarere SA, Daramola MO. Embracing the future of circular bio-enabled economy: unveiling the prospects of microbial fuel cells in achieving true sustainable energy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90547-90573. [PMID: 37480542 PMCID: PMC10439864 DOI: 10.1007/s11356-023-28717-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
Sustainable development and energy security, highlighted by the United Nations Sustainable Development Goals (SDGs), necessitate the use of renewable and sustainable energy sources. However, upon careful evaluation of literature, we have discovered that many existing and emerging renewable energy systems (RESs) prioritize renewability over true sustainability. These systems not only suffer from performance inconsistencies and lack of scalability but also fall short in fully embodying the principles of sustainability and circular economy. To address this gap, we propose considering microbial fuel cells (MFCs) as a viable alternative and integral part of the renewable energy ecosystem. MFCs harness the omnipresence, abundance, and cost-effectiveness of their essential components, making them a promising candidate. Through our comprehensive analysis, we shed light on the limitations and advancements of this technology, which underscore the remarkable potential of MFCs to revolutionize our perception of clean, sustainable energy.
Collapse
Affiliation(s)
- John Onolame Unuofin
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Samuel Ayodele Iwarere
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Michael Olawale Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
11
|
Wirth R, Bagi Z, Shetty P, Szuhaj M, Cheung TTS, Kovács KL, Maróti G. Inter-kingdom interactions and stability of methanogens revealed by machine-learning guided multi-omics analysis of industrial-scale biogas plants. THE ISME JOURNAL 2023:10.1038/s41396-023-01448-3. [PMID: 37286740 DOI: 10.1038/s41396-023-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Multi-omics analysis is a powerful tool for the detection and study of inter-kingdom interactions, such as those between bacterial and archaeal members of complex biogas-producing microbial communities. In the present study, the microbiomes of three industrial-scale biogas digesters, each fed with different substrates, were analysed using a machine-learning guided genome-centric metagenomics framework complemented with metatranscriptome data. This data permitted us to elucidate the relationship between abundant core methanogenic communities and their syntrophic bacterial partners. In total, we detected 297 high-quality, non-redundant metagenome-assembled genomes (nrMAGs). Moreover, the assembled 16 S rRNA gene profiles of these nrMAGs showed that the phylum Firmicutes possessed the highest copy number, while the representatives of the archaeal domain had the lowest. Further investigation of the three anaerobic microbial communities showed characteristic alterations over time but remained specific to each industrial-scale biogas plant. The relative abundance of various microorganisms as revealed by metagenome data was independent from corresponding metatranscriptome activity data. Archaea showed considerably higher activity than was expected from their abundance. We detected 51 nrMAGs that were present in all three biogas plant microbiomes with different abundances. The core microbiome correlated with the main chemical fermentation parameters, and no individual parameter emerged as a predominant shaper of community composition. Various interspecies H2/electron transfer mechanisms were assigned to hydrogenotrophic methanogens in the biogas plants that ran on agricultural biomass and wastewater. Analysis of metatranscriptome data revealed that methanogenesis pathways were the most active of all main metabolic pathways.
Collapse
Affiliation(s)
- Roland Wirth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
- Faculty of Water Sciences, University of Public Service, Baja, Hungary.
| |
Collapse
|
12
|
Awasthi MK, Sar T, Gowd SC, Rajendran K, Kumar V, Sarsaiya S, Li Y, Sindhu R, Binod P, Zhang Z, Pandey A, Taherzadeh MJ. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. FUEL 2023; 342:127790. [DOI: 10.1016/j.fuel.2023.127790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
13
|
Shi M, Liu H, Zhang X, Li Y, Huang F, Zhao C, Guo J, Wu P, Liu H. A neglected contributor of thermal hydrolysis to sludge anaerobic digestion: Fulvic acids release and their influences. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118217. [PMID: 37229867 DOI: 10.1016/j.jenvman.2023.118217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Fulvic acids (FAs) belong to inert organic matters in sewage sludge and their influences are often overlooked during convectional anaerobic digestion (AD). Currently, thermal hydrolysis (TH) has been widely applied on sludge pretreatment before AD processes, which makes FAs undergo drastic evolutions and aggressive to sludge AD. Results in the present study indicated that FAs concentration in the liquid was elevated by over incredible 150 folds during sludge TH, from 3.4 mg/L in raw sludge to 590.0 mg/L in hydrolyzed sludge at 180 °C. Moreover, during sludge TH, the chemical structures of FAs, including aromatic condensation degree, elemental composition and functional group, also underwent significant changes, which enhanced FAs electron transfer capability, reduced their biodegradability and promoted their roles on sludge AD. Furthermore, fortunately, the evolutions of FAs were favorable to sludge AD in general. Methane production could be promoted by about 20% under FAs concentration of 0.6 g/L, and the FAs extracted from hydrolyzed sludge presented higher promotion performances than that of the raw FAs, in which 180 °C FAs were particularly conspicuous. Furthermore, FAs evolutions would present differential influences on each phase of sludge AD, promotional to acidogenesis and methanogenesis but inhibitory to hydrolysis. Pearson correlation analysis indicated FAs influences on sludge AD, particularly the hydrolysis phase, were not only related to their concentration, but also chemical structure. The findings of this study demonstrated that FAs influences should not be negligible anymore during sludge AD with TH pretreatment. Meanwhile, since FAs promotion on sludge AD was closely related to their concentration and chemical structure, it would be significant to take FAs evolutions as auxiliary indexes for the regulations of sludge TH.
Collapse
Affiliation(s)
- Mingze Shi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Hongbo Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu Province, PR China.
| | - Xuedong Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Yajie Li
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu Province, PR China
| | - Fang Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Cheng Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Jun Guo
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Ping Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu Province, PR China
| |
Collapse
|
14
|
Wang Y, Zhang C, Zhao Y, Wei Z, Li J, Song C, Chen X, Zhao M. Lignite drove phenol precursors to participate in the formation of humic acid during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162609. [PMID: 36871714 DOI: 10.1016/j.scitotenv.2023.162609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
This study set out to explore the impact of lignite on preserving organic matter and promoting the formation of humic acid (HA) during chicken manure composting. Composting test was carried out for control (CK), 5 % lignite addition treatment (L1), 10 % addition treatment (L2) and 15 % addition treatment (L3). The results demonstrated that lignite addition effectively reduced the loss of organic matter. The HA content of all lignite-added groups was higher than that of CK, and the highest was 45.44 %. L1 and L2 increased the richness of bacterial community. Network analysis showed higher diversity of HA-associated bacteria in L2 and L3 treatments. Structural equation models revealed that reducing sugar and amino acid contributed to the formation of HA during CK and L1 composting, while polyphenol contributed more to the HA formation during L2 and L3 composting. Furthermore, lignite addition also could promote the direct effect of microorganisms on HA formation. Therefore, the addition of lignite had practical significance to enhance compost quality.
Collapse
Affiliation(s)
- Yumeng Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meiyang Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Chowdhury SD, Hasim Suhaib K, Bhunia P, Surampalli RY. A Critical Review on the Vermicomposting of Organic Wastes as a Strategy in Circular Bioeconomy: Mechanism, Performance, and Future Perspectives. ENVIRONMENTAL TECHNOLOGY 2023:1-38. [PMID: 37192135 DOI: 10.1080/09593330.2023.2215458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AbstractTo meet the current need for sustainable development, vermicomposting (VC), a natural, eco-friendly, and cost-effective technology, can be a wise selection for the bioconversion of organic wastes into value-added by-products. However, no one has tried to establish the VC technology as an economically sustainable technology by exploring its linkage to circular bioeconomy. Even, no researcher has made any effort to explore the usability of the earthworms (EWs) as a protein supplement while assessing the economic perspectives of VC technology. Very few studies are available on the greenhouse gas (GHG) emission potential of VC technology. Still, the contribution of VC technology towards the non-carbon waste management policy is not yet explored. In the current review, a genuine effort has been made to inspect the contribution of VC technology towards the circular bioeconomy, along with evaluating its capability to bioremediate the organic wastes generated from domestic, industrial, and agricultural premises. The potential of the EWs as a protein source has also been explored to strengthen the contribution of VC technology towards the circular bioeconomy. Moreover, the linkage of the VC technology to the non-carbon waste management policy has been comprehensively demonstrated by highlighting its carbon sequestration and GHG emission potentials during the treatment of organic wastes. It has been observed that the cost of food production was reduced by 60--70% by replacing chemical fertilizers with vermicompost. The implication of the vermicompost significantly lessened the harvesting period of the crops, thereby helping the farmers attain higher profits by cultivating more crops in a single calendar year on the same plot. Furthermore, the vermicompost could hold the soil moisture for a long time, lessening the water demand up to 30-40%, which, in turn, reduced the frequency of irrigation. Also, the replacement of the chemical fertilizers with vermicompost resulted in a 23% increment in the grapes' yield, engendering an extra profit of up to 110000 rupees/ha. In Nepal, vermicompost has been produced at a cost of 15.68 rupees/kg, whereas it has been sold to the local market at a rate of 25 rupees/kg as organic manure, ensuring a net profit of 9.32 rupees/kg of vermicompost. EWs embraced 63% crude protein, 5-21% carbohydrates, 6-11% fat, 1476 kJ/100 g of metabolizable energy, and a wide range of minerals and vitamins. EWs also contained 4.11, 2.04, 4.43, 2.83, 1.47, and 6.26 g/kg (on protein basis) of leucine, isoleucine, tryptophan, arginine, histidine, and phenylalanine, respectively, enhancing the acceptability of the EW meal (EWM) as the protein supplement. The inclusion of 3 and 5% EWM in the diet of broiler pullets resulted in a 12.6 and 22.5% increase in their feed conversion ratio (FCR), respectively after one month. Similarly, when a 100% fish meal was substituted by 50% EWM and 50% fish meal, the FCR and growth rate of Parachanna obscura were increased substantially. The VC of maize crop residues mixed with pig manure, cow dung, and biochar, in the presence of Eisenia fetida EWs, yielded only 0.003-0.081, 0-0.17, and 130.40-189.10 g CO2-eq.kg-1 emissions of CO2, CH4, and N2O, respectively. Similarly, the VC of tomato stems and cow dung ensured 2.28 and 5.76 g CO2-eq.kg-1 CO2 emissions of CH4 and N2O, respectively. Additionally, the application of vermicompost at a rate of 5 t/ha improved the soil organic carbon proportion and aggravated carbon sequestration. The land application of vermicompost improved micro-aggregation and cut down the tillage, reducing GHG emissions and triggering carbon sequestration. The significant findings of the current review suggest that VC technology potentially contributes to the concept of circular bioeconomy, substantially negotiates potential GHG emissions, and complies with the non-carbon waste management policy, reinforcing its acceptability as an economically sound and environmentally benevolent organic waste bioremediation alternative.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - K Hasim Suhaib
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - Puspendu Bhunia
- Research Scholar, Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar-752 050, Odisha, India, ,
| | - Rao Y Surampalli
- CEO and President, Global Institute for Energy, Environment, and Sustainability, P.O. Box 14354 Lenexa, Kansas 66285, USA,
| |
Collapse
|
16
|
Sun X, Anoopkumar AN, Aneesh EM, Madhavan A, Binod P, Kuddus M, Pandey A, Sindhu R, Awasthi MK. Hormesis-tempting stressors driven by evolutionary factors for mitigating negative impacts instigated over extended exposure to chemical elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121246. [PMID: 36764380 DOI: 10.1016/j.envpol.2023.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The adaptive responses to moderate environmental challenges by the biological systems have usually been credited to hormesis. Since the hormetic biphasic dose-response illustrates a prominent pattern towards biological responsiveness, the studies concerning such aspects will get much more significance in risk assessment practices and toxicological evaluation research. From this point of view, the past few epochs have witnessed the extending recognition of the notion concerning hormesis. The extraction of its basic foundations of evolutionary perspectives-along with the probable underlying molecular and cellular mechanisms followed by the practical implications to enhance the quality of life. To get better and more effective output in this regard, the present article has evaluated the various observations of previous investigations. The intent of integrating the novel inferences concerning the hormesis-tempting stressors driven by predominant evolutionary factors for mitigating the adverse impacts that were prompted over frequent and continuous exposure to the various chemical elements. Such inferences can offer extensive insight into the implications concerning the risk assessment of hormesis.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691 505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
17
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
18
|
Mikucka W, Witońska I, Zielińska M, Bułkowska K, Binczarski M. Concept for the valorization of cereal processing waste: Recovery of phenolic acids by using waste-derived tetrahydrofurfuryl alcohol and biochar. CHEMOSPHERE 2023; 313:137457. [PMID: 36470358 DOI: 10.1016/j.chemosphere.2022.137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Valorization of agro-food waste by converting it into a renewable resource plays a crucial role in a bio-based circular economy. Therefore, this study was designed to evaluate the suitability of distillery stillage (DS), which comes from alcohol production from cereals, for producing value-added products that can be used synergistically. The main objective was to investigate the usefulness of two substances for the recovery of phenolic acids, which have antioxidant activity, from the liquid fraction of DS: namely, tetrahydrofurfuryl alcohol (THFA) as a solvent and biochar as an adsorbent, both produced from the solid fraction of cereal processing waste. The effect of THFA concentration (80 and 100%) on phenolic acid yield in ultrasound-assisted extraction was studied. The solubilization predictions of phenolic compounds by the Hansen solubility parameters were in accordance with the experimental results: the yield of phenolic acids in the extracts was highest (3.76 μg g-1 dry mass) with 80% THFA. Among the extracted phenolic acids, hydroxycinnamic acids predominated over hydroxybenzoic acids, which may affect the bioactive properties of the extracts and their future applications for industrial purposes. Phenolic acids from the extracts were adsorbed on 17-170 g biochar L-1 and desorbed into water at 40-60 °C. The phenolic acid recovery was highest (∼92%) when the biochar dose was 85 g L-1 and when desorption was performed at 50 °C. After adsorption/desorption, ∼95% of the antioxidant activity of the phenolic acids in the extracts was maintained. As biochar has a smaller specific surface area than commercial powdered activated carbon (PAC), the biochar dose should be about 5 times higher than an equivalent PAC dose for adsorption efficiency above 90%.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Izabela Witońska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bułkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Michał Binczarski
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
19
|
Kaur P, Khatri M, Singh G, Selvaraj M, Assiri MA, Lalthazuala Rokhum S, Kumar Arya S, Jones S, Greff B, Woong Chang S, Ravindran B, Awasthi MK. Xylopentose production from crop residue employing xylanase enzyme. BIORESOURCE TECHNOLOGY 2023; 370:128572. [PMID: 36603755 DOI: 10.1016/j.biortech.2022.128572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
To produce xylo-oligosaccharides (XOS) from the agriculture waste, which included, green coconut and vegetable cocktail. The two pretreatment - hydrogen peroxide-acetic acid (HP-AC) and sodium hypochlorite-sodium hydroxide (SH-SH) - were used for this study. The optimal conditions for the pretreatment were 80 °C, 4.0 % NaClO, and 2 h, followed by 0.08 % NaOH, 55 °C, and 1 h. Further enzymatic hydrolysis of green coconut (GC) and vegetable cocktail (VC) were performed and found in case of GC, the best outcomes were observed. Different types of XOS were obtained from the treated biomass whereas a single type of XOS xylo-pentose was obtained in high quantity (96.44 % and 93.09 % from CG and VC respectively) with the production of other XOS < 2 %. This study presents a reasonably secure and economical method for turning secondary crop residue into XOS and fermentable sugars.
Collapse
Affiliation(s)
- Pritam Kaur
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China; Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, BIHER, Chennai 600100, India
| | - Babett Greff
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon- Si, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon- Si, Gyeonggi-Do 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
20
|
Vaidyanathan VK, Rathankumar AK, Senthil Kumar P, Rangasamy G, Saikia K, Rajendran DS, Venkataraman S, Varjani S. Utilization of surface-active compounds derived from biosolids to remediate polycyclic aromatic hydrocarbons contaminated sediment soil. ENVIRONMENTAL RESEARCH 2022; 215:114180. [PMID: 36057335 DOI: 10.1016/j.envres.2022.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In the present study, surface-active compounds (SAC) were extracted from biosolids using an alkaline treatment process. They were tested for their remediation efficiency of crude oil-contaminated sediment soil and was compared with Triton x-100. The SAC exhibited a similar soil washing efficiency to that of the commercial Triton x-100, and under the optimized soil washing parameters, SAC exhibited a maximum of 91% total polycyclic aromatic hydrocarbons removal. Further, on analysing the toxicity of the soil residue after washing, it was observed that SAC from biosolids washed soil exhibited an average of 1.5-fold lesser toxicity compared to that of Triton x-100 on different test models-earthworm, a monocot, and dicot plants. The analysis of the key soil parameters revealed that the commercial surfactant reduced the soil organic matter and porosity by an average of 1.3-fold compared to SAC. Further, the ability of surfactants to induce toxicity was confirmed by the adsorption of the surfactants on the surface of the soil particles which was in the order of Triton x-100 > SAC. Thus, this study suggests that SAC can be applied as an effective bioremediation approach for contaminated soil for a greener and sustainable ecosystem.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| | - Abiram Karanam Rathankumar
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kongkona Saikia
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Devi Sri Rajendran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Swethaa Venkataraman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|
21
|
Keerthana Devi M, Manikandan S, Oviyapriya M, Selvaraj M, Assiri MA, Vickram S, Subbaiya R, Karmegam N, Ravindran B, Chang SW, Awasthi MK. Recent advances in biogas production using Agro-Industrial Waste: A comprehensive review outlook of Techno-Economic analysis. BIORESOURCE TECHNOLOGY 2022; 363:127871. [PMID: 36041677 DOI: 10.1016/j.biortech.2022.127871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Agrowaste sources can be utilized to produce biogas by anaerobic digestion reaction. Fossil fuels have damaged the environment, while the biogas rectifies the issues related to the environment and climate change problems. Techno-economic analysis of biogas production is followed by nutrient recycling, reducing the greenhouse gas level, biorefinery purpose, and global warming effect. In addition, biogas production is mediated by different metabolic reactions, the usage of different microorganisms, purification process, upgrading process and removal of CO₂ from the gas mixture techniques. This review focuses on pre-treatment, usage of waste, production methods and application besides summarizing recent advancements in biogas production. Economical, technical, environmental properties and factors affecting biogas production as well as the future perspective of bioenergy are highlighted in the review. Among all agro-industrial wastes, sugarcane straw produced 94% of the biogas. In the future, to overcome all the problems related to biogas production and modify the production process.
Collapse
Affiliation(s)
- M Keerthana Devi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - M Oviyapriya
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Near Virudhunagar, Madurai 625 701, Tamil Nadu, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
22
|
Duan Y, Tarafdar A, Kumar V, Ganeshan P, Rajendran K, Shekhar Giri B, Gómez-García R, Li H, Zhang Z, Sindhu R, Binod P, Pandey A, Taherzadeh MJ, Sarsaiya S, Jain A, Kumar Awasthi M. Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. FUEL 2022; 325:124846. [DOI: 10.1016/j.fuel.2022.124846] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
23
|
Zhou Y, Xiao R, Klammsteiner T, Kong X, Yan B, Mihai FC, Liu T, Zhang Z, Kumar Awasthi M. Recent trends and advances in composting and vermicomposting technologies: A review. BIORESOURCE TECHNOLOGY 2022; 360:127591. [PMID: 35809873 DOI: 10.1016/j.biortech.2022.127591] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Composting technologies have come a long way, developing from static heaps and windrow composting to smart, artificial intelligence-assisted reactor composting. While in previous years, much attention has been paid to identifying ideal organic waste streams and suitable co-composting candidates, more recent efforts tried to determine novel process-enhancing supplements. These include various single and mixed microbial cultures, additives, bulking agents, or combinations thereof. However, there is still ample need to fine-tune the composting process in order to reduce its impact on the environment and streamline it with circular economy goals. In this review, we highlight recent advances in integrating mathematical modelling, novel supplements, and reactor designs with (vermi-) composting practices and provide an outlook for future developments. These results should serve as reference point to target adjusting screws for process improvement and provide a guideline for waste management officials and stakeholders.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Florin-Constantin Mihai
- CERNESIM Center, Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
24
|
Ganesan M, Mani R, Sai S, Kasivelu G, Awasthi MK, Rajagopal R, Wan Azelee NI, Selvi PK, Chang SW, Ravindran B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes. CHEMOSPHERE 2022; 303:134956. [PMID: 35588873 DOI: 10.1016/j.chemosphere.2022.134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.
Collapse
Affiliation(s)
- Mirunalini Ganesan
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravi Mani
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sakthinarenderan Sai
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, PR China.
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
25
|
Kumar Awasthi M, Yan B, Sar T, Gómez-García R, Ren L, Sharma P, Binod P, Sindhu R, Kumar V, Kumar D, Mohamed BA, Zhang Z, Taherzadeh MJ. Organic waste recycling for carbon smart circular bioeconomy and sustainable development: A review. BIORESOURCE TECHNOLOGY 2022; 360:127620. [PMID: 35840028 DOI: 10.1016/j.biortech.2022.127620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Ricardo Gómez-García
- Universidade Cat́olica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laborat́orio Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create way 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Badr A Mohamed
- Department of Chemical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
26
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
27
|
Awasthi MK, Lukitawesa L, Duan Y, Taherzadeh MJ, Zhang Z. Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors. FUEL 2022; 319:123812. [DOI: 10.1016/j.fuel.2022.123812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
28
|
Deena SR, Vickram AS, Manikandan S, Subbaiya R, Karmegam N, Ravindran B, Chang SW, Awasthi MK. Enhanced biogas production from food waste and activated sludge using advanced techniques - A review. BIORESOURCE TECHNOLOGY 2022; 355:127234. [PMID: 35489575 DOI: 10.1016/j.biortech.2022.127234] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Biogas generation using food waste anaerobic co-digestion with activated sludge provides a cleaner addressable system, an excellent solution to global challenges, the increasing energy demands, fuel charges, pollution and wastewater treatment. Regardless of the anaerobic digestate end product values, the technology lacks efficiency and process instability due to substrate irregularities. Process parameters and substrate composition, play a vital role in the efficiency and outcome of the system. Intrinsic biochar properties such as pore size, specific surface properties and cation exchange capacity make it an ideal additive that enriches microbial functions and enhances anaerobic digestion. The pretreatment and co-digestion of food waste and activated sludge are found to be significant for efficient biogas generation. The advantages, drawbacks, limitations, and technical improvements are covered extensively in the present review besides the recent advancement in the anaerobic digestion system.
Collapse
Affiliation(s)
- Santhana Raj Deena
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
29
|
Awasthi SK, Sarsaiya S, Kumar V, Chaturvedi P, Sindhu R, Binod P, Zhang Z, Pandey A, Awasthi MK. Processing of municipal solid waste resources for a circular economy in China: An overview. FUEL 2022; 317:123478. [DOI: 10.1016/j.fuel.2022.123478] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
30
|
Saba M, Khan A, Ali H, Bibi A, Gul Z, Khan A, Rehman MMU, Badshah M, Hasan F, Shah AA, Khan S. Microbial Pretreatment of Chicken Feather and Its Co-digestion With Rice Husk and Green Grocery Waste for Enhanced Biogas Production. Front Microbiol 2022; 13:792426. [PMID: 35464983 PMCID: PMC9022067 DOI: 10.3389/fmicb.2022.792426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
To utilize wastes and residues sustainably and excellently, there is a need to fend for efficient methods and resources for biogas production. Use of poultry waste for biogas production represents one of the most important routes toward reaching global renewable energy targets. The current study involves microbial pretreatment of chicken feather waste, followed by its co-digestion with rice husk and green grocery waste in batch and continuous reactors, respectively. Microbial pretreatment of chicken feathers by keratinase secreting Pseudomonas aeruginosa was an effective and eco-friendly approach to make its recalcitrant structure available as a raw substrate for biogas production. The current study also addressed the enhancement and stability of anaerobic digestion by co-digestion. Results demonstrated that biogas production was increased by microbial pretreatment of chicken feathers and that the percentage increase in biogas yield was 1.1% in microbialy pretreated feathers compared to mono-digestion (non-pretreated feathers) in batch fermentation. The highest yield of biogas was obtained in a batch reactor having co-digestion of pretreated rice husk and microbial pretreated chicken feathers. The co-digestion of chicken feathers hydrolysate with green grocery waste in continuous fermentation mode has also enhanced the biogas yield as compared to average of mono-digestion (chicken feather hydrolysate and green grocery waste) and, therefore, improve the efficiency of the overall process.
Collapse
Affiliation(s)
- Marium Saba
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huma Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amna Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Gul
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alam Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Maqsood Ur Rehman
- State Key Laboratory, Grassland Argo-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- *Correspondence: Samiullah Khan,
| |
Collapse
|
31
|
Awasthi SK, Kumar M, Sarsaiya S, Ahluwalia V, Chen H, Kaur G, Sirohi R, Sindhu R, Binod P, Pandey A, Rathour R, Kumar S, Singh L, Zhang Z, Taherzadeh MJ, Awasthi MK. Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. JOURNAL OF CLEANER PRODUCTION 2022; 341:130862. [DOI: 10.1016/j.jclepro.2022.130862] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
32
|
Dai L, Han T, Ma G, Tian X, Meng K, Lei Z, Ren J. Effective removal of Cd(Ⅱ) by sludge biochar supported nanoscale zero-valent iron from aqueous solution: Characterization, adsorption properties and mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01735k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoscale zero-valent iron (nZVI) has a high chemical reactivity for heavy metals, but nZVI forms aggregate easily. In this study, a synthesis of sludge biochar supported nanoscale zero-valent iron (nZVI@SBC) by...
Collapse
|