1
|
Devasvaran K, Alallam B, Lee C, Yong YK, Lim V. Clinacanthus nutans crude polysaccharide extract as a green platform for microwave-assisted synthesis of silver nanoparticles: Optimization, characterization, and evaluation of bioactivities. Int J Biol Macromol 2024; 278:134893. [PMID: 39168213 DOI: 10.1016/j.ijbiomac.2024.134893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Clinacanthus nutans (C. nutans) is a plant in tropical Asia with proven biological activities. The optimized extraction method of C. nutans crude polysaccharide (CNP) uses water in the presence of an ultrasound-assisted mechanical method (UL_CNP). However, the use of UL_CNP for the synthesis and optimization of silver nanoparticles (AgNP), particularly their anticancer and photocatalytic properties, remains unexplored. Hence, this research aimed to employ a green method using UL_CNP and silver nitrate to produce AgNP (UL_AgNP) with a small size and assess its potential toxicity, anticancer, and photocatalytic activities. The synthesis condition was optimized using the Box-Behnken design method. The synthesized UL_AgNP showed the surface plasmon resonance peak at 458 nm. The optimized synthesis condition produced spherically shaped UL_AgNP with a size of 5.21 ± 1.92 nm and a zeta potential of -26.33 ± 0.93 mV. An X-ray diffraction analysis exhibited intense Bragg's reflection peaks at (111), (200), (220), and (311), having a face-centered cubic structure of AgNP. Attenuated total reflectance-Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of silver in the synthesized UL_AgNP. The brine shrimp lethality test of UL_AgNP reported a lethal concentration 50 value of <7.8 μg/mL after 24 h. The UL_AgNP exhibited antiproliferative activity against MCF-7 cells with a half-maximal inhibitory concentration value of 4.96 ± 0.31 μg/mL by inducing S-phase cell cycle arrest, apoptotic effect, and reduction of cell migration. Furthermore, UL_AgNP proved its efficient photocatalytic activity against methylene blue dye (50.22 % ± 0.06 %, after 10 min at a concentration of 50 μg/mL). Therefore, the UL_AgNP exhibited promising antiproliferative activity against MCF-7 cells, highlighting their potential as a therapeutic agent. Further investigations are needed to elucidate the precise mechanism of their action.
Collapse
Affiliation(s)
- Kogilavanee Devasvaran
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Batoul Alallam
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Carmen Lee
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.
| | - Yoke Keong Yong
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Vuanghao Lim
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Chen BJ, Liu Y, Yang K, Li X, Dong X, Guan Y, Ismail A, Khoo HE. Amylase-assisted extraction alters nutritional and physicochemical properties of polysaccharides and saponins isolated from Ganoderma spp. Food Chem X 2023; 20:100913. [PMID: 38144747 PMCID: PMC10740064 DOI: 10.1016/j.fochx.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to evaluate the efficacy of amylase in hydrolyzing complex carbohydrates of different parts of Ganoderma spp. The aqueous extracts of the Ganoderma samples were analyzed for their selected nutritional composition and physicochemical properties. The purified extracts were also structurally characterized. The aqueous canopy extracts of red-purple Ganoderma had a notably higher total sugar and saponin content than their stalks, but not for the black-type Ganoderma. The enzymatic extraction effectively improved the extraction yields, whereas the amounts of sugars and saponins in some extracts were increased after the enzymatic treatment. The results also showed that only those enzyme-treated cultivated black Ganoderma canopy had increased total sugar and total saponin content. The antioxidant activities of all stalk extracts were higher than the canopy extracts. Their emulsifying properties were comparable with lecithin due to their high saponin content. Therefore, these extracts are new natural emulsifiers.
Collapse
Affiliation(s)
- Bo Jie Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Yang Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Ke Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Xia Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Xinhong Dong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yuan Guan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hock Eng Khoo
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
3
|
Synytsya A, Bleha R, Skrynnikova A, Babayeva T, Čopíková J, Kvasnička F, Jablonsky I, Klouček P. Mid-Infrared Spectroscopic Study of Cultivating Medicinal Fungi Ganoderma: Composition, Development, and Strain Variability of Basidiocarps. J Fungi (Basel) 2023; 10:23. [PMID: 38248933 PMCID: PMC10817577 DOI: 10.3390/jof10010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was proposed for rapid, versatile, and non-invasive screening of Ganoderma basidiocarps to assess their potential for specific applications. Fifteen species and strains of this fungus were selected for analysis, and fine sections at different parts of young and mature basidiocarps were obtained. The spectra of fungal samples showed significant differences interpreted in terms of biochemical composition using characteristic bands of proteins, polysaccharides, lipids, and triterpenoids. Obviously, for the transverse sections in trama, especially in the basal part, the most intense bands at 950-1200 cm-1 corresponded to polysaccharide vibrations, while for the superficial sections, the bands of carbonyl and aliphatic groups of triterpenoids at 1310-1470, 1550-1740, and 2850-2980 cm-1 predominated. The pilei, especially hymenium tubes, apparently contained more proteins than the bases and stipes, as evidenced by the intense bands of amide vibrations at 1648 and 1545-1550 cm-1. The specificity of the Ganoderma basidiocarp is a densely pigmented surface layer rich in triterpenoids, as proved by ATR-FTIR spectroscopy. The spectral differences corresponding to the specificity of the triterpenoid composition may indicate the prospects of individual strains and species of this genus for cultivation and further use in food, cosmetics, or medicine.
Collapse
Affiliation(s)
- Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Anastasia Skrynnikova
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Tamilla Babayeva
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - František Kvasnička
- Department of Meat and Preservation, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ivan Jablonsky
- Department of Gardening, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Pavel Klouček
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| |
Collapse
|
4
|
Liao N, Pang B, Jin H, Zhao X, Shao D, Jiang C, Shi J. Modifications of Ganoderma lucidum spores into digestive-tissue highly adherent porous carriers with selective affinity to hydrophilic or hydrophobic drugs. Biomaterials 2023; 299:122177. [PMID: 37262935 DOI: 10.1016/j.biomaterials.2023.122177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Ganoderma lucidum spores (GLSs) have been suggested to provide optimal structures for transporting orally bioavailable drugs. However, the double-layer wall and cavities of GLSs are naturally closed. This study aimed to modify GLSs into porous carriers by opening the layers and internal cavity with iturin A (IA) followed by potassium hydroxide (KOH) or hydrochloric acid (HCl). The (IA + KOH)- and (IA + HCl)-treated GLS carriers exhibited a high loading rate of 301.50 ± 2.33 and 268.18 ± 7.72 mg/g for the hydrophilic methylene blue (MB) and hydrophobic rifampicin (RF), respectively. The mechanisms underlying the modification involved the enhancement of the specific surface area with IA and the exposure of hydrophilic groups or hydrophobic groups of the GLSs with KOH or HCl. The sustained 48-h molecule-release profiles of the MB- and RF-loaded GLS carriers were best fitted using a first-order kinetics model in simulated gastric (or intestinal) fluid compared with other models. In mice, the designed GLS carriers had high adhesion capacities onto the mucosa of the digestive tract and long retention times (120 h), and even promoted the secretion of mucus and expression of several key intestinal barrier proteins. This study provided a new method to modify GLSs into oral carriers with selective drug affinity, high loading capacity, sustained drug release, and high adhesion to the digestive tract.
Collapse
Affiliation(s)
- Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Liu Y, Lan W, Wang Y, Bai W, Zhou H, Wan P. Differential Analysis of Korean and Chinese Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Spore Powder by Infrared Spectroscopy with Stoichiometry. Int J Med Mushrooms 2023; 25:87-98. [PMID: 37522535 DOI: 10.1615/intjmedmushrooms.2023048272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
To investigate the differences between Korean Ganoderma lucidum spore powder (KP), broken-spo-roderm KP (BSKP), Chinese traditional G. lucidum spore powder (CP), and broken-sporoderm CP (BSCP), they were identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR), dual-index sequence analysis (DISA) and X-ray diffraction (XRD). SEM showed that there were no significant differences in microstructure between the two kinds of spore powders. FT-IR spectra showed that the four spore powders appeared with characteristic peaks of 3400, 3006, 2925, 1745, 1535, 1454, 1249, 1074, 1049, and 896 cm-1, respectively, they were contained the characteristic peaks of total triterpenes, polysaccharides and fatty acids. DISA showed that the same species of spore powders, the overall similarity of before and broken the sporoderm was high with minor differences and there were no differences between the different kinds of spore powders. Similarity analysis showed that the four spore powders were in high agreement and were no differences. The polysaccharide, total triterpene, spore oil and protein content of the four spore powders were determined separately. The results showed that the active ingredients content of the batch of KP were lower than that of CP, that of BSKP were lower than that of BSCP, while the active ingredients content of both broken-sporoderm spore powders were higher than that of before broken-sporoderm. It is inferred that the structure of the main chemical and component of KP is the same as that of CP. This study provides a reference for the future development and application of G. lucidum.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China
| | - Weilin Lan
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China
| | - Yahong Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China
| | - Wenbao Bai
- Key State-owned Forest Technical Service Center of Jilin Province, Changchun 130022, P.R. China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P.R. China
| | - Peng Wan
- Department of Physiology, Jilin Medical College, Jilin City, Jilin 132013, P.R. China
| |
Collapse
|
6
|
Tian C, Chen J, Li X, Dai R, Wang Z. Chemical cleaning−solvent treatment−hydrophilic modification strategy for regenerating end-of-life PVDF membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Dat TD, Viet ND, My PLT, Linh NT, Thanh VH, Linh NTT, Ngan NTK, Linh NTT, Nam HM, Phong MT, Hieu NH. The Application of Ethanolic Ultrasonication to Ameliorate the Triterpenoid Content Extracted from Vietnamese
Ganoderma lucidum
with the Examination by Gas Chromatography. ChemistrySelect 2021. [DOI: 10.1002/slct.202004242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Duc Viet
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Phan Le Thao My
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Vuong Hoai Thanh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Kim Ngan
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Ngo Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Hoang Minh Nam
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trang Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Li Z, Shi Y, Zhang X, Xu J, Wang H, Zhao L, Wang Y. Screening Immunoactive Compounds of Ganoderma lucidum Spores by Mass Spectrometry Molecular Networking Combined With in vivo Zebrafish Assays. Front Pharmacol 2020; 11:287. [PMID: 32256359 PMCID: PMC7093641 DOI: 10.3389/fphar.2020.00287] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Ganoderma lucidum is a well-known herbal remedy widely used for treating various chronic diseases. Traditionally, the fruiting body is regarded as the medicinal part of this fungus, while recently, the therapeutic potentials of Ganoderma lucidum spore (GLS) is gaining increasing interests. However, detailed knowledge of chemical compositions and biological activities of the spore is still lacking. In this study, high-resolution mass spectrometry and molecular networking were employed for in-depth chemical profiling of GLS, sporoderm-broken GLS (BGLS) and sporoderm-removed GLS (RGLS), leading to the characterization of 109 constituents. The result also showed that RGLS contained more triterpenoids with much higher contents than BGLS and GLS. Moreover, the immunomodulatory activities of BGLS and RGLS were investigated in the zebrafish models of neutropenia or macrophage deficiency. RGLS exhibited more potent activities in alleviating vinorelbine-induced neutropenia or macrophage deficiency, and significantly enhanced phagocytic function of macrophages, which indicated the immunomodulatory activity of GLS was positively correlated with the content of triterpenoids. Further correlation analysis of chemical profiles of GLS and corresponding bioactivities by partial least squares regression identified the potential immunoactive compounds of GLS, including 20-hydroxylganoderic acid G, elfvingic acid A and ganohainanic acid C. Our findings suggest that combining mass spectrometry molecular networking with zebrafish-based bioassays and chemometrics is a feasible strategy to reveal complex chemical compositions of herbal medicines, as well as to discover their potential active constituents.
Collapse
Affiliation(s)
- Zhenhao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Research Center of Rare Medicinal Plants, Hangzhou, China
| | - Yingqiu Shi
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Xu
- Zhejiang Engineering Research Center of Rare Medicinal Plants, Hangzhou, China
| | - Hanbo Wang
- Zhejiang Shouxiangu Institute of Rare Medicine Plant, Wuyi, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Effects of sporoderm-broken spores of Ganoderma lucidum on growth performance, antioxidant function and immune response of broilers. ACTA ACUST UNITED AC 2019; 6:39-46. [PMID: 32211527 PMCID: PMC7082644 DOI: 10.1016/j.aninu.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/17/2019] [Accepted: 11/07/2019] [Indexed: 01/31/2023]
Abstract
This study was conducted to evaluate the effects of sporoderm-broken spores of Ganoderma lucidum (SSGL), a traditional Chinese medicinal herb, on growth performance, antioxidant ability, and immunity of broilers. Three hundred male broilers with similar body weights (40.0 ± 1.0 g) at 1 d of age were assigned randomly to 4 treatments. Each treatment contained 5 replicates of 15 birds per replicate. The dietary treatments were corn–soybean meal basal diet supplemented with SSGL at the concentrations of 0 (control), 100, 200 and 500 mg/kg diet. The results showed that diets supplemented with SSGL significantly increased (P < 0.05) the average daily gain and decreased (P < 0.05) the feed:gain (F:G) ratio of birds during the finisher period (22 to 44 d of age). Moreover, the total antioxidant capability, glutathione reductase and catalase activities in the liver and spleen were significantly higher (P < 0.05) in broilers fed diets with SSGL than in broilers fed the control diet. Additionally, dietary SSGL also increased (P < 0.05) the serum interleukin (IL)-2, immunoglobulin (Ig) A and IgG levels of broilers compared with the control diet. These results suggest that SSGL have ameliorative effects on growth performance, free radical-scavenging activity, antioxidant capability, and immune function of broilers.
Collapse
|
10
|
Application of vibrational spectroscopy for classification, authentication and quality analysis of mushroom: A concise review. Food Chem 2019; 289:545-557. [PMID: 30955647 DOI: 10.1016/j.foodchem.2019.03.091] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
Chemical compositions of mushrooms are greatly dependent on the geographical region, and also the different parts of the same mushroom have different chemical constitutions. Several chemical methods are employed for quality control of mushrooms. However, these methods are destructive, require skilled personnel and are time consuming. To overcome these limitations researchers are aiming for vibrational spectroscopic techniques. This review is focused on various studies related to the application of vibrational spectroscopy for classification, authentication and quality analysis of mushrooms. It was concluded that vibrational spectroscopy could be efficiently employed for assessing the quality, authenticity and geographical origin of the mushrooms. Fourier-transform infrared (FTIR) and near infrared (NIR) spectroscopy were the most explored, whereas, Raman spectroscopy is the least explored technique in this field. Compact and cost-effective spectrometers based on the selective wavelengths have to be designed and installed at commercial and industrial level for rapid quality control of mushrooms.
Collapse
|
11
|
Ma Y, He H, Wu J, Wang C, Chao K, Huang Q. Assessment of Polysaccharides from Mycelia of genus Ganoderma by Mid-Infrared and Near-Infrared Spectroscopy. Sci Rep 2018; 8:10. [PMID: 29311571 PMCID: PMC5758644 DOI: 10.1038/s41598-017-18422-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Ganoderma lingzhi (G. lingzhi), G. sinense, G. applanatum, etc. belongs to the Ganoderma genus of polypore mushrooms which contain rich polysaccharides valuable for nutrition and positive medicinal effects. In order to evaluate polysaccharide content in Ganoderma mycelia obtained in the fermentation process quickly and accurately, in this work we employed infrared spectroscopy to examine different Ganoderma stains of samples from diversified sources. Through mid-infrared (mid-IR) spectroscopy, we could identify the most relevant spectral bands required for polysaccharide evaluation, and through near-infrared (NIR) spectroscopy, we could establish the quantification model for making satisfactory prediction of polysaccharide ingredient content. As such, we have achieved an effective and convenient approach to quantitative assessment of the total polysaccharides in Ganoderma mycelia but also demonstrated that infrared spectroscopy can be a powerful tool for quality control of Ganoderma polysaccharides obtained from industrial production.
Collapse
Affiliation(s)
- Yuhan Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China.,College of Life Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Huaqi He
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China.,College of Life Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jingzhu Wu
- School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Chunyang Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Kuanglin Chao
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Qing Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. .,National Synchrotron Radiation Laboratory (NSRL), School of Life Science, University of Science and Technology of China (USTC), Hefei, 230026, China.
| |
Collapse
|
12
|
Fan L, Wang Y, Zhao M, Song J, Wang J, Jin Z. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:122-129. [PMID: 27058768 DOI: 10.1016/j.jhazmat.2016.03.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/12/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe3O4 nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe3O4 nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75mg/g when the CotA concentration was 1.2mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1h decolorization, 99% of the indigo carmine has been removed by 10mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.
Collapse
Affiliation(s)
- Lili Fan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zijing Jin
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
13
|
Zhu Y, Tan TL. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:68-77. [PMID: 26827180 DOI: 10.1016/j.saa.2016.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/02/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.
Collapse
Affiliation(s)
- Ying Zhu
- Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, Singapore.
| | - Tuck Lee Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore
| |
Collapse
|
14
|
Wang X, Sheng D, Zhu Z, Xu F, Huang D, Yu C. Identification of Cortex Eucommiae from different producing areas by FTIR microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 141:94-98. [PMID: 25666329 DOI: 10.1016/j.saa.2015.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/30/2014] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
In this paper, FTIR microspectroscopy was used to compare Cortex Eucommiae from Anhui Province (A), Henan Province (B) and Sichuan Province (C) of China. High-resolution spectra were obtained with good reproducibility. From IR spectra, some obvious differences in band frequency could be observed among Cortex Eucommiae A-C. Curve fitting result indicated that polysaccharides' structures and contents were different among Cortex Eucommiae A-C. To distinguish Cortex Eucommiae from different producing areas, the A1245/A1328 ratio might be an exceptionally practical factor. Additionally, FTIR microspectroscopy could identify Cortex Eucommiae A-C with 89.5% accuracy in combination with hierarchical cluster analysis. The results suggest FTIR microspectroscopy is very easy and efficient for distinguishing Cortex Eucommiae from different areas, and also indicate FTIR microspectroscopy may be practical for TCM research.
Collapse
Affiliation(s)
- Xin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Daping Sheng
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhengjie Zhu
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Fangcheng Xu
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China.
| | - Dake Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Changjun Yu
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
15
|
Muthoosamy K, Bai RG, Abubakar IB, Sudheer SM, Lim HN, Loh HS, Huang NM, Chia CH, Manickam S. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int J Nanomedicine 2015; 10:1505-19. [PMID: 25759577 PMCID: PMC4345939 DOI: 10.2147/ijn.s75213] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum. METHODS The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods. RESULTS More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5). CONCLUSION Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.
Collapse
Affiliation(s)
- Kasturi Muthoosamy
- Manufacturing and Industrial Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Renu Geetha Bai
- Manufacturing and Industrial Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Ibrahim Babangida Abubakar
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Surya Mudavasseril Sudheer
- Manufacturing and Industrial Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
- Biotechnology Research Centre, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Nay Ming Huang
- Low Dimension Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Hua Chia
- School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sivakumar Manickam
- Manufacturing and Industrial Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| |
Collapse
|
16
|
Zhu Y, Tan ATL. Chemometric Feature Selection and Classification of <i>Ganoderma lucidum</i> Spores and Fruiting Body Using ATR-FTIR Spectroscopy. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajac.2015.610079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Zhu Y, Tan ATL. Discrimination of Wild-Grown and Cultivated <i>Ganoderma lucidum</i> by Fourier Transform Infrared Spectroscopy and Chemometric Methods. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajac.2015.65047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Zhao D, Chang MW, Li JS, Suen W, Huang J. Investigation of Ice-Assisted Sonication on the Microstructure and Chemical Quality ofGanoderma lucidumSpores. J Food Sci 2014; 79:E2253-65. [DOI: 10.1111/1750-3841.12681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/20/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Ding Zhao
- of Mechanical Engineering; Univ. College London; London WC1E 7JE UK
- College of Biomedical Engineering & Instrument Science; Zhejiang Univ; Hang Zhou 310027 P.R. China
| | - Ming-Wei Chang
- College of Biomedical Engineering & Instrument Science; Zhejiang Univ; Hang Zhou 310027 P.R. China
| | - Jing-Song Li
- College of Biomedical Engineering & Instrument Science; Zhejiang Univ; Hang Zhou 310027 P.R. China
| | - William Suen
- of Mechanical Engineering; Univ. College London; London WC1E 7JE UK
| | - Jie Huang
- of Mechanical Engineering; Univ. College London; London WC1E 7JE UK
| |
Collapse
|
19
|
Sheng D, Wu Y, Wang X, Huang D, Chen X, Liu X. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:365-369. [PMID: 23973580 DOI: 10.1016/j.saa.2013.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Since serum can reflect human beings' physiological and pathological conditions, FTIR spectroscopy was used to compare gastric cancer patients' serum with healthy persons' serum in this study. The H2959/H2931, H1646/H1550, H1314/H1243, H1453/H1400 and H1080/H1550 ratios were calculated, among these ratios, the H2959/H2931 ratio might be a standard for distinguishing gastric cancer patients from healthy persons. Then curve fitting was processed using Gaussian curves in the 1140-1000 cm(-1) region, and the result showed that the RNA/DNA ratios of gastric cancer patients' serum were obviously lower than those of healthy persons' serum. The results suggest that FTIR spectroscopy may be a potentially useful tool for diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Daping Sheng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | | | | | | | | | | |
Collapse
|