1
|
Recoulat Angelini AA, Roman EA, González Flecha FL. The Structural Stability of Membrane Proteins Revisited: Combined Thermodynamic and Spectral Phasor Analysis of SDS-induced Denaturation of a Thermophilic Cu(I)-transport ATPase. J Mol Biol 2024; 436:168689. [PMID: 38936696 DOI: 10.1016/j.jmb.2024.168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Assessing membrane protein stability is among the major challenges in protein science due to their inherent complexity, which complicates the application of conventional biophysical tools. In this work, sodium dodecyl sulfate-induced denaturation of AfCopA, a Cu(I)-transport ATPase from Archaeoglobus fulgidus, was explored using a combined model-free spectral phasor analysis and a model-dependent thermodynamic analysis. Decrease in tryptophan and 1-anilino-naphthalene-8-sulfonate fluorescence intensity, displacements in the spectral phasor space, and the loss of ATPase activity were reversibly induced by this detergent. Refolding from the SDS-induced denatured state yields an active enzyme that is functionally and spectroscopically indistinguishable from the native state of the protein. Phasor analysis of Trp spectra allowed us to identify two intermediate states in the SDS-induced denaturation of AfCopA, a result further supported by principal component analysis. In contrast, traditional thermodynamic analysis detected only one intermediate state, and including the second one led to overparameterization. Additionally, ANS fluorescence spectral analysis detected one more intermediate and a gradual change at the level of the hydrophobic transmembrane surface of the protein. Based on this evidence, a model for acquiring the native structure of AfCopA in a membrane-like environment is proposed.
Collapse
Affiliation(s)
- Alvaro A Recoulat Angelini
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina
| | - Ernesto A Roman
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Blazhynska M, Gumbart JC, Chen H, Tajkhorshid E, Roux B, Chipot C. A Rigorous Framework for Calculating Protein-Protein Binding Affinities in Membranes. J Chem Theory Comput 2023; 19:9077-9092. [PMID: 38091976 PMCID: PMC11145395 DOI: 10.1021/acs.jctc.3c00941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Calculating the binding free energy of integral transmembrane (TM) proteins is crucial for understanding the mechanisms by which they recognize one another and reversibly associate. The glycophorin A (GpA) homodimer, composed of two α-helical segments, has long served as a model system for studying TM protein reversible association. The present work establishes a methodological framework for calculating the binding affinity of the GpA homodimer in the heterogeneous environment of a membrane. Our investigation carefully considered a variety of protocols, including the appropriate choice of the force field, rigorous standardization reflecting the experimental conditions, sampling algorithm, anisotropic environment, and collective variables, to accurately describe GpA dimerization via molecular dynamics-based approaches. Specifically, two strategies were explored: (i) an unrestrained potential mean force (PMF) calculation, which merely enhances sampling along the separation of the two binding partners without any restraint, and (ii) a so-called "geometrical route", whereby the α-helices are progressively separated with imposed restraints on their orientational, positional, and conformational degrees of freedom to accelerate convergence. Our simulations reveal that the simplified, unrestrained PMF approach is inadequate for the description of GpA dimerization. Instead, the geometrical route, tailored specifically to GpA in a membrane environment, yields excellent agreement with experimental data within a reasonable computational time. A dimerization free energy of -10.7 kcal/mol is obtained, in fairly good agreement with available experimental data. The geometrical route further helps elucidate how environmental forces drive association before helical interactions stabilize it. Our simulations also brought to light a distinct, long-lived spatial arrangement that potentially serves as an intermediate state during dimer formation. The methodological advances in the generalized geometrical route provide a powerful tool for accurate and efficient binding-affinity calculations of intricate TM protein complexes in inhomogeneous environments.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, United States
| | - Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Motov VV, Kot EF, Shabalkina AV, Goncharuk SA, Arseniev AS, Goncharuk MV, Mineev KS. Investigation of lipid/protein interactions in trifluoroethanol-water mixtures proposes the strategy for the refolding of helical transmembrane domains. JOURNAL OF BIOMOLECULAR NMR 2023; 77:15-24. [PMID: 36451032 DOI: 10.1007/s10858-022-00408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol-water mixtures. However, the protocols for such a refolding are empirical and the process itself is still not understood in detail. In search of the optimal refolding approaches for helical membrane proteins, we studied here how membrane proteins, lipids, and detergents interact with each other at various trifluoroethanol-water ratios. Using high-resolution NMR spectroscopy and dynamic light scattering, we determined the key states of the listed compounds in the trifluoroethanol/water mixture, found the factors that could be critical for the efficiency of refolding, and proposed several most optimal protocols. These protocols were developed on the transmembrane domain of neurotrophin receptor TrkA and tested on two model helical membrane domains-transmembrane of Toll-like receptor TLR9 and voltage-sensing domain of a potassium channel KvAP.
Collapse
Affiliation(s)
- Vladislav V Motov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Alexandra V Shabalkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
| | - Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
4
|
Harris NJ, Pellowe GA, Blackholly LR, Gulaidi-Breen S, Findlay HE, Booth PJ. Methods to study folding of alpha-helical membrane proteins in lipids. Open Biol 2022; 12:220054. [PMID: 35855589 PMCID: PMC9297032 DOI: 10.1098/rsob.220054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How alpha-helical membrane proteins fold correctly in the highly hydrophobic membrane interior is not well understood. Their folding is known to be highly influenced by the lipids within the surrounding bilayer, but the majority of folding studies have focused on detergent-solubilized protein rather than protein in a lipid environment. There are different ways to study folding in lipid bilayers, and each method has its own advantages and disadvantages. This review will discuss folding methods which can be used to study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or native membranes. These folding methods include in vitro folding methods in liposomes such as denaturant unfolding studies, and single-molecule force spectroscopy studies in bicelles, liposomes and native membranes. This review will also discuss recent advances in co-translational folding studies, which use cell-free expression with liposomes or nanodiscs or are performed in vivo with native membranes.
Collapse
Affiliation(s)
- Nicola J. Harris
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A. Pellowe
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Laura R. Blackholly
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | | | - Heather E. Findlay
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paula J. Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
5
|
Abstract
SignificanceOuter membrane porins play a crucial role in processes as varied as energy production, photosynthesis, and nutrient transport. They act as the gatekeepers between a gram-negative bacterium and its environment. Understanding how these proteins fold and function is important in improving our understanding and control of these processes. Here we use single-molecule methods to help resolve the apparent differences between the fast folding expected on a molecular scale and the slow kinetics observed in ensemble measurements in the laboratory.
Collapse
|
6
|
Brady R, Harris NJ, Pellowe GA, Gulaidi Breen S, Booth PJ. How lipids affect the energetics of co-translational alpha helical membrane protein folding. Biochem Soc Trans 2022; 50:555-567. [PMID: 35212365 PMCID: PMC9022994 DOI: 10.1042/bst20201063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Membrane proteins need to fold with precision in order to function correctly, with misfolding potentially leading to disease. The proteins reside within a hydrophobic lipid membrane and must insert into the membrane and fold correctly, generally whilst they are being translated by the ribosome. Favourable and unfavourable free energy contributions are present throughout each stage of insertion and folding. The unfavourable energy cost of transferring peptide bonds into the hydrophobic membrane interior is compensated for by the favourable hydrophobic effect of partitioning a hydrophobic transmembrane alpha-helix into the membrane. Native membranes are composed of many different types of lipids, but how these different lipids influence folding and the associated free energies is not well understood. Altering the lipids in the bilayer is known to affect the probability of transmembrane helix insertion into the membrane, and lipids also affect protein stability and can promote successful folding. This review will summarise the free energy contributions associated with insertion and folding of alpha helical membrane proteins, as well as how lipids can make these processes more or less favourable. We will also discuss the implications of this work for the free energy landscape during the co-translational folding of alpha helical membrane proteins.
Collapse
Affiliation(s)
- Ryan Brady
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Nicola J. Harris
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Grant A. Pellowe
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Samuel Gulaidi Breen
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Paula J. Booth
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
7
|
Blackholly LR, Harris NJ, Findlay HE, Booth PJ. Cell-Free Expression to Probe Co-Translational Insertion of an Alpha Helical Membrane Protein. Front Mol Biosci 2022; 9:795212. [PMID: 35187078 PMCID: PMC8847741 DOI: 10.3389/fmolb.2022.795212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 01/23/2023] Open
Abstract
The majority of alpha helical membrane proteins fold co-translationally during their synthesis on the ribosome. In contrast, most mechanistic folding studies address refolding of full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation of membrane proteins is emerging as a useful tool to address folding during translation by a ribosome. We summarise the benefits of this approach and show how it can be successfully extended to a membrane protein with a complex topology. The bacterial leucine transporter, LeuT can be synthesised and inserted into lipid membranes using a variety of in vitro transcription translation systems. Unlike major facilitator superfamily transporters, where changes in lipids can optimise the amount of correctly inserted protein, LeuT insertion yields are much less dependent on the lipid composition. The presence of a bacterial translocon either in native membrane extracts or in reconstituted membranes also has little influence on the yield of LeuT incorporated into the lipid membrane, except at high reconstitution concentrations. LeuT is considered a paradigm for neurotransmitter transporters and possesses a knotted structure that is characteristic of this transporter family. This work provides a method in which to probe the formation of a protein as the polypeptide chain is being synthesised on a ribosome and inserting into lipids. We show that in comparison with the simpler major facilitator transporter structures, LeuT inserts less efficiently into membranes when synthesised cell-free, suggesting that more of the protein aggregates, likely as a result of the challenging formation of the knotted topology in the membrane.
Collapse
Affiliation(s)
| | | | | | - Paula J. Booth
- Department of Chemistry, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
9
|
Harris NJ, Reading E, Booth PJ. Cell-Free Synthesis Strategies to Probe Co-translational Folding of Proteins Within Lipid Membranes. Methods Mol Biol 2022; 2433:273-292. [PMID: 34985751 DOI: 10.1007/978-1-0716-1998-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to comprehend the molecular basis of transmembrane protein biogenesis, methods are required that are capable of investigating the co-translational folding of these hydrophobic proteins. Equally, in artificial cell studies, controllable methods are desirable for in situ synthesis of membrane proteins that then direct reactions in the synthetic cell membrane. Here we describe a method that exploits cell-free expression systems and tunable membrane mimetics to facilitate co-translational studies. Alteration of the lipid bilayer composition improves the efficiency of the folding system. The approach also enables membrane transport proteins to be made and inserted into artificial cell platforms such as droplet interface bilayers. Importantly, this gives a new facet to the droplet networks by enabling specific transport of molecules across the synthetic bilayer against a concentration gradient. This method also includes a protocol to pause and restart translation of membrane proteins at specified positions during their co-translational folding. This stop-start strategy provides an avenue to investigate whether the proteins fold in sequence order, or if the correct fold of N-terminal regions is reliant on the synthesis of downstream residues.
Collapse
Affiliation(s)
| | - Eamonn Reading
- Department of Chemistry, King's College London, London, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, London, UK.
| |
Collapse
|
10
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Domański J, Sansom MSP, Stansfeld PJ, Best RB. Atomistic mechanism of transmembrane helix association. PLoS Comput Biol 2020; 16:e1007919. [PMID: 32497094 PMCID: PMC7272003 DOI: 10.1371/journal.pcbi.1007919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 01/21/2023] Open
Abstract
Transmembrane helix association is a fundamental step in the folding of helical membrane proteins. The prototypical example of this association is formation of the glycophorin dimer. While its structure and stability have been well-characterized experimentally, the detailed assembly mechanism is harder to obtain. Here, we use all-atom simulations within phospholipid membrane to study glycophorin association. We find that initial association results in the formation of a non-native intermediate, separated by a significant free energy barrier from the dimer with a native binding interface. We have used transition-path sampling to determine the association mechanism. We find that the mechanism of the initial bimolecular association to form the intermediate state can be mediated by many possible contacts, but seems to be particularly favoured by formation of non-native contacts between the C-termini of the two helices. On the other hand, the contacts which are key to determining progression from the intermediate to the native state are those which define the native binding interface, reminiscent of the role played by native contacts in determining folding of globular proteins. As a check on the simulations, we have computed association and dissociation rates from the transition-path sampling. We obtain results in reasonable accord with available experimental data, after correcting for differences in native state stability. Our results yield an atomistic description of the mechanism for a simple prototype of helical membrane protein folding. Many important cellular functions are performed by membrane proteins, and in particular by association of proteins via transmembrane helices. However, the mechanism of how the helices associate has been challenging to study, by either experiment or simulation. Here, we use advanced molecular simulation methods to overcome the slow time scales involved in helix association and dissociation and obtain a view of the association mechanism in atomic detail. We show that association occurs via an initially non-native dimer, before proceeding to the native state, and we validate our results by comparison to available experimental kinetic data. Our methods will also aid in the study of the assembly mechanism of larger transmembrane proteins via molecular simulation.
Collapse
Affiliation(s)
- Jan Domański
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Harris NJ, Pellowe GA, Booth PJ. Cell-free expression tools to study co-translational folding of alpha helical membrane transporters. Sci Rep 2020; 10:9125. [PMID: 32499529 PMCID: PMC7272624 DOI: 10.1038/s41598-020-66097-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022] Open
Abstract
Most helical membrane proteins fold co-translationally during unidirectional polypeptide elongation by the ribosome. Studies thus far, however, have largely focussed on refolding full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation offers opportunities to remedy this deficit in folding studies and has previously been used for membrane proteins. We exploit this cell-free approach to develop tools to probe co-translational folding. We show that two transporters from the ubiquitous Major Facilitator Superfamily can successfully insert into a synthetic bilayer without the need for translocon insertase apparatus that is essential in vivo. We also assess the cooperativity of domain insertion, by expressing the individual transporter domains cell-free. Furthermore, we manipulate the cell-free reaction to pause and re-start protein synthesis at specific points in the protein sequence. We find that full-length protein can still be made when stalling after the first N terminal helix has inserted into the bilayer. However, stalling after the first three helices have exited the ribosome cannot be successfully recovered. These three helices cannot insert stably when ribosome-bound during co-translational folding, as they require insertion of downstream helices.
Collapse
Affiliation(s)
- Nicola J Harris
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A Pellowe
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Paula J Booth
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
13
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
14
|
Pellowe GA, Booth PJ. Structural insight into co-translational membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183019. [PMID: 31302079 DOI: 10.1016/j.bbamem.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
Abstract
Membrane protein folding studies lag behind those of water-soluble proteins due to immense difficulties of experimental study, resulting from the need to provide a hydrophobic lipid-bilayer environment when investigated in vitro. A sound understanding of folding mechanisms is important for membrane proteins as they contribute to a third of the proteome and are frequently associated with disease when mutated and/or misfolded. Membrane proteins largely consist of α-helical, hydrophobic transmembrane domains, which insert into the membrane, often using the SecYEG/Sec61 translocase system. This mini-review highlights recent advances in techniques that can further our understanding of co-translational folding and notably, the structure and insertion of nascent chains as they emerge from translating ribosomes. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Grant A Pellowe
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB, London, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB, London, UK.
| |
Collapse
|
15
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
16
|
Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chem Biol 2018; 25:840-848.e4. [PMID: 29681524 PMCID: PMC6058078 DOI: 10.1016/j.chembiol.2018.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
The role of membrane lipids in modulating eukaryotic transporter assembly and function remains unclear. We investigated the effect of membrane lipids in the structure and transport activity of the purine transporter UapA from Aspergillus nidulans. We found that UapA exists mainly as a dimer and that two lipid molecules bind per UapA dimer. We identified three phospholipid classes that co-purified with UapA: phosphatidylcholine, phosphatidylethanolamine (PE), and phosphatidylinositol (PI). UapA delipidation caused dissociation of the dimer into monomers. Subsequent addition of PI or PE rescued the UapA dimer and allowed recovery of bound lipids, suggesting a central role of these lipids in stabilizing the dimer. Molecular dynamics simulations predicted a lipid binding site near the UapA dimer interface. Mutational analyses established that lipid binding at this site is essential for formation of functional UapA dimers. We propose that structural lipids have a central role in the formation of functional, dimeric UapA. Mass spectrometry reveals specific lipid binding to the eukaryotic transporter UapA Interfacial lipids stabilize the functional UapA dimer MD simulations reveal the lipid binding sites Mutagenesis of a lipid binding site disrupts UapA dimerization and function in vivo
Collapse
|
17
|
Seiwert D, Witt H, Ritz S, Janshoff A, Paulsen H. The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers. Biochemistry 2018; 57:2278-2288. [PMID: 29577715 DOI: 10.1021/acs.biochem.8b00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleaching, revealing multilamellar LHCII-membrane stacks composed of connected lipid bilayers. Both native-like and non-native interactions between the LHCII complexes may contribute to membrane appression in the supported bilayers. However, applying in vivo-like salt conditions to uncharged glycolipid membranes drastically increased the level of stack formation due to enforced LHCII-LHCII interactions, which is in line with recent crystallographic and cryo-electron microscopic data [Wan, T., et al. (2014) Mol. Plant 7, 916-919; Albanese, P., et al. (2017) Sci. Rep. 7, 10067-10083]. Furthermore, we observed the nonbilayer lipid MGDG to strongly promote membrane stacking, pointing to the long-term proposed function of MGDG in stabilizing the inner membrane leaflet of highly curved margins in the periphery of each grana disc because of its negative intrinsic curvature [Murphy, D. J. (1982) FEBS Lett. 150, 19-26].
Collapse
Affiliation(s)
- Dennis Seiwert
- Institute of Molecular Physiology , Johannes Gutenberg University Mainz , Johannes-von-Müller-Weg 6 , 55128 Mainz , Germany
| | - Hannes Witt
- Institute of Physical Chemistry , University of Goettingen , Tammannstrasse 6 , 37077 Goettingen , Germany
| | - Sandra Ritz
- Microscopy Core Facility , Institute of Molecular Biology , Ackermannweg 4 , 55128 Mainz , Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry , University of Goettingen , Tammannstrasse 6 , 37077 Goettingen , Germany
| | - Harald Paulsen
- Institute of Molecular Physiology , Johannes Gutenberg University Mainz , Johannes-von-Müller-Weg 6 , 55128 Mainz , Germany
| |
Collapse
|
18
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Lee S, Wang C, Liu H, Xiong J, Jiji R, Hong X, Yan X, Chen Z, Hammel M, Wang Y, Dai S, Wang J, Jiang C, Zhang G. Hydrogen bonds are a primary driving force for de novo protein folding. Acta Crystallogr D Struct Biol 2017; 73:955-969. [PMID: 29199976 PMCID: PMC5713874 DOI: 10.1107/s2059798317015303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
The protein-folding mechanism remains a major puzzle in life science. Purified soluble activation-induced cytidine deaminase (AID) is one of the most difficult proteins to obtain. Starting from inclusion bodies containing a C-terminally truncated version of AID (residues 1-153; AID153), an optimized in vitro folding procedure was derived to obtain large amounts of AID153, which led to crystals with good quality and to final structural determination. Interestingly, it was found that the final refolding yield of the protein is proline residue-dependent. The difference in the distribution of cis and trans configurations of proline residues in the protein after complete denaturation is a major determining factor of the final yield. A point mutation of one of four proline residues to an asparagine led to a near-doubling of the yield of refolded protein after complete denaturation. It was concluded that the driving force behind protein folding could not overcome the cis-to-trans proline isomerization, or vice versa, during the protein-folding process. Furthermore, it was found that successful refolding of proteins optimally occurs at high pH values, which may mimic protein folding in vivo. It was found that high pH values could induce the polarization of peptide bonds, which may trigger the formation of protein secondary structures through hydrogen bonds. It is proposed that a hydrophobic environment coupled with negative charges is essential for protein folding. Combined with our earlier discoveries on protein-unfolding mechanisms, it is proposed that hydrogen bonds are a primary driving force for de novo protein folding.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chao Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jian Xiong
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Renee Jiji
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Xiaoxue Yan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jing Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chengyu Jiang
- Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, People’s Republic of China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| |
Collapse
|
20
|
González Flecha FL. Kinetic stability of membrane proteins. Biophys Rev 2017; 9:563-572. [PMID: 28921106 DOI: 10.1007/s12551-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.
Collapse
Affiliation(s)
- F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Dymond MK, Gillams RJ, Parker DJ, Burrell J, Labrador A, Nylander T, Attard GS. Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10083-10092. [PMID: 27603198 DOI: 10.1021/acs.langmuir.6b03098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, U.K
| | - Richard J Gillams
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Duncan J Parker
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Jamie Burrell
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ana Labrador
- MAX IV Laboratory, Lund University , PO Box 118, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , PO Box 124, SE-221 00 Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
22
|
Yang Z, Brouillette CG. A Guide to Differential Scanning Calorimetry of Membrane and Soluble Proteins in Detergents. Methods Enzymol 2016; 567:319-58. [DOI: 10.1016/bs.mie.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Chi H, Wang X, Li J, Ren H, Huang F. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES. Sci Rep 2015; 5:17037. [PMID: 26585937 PMCID: PMC4653635 DOI: 10.1038/srep17037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/23/2015] [Indexed: 01/20/2023] Open
Abstract
The in vitro folding of newly translated human CC chemokine receptor type 5
(CCR5), which belongs to the physiologically important family of G protein-coupled
receptors (GPCRs), has been studied in a cell-free system supplemented with the
surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its
biologically active state but only slowly and inefficiently. However, on addition of
the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was
significantly enhanced, as was the structural stability and functional expression of
the soluble form of CCR5. The chaperonin GroEL was partially effective on its own,
but for maximum efficiency both the GroEL and its GroES lid were necessary. These
results are direct evidence for chaperone-assisted membrane protein folding and
therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane
proteins.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
24
|
Henrich E, Hein C, Dötsch V, Bernhard F. Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett 2015; 589:1713-22. [PMID: 25937121 DOI: 10.1016/j.febslet.2015.04.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| |
Collapse
|
25
|
Bychkova VE, Basova LV, Balobanov VA. How membrane surface affects protein structure. BIOCHEMISTRY (MOSCOW) 2015; 79:1483-514. [DOI: 10.1134/s0006297914130045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
28
|
Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane β-barrel from Yersinia pestis. Sci Rep 2014; 4:6508. [PMID: 25266561 PMCID: PMC4179465 DOI: 10.1038/srep06508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.
Collapse
|
29
|
Renaturing membrane proteins in the lipid cubic phase, a nanoporous membrane mimetic. Sci Rep 2014; 4:5806. [PMID: 25055873 PMCID: PMC4108929 DOI: 10.1038/srep05806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins play vital roles in the life of the cell and are important therapeutic targets. Producing them in large quantities, pure and fully functional is a major challenge. Many promising projects end when intractable aggregates or precipitates form. Here we show how such unfolded aggregates can be solubilized and the solution mixed with lipid to spontaneously self-assemble a bicontinuous cubic mesophase into the bilayer of which the protein, in a confined, chaperonin-like environment, reconstitutes with 100% efficiency. The test protein, diacylglycerol kinase, reconstituted in the bilayer of the mesophase, was then crystallized in situ by the in meso or lipid cubic phase method providing an X-ray structure to a resolution of 2.55 Å. This highly efficient, inexpensive, simple and rapid approach should find application wherever properly folded, membrane reconstituted and functional proteins are required where the starting material is a denatured aggregate.
Collapse
|
30
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
31
|
Roman EA, González Flecha FL. Kinetics and thermodynamics of membrane protein folding. Biomolecules 2014; 4:354-73. [PMID: 24970219 PMCID: PMC4030980 DOI: 10.3390/biom4010354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
Collapse
Affiliation(s)
- Ernesto A Roman
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| | - F Luis González Flecha
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| |
Collapse
|
32
|
Vaidehi N, Bhattacharya S, Larsen AB. Structure and dynamics of G-protein coupled receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:37-54. [PMID: 24158800 DOI: 10.1007/978-94-007-7423-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as β1 and β2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the β2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human β2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500, E. Duarte Road, Duarte, CA, 91010, USA,
| | | | | |
Collapse
|
33
|
Tastan O, Dutta A, Booth P, Klein-Seetharaman J. Retinal proteins as model systems for membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:656-63. [PMID: 24333783 DOI: 10.1016/j.bbabio.2013.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 11/30/2022]
Abstract
Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Oznur Tastan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Arpana Dutta
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, USA
| | - Paula Booth
- School of Biochemistry, University of Bristol, UK
| | - Judith Klein-Seetharaman
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
34
|
Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 2013; 8:e79351. [PMID: 24265768 PMCID: PMC3827151 DOI: 10.1371/journal.pone.0079351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.
Collapse
|
35
|
Maurya SR, Chaturvedi D, Mahalakshmi R. Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep 2013; 3:1989. [PMID: 23771099 PMCID: PMC3683699 DOI: 10.1038/srep01989] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/08/2013] [Indexed: 11/09/2022] Open
Abstract
Lipid-protein interactions, critical for the folding, stability and function of membrane proteins, can be both of mechanical and chemical nature. Mechanical properties of lipid systems can be suitably influenced by physical factors so as to facilitate membrane protein folding. We demonstrate here that by modulating lipid dynamics transiently using heat, rapid folding of two 8-stranded transmembrane β-barrel proteins OmpX and OmpA1–171, in micelles and vesicles, can be achieved within seconds. Folding kinetics using this ‘heat shock’ method shows a dramatic ten to several hundred folds increase in refolding rate along with ~100% folding efficiency. We establish that OmpX thus folded is highly thermostable even in detergent micelles, and retains structural characteristics comparable to the protein in bilayers.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Department of Biological Sciences, Indian Institute of Science Education and Research, Govindpura, Bhopal, India
| | | | | |
Collapse
|
36
|
Braselmann E, Chaney JL, Clark PL. Folding the proteome. Trends Biochem Sci 2013; 38:337-44. [PMID: 23764454 DOI: 10.1016/j.tibs.2013.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 02/07/2023]
Abstract
Protein folding is an essential prerequisite for protein function and hence cell function. Kinetic and thermodynamic studies of small proteins that refold reversibly were essential for developing our current understanding of the fundamentals of protein folding mechanisms. However, we still lack sufficient understanding to accurately predict protein structures from sequences, or the effects of disease-causing mutations. To date, model proteins selected for folding studies represent only a small fraction of the complexity of the proteome and are unlikely to exhibit the breadth of folding mechanisms used in vivo. We are in urgent need of new methods - both theoretical and experimental - that can quantify the folding behavior of a truly broad set of proteins under in vivo conditions. Such a shift in focus will provide a more comprehensive framework from which to understand the connections between protein folding, the molecular basis of disease, and cell function and evolution.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | | | | |
Collapse
|
37
|
Niesen MJM, Bhattacharya S, Grisshammer R, Tate CG, Vaidehi N. Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state. J Phys Chem B 2013; 117:7283-91. [PMID: 23697892 DOI: 10.1021/jp403207c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dynamic nature of GPCRs is a major hurdle in their purification and crystallization. Thermostabilization can facilitate GPCR structure determination, as has been shown by the structure of the thermostabilized β1-adrenergic receptor (β1AR) mutant, m23-β1AR, which has been thermostabilized in the inactive state. However, it is unclear from the structure how the six thermostabilizing mutations in m23-β1AR affect receptor dynamics. We have used molecular dynamics simulations in explicit solvent to compare the conformational ensembles for both wild type β1AR (wt-β1AR) and m23-β1AR. Thermostabilization results in an increase in the number of accessible microscopic conformational states within the inactive state ensemble, effectively increasing the side chain entropy of the inactive state at room temperature, while suppressing large-scale main chain conformational changes that lead to activation. We identified several diverse mechanisms of thermostabilization upon mutation. These include decrease of long-range correlated movement between residues in the G-protein coupling site to the extracellular region (Y227A(5.58), F338M(7.48)), formation of new hydrogen bonds (R68S), and reduction of local stress (Y227(5.58), F327(7.37), and F338(7.48)). This study provides insights into microscopic mechanisms underlying thermostability that leads to an understanding of the effect of these mutations on the structure of the receptor.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
38
|
Mijajlovic M, Wright D, Zivkovic V, Bi J, Biggs M. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf B Biointerfaces 2013; 104:276-81. [DOI: 10.1016/j.colsurfb.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
39
|
Stangl M, Veerappan A, Kroeger A, Vogel P, Schneider D. Detergent properties influence the stability of the glycophorin A transmembrane helix dimer in lysophosphatidylcholine micelles. Biophys J 2012; 103:2455-64. [PMID: 23260047 DOI: 10.1016/j.bpj.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022] Open
Abstract
Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important.
Collapse
Affiliation(s)
- Michael Stangl
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
41
|
Architectural and thermodynamic principles underlying intramembrane protease function. Nat Chem Biol 2012; 8:759-68. [PMID: 22797666 PMCID: PMC4028635 DOI: 10.1038/nchembio.1021] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/07/2012] [Indexed: 12/18/2022]
Abstract
Intramembrane proteases hydrolyze peptide bonds within the membrane as a signaling paradigm universal to all life forms and with implications in disease. Deciphering the architectural strategies supporting intramembrane proteolysis is an essential but unattained goal. We integrated a new, quantitative and high-throughput thermal light-scattering technology, reversible equilibrium un/refolding, and quantitative protease assays to interrogate rhomboid architecture with 151 purified variants. Rhomboid proteases maintain low intrinsic thermodynamic stability (ΔG=2.1-4.5kcal/mol) resulting from a multitude of generally-weak transmembrane packing interactions, making them highly-responsive to their environment. Stability is consolidated by two buried glycines and several packing leucines, with a few multifaceted hydrogen bonds strategically-deployed to two peripheral regions. Opposite these regions lie transmembrane segment 5 and connected loops that are notably exempt of structural responsibility, suggesting intramembrane proteolysis involves considerable but localized protein dynamics. Our analyses provide a comprehensive ‘heat map’ of the physio-chemical anatomy underlying membrane-immersed enzyme function at unprecedented resolution.
Collapse
|
42
|
Huysmans GH, Radford SE, Baldwin SA, Brockwell DJ. Malleability of the folding mechanism of the outer membrane protein PagP: parallel pathways and the effect of membrane elasticity. J Mol Biol 2012; 416:453-64. [PMID: 22245579 PMCID: PMC3314998 DOI: 10.1016/j.jmb.2011.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 10/29/2022]
Abstract
Understanding the interactions between membrane proteins and the lipid bilayer is key to increasing our ability to predict and tailor the folding mechanism, structure and stability of membrane proteins. Here, we have investigated the effects of changing the membrane composition and the relative concentrations of protein and lipid on the folding mechanism of the bacterial outer membrane protein PagP. The folding pathway, monitored by tryptophan fluorescence, was found to be characterized by a burst phase, representing PagP adsorption to the liposome surface, followed by a time course that reflects the folding and insertion of the protein into the membrane. In 1,2-dilauroyl-sn-glycero-3-phosphocholine (diC(12:0)PC) liposomes, the post-adsorption time course fits well to a single exponential at high lipid-to-protein ratios (LPRs), but at low LPRs, a second exponential phase with a slower folding rate constant is observed. Interrupted refolding assays demonstrated that the two exponential phases reflect the presence of parallel folding pathways. Partitioning between these pathways was found to be modulated by the elastic properties of the membrane. Folding into mixed 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine:diC(12:0)PC liposomes resulted in a decrease in PagP adsorption to the liposomes and a switch to the slower folding pathway. By contrast, inclusion of 1,2-dilauroyl-sn-glycero-3-phosphoserine into diC(12:0)PC liposomes resulted in a decrease in the folding rate of the fast pathway. The results highlight the effect of lipid composition in tailoring the folding mechanism of a membrane protein, revealing that membrane proteins have access to multiple, competing folding routes to a unique native structure.
Collapse
Affiliation(s)
- Gerard H.M. Huysmans
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen A. Baldwin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
43
|
Mitchell DC. Progress in understanding the role of lipids in membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:951-6. [PMID: 22236837 DOI: 10.1016/j.bbamem.2011.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
Detailed investigations of membrane protein folding present a number of serious technical challenges. Most studies addressing this subject have emphasized aspects of protein amino acid sequence and structure. While it is generally accepted that the interplay between proteins and lipids plays an important role in membrane protein folding, the role(s) played by membrane lipids in this process have only recently been explored in any detail. This review is intended to summarize recent studies in which particular lipids or membrane physical properties have been shown to play a role in the folding of intact, functionally competent integral membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Drake C Mitchell
- Department of Physics, Portland State University, Portland, OR 97207, USA.
| |
Collapse
|
44
|
Pan Y, Piyadasa H, O'Neil JD, Konermann L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J Mol Biol 2011; 416:400-13. [PMID: 22227391 DOI: 10.1016/j.jmb.2011.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
Glycerol facilitator (GF) is a tetrameric membrane protein responsible for the selective permeation of glycerol and water. Each of the four GF subunits forms a transmembrane channel. Every subunit consists of six helices that completely span the lipid bilayer, as well as two half-helices (TM7 and TM3). X-ray crystallography has revealed that the selectivity of GF is due to its unique amphipathic channel interior. To explore the structural dynamics of GF, we employ hydrogen/deuterium exchange (HDX) and oxidative labeling with mass spectrometry (MS). HDX-MS reveals that transmembrane helices are generally more protected than extramembrane segments, consistent with data previously obtained for other membrane proteins. Interestingly, TM7 does not follow this trend. Instead, this half-helix undergoes rapid deuteration, indicative of a highly dynamic local structure. The oxidative labeling behavior of most GF residues is consistent with the static crystal structure. However, the side chains of C134 and M237 undergo labeling although they should be inaccessible according to the X-ray structure. In agreement with our HDX-MS data, this observation attests to the fact that TM7 is only marginally stable. We propose that the highly mobile nature of TM7 aids in the efficient diffusion of guest molecules through the channel ("molecular lubrication"). In the absence of such dynamics, host-guest molecular recognition would favor semipermanent binding of molecules inside the channel, thereby impeding transport. The current work highlights the complementary nature of HDX, covalent labeling, and X-ray crystallography for the characterization of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|
45
|
Harris NJ, Booth PJ. Folding and stability of membrane transport proteins in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1055-66. [PMID: 22100867 DOI: 10.1016/j.bbamem.2011.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Transmembrane transporters are responsible for maintaining a correct internal cellular environment. The inherent flexibility of transporters together with their hydrophobic environment means that they are challenging to study in vitro, but recently significant progress been made. This review will focus on in vitro stability and folding studies of transmembrane alpha helical transporters, including reversible folding systems and thermal denaturation. The successful re-assembly of a small number of ATP binding cassette transporters is also described as this is a significant step forward in terms of understanding the folding and assembly of these more complex, multi-subunit proteins. The studies on transporters discussed here represent substantial advances for membrane protein studies as well as for research into protein folding. The work demonstrates that large flexible hydrophobic proteins are within reach of in vitro folding studies, thus holding promise for furthering knowledge on the structure, function and biogenesis of ubiquitous membrane transporter families. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
46
|
Bosse M, Thomas L, Hassert R, Beck-Sickinger AG, Huster D, Schmidt P. Assessment of a fully active class A G protein-coupled receptor isolated from in vitro folding. Biochemistry 2011; 50:9817-25. [PMID: 21999704 DOI: 10.1021/bi201320e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We provide a protocol for the preparation of fully active Y2 G protein-coupled receptors (GPCRs). Although a valuable target for pharmaceutical research, information about the structure and dynamics of these molecules remains limited due to the difficulty in obtaining sufficient amounts of homogeneous and fully active receptors for in vitro studies. Recombinant expression of GPCRs as inclusion bodies provides the highest protein yields at lowest costs. But this strategy can only successfully be applied if the subsequent in vitro folding results in a high yield of active receptors and if this fraction can be isolated from the nonactive receptors in a homogeneous form. Here, we followed that strategy to provide large quantities of the human neuropeptide Y receptor type 2 and determined the folding yield before and after ligand affinity chromatography using a radioligand binding assay. Directly after folding, we achieved a proportion of ~25% active receptor. This value could be increased to ~96% using ligand affinity chromatography. Thus, a very homogeneous sample of the Y2 receptor could be prepared that exhibited a K(D) value of 0.1 ± 0.05 nM for the binding of polypeptide Y, which represents one of the natural ligands of the Y2 receptor.
Collapse
Affiliation(s)
- Mathias Bosse
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2600-7. [DOI: 10.1016/j.bbamem.2011.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 01/13/2023]
|
48
|
Stable folding core in the folding transition state of an alpha-helical integral membrane protein. Proc Natl Acad Sci U S A 2011; 108:14133-8. [PMID: 21831834 DOI: 10.1073/pnas.1012594108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defining the structural features of a transition state is important in understanding a folding reaction. Here, we use Φ-value and double mutant analyses to probe the folding transition state of the membrane protein bacteriorhodopsin. We focus on the final C-terminal helix, helix G, of this seven transmembrane helical protein. Φ-values could be derived for 12 amino acid residues in helix G, most of which have low or intermediate values, suggesting that native structure is disrupted at these amino acid positions in the transition state. Notably, a cluster of residues between E204 and M209 all have Φ-values close to zero. Disruption of helix G is further confirmed by a low Φ-value of 0.2 between residues T170 on helix F and S226 on helix G, suggesting the absence of a native hydrogen bond between helices F and G. Φ-values for paired mutations involved in four interhelical hydrogen bonds revealed that all but one of these bonds is absent in the transition state. The unstructured helix G contrasts with Φ-values along helix B that are generally high, implying native structure in helix B in the transition state. Thus helix B seems to constitute part of a stable folding nucleus while the consolidation of helix G is a relatively late folding event. Polarization of secondary structure correlates with sequence position, with a structured helix B near the N terminus contrasting with an unstructured C-terminal helix G.
Collapse
|
49
|
Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. Proc Natl Acad Sci U S A 2011; 108:12717-22. [PMID: 21768343 DOI: 10.1073/pnas.1103192108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relation between changes in activation and equilibrium energy in macromolecular reactions remain enigmatic. When examining amphiphile regulation of gramicidin channel gating in lipid bilayers, we noted that the gating process could be described by a linear RE relation with a simple geometric interpretation. This description is possible because the gating process provides a well-understood reaction, in which structural changes in a bilayer-embedded model protein can be studied at the single-molecule level. It is thus possible to obtain quantitative information about the energetics of the reaction transition state and its position on a spatial coordinate. It turns out that the linear RE relation for the gramicidin monomer-dimer reaction can be understood, and the quantitative relation between changes in activation energy and equilibrium energy can be interpreted, by considering the effects of amphiphiles on the changes in bilayer elastic energy associated with channel gating. We are not aware that a similar simple mechanistic explanation of a linear RE relation has been provided for a chemical reaction in a macromolecule. RE relations generally should be useful for examining how amphiphile-induced changes in bilayer properties modulate membrane protein folding and function, and for distinguishing between direct (e.g., due to binding) and indirect (bilayer-mediated) effects.
Collapse
|
50
|
Miles AJ, Wallace BA, Esmann M. Correlation of structural and functional thermal stability of the integral membrane protein Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2573-80. [PMID: 21712026 DOI: 10.1016/j.bbamem.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
The membrane-bound cation-transporting P-type Na,K-ATPase isolated from pig kidney membranes is much more resistant towards thermal inactivation than the almost identical membrane-bound Na,K-ATPase isolated from shark rectal gland membranes. The loss of enzymatic activity is correlated well with changes in protein structure as determined using synchrotron radiation circular dichroism (SRCD) spectroscopy. The enzymatic activity is lost at a 12°C higher temperature for pig enzyme than for shark enzyme, and the major changes in protein secondary structure also occur at T(m)'s that are ~10-15°C higher for the pig than for the shark enzyme. The temperature optimum for the rate of hydrolysis of ATP is about 42°C for shark and about 57°C for pig, both of which are close to the temperatures for onset of thermal unfolding. These results suggest that the active site region may be amongst the earliest parts of the structure to unfold. Detergent-solubilized Na,K-ATPases from the two sources show the similar differences in thermal stability as the membrane-bound species, but inactivation occurs at a lower temperature for both, and may reflect the stabilizing effect of a bilayer versus a micellar environment.
Collapse
Affiliation(s)
- Andrew J Miles
- Department of Crystallography, Birkbeck College, University of London, London WC1E 7HX, UK
| | | | | |
Collapse
|