1
|
Peng X, Tao H, Xia F, Zhu M, Yang M, Liu K, Hou B, Li X, Li S, He Y, Huan W, Gao F. Molecular design, construction and analgesic mechanism insights into the novel transdermal fusion peptide ANTP-BgNPB. Bioorg Chem 2024; 148:107482. [PMID: 38795582 DOI: 10.1016/j.bioorg.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Toad venom, a traditional Chinese medicine, exhibits remarkable medicinal properties of significant therapeutic value. The peptides present within toad venom possess a wide range of biological functions, yet the neuropeptide B (NPB) and it modification requires further exploration to comprehensively understand its mechanisms of action and potential applications. In this study, a fusion peptide, ANTP-BgNPB, was designed to possess better analgesic properties through the transdermal modification of BgNPB. After optimizing the conditions, the expression of ANTP-BgNPB was successfully induced. The molecular dynamics simulations suggested that the modified protein exhibited improved stability and receptor binding affinity compared to its unmodified form. The analysis of the active site of ANTP-BgNPB and the verification of mutants revealed that GLN3, SER38, and ARG42 were crucial for the protein's recognition and binding with G protein-coupled receptor 7 (GPR7). Moreover, experiments conducted on mice using the hot plate and acetic acid twist body models demonstrated that ANTP-BgNPB was effective in transdermal analgesia. These findings represent significant progress in the development of transdermal delivery medications and could have a significant impact on pain management.
Collapse
Affiliation(s)
- Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Han Tao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Mingwei Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Kexin Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Bowen Hou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xintong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Suwan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanling He
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Wu A, Zhong C, Song X, Yuan W, Tang M, Shu T, Huang H, Yang P, Liu Q. The activation of LBH-CRYAB signaling promotes cardiac protection against I/R injury by inhibiting apoptosis and ferroptosis. iScience 2024; 27:109510. [PMID: 38660406 PMCID: PMC11039335 DOI: 10.1016/j.isci.2024.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury. The application of inhibitors, ectopic expression vectors, and knockout mouse models uniformly verified the role of LBH in alleviating both apoptosis and ferroptosis of CMs. p53 was identified as a mutual downstream effector for both LBH-CRYAB-modulated apoptosis and ferroptosis inhibition. In mouse models, LBH overexpression was confirmed to exert enhanced cardiac protection against I/R-induced apoptosis and ferroptosis, suggesting that LBH could serve as a promising target for the development of I/R therapy.
Collapse
Affiliation(s)
- Anbiao Wu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
- Beijing Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Chongbin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Wen Yuan
- Experimental Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Mintian Tang
- Experimental Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Tao Shu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Houda Huang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| | - Qicai Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, People’s Republic of China
| |
Collapse
|
3
|
Mashraqi MM, Alzamami A, Alturki NA, Almasaudi HH, Ahmed I, Alshamrani S, Basharat Z. Chimeric vaccine design against the conserved TonB-dependent receptor-like β-barrel domain from the outer membrane tbpA and hpuB proteins of Kingella kingae ATCC 23330. Front Mol Biosci 2023; 10:1258834. [PMID: 38053576 PMCID: PMC10694214 DOI: 10.3389/fmolb.2023.1258834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023] Open
Abstract
Kingella kingae is a Gram-negative bacterium that primarily causes pediatric infections such as septicemia, endocarditis, and osteoarticular infections. Its virulence is attributed to the outer membrane proteins having implications in bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent receptors (TBDRs) play an important role in nutrition and were previously implicated as vaccine targets in other bacteria. Therefore, we targeted the conserved β-barrel TBDR domain of these proteins for designing a vaccine construct that could elicit humoral and cellular immune responses. We used bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC 23330 and then predict B- and T-cell epitopes from their conserved β-barrel TDR domain. A chimeric vaccine construct was designed using three antigenic epitopes, covering >98% of the world population and capable of inciting humoral and adaptive immune responses. The final construct elicited a robust immune response. Docking and dynamics simulation showed good binding affinity of the vaccine construct to various receptors of the immune system. Additionally, the vaccine was predicted to be safe and non-allergenic, making it a promising candidate for further development. In conclusion, our study demonstrates the potential of immunoinformatics approaches in designing chimeric vaccines against K. kingae infections. The chimeric vaccine we designed can serve as a blueprint for future experimental studies to develop an effective vaccine against this pathogen, which can serve as a potential strategy to prevent K. kingae infections.
Collapse
Affiliation(s)
- Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan H. Almasaudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
4
|
Chung H, Kim J, Lee YJ, Choi KR, Jeong KJ, Kim GJ, Lee SY. Enhanced production of difficult-to-express proteins through knocking down rnpA gene expression. Biotechnol J 2023; 18:e2200641. [PMID: 37285237 DOI: 10.1002/biot.202200641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Escherichia coli has been employed as a workhorse for the efficient production of recombinant proteins. However, some proteins were found to be difficult to produce in E. coli. The stability of mRNA has been considered as one of the important factors affecting recombinant protein production. Here we report a generally applicable and simple strategy for enhancing mRNA stability, and consequently improving recombinant protein production in E. coli. RNase P, a ribozyme comprising an RNA subunit (RnpB) and a protein subunit (RnpA), is involved in tRNA maturation. Based on the finding that purified RnpA can digest rRNA and mRNA in vitro, it was reasoned that knocking down the level of RnpA might enhance recombinant protein production. For this, the synthetic small regulatory RNA-based knockdown system was applied to reduce the expression level of RnpA. The developed RnpA knockdown system allowed successful overexpression of 23 different recombinant proteins of various origins and sizes, including Cas9 protein, antibody fragment, and spider silk protein. Notably, a 284.9-kDa ultra-high molecular weight, highly repetitive glycine-rich spider silk protein, which is one of the most difficult proteins to produce, could be produced to 1.38 g L-1 , about two-fold higher than the highest value previously achieved, by a fed-batch culture of recombinant E. coli strain employing the RnpA knockdown system. The RnpA-knockdown strategy reported here will be generally useful for the production of recombinant proteins including those that have been difficult to produce.
Collapse
Affiliation(s)
- Hannah Chung
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| | - Jiyong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| | - Yong Jae Lee
- Protein Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ki Jun Jeong
- Protein Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
A Sequence- and Ligation-Independent Cloning (SLIC) Procedure for the Insertion of Genes into a Plasmid Vector. Methods Mol Biol 2023; 2633:25-32. [PMID: 36853453 DOI: 10.1007/978-1-0716-3004-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Molecular cloning is a routine technique for many laboratories with applications from genetic engineering to recombinant protein expression. While restriction-ligation cloning can be slow and inefficient, ligation-independent cloning uses long single-stranded overhangs generated by T4 DNA polymerase's 3' exonuclease activity to anneal the insert and plasmid vector prior to transformation. This chapter describes a fast, high-efficiency protocol for inserting one or more genes into a vector using sequence- and ligation-independent cloning (SLIC).
Collapse
|
7
|
A fully automated high-throughput plasmid purification workstation for the generation of mammalian cell expression-quality DNA. SLAS Technol 2022; 27:227-236. [DOI: 10.1016/j.slast.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Liu Z, Wu G, Wu H. Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1. 3 Biotech 2022; 12:58. [PMID: 35186655 PMCID: PMC8816995 DOI: 10.1007/s13205-022-03111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclodextrin glucosyltransferase (CGTase) is an enzyme which degrades starch to produce cyclodextrins (CDs). In this study, the β-CGTase producing strain T1 was identified as Bacillus sp. by its morphological characteristics and 16S rDNA sequence analysis. The cgt-T1 gene was cloned and expressed in Escherichia coli. CGTase-T1 was purified by Ni-nitrilotriacetic acid agarose column and the molecular weight was determined as approximately 75 kDa using SDS-PAGE analysis. For the expression of soluble proteins, the optimal induction conditions were 10 h at 25 °C with OD600 at 0.8. The purified CGTase-T1 exhibited maximum activity with an optimal pH and temperature of 6.0 and 65 °C. The enzyme was stable in a pH range of 7.0-10.0, retaining over 85% relative activity for 1 h. CGTase-T1 activity can be significantly enhanced by adding 1 mM Ba2+. Using a soluble starch substrate, the kinetic parameters were revealed with K M and k cat/K M values of 2.75 mg mL-1 and 1253.97 s-1 mL mg-1, respectively. Additionally, the four enzyme activities of CGTase-T1 were determined. The highest conversion rate to CDs (40.9%) was achieved from soluble starch after 8 h of enzyme reaction, where mainly β-CD was produced (79.1% of the total CDs yield), indicating that CGTase-T1 potentially has industrial application prospect. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03111-8.
Collapse
Affiliation(s)
- Zhenyang Liu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
| | - Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Bei Zhai Road, Shanghai, 201106 China
| | - Huawei Wu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
| |
Collapse
|
9
|
Bandyopadhyay B, Peleg Y. Application of Restriction Free (RF) Cloning in Circular Permutation. Methods Mol Biol 2022; 2461:149-163. [PMID: 35727449 DOI: 10.1007/978-1-0716-2152-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The restriction free (RF) cloning has emerged as one of the highly efficient techniques in the area of genetic engineering. RF cloning has wide range of applications in plasmid DNA manipulation including cloning of a single gene, simultaneous assembly of multiple DNA fragments, and mutagenesis from single to multiple simultaneous alterations of a target DNA. Recently, we have developed a new technique of circular permutation using RF cloning. Circular permutation is widely used to investigate the mechanisms of protein folding and function. Previously, restriction enzyme based cloning was used to introduce circular permutation. Our RF cloning method made the protocol faster and more cost-effective. In this chapter, we describe a step-by-step protocol for generating circular permutants using RF methodology.
Collapse
|
10
|
Kazokaitė-Adomaitienė J, Becker HM, Smirnovienė J, Dubois LJ, Matulis D. Experimental Approaches to Identify Selective Picomolar Inhibitors for Carbonic Anhydrase IX. Curr Med Chem 2021; 28:3361-3384. [PMID: 33138744 DOI: 10.2174/0929867327666201102112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.
Collapse
Affiliation(s)
- Justina Kazokaitė-Adomaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Netherlands
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
So you want to express your protein in Escherichia coli? Essays Biochem 2021; 65:247-260. [PMID: 33955451 DOI: 10.1042/ebc20200170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Recombinant proteins have been extensively employed as therapeutics for the treatment of various critical and life-threatening diseases and as industrial enzymes in high-value industrial processes. Advances in genetic engineering and synthetic biology have broadened the horizon of heterologous protein production using multiple expression platforms. Selection of a suitable expression system depends on a variety of factors ranging from the physicochemical properties of the target protein to economic considerations. For more than 40 years, Escherichia coli has been an established organism of choice for protein production. This review aims to provide a stepwise approach for any researcher embarking on the journey of recombinant protein production in E. coli. We present an overview of the challenges associated with heterologous protein expression, fundamental considerations connected to the protein of interest (POI) and designing expression constructs, as well as insights into recently developed technologies that have contributed to this ever-growing field.
Collapse
|
12
|
Sari‐Ak D, Bufton J, Gupta K, Garzoni F, Fitzgerald D, Schaffitzel C, Berger I. VLP-factory™ and ADDomer © : Self-assembling Virus-Like Particle (VLP) Technologies for Multiple Protein and Peptide Epitope Display. Curr Protoc 2021; 1:e55. [PMID: 33729713 PMCID: PMC9733710 DOI: 10.1002/cpz1.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virus-like particles (VLPs) play a prominent role in vaccination as safe and highly versatile alternatives to attenuated or inactivated viruses or subunit vaccines. We present here two innovations, VLP-factory™ and ADDomer© , for creating VLPs displaying entire proteins or peptide epitopes as antigens, respectively, to enable efficient vaccination. For producing these VLPs, we use MultiBac, a baculovirus expression vector system (BEVS) that we developed for producing complex protein biologics in insect cells transfected with an engineered baculovirus. VLPs are protein assemblies that share features with viruses but are devoid of genetic material, and thus considered safe. VLP-factory™ represents a customized MultiBac baculovirus tailored to produce enveloped VLPs based on the M1 capsid protein of influenza virus. We apply VLP-factory™ to create an array of influenza-derived VLPs presenting functional mutant influenza hemagglutinin (HA) glycoprotein variants. Moreover, we describe MultiBac-based production of ADDomer© , a synthetic self-assembling adenovirus-derived protein-based VLP platform designed to display multiple copies of pathogenic epitopes at the same time on one particle for highly efficient vaccination. © 2021 The Authors. Basic Protocol 1: VLP-factory™ baculoviral genome generation Basic Protocol 2: Influenza VLP array generation using VLP-factory™ Basic Protocol 3: Influenza VLP purification Basic Protocol 4: ADDomer© BioBrick design, expression, and purification Basic Protocol 5: ADDomer© candidate vaccines against infectious diseases.
Collapse
Affiliation(s)
- Duygu Sari‐Ak
- Department of Medical Biology, School of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Joshua Bufton
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Frederic Garzoni
- Imophoron Ltd, St. Philips CentralSt. PhilipsBristolUnited Kingdom
| | | | - Christiane Schaffitzel
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom,School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom,School of ChemistryUniversity of BristolBristolUnited Kingdom,Max Planck Bristol Centre for Minimal BiologyUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
13
|
Liu W, Wang L, Zhang J, Qiao L, Liu Y, Yang X, Zhang J, Zheng W, Ma Z. Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer. 3 Biotech 2021; 11:8. [PMID: 33442507 DOI: 10.1007/s13205-020-02571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
Chemokine (CC-motif) ligand 2 (CCL2) is an inflammatory cytokine that regulates the infiltration and migration of monocytes. It is highly expressed by both tumor and stromal cells and has been associated with tumorigenesis. However, the effect of the exogenous administration of CCL2 on ovarian cancer remains largely unknown. In this report, we attempted to establish an expression system in Escherichia coli to produce recombinant hCCL2. The recombinant plasmid containing the hCCL2 cDNA was prepared using the prokaryotic-expression plasmid pGEX-5X-3 and transformed into E. coli BL21. GST-hCCL2 was successfully induced by 0.1 mmol/L IPTG at 20 °C for 6 h, and the recombinant protein was purified using affinity chromatography. The purified protein was identified by SDS-PAGE and Western Blot. In vitro experiments revealed that rhCCL2 promoted the proliferation of ovarian cancer cells and increased the levels of phosphorylation of MEK and ERK1/2, and the levels of JUN, RELB and NF-κB2 mRNA. Furthermore, inhibition of ERK signaling by treatment with PD98059 decreased ovarian cancer cell proliferation and levels of JUN, RELB, and NF-κB2 mRNA, indicating that exogenous rhCCL2 increased the proliferation of ovarian cancer cells, partially by activating the MAPK/ERK pathway, and by targeting JUN, RELB, and NF-κB2. Our study uncovered a promoting role of exogenous CCL2 on ovarian cancer cell proliferation through the MAPK/ERK signaling pathway, which may facilitate the discovery of more potential roles of CCL2 in ovarian cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02571-0.
Collapse
|
14
|
Abstract
Here we present a modification of the widely used pET29 expression vector for use in rapid and straightforward parallel cloning via a gene replacement and Golden Gate strategy. The modification can be applied to other expression vectors for Gram-negative bacteria. We have used the modified vectors to clone large numbers of bacterial natural enzyme variants from genomic and metagenomic sources for applications in biocatalysis.
Collapse
|
15
|
Balcerek J, Bednarek M, Sobieściak TD, Pietrucha T, Jaros S. Toward Shortened the Time-to-Market for Biopharmaceutical Proteins: Improved Fab Protein Expression Stability Using the Cre/lox System in a Multi-Use Clonal Cell Line. J Pharm Sci 2020; 110:946-951. [PMID: 33058893 DOI: 10.1016/j.xphs.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Stable gene integration and rapid selection of high-expressing clones are important when developing biopharmaceutical systems to produce a protein of interest. According to regulatory guidelines, the final production clones should be stable through multiple cell generations. To achieve long-term stable expression of Fab genes via recombinase-mediated cassette exchange (RMCE), we modified mutual configurations of the lox sequences. By inversion of the spacer orientation, we avoided the loss of the integrated gene after several dozen cycles of cell division. This feature also prevents reversible transgene integration. Although the RMCE allows us to generate transgenic lines rapidly relative to current methods, it remains difficult to obtain stable industrial cell lines for long-term culturing and for the initial development stage. In this study, we present an approach to shortening the timeline for therapeutic protein development. Our approach provides easy access to the same clonal cell line in the initial development phase, and also for the production of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Julita Balcerek
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| | - Marta Bednarek
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| | - Tomasz D Sobieściak
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland.
| | - Tadeusz Pietrucha
- Medical University of Lodz, ul. Żeligowskiego 7/9, 90-752 Łódź, Poland
| | - Sławomir Jaros
- Mabion S.A. Scientific-Industrial Complex of Medical Biotechnology, ul. Langiewicza 60, 95-050 Konstantynów Łódzki, Poland
| |
Collapse
|
16
|
Orozco Valencia A, Camargo Knirsch M, Suavinho Ferro E, Antonio Stephano M. Interleukin-2 as immunotherapeutic in the autoimmune diseases. Int Immunopharmacol 2020; 81:106296. [PMID: 32058934 DOI: 10.1016/j.intimp.2020.106296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/27/2022]
Abstract
Interleukins, also called cytokines are secretory proteins that bind to specific receptors and play a critical role in the intercellular communication between cells of the immune system. Cytokines are mainly produced by T lymphocytes, macrophages and eosinophils. Among its functions are the activation and suppression of immune system responses, induction of cell division and regulation of memory cells. Interleukin 2 (IL-2) is a secretory monomeric glycoprotein composed of 149 amino acids containing a signal peptide of 20 amino acids. It is classified as a member of the type I cytokines family. IL-2 binds to its receptor (IL-2R receptor) with high affinity and its signaling function promotes the activation of various subtypes of lymphocytes during the process of cell differentiation to generate an immune or homeostatic response. The specificity of IL-2 depends on its binding to low, medium or high-affinity receptors. Interleukin 2 acts as a regulator of the proliferation of CD4+ and CD8+ T cells. There is a relationship between IL-2 and autoimmune diseases due to its influence in the differentiation of T helper cells, which in turn directly influence immunological response processes. Therefore, IL-2 is a key element in the control and treatment of those diseases. In recent years, many therapeutic agents based on biomolecules and recombinant chimeric proteins have been developed to treat different autoimmune diseases. In this review, we focus on the use of interleukin 2 as a versatile therapeutic agent, alone or associated with other molecules to increase the efficiency of autoimmune disease treatment.
Collapse
Affiliation(s)
- Alexy Orozco Valencia
- Department of Pharmaceutical Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Marcos Camargo Knirsch
- Department of Pharmaceutical Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Emer Suavinho Ferro
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Stephano
- Department of Pharmaceutical Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Martínez-Espinosa RM. Heterologous and Homologous Expression of Proteins from Haloarchaea: Denitrification as Case of Study. Int J Mol Sci 2019; 21:E82. [PMID: 31877629 PMCID: PMC6981372 DOI: 10.3390/ijms21010082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Abstract
Haloarchaea (halophilic microbes belonging to the Archaea domain) are microorganisms requiring mid or even high salt concentrations to be alive. The molecular machinery of these organisms is adapted to such conditions, which are stressful for most life forms. Among their molecular adaptations, halophilic proteins are characterized by their high content of acidic amino acids (Aspartate (Asp) and glumate (Glu)), being only stable in solutions containing high salt concentration (between 1 and 4 M total salt concentration). Recent knowledge about haloarchaeal peptides, proteins, and enzymes have revealed that many haloarchaeal species produce proteins of interest due to their potential applications in biotechnology-based industries. Although proteins of interest are usually overproduced in recombinant prokaryotic or eukaryotic expression systems, these procedures do not accurately work for halophilic proteins, mainly if such proteins contain metallocofactors in their structures. This work summarizes the main challenges of heterologous and homologous expression of enzymes from haloarchaea, paying special attention to the metalloenzymes involved in the pathway of denitrification (anaerobic reduction of nitrate to dinitrogen), a pathway with significant implications in wastewater treatment, climate change, and biosensor design.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences and Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
18
|
Li D, Zheng C, Zhou J, Chen B, Xu R, Yuan W, Zheng E, Liang W, Yang Y, He L, Shi J, Yan C, Wang X, Chen J. pGP-B2E, a Recombinant Compatible TA/TB-Ligation Vector for Rapid and Inexpensive Gene Cloning. Mol Biotechnol 2019; 62:56-66. [PMID: 31749084 DOI: 10.1007/s12033-019-00226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA cloning is the basic step for different fields of life science, and many efforts have been made to simplify this procedure. In this study, we report two general purpose plasmids (pGP), pGP-XB2E and pGP-B2E, for rapid and cost-effective construct of basic clones. The BciVI and XcmI cleavage sites are designed in pGP-XB2E to test plasmid linearization efficiency. The plasmid has better linearization efficiency by using BciVI which could almost completely digest 2 μg plasmid in 10 min with only one-tenth the recommended enzyme concentration. In order to further optimize the pGP-XB2E, a new plasmid, pGP-B2E, which removed XcmI cleavage site was designed. This vector is highly efficient for cloning PCR products up to 1812 bp, and the number of colonies was about five times that of pGP-XB2E. In addition to TA cloning, blunt-end PCR products with T ended in the primer could be positively linked to the T-vector pGP-B2E without A-tailing treatment (TB cloning). Moreover, as an entry vector, pGP-B2E was also compatible for gateway recombination reaction without frameshift mutations. In general, this vector provides a universal, quick, and cost-efficient method for basic molecular cloning.
Collapse
Affiliation(s)
- Dongyue Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chao Zheng
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Bin Chen
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Rumeng Xu
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wenxia Yuan
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ersong Zheng
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Weifang Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yong Yang
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Lijuan He
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jianghua Shi
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, 315101, People's Republic of China
| | - Xuming Wang
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| | - Jianping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
- Institute of Plant Virology, Ningbo University, Ningbo, People's Republic of China.
| |
Collapse
|
19
|
Lee KH, Kim DM. Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins. FEMS Microbiol Lett 2019; 365:5062788. [PMID: 30084930 DOI: 10.1093/femsle/fny174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Cell-free protein synthesis has emerged in recent years as a powerful tool that can potentially transform the production of recombinant proteins. Cell-free protein synthesis harnesses the synthetic power of living cells while eliminating many of the constraints of traditional cell-based gene expression methods. Due to the lack of physical barriers separating the protein synthesis machinery from the surrounding environment, a cell-free protein synthesis reaction mixture can be directly programmed using diverse genetic material for the instant production of recombinant proteins without complicated cloning procedures. However, a number of issues must be addressed for this technology to be widely accepted as an alternative platform for protein production, including quality-control of translation machinery preparations, and high reagent cost. This review describes recent efforts to make cell-free protein synthesis more affordable and more easily accessible for generic applications.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
20
|
Bandyopadhyay B, Peleg Y. Facilitating circular permutation using Restriction Free (RF) cloning. Protein Eng Des Sel 2019; 31:65-68. [PMID: 29319799 DOI: 10.1093/protein/gzx061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023] Open
Abstract
Circular permutation is a powerful tool to test the role of topology in protein folding and function. Previous methods for generating circular permutants were based on rearranging gene elements using restriction enzymes-based cloning. Here, we present a Restriction Free (RF) approach to achieve circular permutation which is faster and more cost-effective.
Collapse
Affiliation(s)
| | - Yoav Peleg
- The Israel Structural Proteomics Center (ISPC), Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Sari-Ak D, Bahrami S, Laska MJ, Drncova P, Fitzgerald DJ, Schaffitzel C, Garzoni F, Berger I. High-Throughput Production of Influenza Virus-Like Particle (VLP) Array by Using VLP-factory ™, a MultiBac Baculoviral Genome Customized for Enveloped VLP Expression. Methods Mol Biol 2019; 2025:213-226. [PMID: 31267455 DOI: 10.1007/978-1-4939-9624-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Baculovirus-based expression of proteins in insect cell cultures has emerged as a powerful technology to produce complex protein biologics for many applications ranging from multiprotein complex structural biology to manufacturing of therapeutic proteins including virus-like particles (VLPs). VLPs are protein assemblies that mimic live viruses but typically do not contain any genetic material, and therefore are safe and attractive alternatives to life attenuated or inactivated viruses for vaccination purposes. MultiBac is an advanced baculovirus expression vector system (BEVS) which consists of an engineered viral genome that can be customized for tailored applications. Here we describe the creation of a MultiBac-based VLP-factory™, based on the M1 capsid protein from influenza, and its application to produce in a parallelized fashion an array of influenza-derived VLPs containing functional mutations in influenza hemagglutinin (HA) thought to modulate the immune response elicited by the VLP.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- The European Molecular Biology Laboratory (EMBL), Grenoble Cedex 9, France
| | | | - Magdalena J Laska
- Department of Biomedicine, Bartholins Allé 6, University of Aarhus, Aarhus C, Denmark
| | - Petra Drncova
- The European Molecular Biology Laboratory (EMBL), Grenoble Cedex 9, France
| | | | - Christiane Schaffitzel
- School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University Walk, University of Bristol, Clifton, UK
| | | | - Imre Berger
- School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University Walk, University of Bristol, Clifton, UK.
| |
Collapse
|
22
|
Ortega C, Abreu C, Oppezzo P, Correa A. Overview of High-Throughput Cloning Methods for the Post-genomic Era. Methods Mol Biol 2019; 2025:3-32. [PMID: 31267446 DOI: 10.1007/978-1-4939-9624-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The advent of new DNA sequencing technologies leads to a dramatic increase in the number of available genome sequences and therefore of target genes with potential for functional analysis. The insertion of these sequences into proper expression vectors requires a simple an efficient cloning method. In addition, when expressing a target protein, quite often it is necessary to evaluate different DNA constructs to achieve a soluble and homogeneous expression of the target with satisfactory yields. The development of new molecular methods made possible the cloning of a huge number of DNA sequences in a high-throughput manner, necessary for meeting the increasing demands for soluble protein expression and characterization. In this chapter several molecular methods suitable for high-throughput cloning are reviewed.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular, Cellular and Animal Technology Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
23
|
Cassette hybridization for vector assembly application in antibody chain shuffling. Biotechniques 2018; 65:269-274. [DOI: 10.2144/btn-2018-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene assembly methods are an integral part of molecular cloning experiments. The majority of existing vector assembly methods stipulate a need for exonucleases, endonucleases and/or the use of single-stranded DNA as starting materials. Here, we introduced a vector assembly method that employs conventional PCR to amplify stable double-stranded DNA fragments and assembles them into functional vectors specifically for antibody chain shuffling. We successfully formed vectors using cassettes amplified from different templates and assembled an array of single chain fragment variable clones of fixed variable heavy chain, with different variable light chains – a chain shuffling process for antibody maturation. The method provides an easy alternative to the conventional cloning process.
Collapse
|
24
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Tan L, Strong EJ, Woods K, West NP. Homologous alignment cloning: a rapid, flexible and highly efficient general molecular cloning method. PeerJ 2018; 6:e5146. [PMID: 30038856 PMCID: PMC6054264 DOI: 10.7717/peerj.5146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Homologous alignment cloning (HAC) is a rapid method of molecular cloning that facilitates low-cost, highly efficient cloning of polymerase chain reaction products into any plasmid vector in approximately 2 min. HAC facilitates insert integration due to a sequence alignment strategy, by way of short, vector-specific homology tails appended to insert during amplification. Simultaneous exposure of single-stranded fragment ends, utilising the 3′→5′ exonuclease activity of T4 DNA polymerase, creates overlapping homologous DNA on each molecule. The exonuclease activity of T4 polymerase is quenched simply by the addition of EDTA and a simple annealing step ensures high yield and high fidelity vector formation. The resultant recombinant plasmids are transformed into standard E. coli cloning strains and screened via established methods as necessary. HAC exploits reagents commonly found in molecular research laboratories and achieves efficiencies that exceed conventional cloning methods, including another ligation-independent method we tested. HAC is also suitable for combining multiple fragments in a single reaction, thus extending its flexibility.
Collapse
Affiliation(s)
- Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Emily J Strong
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Kyra Woods
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Gao H, Qi X, Hart DJ, Gao S, Wang H, Xu S, Zhang Y, Liu X, Liu Y, An Y. Three Novel Escherichia coli Vectors for Convenient and Efficient Molecular Biological Manipulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6123-6131. [PMID: 29798665 DOI: 10.1021/acs.jafc.8b01960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have constructed novel plasmids pANY2, pANY3, and pANY6 for flexible cloning with low false positives, efficient expression, and convenient purification of proteins. The pANY2 plasmid can be used for efficient isopropyl-β-d-thiogalactoside (IPTG) induced protein expression, while the pANY3 plasmid can be used for temperature-induced expression. The pANY6 plasmid contains a self-cleaving elastin-like protein (ELP) tag for purification of recombinant protein by simple ELP-mediated precipitation steps and removal of the ELP tag by self-cleavage. A urea-based denaturation and refolding processes for renaturation of insoluble inclusion bodies can be conveniently integrated into the ELP-mediated precipitation protocol, removing time-consuming dialysis steps. These novel vectors, together with the described strategies of gene cloning, protein expression, and purification, may have wide applications in biosciences, agricultural, food technologies, and so forth.
Collapse
Affiliation(s)
- Herui Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xianghui Qi
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS , University Grenoble Alpes , Grenoble 38044 , France
| | - Song Gao
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Hongling Wang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Shumin Xu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifeng Zhang
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Xia Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yifei Liu
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| | - Yingfeng An
- College of Biosciences and Biotechnology , Shenyang Agricultural University , Shenyang 110161 , China
| |
Collapse
|
27
|
Liu X, Li T, Hart DJ, Gao S, Wang H, Gao H, Xu S, Zhang Y, Liu Y, An Y. A universal mini-vector and an annealing of PCR products (APP)-based cloning strategy for convenient molecular biological manipulations. Biochem Biophys Res Commun 2018; 497:978-982. [PMID: 29448102 DOI: 10.1016/j.bbrc.2018.02.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
Currently, the most widely used strategies for molecular cloning are sticky-end ligation-based cloning, TA cloning, blunt-end ligation-based cloning and ligase-independent cloning. In this study we have developed a novel mini-vector pANY1 which can simultaneously meet the requirements of all these cloning strategies. In addition, the selection of appropriate restriction digestion sites is difficult in some cases because of the presence of internal sites. In this study, an annealing of PCR products (APP)-based sticky-end cloning strategy was introduced to avoid this issue. Additionally, false positives occur during molecular cloning, which increases the workload of isolating positive clones. The plasmid pANY1 contains a ccdB cassette between multiple cloning sites, which efficiently avoids these false positives. Therefore, this mini-vector should serve as a useful tool with wide applications in biosciences, agriculture, food technologies, etc.
Collapse
Affiliation(s)
- Xia Liu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Wang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Herui Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yifeng Zhang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
28
|
Semi-automated Tip Snip cloning of restriction fragments into and out of plasmid polylinkers. Biotechniques 2017; 62:99-106. [PMID: 28298176 DOI: 10.2144/000114522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022] Open
Abstract
Synthetic biologists rely on semi-synthetic recombinant plasmids, but DNA synthesis is constrained by practical limits on length, accuracy, and sequence composition. Cloned DNA parts can be assembled into longer constructs via subcloning, but conventional methods are labor-intensive. One-pot recombination reactions are more convenient but harder to troubleshoot, and those that depend on PCR to create fragments with compatible ends necessitate re-sequencing. The Tip Snip protocol described here enables the subcloning of an insert from one plasmid polylinker into another without PCR or gel purification steps. Cohesive ends of unwanted restriction fragments are snipped off by additional restriction endonucleases. The resulting short fragments (snippets) are eliminated by hybridization to complementary oligonucleotides (anti-snippets) and subsequent size-selection spin-column chromatography. Unwanted linear donor vectors are ligated to double-stranded oligonucleotides (unlinkers) so that only the desired insert and recipient plasmid form circular DNA capable of transforming bacteria. This new method is compatible with high-throughput processing and automated liquid handling, and because no specialized vectors, reagents, selection schemes, or analytical techniques are required, the barriers to adoption are low.
Collapse
|
29
|
Berger I, Jiang Q, Schulze RJ, Collinson I, Schaffitzel C. Multiprotein Complex Production in E. coli: The SecYEG-SecDFYajC-YidC Holotranslocon. Methods Mol Biol 2017; 1586:279-290. [PMID: 28470612 DOI: 10.1007/978-1-4939-6887-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A modular approach for balanced overexpression of recombinant multiprotein complexes in E. coli is described, with the prokaryotic protein secretase/insertase complex, the SecYEG-SecDFYajC-YidC holotranslocon (HTL), used as an example. This procedure has been implemented here in the ACEMBL system. The protocol details the design principles of the monocistronic or polycistronic DNA constructs, the expression and purification of functional HTL and its association with translating ribosome nascent chain (RNC) complexes into a RNC-HTL supercomplex.
Collapse
Affiliation(s)
- Imre Berger
- The School of Biochemistry, University Walk, University of Bristol, Clifton, BS8 1TD, UK.
- The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI), BP 181, Polygone Scientifique, 6 Rue Jules Horowitz, 38042, Grenoble Cedex 9, France.
| | - Quiyang Jiang
- The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI), BP 181, Polygone Scientifique, 6 Rue Jules Horowitz, 38042, Grenoble Cedex 9, France
| | - Ryan J Schulze
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ian Collinson
- The School of Biochemistry, University Walk, University of Bristol, Clifton, BS8 1TD, UK
| | - Christiane Schaffitzel
- The School of Biochemistry, University Walk, University of Bristol, Clifton, BS8 1TD, UK
- The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI), BP 181, Polygone Scientifique, 6 Rue Jules Horowitz, 38042, Grenoble Cedex 9, France
| |
Collapse
|
30
|
Yao S, Hart DJ, An Y. Recent advances in universal TA cloning methods for use in function studies. Protein Eng Des Sel 2016; 29:551-556. [PMID: 27578885 DOI: 10.1093/protein/gzw047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 01/08/2023] Open
Abstract
As one of the simplest and most efficient cloning methods, T-vector-based TA cloning has been widely used for cloning of single genes and construction of DNA libraries. This approach is especially suitable for high-throughput cloning of diverse DNA fragments since inserts can be cloned without knowledge of their sequence; it is therefore an ideal tool for high-throughput analysis of protein structure and function. Although most of the currently available T-vectors can only be used for cloning purposes, some novel variants with improved functions have be developed. This review focuses on recent developments of universal TA cloning methods and T-vectors constructed for function studies.
Collapse
Affiliation(s)
- Shuo Yao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble38044, France
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|