1
|
Tošner Z, Brandl MJ, Blahut J, Glaser SJ, Reif B. Maximizing efficiency of dipolar recoupling in solid-state NMR using optimal control sequences. SCIENCE ADVANCES 2021; 7:eabj5913. [PMID: 34644121 PMCID: PMC8514097 DOI: 10.1126/sciadv.abj5913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Dipolar recoupling is a central concept in the nuclear magnetic resonance spectroscopy of powdered solids and is used to establish correlations between different nuclei by magnetization transfer. The efficiency of conventional cross-polarization methods is low because of the inherent radio frequency (rf) field inhomogeneity present in the magic angle spinning (MAS) experiments and the large chemical shift anisotropies at high magnetic fields. Very high transfer efficiencies can be obtained using optimal control–derived experiments. These sequences had to be optimized individually for a particular MAS frequency. We show that by adjusting the length and the rf field amplitude of the shaped pulse synchronously with sample rotation, optimal control sequences can be successfully applied over a range of MAS frequencies without the need of reoptimization. This feature greatly enhances their applicability on spectrometers operating at differing external fields where the MAS frequency needs to be adjusted to avoid detrimental resonance effects.
Collapse
Affiliation(s)
- Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| | - Matthias J. Brandl
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Jan Blahut
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| | - Steffen J. Glaser
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
- Helmholtz Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Carvalho JP, Pell AJ. Frequency-swept adiabatic pulses for broadband solid-state MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106911. [PMID: 33482528 DOI: 10.1016/j.jmr.2020.106911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
We present a complete description of frequency-swept adiabatic pulses applied to isolated spin-1/2 nuclei with a shift anisotropy in solid materials under magic-angle spinning. Our theoretical framework unifies the existing descriptions of adiabatic pulses in the high-power regime, where the radiofrequency (RF) amplitude is greater than twice the spinning frequency, and the low-power regime, where the RF power is less than the spinning frequency, and so links the short high-powered adiabatic pulse (SHAP) and single-sideband-selective adiabatic pulses (S3AP) schemes used in paramagnetic solid-state NMR. We also identify a hitherto unidentified third regime intermediate between the low- and high-power regimes, and separated from them by rotary resonance conditions. We show that the prevailing benchmark of inversion performance based on (super) adiabatic factors is only applicable in the high- and intermediate-power regimes, but fails to account both for the poor performance at rotary resonance, and the impressive inversion seen in the low-power regime. For low-power pulses, which are non-adiabatic according to this definition of (super) adiabaticity, the effective Floquet Hamiltonian in the jolting frame reveals "hidden" (super) adiabaticity. The theory is demonstrated using a combination of simulation and experiment, and is used to refine the practical recommendations for the experimentalist who wishes to use these pulses.
Collapse
Affiliation(s)
- José P Carvalho
- Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C 106 91, Stockholm, Sweden
| | - Andrew J Pell
- Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C 106 91, Stockholm, Sweden; Centre de RMN Trés Hauts Champs de Lyon (FRE 2034 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
3
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Identifying coupled clusters of allostery participants through chemical shift perturbations. Proc Natl Acad Sci U S A 2019; 116:2078-2085. [PMID: 30679272 DOI: 10.1073/pnas.1811168116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Allosteric couplings underlie many cellular signaling processes and provide an exciting avenue for development of new diagnostics and therapeutics. A general method for identifying important residues in allosteric mechanisms would be very useful, but remains elusive due to the complexity of long-range phenomena. Here, we introduce an NMR method to identify residues involved in allosteric coupling between two ligand-binding sites in a protein, which we call chemical shift detection of allostery participants (CAP). Networks of functional groups responding to each ligand are defined through correlated NMR perturbations. In this process, we also identify allostery participants, groups that respond to both binding events and likely play a role in the coupling between the binding sites. Such residues exhibit multiple functional states with distinct NMR chemical shifts, depending on binding status at both binding sites. Such a strategy was applied to the prototypical ion channel KcsA. We had previously shown that the potassium affinity at the extracellular selectivity filter is strongly dependent on proton binding at the intracellular pH sensor. Here, we analyzed proton and potassium binding networks and identified groups that depend on both proton and potassium binding (allostery participants). These groups are viewed as candidates for transmitting information between functional units. The vital role of one such identified amino acid was validated through site-specific mutagenesis, electrophysiology functional studies, and NMR-detected thermodynamic analysis of allosteric coupling. This strategy for identifying allostery participants is likely to have applications for many other systems.
Collapse
|
5
|
Wi S, Schurko RW, Frydman L. Broadband adiabatic inversion cross-polarization phenomena in the NMR of rotating solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:31-53. [PMID: 30125798 DOI: 10.1016/j.ssnmr.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero- and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case, involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were predicted and observed for S = 1/2 and for S = 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.
Collapse
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA.
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, NPB 3P4, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA; Department of Chemical and Biological Physics, Weizmann Institute of Sciences, Rehovot, 76100, Israel.
| |
Collapse
|
6
|
Lou X, Shen M, Li C, Chen Q, Hu B. Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T 1 by ball milling in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:20-25. [PMID: 30125796 DOI: 10.1016/j.ssnmr.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical samples have notably long 1H T1 (proton spin-lattice relaxation time), leading to lengthy experiments lasting several days in solid-state NMR studies. In this work, we propose the use of ball milling on the pharmaceutical samples to reduce the 1H T1, which also leads to enhanced sensitivity in {1H}-13C Cross-Polarization (CP) experiments due to reduced particle sizes and increased surface areas of the samples. Experimentally, we determined that depending on the substrates and milling time, the signal-to-noise ratio (S/N) of a 1D 13C CP spectrum can be increased by a factor of 3-6, which means that the experimental time can be shortened by a factor of 9-36. Furthermore, the application of simple ball-milling within a short time avoids the amorphization of the studied samples such that no signal due to amorphous state is observed in the 13C CP spectrum. This simple ball milling method used for sensitivity enhancement can be further applied in the SS-NMR studies of pharmaceutical samples.
Collapse
Affiliation(s)
- Xiaobing Lou
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Ming Shen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Qun Chen
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
7
|
Tošner Z, Sarkar R, Becker-Baldus J, Glaubitz C, Wegner S, Engelke F, Glaser SJ, Reif B. Overcoming Volume Selectivity of Dipolar Recoupling in Biological Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:14514-14518. [DOI: 10.1002/anie.201805002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/19/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Zdeněk Tošner
- Munich Center for Integrated Protein Science (CIPS-M) at, Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
- Dept. of Chemistry; Faculty of Science; Charles University; Hlavova 8 CZ-12842 Prague 2 Czech Republic
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS-M) at, Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
- Helmholtz-Zentrum München (HMGU); Deutsches Forschungszentrum für Gesundheit und Umwelt; Ingolstädter Landstr. 1 85764 Neuherberg Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry & Center for, Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Frankfurt 60438 Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Center for, Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Frankfurt 60438 Germany
| | | | - Frank Engelke
- Bruker Biospin; Silberstreifen 4 76278 Rheinstetten Germany
| | - Steffen J. Glaser
- Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at, Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
- Helmholtz-Zentrum München (HMGU); Deutsches Forschungszentrum für Gesundheit und Umwelt; Ingolstädter Landstr. 1 85764 Neuherberg Germany
| |
Collapse
|
8
|
Tošner Z, Sarkar R, Becker-Baldus J, Glaubitz C, Wegner S, Engelke F, Glaser SJ, Reif B. Overcoming Volume Selectivity of Dipolar Recoupling in Biological Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zdeněk Tošner
- Munich Center for Integrated Protein Science (CIPS-M) at, Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
- Dept. of Chemistry; Faculty of Science; Charles University; Hlavova 8 CZ-12842 Prague 2 Czech Republic
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS-M) at, Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
- Helmholtz-Zentrum München (HMGU); Deutsches Forschungszentrum für Gesundheit und Umwelt; Ingolstädter Landstr. 1 85764 Neuherberg Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry & Center for, Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Frankfurt 60438 Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Center for, Biomolecular Magnetic Resonance; Goethe-University Frankfurt; Frankfurt 60438 Germany
| | | | - Frank Engelke
- Bruker Biospin; Silberstreifen 4 76278 Rheinstetten Germany
| | - Steffen J. Glaser
- Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at, Department Chemie; Technische Universität München (TUM); Lichtenbergstr. 4 85747 Garching Germany
- Helmholtz-Zentrum München (HMGU); Deutsches Forschungszentrum für Gesundheit und Umwelt; Ingolstädter Landstr. 1 85764 Neuherberg Germany
| |
Collapse
|
9
|
Salmon L, Blackledge M. Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:126601. [PMID: 26517337 DOI: 10.1088/0034-4885/78/12/126601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy is exquisitely sensitive to protein dynamics. In particular inter-nuclear dipolar couplings, that become measurable in solution when the protein is dissolved in a dilute liquid crystalline solution, report on all conformations sampled up to millisecond timescales. As such they provide the opportunity to describe the Boltzmann distribution present in solution at atomic resolution, and thereby to map the conformational energy landscape in unprecedented detail. The development of analytical methods and approaches based on numerical simulation and their application to numerous biologically important systems is presented.
Collapse
Affiliation(s)
- Loïc Salmon
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France. CEA, DSV, IBS, F-38027 Grenoble, France. CNRS, IBS, F-38027 Grenoble, France
| | | |
Collapse
|
10
|
Meirovitch E, Liang Z, Freed JH. Protein Dynamics in the Solid State from (2)H NMR Line Shape Analysis. II. MOMD Applied to C-D and C-CD3 Probes. J Phys Chem B 2015; 119:14022-32. [PMID: 26402431 PMCID: PMC4676681 DOI: 10.1021/acs.jpcb.5b07434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Deuterium
line shape analysis from mobile C–D and C–CD3 groups has emerged as a particularly useful tool for studying
dynamics in the solid state. The theoretical models devised so far
consist typically of sets of independent dynamic modes. Each such
mode is simple and usually case-specific. In this scenario, model
improvement entails adding yet another mode (thereby changing the
overall model), comparison of different cases is difficult, and ambiguity
is unavoidable. We recently developed the microscopic order macroscopic
disorder (MOMD) approach as a single-mode alternative. In MOMD, the
local spatial restrictions are expressed by an anisotropic potential,
the local motion by a diffusion tensor, and the local molecular geometry
by relative (magnetic and model-related) tensor orientations, all
of adjustable symmetry. This approach provides a consistent method
of analysis, thus resolving the issues above. In this study, we apply
MOMD to PS-adsorbed LKα14 peptide and dimethylammonium tetraphenylborate
(C–CD3 and N–CD3 dynamics, respectively),
as well as HhaI methyltransferase target DNA and
phase III of benzene-6-hexanoate (C–D dynamics). The success
with fitting these four disparate cases, as well as the two cases
in the previous report, demonstrates the generality of this MOMD-based
approach. In this study, C–D and C–CD3 are
both found to execute axial diffusion (rates R⊥ and R∥) in the
presence of a rhombic potential given by the L =
2 spherical harmonics (coefficients c02 and c22). R⊥ (R∥) is in the 102–103 (104–105) s–1 range, and c02 and c22 are on the
order of 2–3 kBT. Specific parameter values are determined for each mobile site.
The diffusion and quadrupolar tensors are tilted at either 120°
(consistent with trans–gauche isomerization) or nearly 110.5° (consistent with methyl exchange).
Future prospects include extension of the MOMD formalism to include
MAS, and application to 15N and 13C nuclei.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Zhichun Liang
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-1301, United States
| | - Jack H Freed
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-1301, United States
| |
Collapse
|
11
|
Joshi S, Kumar S, Choudhury A, Ponnusamy MP, Batra SK. Altered Mucins (MUC) trafficking in benign and malignant conditions. Oncotarget 2015; 5:7272-84. [PMID: 25261375 PMCID: PMC4202122 DOI: 10.18632/oncotarget.2370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucins are high molecular weight O-glycoproteins that are predominantly expressed at the apical surface of epithelial cells and have wide range of functions. The functional diversity is attributed to their structure that comprises of a peptide chain with unique domains and multiple carbohydrate moieties added during posttranslational modifications. Tumor cells aberrantly overexpress mucins, and thereby promote proliferation, differentiation, motility, invasion and metastasis. Along with their aberrant expression, accumulating evidence suggest the critical role of altered subcellular localization of mucins under pathological conditions due to altered endocytic processes. The mislocalization of mucins and their interactions result in change in the density and activity of important cell membrane proteins (like, receptor tyrosine kinases) to facilitate various signaling, which help cancer cells to proliferate, survive and progress to more aggressive phenotype. In this review article, we summarize studies on mucins trafficking and provide a perspective on its importance to pathological conditions and to answer critical questions including its use for therapeutic interventions.
Collapse
Affiliation(s)
- Suhasini Joshi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | | | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, U.S.A. Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
12
|
Opella SJ. Solid-state NMR and membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:129-37. [PMID: 25681966 PMCID: PMC4372479 DOI: 10.1016/j.jmr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 05/15/2023]
Abstract
The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Eddy MT, Su Y, Silvers R, Andreas L, Clark L, Wagner G, Pintacuda G, Emsley L, Griffin RG. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 61:299-310. [PMID: 25634301 PMCID: PMC4398622 DOI: 10.1007/s10858-015-9903-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 05/09/2023]
Abstract
The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5-0.3 ppm for (13)C line widths and <0.5 ppm (15)N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported assignment approach and the great potential for even more complete assignment studies and de novo structure determination via (1)H detected MAS NMR.
Collapse
Affiliation(s)
- Matthew T. Eddy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongchao Su
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Silvers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Loren Andreas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsay Clark
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Guido Pintacuda
- Centre de RMN à Tres̀ Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Centre de RMN à Tres̀ Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100 Villeurbanne, France
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding Author:
| |
Collapse
|
14
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Prasanna C, Dubey A, Atreya HS. Amino Acid Selective Unlabeling in Protein NMR Spectroscopy. Methods Enzymol 2015; 565:167-89. [DOI: 10.1016/bs.mie.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Das BB, Park SH, Opella SJ. Membrane protein structure from rotational diffusion. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:229-45. [PMID: 24747039 PMCID: PMC4201901 DOI: 10.1016/j.bbamem.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
Abstract
The motional averaging of powder pattern line shapes is one of the most fundamental aspects of sold-state NMR. Since membrane proteins in liquid crystalline phospholipid bilayers undergo fast rotational diffusion, all of the signals reflect the angles of the principal axes of their dipole-dipole and chemical shift tensors with respect to the axis defined by the bilayer normal. The frequency span and sign of the axially symmetric powder patterns that result from motional averaging about a common axis provide sufficient structural restraints for the calculation of the three-dimensional structure of a membrane protein in a phospholipid bilayer environment. The method is referred to as rotationally aligned (RA) solid-state NMR and demonstrated with results on full-length, unmodified membrane proteins with one, two, and seven trans-membrane helices. RA solid-state NMR is complementary to other solid-state NMR methods, in particular oriented sample (OS) solid-state NMR of stationary, aligned samples. Structural distortions of membrane proteins from the truncations of terminal residues and other sequence modifications, and the use of detergent micelles instead of phospholipid bilayers have also been demonstrated. Thus, it is highly advantageous to determine the structures of unmodified membrane proteins in liquid crystalline phospholipid bilayers under physiological conditions. RA solid-state NMR provides a general method for obtaining accurate and precise structures of membrane proteins under near-native conditions.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0307 USA.
| |
Collapse
|
17
|
Solanas C, Herrero S, Dasari A, Plaza GR, Llorca J, Pérez-Rigueiro J, Elices M, Guinea GV. Insights into the production and characterization of electrospun fibers from regenerated silk fibroin. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Miller AF. Solid-state NMR of flavins and flavoproteins. Methods Mol Biol 2014; 1146:307-40. [PMID: 24764096 DOI: 10.1007/978-1-4939-0452-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Why apply solid-state NMR (SSNMR) to flavins and flavoproteins? NMR provides information on an atom-specific basis about chemical functionality, structure, proximity to other groups, and dynamics of the system. Thus, it has become indispensable to the study of chemicals, materials, catalysts, and biomolecules. It is no surprise then that NMR has a great deal to offer in the study of flavins and flavoenzymes. In general, their catalytic or electron-transfer activity resides essentially in the flavin, a molecule eminently accessible by NMR. However, the specific reactivity displayed depends on a host of subtle interactions whereby the protein biases and reshapes the flavin's propensities to activate it for one reaction while suppressing other aspects of this cofactor's prodigious repertoire (Massey et al., J Biol Chem 244:3999-4006, 1969; Müller, Z Naturforsch 27B:1023-1026, 1972; Joosten and van Berkel, Curr Opin Struct Biol 11:195-202, 2007). Thus, we are fascinated to learn about how the flavin cofactor of one enzyme is, and is not, like the flavin cofactor of another. In what follows, we describe how the capabilities of SSNMR can help and are beginning to bear fruit in this exciting endeavor.
Collapse
Affiliation(s)
- Anne-Frances Miller
- Department of Chemistry, University of Kentucky, 505 Rose St, Lexington, KY, 40506-0055, USA,
| |
Collapse
|
19
|
Sengupta I, Nadaud PS, Jaroniec CP. Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc Chem Res 2013; 46:2117-26. [PMID: 23464364 DOI: 10.1021/ar300360q] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2+)-tagged GB1 mutants to rapidly determine the global protein fold in a de novo fashion. Remarkably, these studies required quantitative measurements of only approximately four or five backbone amide (15)N longitudinal paramagnetic relaxation enhancements per residue, in the complete absence of the usual internuclear distance restraints. Importantly, this paramagnetic solid-state NMR methodology is general and can be directly applied to larger proteins and protein complexes for which a significant fraction of the signals can be assigned in standard 2D and 3D MAS NMR chemical shift correlation spectra.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philippe S. Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Hou G, Yan S, Trebosc J, Amoureux JP, Polenova T. Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:18-30. [PMID: 23685715 PMCID: PMC3703537 DOI: 10.1016/j.jmr.2013.04.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/30/2013] [Accepted: 04/15/2013] [Indexed: 05/08/2023]
Abstract
We recently described a family of experiments for R2n(v) Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2n(v) sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2n(v) sequences, dubbed COmbined R2n(v)-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (νr=40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-(13)C,(15)N-alanine and U-(13)C,(15)N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-(13)C,(15)N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities across the entire chemical shift range.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- , Tel. (302) 831-1968, FAX (302) 831-6335;
| | - Si Yan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Julien Trebosc
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille Nord de France, 59652 Villeneuve d’Ascq, France
| | - Jean-Paul Amoureux
- Unit of Catalysis and Chemistry of Solids (UCCS), CNRS-8181, University Lille Nord de France, 59652 Villeneuve d’Ascq, France
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- , Tel. (302) 831-1968, FAX (302) 831-6335;
| |
Collapse
|
21
|
Guerry P, Mollica L, Blackledge M. Mapping Protein Conformational Energy Landscapes Using NMR and Molecular Simulation. Chemphyschem 2013; 14:3046-58. [DOI: 10.1002/cphc.201300377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Indexed: 02/06/2023]
|
22
|
Jaipuria G, Krishnarjuna B, Mondal S, Dubey A, Atreya HS. Amino acid selective labeling and unlabeling for protein resonance assignments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 992:95-118. [PMID: 23076581 DOI: 10.1007/978-94-007-4954-2_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Structural characterization of proteins by NMR spectroscopy begins with the process of sequence specific resonance assignments in which the (1)H, (13)C and (15)N chemical shifts of all backbone and side-chain nuclei in the polypeptide are assigned. This process requires different isotope labeled forms of the protein together with specific experiments for establishing the sequential connectivity between the neighboring amino acid residues. In the case of spectral overlap, it is useful to identify spin systems corresponding to the different amino acid types selectively. With isotope labeling this can be achieved in two ways: (i) amino acid selective labeling or (ii) amino acid selective 'unlabeling'. This chapter describes both these methods with more emphasis on selective unlabeling describing the various practical aspects. The recent developments involving combinatorial selective labeling and unlabeling are also discussed.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
23
|
Opella SJ. Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:305-28. [PMID: 23577669 PMCID: PMC3980955 DOI: 10.1146/annurev-anchem-062012-092631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego 92093, USA.
| |
Collapse
|
24
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein extracts. However, biological NMR spectroscopy is limited to concentrated samples, typically in the millimolar range, due to its intrinsic low sensitivity compared to other techniques such as fluorescence or electron paramagnetic resonance (EPR) spectroscopy.Dynamic nuclear polarization (DNP) is a method that increases the sensitivity of NMR by several orders of magnitude. It exploits a polarization transfer from unpaired electrons to neighboring nuclei which leads to an absolute increase of the signal-to-noise ratio (S/N). Consequently, biological samples with much lower concentrations can now be studied in hours or days compared to several weeks.This chapter will explain the different types of DNP enhanced NMR experiments, focusing primarily on solid-state magic angle spinning (MAS) DNP, its applications, and possible means of improvement.
Collapse
|
25
|
Huang W, Bardaro MF, Varani G, Drobny GP. Preparation of RNA samples with narrow line widths for solid state NMR investigations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:51-54. [PMID: 22967888 DOI: 10.1016/j.jmr.2012.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/19/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Solid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state NMR to RNA has been limited because reported line widths have been too broad to execute most multidimensional experiments successfully. A reliable method to generate spectra with narrow line widths is necessary to apply the full range of solid state NMR spectroscopic approaches to RNA. Using the HIV-1 transactivation response (TAR) RNA as a model, we present an approach based on precipitation with polyethylene glycol that improves the line width of (13)C signals in TAR from >6 ppm to about 1 ppm, making solid state 2D NMR studies of selectively enriched RNAs feasible at ambient temperature.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
26
|
Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A, Akoury E, Tepper K, Müller H, Baldus M, Griesinger C, Zweckstetter M, Mandelkow E, Vijayan V, Lange A. β-Sheet Core of Tau Paired Helical Filaments Revealed by Solid-State NMR. J Am Chem Soc 2012; 134:13982-9. [DOI: 10.1021/ja305470p] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Venita Daebel
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Subashchandrabose Chinnathambi
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Jacek Biernat
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Martin Schwalbe
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Birgit Habenstein
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Antoine Loquet
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Elias Akoury
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Katharina Tepper
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Henrik Müller
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Marc Baldus
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Grisebachstraße
5, 37077 Göttingen, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Vinesh Vijayan
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Banigan JR, Traaseth NJ. Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra. J Phys Chem B 2012; 116:7138-44. [PMID: 22582831 PMCID: PMC3418334 DOI: 10.1021/jp303269m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The time required for data acquisition and subsequent spectral assignment are limiting factors for determining biomolecular structure and dynamics using solid-state NMR spectroscopy. While strong magnetic dipolar couplings give rise to relatively broad spectra lines, the couplings also mediate the coherent magnetization transfer via the Hartmann-Hahn cross-polarization (HH-CP) experiment. This mechanism is used in nearly all backbone assignment experiments for carrying out polarization transfer between (1)H, (15)N, and (13)C. In this Article, we describe a general spectroscopic approach to use the residual or "afterglow" magnetization from the (15)N to (13)C selective HH-CP experiment to collect a second multidimensional heteronuclear data set. This approach allowed for the collection of two commonly used sequential assignment experiments (2D NCA and NCO or 3D NCACX and NCOCX) at the same time. Our "afterglow" technique was demonstrated with uniformly [(13)C,(15)N] and [1,3-(13)C] glycerol-labeled ubiquitin using instrumentation available on all standard solid-state NMR spectrometers configured for magic-angle-spinning. This method is compatible with several other sensitivity enhancement experiments and can be used as an isotopic filtering tool to reduce the spectral complexity and decrease the time needed for assignment.
Collapse
Affiliation(s)
- James R. Banigan
- Department of Chemistry, New York University, New York, NY 10003
| | | |
Collapse
|
28
|
Giffard M, Hediger S, Lewandowski JR, Bardet M, Simorre JP, Griffin RG, De Paëpe G. Compensated second-order recoupling: application to third spin assisted recoupling. Phys Chem Chem Phys 2012; 14:7246-55. [PMID: 22513727 PMCID: PMC4440590 DOI: 10.1039/c2cp40406k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei ((13)C-(13)C, (15)N-(15)N, (15)N-(13)C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U-[(15)N, (13)C]-YajG) at high magnetic fields (up to 900 MHz (1)H frequency) and fast sample spinning (up to 65 kHz MAS frequency).
Collapse
Affiliation(s)
- Mathilde Giffard
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| | - Sabine Hediger
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| | | | - Michel Bardet
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, UMR 5075 (CEA/CNRS/UJF), 38027 Grenoble, France
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gaël De Paëpe
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| |
Collapse
|
29
|
Park S, Hu Y, Hwang JO, Lee ES, Casabianca LB, Cai W, Potts JR, Ha HW, Chen S, Oh J, Kim SO, Kim YH, Ishii Y, Ruoff RS. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun 2012; 3:638. [DOI: 10.1038/ncomms1643] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/14/2011] [Indexed: 12/22/2022] Open
|
30
|
Sergeyev IV, Day LA, Goldbourt A, McDermott AE. Chemical shifts for the unusual DNA structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:20208-17. [PMID: 21854063 DOI: 10.1021/ja2043062] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100 K, as well as non-DNP spectra at a variety of field strengths and at temperatures in the range 213-243 K, have allowed the assignment of the (13)C and (15)N resonances of the unusual DNA structure in the Pf1 virion. The (13)C chemical shifts of C3' and C5', considered to be key reporters of deoxyribose conformation, fall near or beyond the edges of their respective ranges in available databases. The (13)C and (15)N chemical shifts of the DNA bases have above-average values for AC4, AC5, CC5, TC2, and TC5, and below average values for AC8, GC8, and GN2, pointing to an absence of Watson-Crick hydrogen bonding, yet the presence of some type of aromatic ring interaction. Crosspeaks between Tyr40 of the coat protein and several DNA atoms suggest that Tyr40 is involved in this ring interaction. In addition, these crosspeak resonances and several deoxyribose resonances are multiply split, presumably through the effects of ordered but differing interactions between capsid protein subunits and each type of nucleotide in each of the two DNA strands. Overall, these observations characterize and support the DNA model proposed by Liu and Day and refined by Tsuboi et al., which calls for the most highly stretched and twisted naturally occurring DNA yet encountered.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | | | | | | |
Collapse
|
31
|
Abstract
We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca(2+) pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Iowa State University, Ames, 50011, USA.
| | | | | |
Collapse
|
32
|
Hou G, Byeon IJL, Ahn J, Gronenborn AM, Polenova T. 1H-13C/1H-15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids. J Am Chem Soc 2011; 133:18646-55. [PMID: 21995349 DOI: 10.1021/ja203771a] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
33
|
Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y. Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer's β by solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:3390-400. [PMID: 21341665 PMCID: PMC3074258 DOI: 10.1021/ja1072178] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cu(2+) binding to Alzheimer's β (Aβ) peptides in amyloid fibrils has attracted broad attention, as it was shown that Cu ion concentration elevates in Alzheimer's senile plaque and such association of Aβ with Cu(2+) triggers the production of neurotoxic reactive oxygen species (ROS) such as H(2)O(2). However, detailed binding sites and binding structures of Cu(2+) to Aβ are still largely unknown for Aβ fibrils or other aggregates of Aβ. In this work, we examined molecular details of Cu(2+) binding to amyloid fibrils by detecting paramagnetic signal quenching in 1D and 2D high-resolution (13)C solid-state NMR (SSNMR) for full-length 40-residue Aβ(1-40). Selective quenching observed in (13)C SSNMR of Cu(2+)-bound Aβ(1-40) suggested that primary Cu(2+) binding sites in Aβ(1-40) fibrils include N(ε) in His-13 and His-14 and carboxyl groups in Val-40 as well as in Glu sidechains (Glu-3, Glu-11, and/or Glu-22). (13)C chemical shift analysis demonstrated no major structural changes upon Cu(2+) binding in the hydrophobic core regions (residues 18-25 and 30-36). Although the ROS production via oxidization of Met-35 in the presence of Cu(2+) has been long suspected, our SSNMR analysis of (13)C(ε)H(3)-S- in M35 showed little changes after Cu(2+) binding, excluding the possibility of Met-35 oxidization by Cu(2+) alone. Preliminary molecular dynamics (MD) simulations on Cu(2+)-Aβ complex in amyloid fibrils confirmed binding sites suggested by the SSNMR results and the stabilities of such bindings. The MD simulations also indicate the coexistence of a variety of Cu(2+)-binding modes unique in Aβ fibril, which are realized by both intra- and intermolecular contacts and highly concentrated coordination sites due to the in-register parallel β-sheet arrangements.
Collapse
Affiliation(s)
| | - Fei Long
- Department of Chemistry, University of Illinois at Chicago, Chicago IL 60607
| | - Yifat Miller
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
| | - Yiling Xiao
- Department of Chemistry, University of Illinois at Chicago, Chicago IL 60607
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago IL 60607
| | - Kent Thurber
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda MD 20892
| | - Buyong Ma
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoshitaka Ishii
- Department of Chemistry, University of Illinois at Chicago, Chicago IL 60607
| |
Collapse
|
34
|
Akbey Ü, Franks WT, Linden A, Lange S, Griffin RG, van Rossum BJ, Oschkinat H. Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed Engl 2011; 49:7803-6. [PMID: 20726023 DOI: 10.1002/anie.201002044] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ümit Akbey
- NMR Supported Structural Biology, Leibniz-Institute for Molecular Pharmacology (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly. SCIENCE CHINA-LIFE SCIENCES 2011; 54:101-11. [PMID: 21318479 DOI: 10.1007/s11427-011-4137-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/07/2010] [Indexed: 10/18/2022]
Abstract
NMR spectroscopy and X-ray crystallography are two premium methods for determining the atomic structures of macro-biomolecular complexes. Each method has unique strengths and weaknesses. While the two techniques are highly complementary, they have generally been used separately to address the structure and functions of biomolecular complexes. In this review, we emphasize that the combination of NMR spectroscopy and X-ray crystallography offers unique power for elucidating the structures of complicated protein assemblies. We demonstrate, using several recent examples from our own laboratory, that the exquisite sensitivity of NMR spectroscopy in detecting the conformational properties of individual atoms in proteins and their complexes, without any prior knowledge of conformation, is highly valuable for obtaining the high quality crystals necessary for structure determination by X-ray crystallography. Thus NMR spectroscopy, in addition to answering many unique structural biology questions that can be addressed specifically by that technique, can be exceedingly powerful in modern structural biology when combined with other techniques including X-ray crystallography and cryo-electron microscopy.
Collapse
|
36
|
Bertini I, Emsley L, Felli IC, Laage S, Lesage A, Lewandowski JR, Marchetti A, Pierattelli R, Pintacuda G. High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chem Sci 2011. [DOI: 10.1039/c0sc00397b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Structural bioinformatics: deriving biological insights from protein structures. Interdiscip Sci 2010; 2:347-66. [PMID: 21153779 DOI: 10.1007/s12539-010-0045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
Structural bioinformatics can be described as an approach that will help decipher biological insights from protein structures. As an important component of structural biology, this area promises to provide a high resolution understanding of biology by assisting comprehension and interpretation of a large amount of structural data. Biological function of protein molecules can be inferred from their three-dimensional structures by comparing structures, classifying them and transferring function from a related protein or family. It is well known now that the structure space of protein molecules is more conserved than the sequence space, making it important to seek functional associations at the structural level. An added advantage of structural bioinformatics over simpler sequence-based methods is that the former also provides ultimate insights into the mechanisms by which various biological events take place. A bird's eye-view of the different aspects of structural bioinformatics is given here along with various recent advances in the area including how knowledge obtained from structural bioinformatics can be applied in drug discovery.
Collapse
|
38
|
Xu J, Soong R, Im SC, Waskell L, Ramamoorthy A. INEPT-based separated-local-field NMR spectroscopy: a unique approach to elucidate side-chain dynamics of membrane-associated proteins. J Am Chem Soc 2010; 132:9944-7. [PMID: 20593897 DOI: 10.1021/ja103983f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite recent advances in NMR approaches for structural biology, determination of membrane protein dynamics in its native environment continues to be a monumental challenge, as most NMR structural studies of membrane proteins are commonly carried out either in micelles or in vesicle systems under frozen conditions. To overcome this difficulty, we propose a solid-state NMR technique that allows for the determination of side-chain dynamics from membrane proteins in lipid bilayers. This new technique, namely dipolar enhanced polarization transfer (DREPT), allows for a wide range of dipolar couplings to be encoded, providing high resolution and sensitivity for systems that undergo motional averaging such as that of amino acid side chains. NMR observables such as dipolar couplings and chemical shift anisotropy, which are highly sensitive to molecular motions, provide a direct way of probing protein dynamics over a wide range of time scales. Therefore, using an appropriate model, it is possible to determine side-chain dynamics and provide additional information on the topology and function of a membrane protein in its native environment.
Collapse
Affiliation(s)
- Jiadi Xu
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | |
Collapse
|
39
|
Loquet A, Giller K, Becker S, Lange A. Supramolecular Interactions Probed by 13C−13C Solid-State NMR Spectroscopy. J Am Chem Soc 2010; 132:15164-6. [DOI: 10.1021/ja107460j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antoine Loquet
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
40
|
Akbey Ü, Franks WT, Linden A, Lange S, Griffin RG, van Rossum BJ, Oschkinat H. Dynamische Kernpolarisation bei deuterierten Proteinen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Barbet-Massin E, Ricagno S, Lewandowski JR, Giorgetti S, Bellotti V, Bolognesi M, Emsley L, Pintacuda G. Fibrillar vs crystalline full-length beta-2-microglobulin studied by high-resolution solid-state NMR spectroscopy. J Am Chem Soc 2010; 132:5556-7. [PMID: 20356307 DOI: 10.1021/ja1002839] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elucidating the fine structure of amyloid fibrils as well as understanding their processes of nucleation and growth remains a difficult yet essential challenge, directly linked to our current poor insight into protein misfolding and aggregation diseases. Here we consider beta-2-microglobulin (beta2m), the MHC-1 light chain component responsible for dialysis-related amyloidosis, which can give rise to amyloid fibrils in vitro under various experimental conditions, including low and neutral pH. We have used solid-state NMR to probe the structural features of fibrils formed by full-length beta2m (99 residues) at pH 2.5 and pH 7.4. A close comparison of 2D (13)C-(13)C and (15)N-(13)C correlation experiments performed on beta2m, in both the crystalline and fibrillar states, suggests that, in spite of structural changes affecting the protein loops linking the protein beta-strands, the protein chain retains a substantial share of its native secondary structure in the fibril assembly. Moreover, variations in the chemical shifts of the key Pro32 residue suggest the involvement of a cis-trans isomerization in the process of beta2m fibril formation. Lastly, the analogy of the spectra recorded on beta2m fibrils grown at different pH values hints at a conserved architecture of the amyloid species thus obtained.
Collapse
Affiliation(s)
- Emeline Barbet-Massin
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard PM, Cauffman SR, Felch KL, Weber RT, Temkin RJ, Griffin RG, Maas WE. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results. Phys Chem Chem Phys 2010; 12:5850-60. [PMID: 20449524 PMCID: PMC4442492 DOI: 10.1039/c003685b] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water-glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.
Collapse
Affiliation(s)
- Melanie Rosay
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Spano J, Wi S. Dipolar-coupling-mediated total correlation spectroscopy in solid-state 13C NMR: selection of individual 13C-13C dipolar interactions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 204:314-326. [PMID: 20392659 DOI: 10.1016/j.jmr.2010.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/10/2010] [Accepted: 03/18/2010] [Indexed: 05/29/2023]
Abstract
Herein is described a useful approach in solid-state NMR, for selecting homonuclear (13)C-(13)C spin pairs in a multiple-(13)C homonuclear dipolar coupled spin system. This method builds upon the zero-quantum (ZQ) dipolar recoupling method introduced by Levitt and coworkers (Marin-Montesinos et al., 2006) by extending the originally introduced one-dimensional (1D) experiment into a two-dimensional (2D) method with selective irradiation scheme, while moving the (13)C-(13)C mixing scheme from the transverse to the longitudinal mode, together with a dramatic improvement in the proton decoupling efficiency. Selective spin-pair recoupling experiments incorporating Gaussian and cosine-modulated Gaussian pulses for inverting specific spins were performed, demonstrating the ability to detect informative, simplified/individualized, long-range (13)C-(13)C homonuclear dipolar coupling interactions more accurately by removing less informative, stronger, short-range (13)C-(13)C interactions from 2D correlation spectra. The capability of this new approach was demonstrated experimentally on uniformly (13)C-labeled Glutamine and a tripeptide sample, GAL.
Collapse
Affiliation(s)
- Justin Spano
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
44
|
Bertini I, Emsley L, Lelli M, Luchinat C, Mao J, Pintacuda G. Ultrafast MAS Solid-State NMR Permits Extensive 13C and 1H Detection in Paramagnetic Metalloproteins. J Am Chem Soc 2010; 132:5558-9. [DOI: 10.1021/ja100398q] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Lyndon Emsley
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Moreno Lelli
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Claudio Luchinat
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Jiafei Mao
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Guido Pintacuda
- Magnetic Resonance Center, CERM, University of Florence, Sesto Fiorentino, Italy, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy, and Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| |
Collapse
|
45
|
Bertini I, Bhaumik A, De Paëpe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C. High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 2010; 132:1032-40. [PMID: 20041641 DOI: 10.1021/ja906426p] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of pseudocontact shifts arising from paramagnetic metal ions in a microcrystalline protein sample is proposed as a strategy to obtain unambiguous signal assignments in solid-state NMR spectra enabling distance extraction for protein structure calculation. With this strategy, 777 unambiguous (281 sequential, 217 medium-range, and 279 long-range) distance restraints could be obtained from PDSD, DARR, CHHC, and the recently introduced PAR and PAIN-CP solid-state experiments for the cobalt(II)-substituted catalytic domain of matrix metalloproteinase 12 (159 amino acids, 17.6 kDa). The obtained structure is a high resolution one, with backbone rmsd of 1.0 +/- 0.2 A, and is in good agreement with the X-ray structure (rmsd to X-ray 1.3 A). The proposed strategy, which may be generalized for nonmetalloproteins with the use of paramagnetic tags, represents a significant step ahead in protein structure determination using solid-state NMR.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, CERM, University of Florence, Via L. Sacconi, 6-50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ahmed MAM, Bamm VV, Shi L, Steiner-Mosonyi M, Dawson JF, Brown L, Harauz G, Ladizhansky V. Induced secondary structure and polymorphism in an intrinsically disordered structural linker of the CNS: solid-state NMR and FTIR spectroscopy of myelin basic protein bound to actin. Biophys J 2010; 96:180-91. [PMID: 19134474 DOI: 10.1016/j.bpj.2008.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/07/2008] [Indexed: 11/27/2022] Open
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
Collapse
|
47
|
Sperling LJ, Nieuwkoop AJ, Lipton AS, Berthold DA, Rienstra CM. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field. JOURNAL OF BIOMOLECULAR NMR 2010; 46:149-155. [PMID: 19953303 PMCID: PMC2860797 DOI: 10.1007/s10858-009-9389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-(13)C,(15)N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ((1)H frequencies of 500, 750, and 900 MHz). For two protein systems--GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein--line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine C delta 1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.
Collapse
Affiliation(s)
- Lindsay J. Sperling
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Andrew J. Nieuwkoop
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Andrew S. Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Deborah A. Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Dumez JN, Butler MC, Salager E, Elena-Herrmann B, Emsley L. Ab initio simulation of proton spin diffusion. Phys Chem Chem Phys 2010; 12:9172-5. [DOI: 10.1039/c0cp00050g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Shi L, Lake EM, Ahmed MA, Brown LS, Ladizhansky V. Solid-state NMR study of proteorhodopsin in the lipid environment: Secondary structure and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2563-74. [DOI: 10.1016/j.bbamem.2009.09.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 11/26/2022]
|
50
|
Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A. Characterization of different water pools in solid-state NMR protein samples. JOURNAL OF BIOMOLECULAR NMR 2009; 45:319-27. [PMID: 19779834 DOI: 10.1007/s10858-009-9374-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/04/2009] [Indexed: 05/09/2023]
Abstract
We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by two-dimensional exchange spectroscopy, and we show that the supernatant water does not interact with protein on the timescale of the experiments. The two water pools have different spectroscopic properties, including resonance frequency, longitudinal, transverse and rotating frame relaxation times. The supernatant water can be removed almost completely physically or can be frozen selectively. Both measures lead to an enhancement of the quality factor of the probe circuit, accompanied by an improvement of the experimental signal/noise, and greatly simplify solvent-suppression by substantially reducing the water signal. We also present a tool, which allows filling solid-state NMR sample containers in a more efficient manner, greatly reducing the amount of supernatant water and maximizing signal/noise.
Collapse
Affiliation(s)
- Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Université de Lyon, UMR 5086 CNRS/UCB-Lyon 1, 7 passage du Vercors, 69367 Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|