1
|
Chung HS. Characterizing heterogeneity in amyloid formation processes. Curr Opin Struct Biol 2024; 89:102951. [PMID: 39566372 PMCID: PMC11602362 DOI: 10.1016/j.sbi.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Protein aggregation is a complex process, consisting of a large number of pathways connecting monomers and mature amyloid fibrils. Recent advances in structure determination techniques, such as solid-state NMR and cryoEM, have allowed the determination of atomic resolution structures of fibril polymorphs, but most of the intermediate stages of the process including oligomer formation remain unknown. Proper characterization of the heterogeneity of the process is critical not only for physical and chemical understanding of the aggregation process but also for elucidation of the disease mechanisms and identification of therapeutic targets. This article reviews recent developments in the characterization of heterogeneity in amyloid formation processes.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
2
|
De Figueiredo I, Bartenlian B, Hamouda F, Bouville D, Pallandre A, Halgand F. From Microsize Chromatographic Manufacturing for Fast Desalting to Its Characterization. Anal Chem 2024; 96:15907-15914. [PMID: 39344030 DOI: 10.1021/acs.analchem.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microfluidic devices are becoming increasingly popular in protein analysis due to their ability to reduce sample and buffer volumes. However, there is a research gap concerning the coupling of this technology with ion mobility and mass spectrometry (IM-MS). This study aims to fill this void by introducing the manufacture and the characterization of a microsize exclusion chromatography (μSEC) module for fast desalting and its integration into microfluidics, along with its coupling to electrospray ionization and ion mobility mass spectrometry (ESI-IM-MS). To assess the feasibility of this approach, the desalting of α-synuclein (αS) was investigated using Bio Spin P6 gel as a stationary phase in the manufacture of a microfluidic device. αS detection by MS gives insight into the sample purity, while IM combined with MS provides information about protein structure. IM allowed both the recording of qualitative and quantitative information. The qualitative data provided a map of the conformers in equilibrium, while the calculation of the respective abundances (quantitative profile) of the conformers afforded the opportunity to describe the dynamics of the system. Our experiments, serving as proof-of-concept, demonstrate αS desalting, exchange buffer efficiency, and reduced solvent usage, without compromising the protein's structure.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| | - Bernard Bartenlian
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - Frédéric Hamouda
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - David Bouville
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| |
Collapse
|
3
|
Brandner S, Habeck T, Lermyte F. Mass spectrometry reflects key aspects of copper-amyloid β chemistry. Analyst 2024. [PMID: 39373136 DOI: 10.1039/d4an00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mass spectrometry is a powerful method to study protein complexes; however, biochemical reactions are typically beyond the scope of MS studies. Here, we have studied the gas-phase redox chemistry of the [copper(II) - amyloid β] complex and show that the sequence-dependence of this chemistry reflects key aspects of the known in vitro behaviour of different variants of the peptide.
Collapse
Affiliation(s)
- Sarah Brandner
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany.
| | - Tanja Habeck
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany.
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany.
| |
Collapse
|
4
|
Yang G, Zhang L, Xie S, Wu J, Khan M, Zhang Y, Liu L, Li J. Protonation State-Induced Unfolding of Protein Secondary Structure in the Gas Phase. J Phys Chem Lett 2024; 15:9374-9379. [PMID: 39240543 DOI: 10.1021/acs.jpclett.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The combination of infrared spectroscopy (IR) and ion mobility mass spectrometry (IM-MS) has revealed that protein secondary structures are retained upon transformation from aqueous solution to the gas phase under gentle conditions. Yet the details about where and how these structural elements are embedded in the gas phase remain elusive. In this study, we employ long time scale molecular dynamics (MD) simulations to examine the extent to which proteins retain their solution structures and the impact of protonation state on the stability of secondary structures in the gas phase. Our investigation focuses on two well-studied proteins, myoglobin and β-lactoglobulin, representing typical helical and β-sheet proteins, respectively. Our simulations accurately reproduce the experimental collision cross section (CCS) data measured by IM-MS. Based on accurately reproducing previous experimental collision cross section data and dominant secondary structural species obtained from IM-MS and IR, we confirm that both proteins largely retain their native secondary structural components upon passing from aqueous solution to the gas phase. However, we observe significant reductions in secondary structure contents (19.2 ± 1.2% for myoglobin and 7.3 ± 0.6% for β-lactoglobulin) in specific regions predominantly composed of ionizable residues. Further mechanistic analysis suggests that alterations in protonation states of these residues after phase transition induce changes in their local interaction networks and backbone dihedral angles, which potentially promote the unfolding of secondary structures in the gas phase. We anticipate that similar protonation state induced unfolding may be observed in other proteins possessing distinct secondary structures. Further studies on a broader array of proteins will be essential to refine our understanding of protein structural behavior during the transition to the gas phase.
Collapse
Affiliation(s)
- Guiqian Yang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lanbi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Majid Khan
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongqi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
5
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Zhao X, Yang C, Chen X, Sun Y, Liu W, Ge Q, Yang J. Characteristic fingerprint spectrum of α-synuclein mutants on terahertz time-domain spectroscopy. Biophys J 2024; 123:1264-1273. [PMID: 38615192 PMCID: PMC11140463 DOI: 10.1016/j.bpj.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024] Open
Abstract
α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is involved in the pathogenesis of Parkinson's disease. Point mutations and multiplications of α-synuclein (A30P and A53T) are correlated with early-onset Parkinson's disease characterized by rapid progression and poor prognosis. Currently, the clinical identification of SNCA variants, especially disease-related A30P and A53T mutants, remains challenging and also time consuming. This study aimed to develop a novel label-free detection method for distinguishing the SNCA mutants using transmission terahertz (THz) time-domain spectroscopy. The protein was spin-coated onto the quartz to form a thin film, which was measured using THz time-domain spectroscopy. The spectral characteristics of THz broadband pulse waves of α-synuclein protein variants (SNCA wild type, A30P, and A53T) at different frequencies were analyzed via Fourier transform. The amplitude A intensity (AWT, AA30P, and AA53T) and peak occurrence time in THz time-domain spectroscopy sensitively distinguished the three protein variants. The phase φ difference in THz frequency domain followed the trend of φWT > φA30P > φA53T. There was a significant difference in THz frequency amplitude A' corresponding to the frequency ranging from 0.4 to 0.66 THz (A'A53T > A'A30P > A'WT). At a frequency of 0.4-0.6 THz, the transmission T of THz waves distinguished three variants (TA53T > TA30P > TWT), whereas there was no difference in the transmission T at 0.66 THz. The SNCA wild-type protein and two mutant variants (A30P and A53T) had distinct characteristic fingerprint spectra on THz time-domain spectroscopy. This novel label-free detection method has great potential for the differential diagnosis of Parkinson's disease subtypes.
Collapse
Affiliation(s)
- Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Yu Sun
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
7
|
Hirschbeck SS, Lindberg ET, Jang JH, Jacob MR, Lazar Cantrell KL, Do TD. Investigating a Novel Neurodegenerative Disease Toxic Mechanism Involving Lipid Binding Specificity of Amyloid Oligomers. ACS Chem Neurosci 2024; 15:1523-1532. [PMID: 38488720 DOI: 10.1021/acschemneuro.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Exploring the mechanisms underlying the toxicity of amyloid oligomers (AOs) presents a significant opportunity for discovering cures and developing treatments for neurodegenerative diseases. Recently, using a combination of ion mobility spectrometry-mass spectrometry (IMS-MS) and X-ray crystallography (XRC), we showed that the peptide KVKVLWDVIEV, which is the G95W mutant of αB-Crystallin (90-100) and abbreviated as G6W, self-assembles up to a dodecamer that structurally resembles lipid transport proteins. The glycine to tryptophan mutation promotes not only larger oligomers and enhanced cytotoxicity in brain slices than the wild type but also a narrow hydrophobic cavity suitable for fatty acid or phospholipid binding. Here, we determine the plausibility of a novel cytotoxic mechanism where the G6W's structural motif could perturb lipid homeostasis by determining its lipid binding selectivity and specificity. We show that the G6W oligomers have a strong affinity toward unsaturated phospholipids with a preference toward phospholipids containing 16-C alkyl chains. Molecular dynamics simulations demonstrate how an unsaturated, 16-C phospholipid fits tightly inside and outside G6W's hydrophobic cavity. This binding is exclusive to the G6W peptide, as other amyloid oligomers with different atomic structures, including its wildtype αB-Crystallin (90-100) and several superoxide dismutase 1 (SOD1) peptides that are known to self-assemble into amyloid oligomers (SOD1P28K and SOD1WG-GW), do not experience the same strong binding affinity. While the existing chaperone-lipid hypothesis on amyloid toxicity suggests amyloid-lipid complexes perforate cell membranes, our work provides a new outlook, indicating that soluble amyloid oligomers disrupt lipid homeostasis via selective protein-ligand interactions. The toxic mechanisms may arise from the formation of unique amyloid oligomer structures assisted by lipid ligands or impaired lipid transports.
Collapse
Affiliation(s)
- Sarah S Hirschbeck
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Edward T Lindberg
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Joshua H Jang
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - MaKenna R Jacob
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | | | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Wu R, Svingou D, Metternich JB, Benzenberg LR, Zenobi R. Transition Metal Ion FRET-Based Probe to Study Cu(II)-Mediated Amyloid- β Ligand Binding. J Am Chem Soc 2024; 146:2102-2112. [PMID: 38225538 DOI: 10.1021/jacs.3c11533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Recent therapeutic strategies suggest that small peptides can act as aggregation inhibitors of monomeric amyloid-β (Αβ) by inducing structural rearrangements upon complexation. However, characterizing the binding events in such dynamic and transient noncovalent complexes, especially in the presence of natively occurring metal ions, remains a challenge. Here, we deploy a combined transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) approach to characterize the structure of mass- and charge-selected Aβ complexes with Cu(II) ions (a quencher) and a potential aggregation inhibitor, a small neuropeptide named leucine enkephalin (LE). We show conformational changes of monomeric Αβ species upon Cu(II)-binding, indicating an uncoiled N-terminus and a close interaction between the C-terminus and the central hydrophobic region. Furthermore, we introduce LE labeled at the N-terminus with a metal-chelating agent, nitrilotriacetic acid (NTA). This allows us to employ tmFRET to probe the binding even in low-abundance and transient Aβ-inhibitor-metal ion complexes. Complementary intramolecular distance and global shape information from tmFRET and native IM-MS, respectively, confirmed Cu(II) displacement toward the N-terminus of Αβ, which discloses the binding region and the inhibitor's orientation.
Collapse
Affiliation(s)
- Ri Wu
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Despoina Svingou
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jonas B Metternich
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas R Benzenberg
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
10
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
12
|
Shahpasand‐Kroner H, Portillo J, Lantz C, Seidler PM, Sarafian N, Loo JA, Bitan G. Three-repeat and four-repeat tau isoforms form different oligomers. Protein Sci 2022; 31:613-627. [PMID: 34902187 PMCID: PMC8862439 DOI: 10.1002/pro.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.
Collapse
Affiliation(s)
- Hedieh Shahpasand‐Kroner
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Portillo
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern California School of PharmacyLos AngelesCaliforniaUSA
| | - Natalie Sarafian
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Brain Research InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
We hereby review molecular dynamics simulations for anharmonic gas phase spectroscopy and provide some of our opinions of where the field is heading. With these new directions, the theoretical IR/Raman spectroscopy of large (bio)-molecular systems will be more easily achievable over longer time-scale MD trajectories for an increase in accuracy of the MD-IR and MD-Raman calculated spectra. With the new directions presented here, the high throughput 'decoding' of experimental IR/Raman spectra into 3D-structures should thus be possible, hence advancing e.g. the field of MS-IR for structural characterization by spectroscopy. We also review the assignment of vibrational spectra in terms of anharmonic molecular modes from the MD trajectories, and especially introduce our recent developments based on Graph Theory algorithms. Graph Theory algorithmic is also introduced in this review for the identification of the molecular 3D-structures sampled over MD trajectories.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.
| |
Collapse
|
14
|
Amyloidogenicity of peptides targeting diabetes and obesity. Colloids Surf B Biointerfaces 2021; 209:112157. [PMID: 34715595 DOI: 10.1016/j.colsurfb.2021.112157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Since the discovery of insulin, a century ago, the repertoire of therapeutic polypeptides targeting diabetes - and now also obesity - have increased substantially. The focus on quality has shifted from impure and unstable preparations of animal insulin to highly pure, homologous recombinant insulin, along with other peptide-based hormones and analogs such as amylin analogs (pramlintide, davalintide, cagrilintide), glucagon and glucagon-like peptide-1 receptor agonists (GLP-1, liraglutide, exenatide, semaglutide). Proper formulation, storage, manipulation and usage by professionals and patients are required in order to avoid agglomeration into high molecular weight products (HMWP), either amorphous or amyloid, which could result in potential loss of biological activity and short- or long-term immune reaction and silent inactivation. In this narrative review, we present perspective of the aggregation of therapeutic polypeptides used in diabetes and other metabolic diseases, covering the nature and mechanisms, analytical techniques, physical and chemical stability, strategies aimed to hamper the formation of HMWP, and perspectives on future biopharmaceutical developments.
Collapse
|
15
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
16
|
Schachner LF, Tran DP, Lee A, McGee JP, Jooss K, Durbin K, Seckler HDS, Adams L, Cline E, Melani R, Ives AN, Des Soye B, Kelleher NL, Patrie SM. Reassembling protein complexes after controlled disassembly by top-down mass spectrometry in native mode. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 465:116591. [PMID: 34539228 PMCID: PMC8445521 DOI: 10.1016/j.ijms.2021.116591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The combined use of electrospray ionization run in so-called "native mode" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies. We include an overview of strategies to navigate this type of analysis, provide example data sets, and highlight software for the hypothesis-driven interrogation of fragment ions for localization of PTMs, metals, and cofactors on native proteoforms. Throughout we have emphasized the key features (deconvolution, search mode, validation, other) that the reader can consider when deciding upon their specific experimental and data processing design using both open-access and commercial software.
Collapse
Affiliation(s)
- Luis F. Schachner
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Denise P. Tran
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Alexander Lee
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - John P. McGee
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Kevin Jooss
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Kenneth Durbin
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Henrique Dos Santos Seckler
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Lauren Adams
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Erika Cline
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Rafael Melani
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Ashley N. Ives
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Benjamin Des Soye
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Neil L. Kelleher
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| | - Steven M. Patrie
- Departments of Chemistry, Chemical and Biological Engineering, and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Tech Dr., Silverman Hall, 60208, Evanston, IL, USA
| |
Collapse
|
17
|
Wilson KM, Burkus-Matesevac A, Maddox SW, Chouinard CD. Native Ubiquitin Structural Changes Resulting from Complexation with β-Methylamino-l-alanine (BMAA). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:895-900. [PMID: 33735566 DOI: 10.1021/jasms.0c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The objective of this research was to investigate potential changes to unfolding energy barriers for ubiquitin in the presence of the noncanonical amino acid β-methylamino-l-alanine (BMAA). Although BMAA has been implicated in neurodegenerative disease, its specific role remains unclear. We hypothesized that formation of a ubiquitin + BMAA noncovalent complex would alter the protein's unfolding dynamics in comparison with native ubiquitin alone or in noncovalent complexes with other amino acids. Ion mobility-mass spectrometry (IM-MS) revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, and similar complexes were identified for a range of additional amino acids. Collision-induced unfolding (CIU) was used to interrogate the unfolding of native ubiquitin and these Ubq-amino acid complexes, showing a major transition from its compact native state (∼1200 Å2) to an unfolded state (∼1400 Å2) at activation energies in the range from 8.0 to 9.0 V (entrance grid delta). The Ubq-BMAA complex, on the other hand, was observed to have a significantly higher energy barrier to unfolding, requiring more than 10.5 V. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location worthy of further study for its potential role in the onset of neurodegenerative disease.
Collapse
Affiliation(s)
- Katie Mae Wilson
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Aurora Burkus-Matesevac
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Samuel W Maddox
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
18
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Lieblein T, Zangl R, Martin J, Hoffmann J, Hutchison MJ, Stark T, Stirnal E, Schrader T, Schwalbe H, Morgner N. Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer's disease related oligomers. eLife 2020; 9:59306. [PMID: 33095161 PMCID: PMC7682991 DOI: 10.7554/elife.59306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/22/2020] [Indexed: 01/24/2023] Open
Abstract
The formation of oligomers of the amyloid-β peptide plays a key role in the onset of Alzheimer's disease. We describe herein the investigation of disease-relevant small amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing functionally relevant structural attributes. In particular, we can show that amyloid-β oligomers develop in two distinct arrangements leading to either neurotoxic oligomers and fibrils or non-toxic amorphous aggregates. Comprehending the key-attributes responsible for those pathways on a molecular level is a pre-requisite to specifically target the peptide's tertiary structure with the aim to promote the emergence of non-toxic aggregates. Here, we show for two fibril inhibiting ligands, an ionic molecular tweezer and a hydrophobic peptide that despite their different interaction mechanisms, the suppression of the fibril pathway can be deduced from the disappearance of the corresponding structure of the first amyloid-β oligomers.
Collapse
Affiliation(s)
- Tobias Lieblein
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Rene Zangl
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Janosch Martin
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Jan Hoffmann
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | - Marie J Hutchison
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Tina Stark
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Elke Stirnal
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Thomas Schrader
- University of Duisburg-Essen, Institute of Organic Chemistry, Essen, Germany
| | - Harald Schwalbe
- JW Goethe-University, Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Frankfurt am Main, Germany
| | - Nina Morgner
- JW Goethe-University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| |
Collapse
|
20
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
21
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
22
|
Hu J, Zheng Q. Applications of Mass Spectrometry in the Onset of Amyloid Fibril Formation: Focus on the Analysis of Early-Stage Oligomers. Front Chem 2020; 8:324. [PMID: 32432078 PMCID: PMC7215083 DOI: 10.3389/fchem.2020.00324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/30/2020] [Indexed: 02/05/2023] Open
Abstract
Amyloid fibril formation is a hallmark of diverse neurodegenerative and metabolic diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and type 2 diabetes mellitus (T2DM). Conventional diagnosis is based on the appearance of fibrils or plaques, while neglects the role of early-stage oligomers in the disease progression. Recent studies have uncovered that it is the early-stage oligomer, rather than the mature fibril, that greatly contributes cytotoxicity. The formation of oligomers involves complicate structural conversions and it is essential to investigate their conformational changes for a better understanding of aggregation mechanism. The coexistence of soluble early-stage oligomers, intermediates, and pre-fibril species makes it difficult to be differentiate by morphological methods, and only average structural information is provided as they lack the ability of separation. Therefore, mass spectrometry (MS) becomes an alternative technique that presents new and complementary insights into the onset of amyloid fibrils. This review highlights the hotspots and important achievements by MS in the field of amyloid formation mechanism, including the direct detection and differentiation of soluble oligomers (native MS), unambiguous identification of interacted sites involved in the onset of aggregation [hydrogen/deuterium exchange (HDX) and chemical cross-linking (CX)], and conformational switch that leads to fibrilization [collision cross section (CCS) regularity by ion mobility (IM)].
Collapse
Affiliation(s)
- Jiaojiao Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Wiglenda T, Groenke N, Hoffmann W, Manz C, Diez L, Buntru A, Brusendorf L, Neuendorf N, Schnoegl S, Haenig C, Schmieder P, Pagel K, Wanker EE. Sclerotiorin Stabilizes the Assembly of Nonfibrillar Abeta42 Oligomers with Low Toxicity, Seeding Activity, and Beta-sheet Content. J Mol Biol 2020; 432:2080-2098. [PMID: 32061932 DOI: 10.1016/j.jmb.2020.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 01/21/2023]
Abstract
The self-assembly of the 42-residue amyloid-β peptide, Aβ42, into fibrillar aggregates is associated with neuronal dysfunction and toxicity in Alzheimer's disease (AD) patient brains, suggesting that small molecules acting on this process might interfere with pathogenesis. Here, we present experimental evidence that the small molecule sclerotiorin (SCL), a natural product belonging to the group of azaphilones, potently delays both seeded and nonseeded Aβ42 polymerization in cell-free assays. Mechanistic biochemical studies revealed that the inhibitory effect of SCL on fibrillogenesis is caused by its ability to kinetically stabilize small Aβ42 oligomers. These structures exhibit low β-sheet content and do not possess seeding activity, indicating that SCL acts very early in the amyloid formation cascade before the assembly of seeding-competent, β-sheet-rich fibrillar aggregates. Investigations with NMR WaterLOGSY experiments confirmed the association of Aβ42 assemblies with SCL in solution. Furthermore, using ion mobility-mass spectrometry, we observed that SCL directly interacts with a small fraction of Aβ42 monomers in the gas phase. In comparison to typical amyloid fibrils, small SCL-stabilized Aβ42 assemblies are inefficiently taken up into mammalian cells and have low toxicity in cell-based assays. Overall, these mechanistic studies support a pathological role of stable, β-sheet-rich Aβ42 fibrils in AD, while structures with low β-sheet content may be less relevant.
Collapse
Affiliation(s)
- Thomas Wiglenda
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nicole Groenke
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Waldemar Hoffmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Christian Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Lisa Diez
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alexander Buntru
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lydia Brusendorf
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nancy Neuendorf
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Haenig
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
24
|
Vissers JPC, McCullagh M. An Analytical Perspective on Protein Analysis and Discovery Proteomics by Ion Mobility-Mass Spectrometry. Methods Mol Biol 2020; 2084:161-178. [PMID: 31729660 DOI: 10.1007/978-1-0716-0030-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ion mobility combined with mass spectrometry (IM-MS) is a powerful technique for the analysis of biomolecules and complex mixtures. This chapter reviews the current state-of-the-art in ion mobility technology and its application to biology, protein analysis, and quantitative discovery proteomics in particular, from an analytical perspective. IM-MS can be used as a technique to separate mixtures, to determine structural information (rotationally averaged cross-sectional area) and to enhance MS duty cycle and sensitivity. Moreover, IM-MS is ideally suited for hyphenating with liquid chromatography, or other front-end separation techniques such as, GC, microcolumn LC, capillary electrophoresis, and direct analysis, including MALDI and DESI, providing an semiorthogonal layer of separation, which affords the more unambiguous and confident detection of a wide range of analytes. To illustrate these enhancements, as well as recent developments, the principle of in-line IM separation and hyphenation to orthogonal acceleration time-of-flight mass spectrometers are discussed, in addition to the enhancement of biophysical MS-based analysis using typical proteomics and related application examples.
Collapse
|
25
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
26
|
Lazzaro S, Ogrinc N, Lamont L, Vecchio G, Pappalardo G, Heeren RMA. Ion mobility spectrometry combined with multivariate statistical analysis: revealing the effects of a drug candidate for Alzheimer's disease on Aβ1-40 peptide early assembly. Anal Bioanal Chem 2019; 411:6353-6363. [PMID: 31407050 PMCID: PMC6718366 DOI: 10.1007/s00216-019-02030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Inhibition of the initial stages of amyloid-β peptide self-assembly is a key approach in drug development for Alzheimer's disease, in which soluble and highly neurotoxic low molecular weight oligomers are produced and aggregate in the brain over time. Here we report a high-throughput method based on ion mobility mass spectrometry and multivariate statistical analysis to rapidly select statistically significant early-stage species of amyloid-β1-40 whose formation is inhibited by a candidate theranostic agent. Using this method, we have confirmed the inhibition of a Zn-porphyrin-peptide conjugate in the early self-assembly of Aβ40 peptide. The MS/MS fragmentation patterns of the species detected in the samples containing the Zn-porphyrin-peptide conjugate suggested a porphyrin-catalyzed oxidation at Met-35(O) of Aβ40. We introduce ion mobility MS combined with multivariate statistics as a systematic approach to perform data analytics in drug discovery/amyloid research that aims at the evaluation of the inhibitory effect on the Aβ early assembly in vitro models at very low concentration levels of Aβ peptides.
Collapse
Affiliation(s)
- Serena Lazzaro
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Paolo Gaifami N.18, 95126, Catania, Italy
| | - Nina Ogrinc
- The Maastricht Multimodal Molecular Imaging institute M4I- Division of Imaging Mass Spectrometry, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
| | - Lieke Lamont
- The Maastricht Multimodal Molecular Imaging institute M4I- Division of Imaging Mass Spectrometry, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands
| | - Graziella Vecchio
- Department of Chemical Sciences, Catania University, Viale Andrea Doria, 6, 95125, Catania, Italy
| | - Giuseppe Pappalardo
- Institute of Biostructures and Bioimaging (IBB), National Research Council, Via Paolo Gaifami N.18, 95126, Catania, Italy
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging institute M4I- Division of Imaging Mass Spectrometry, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Liu L, Dong X, Liu Y, Österlund N, Gräslund A, Carloni P, Li J. Role of hydrophobic residues for the gaseous formation of helical motifs. Chem Commun (Camb) 2019; 55:5147-5150. [PMID: 30977489 DOI: 10.1039/c9cc01898k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The secondary structure content of proteins and their complexes may change significantly on passing from aqueous solution to the gas phase (as in mass spectrometry experiments). In this work, we investigate the impact of hydrophobic residues on the formation of the secondary structure of a real protein complex in the gas phase. We focus on a well-studied protein complex, the amyloid-β (1-40) dimer (2Aβ). Molecular dynamics simulations reproduce the results of ion mobility-mass spectrometry experiments. In addition, a helix (not present in the solution) is identified involving 19FFAED23, consistent with infrared spectroscopy data on an Aβ segment. Our simulations further point to the role of hydrophobic residues in the formation of helical motifs - hydrophobic sidechains "shield" helices from being approached by residues that carry hydrogen bond sites. In particular, two hydrophobic phenylalanine residues, F19 and F20, play an important role for the helix, which is induced in the gas phase in spite of the presence of two carboxyl-containing residues.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Fuzhou University, 350002 Fuzhou, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Eaton RM, Allen SJ, Bush MF. Principles of Ion Selection, Alignment, and Focusing in Tandem Ion Mobility Implemented Using Structures for Lossless Ion Manipulations (SLIM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1115-1125. [PMID: 30963456 DOI: 10.1007/s13361-019-02170-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Tandem ion mobility (IM) enables the characterization of subpopulations of ions from larger ensembles, including differences that cannot be resolved in a single dimension of IM. Tandem IM consists of at least two IM regions that are each separated by an ion selection region. In many implementations of tandem IM, ions eluting from a dimension of separation are filtered and immediately transferred to the subsequent dimension of separation (selection-only experiments). We recently reported a mode of operation in which ions eluting from a dimension are trapped prior to the subsequent dimension (selection-trapping experiments), which was implemented on an instrument constructed using the structures for lossless ion manipulations (SLIM) architecture. Here, we use a combination of experiments and trajectory simulations to characterize aspects of the selection, trapping, and separation processes underlying these modes of operation. For example, the actual temporal profile of filtered ions can be very similar to the width of the waveforms used for selection, but depending on experimental parameters, can differ by up to ± 500 μs. Experiments and simulations indicate that ions in selection-trapping experiments can be spatially focused between dimensions, which removes the broadening that occurred during the preceding dimension. During focusing, individual ions are thermalized, which aligns and establishes common initial conditions for the subsequent dimension. Therefore, selection-trapping experiments appear to offer significant advantages relative to selection-only experiments, which we anticipate will become more pronounced in future experiments that make use of longer IM separations, additional dimensions of analysis, and the outcomes of this study. Graphical Abstract.
Collapse
Affiliation(s)
- Rachel M Eaton
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Samuel J Allen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
29
|
Taraban MB, Deredge DJ, Smith ME, Briggs KT, Feng Y, Li Y, Jiang ZX, Wintrode PL, Yu YB. Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II. Conformational transition vs. supramolecular assembly. RSC Adv 2019; 9:1956-1966. [PMID: 35516151 PMCID: PMC9059749 DOI: 10.1039/c8ra08795d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Unlike many known amphiphiles, the fluorinated amphiphilic dendrimer studied in this work demonstrated a concentration-dependent conformational transition rather than micellization or assembly. Hydrophobic and hydrophilic interactions with water were suggested as the most probable driving force of this transition. This assumption was consistent with the observed 19F chemical shift changes of the dendrimer compared to a known micelle-forming fluorinated amphiphile. Since water is an important factor in the process, trends of the concentration-dependent changes in water proton transverse relaxation rate served as an indicator of structural changes and/or supramolecular assembly. The conformational transition process was also confirmed by ion-mobility mass-spectrometry. We suggested that structural features, namely, steric hindrances, prevented the micellization/assembly of the dendrimer of this study. This conclusion might inform the approach to develop novel unconventional amphiphiles.
Collapse
Affiliation(s)
- Marc B Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Margaret E Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Katharine T Briggs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yue Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yu Li
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland 20 Penn Street Baltimore MD 21201 USA +1 410-706-5017 +1 410-706-7514 +1 410-706-6639
| |
Collapse
|
30
|
Galimberti DR, Bougueroua S, Mahé J, Tommasini M, Rijs AM, Gaigeot MP. Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment. Faraday Discuss 2019; 217:67-97. [DOI: 10.1039/c8fd00211h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graph theory based vibrational modes as new entities for vibrational THz spectroscopy.
Collapse
Affiliation(s)
| | | | - Jérôme Mahé
- LAMBE UMR8587
- Univ Evry
- Université Paris-Saclay
- CNRS
- 91025 Evry
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering “G. Natta” Politecnico di Milano
- 20133 Milano
- Italy
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
31
|
Next-generation biomarker discovery in Alzheimer's disease using metabolomics - from animal to human studies. Bioanalysis 2018; 10:1525-1546. [PMID: 30198770 DOI: 10.4155/bio-2018-0135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease driven mainly by neuronal loss due to accumulation of intracellular neurofibrillary tangles and amyloid β aggregates in the brain. The diagnosis of AD currently relies on clinical symptoms while the disease can only be confirmed at autopsy. The few available biomarkers allowing for diagnosis are typically detected many years after the onset of the disease. New diagnostic approaches, particularly in easily-accessible biofluids, are essential. By providing an exhaustive information of the phenotype, metabolomics is an ideal approach for identification of new biomarkers. This review investigates the current position of metabolomics in the field of AD research, focusing on animal and human studies, and discusses the improvements carried out over the past decade.
Collapse
|
32
|
Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein–drug interactions using ion mobility–mass spectrometry. Curr Opin Chem Biol 2018; 42:167-176. [DOI: 10.1016/j.cbpa.2017.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023]
|
33
|
Ben-Nissan G, Sharon M. The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol 2018; 42:25-33. [PMID: 29128665 PMCID: PMC5796646 DOI: 10.1016/j.cbpa.2017.10.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) is an approach that can provide information on the stoichiometry, composition, protein contacts and topology of protein complexes. The power of this approach lies not only in its sensitivity and speed of analysis, but also in the fact that it is a technique that can capture the repertoire of conformational states adopted by protein assemblies. Here, we describe the array of available IM-MS based tools, and demonstrate their application to the structural characterization of various protein complexes, including challenging systems as amyloid aggregates and membrane proteins. We also discuss recent studies in which IM-MS was applied towards investigations of conformational transitions and stabilization effects induced by protein interactions.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
34
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
35
|
Hoffmann W, Folmert K, Moschner J, Huang X, von Berlepsch H, Koksch B, Bowers MT, von Helden G, Pagel K. NFGAIL Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibril Formation. J Am Chem Soc 2017; 140:244-249. [PMID: 29235867 DOI: 10.1021/jacs.7b09510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hexapeptide NFGAIL is a highly amyloidogenic peptide, derived from the human islet amyloid polypeptide (hIAPP). Recent investigations indicate that presumably soluble hIAPP oligomers are one of the cytotoxic species in type II diabetes. Here we use thioflavin T staining, transmission electron microscopy, as well as ion mobility-mass spectrometry coupled to infrared (IR) spectroscopy to study the amyloid formation mechanism and the quaternary and secondary structure of soluble NFGAIL oligomers. Our data reveal that at neutral pH NFGAIL follows a nucleation dependent mechanism to form amyloid fibrils. During the lag phase, highly polydisperse, polymorph, and compact oligomers (oligomer number n = 2-13) as well as extended intermediates (n = 4-11) are present. IR secondary structural analysis reveals that compact conformations adopt turn-like structures, whereas extended oligomers exhibit a significant amount of β-sheet content. This agrees well with previous molecular dynamic simulations and provides direct experimental evidence that unordered off-pathway NFGAIL aggregates up to the size of at least the 13-mer as well as partially folded β-sheet containing oligomers are coexisting.
Collapse
Affiliation(s)
- Waldemar Hoffmann
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Kristin Folmert
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Johann Moschner
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Xing Huang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Hans von Berlepsch
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Beate Koksch
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin , Institute of Chemistry and Biochemistry - Organic Chemistry, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
36
|
D'Atri V, Causon T, Hernandez-Alba O, Mutabazi A, Veuthey JL, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J Sep Sci 2017; 41:20-67. [PMID: 29024509 DOI: 10.1002/jssc.201700919] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Tim Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU Vienna), Vienna, Austria
| | - Oscar Hernandez-Alba
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Aline Mutabazi
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sarah Cianferani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|