1
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024:1-45. [DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Adedeji AA, Priyesh PV, Odugbemi AA. The Magnitude and Impact of Food Allergens and the Potential of AI-Based Non-Destructive Testing Methods in Their Detection and Quantification. Foods 2024; 13:994. [PMID: 38611300 PMCID: PMC11011628 DOI: 10.3390/foods13070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Reaction to food allergens is on the increase and so is the attending cost on consumers, the food industry, and society at large. According to FDA, the "big-eight" allergens found in foods include wheat (gluten), peanuts, egg, shellfish, milk, tree nuts, fish, and soybeans. Sesame was added to the list in 2023, making the target allergen list nine instead of eight. These allergenic foods are major ingredients in many food products that can cause severe reactions in those allergic to them if found at a dose that can elicit a reaction. Defining the level of contamination that can elicit sensitivity is a work in progress. The first step in preventing an allergic reaction is reliable detection, then an effective quantification method. These are critical steps in keeping contaminated foods out of the supply chain of foods with allergen-free labels. The conventional methods of chemical assay, DNA-PCR, and enzyme protocols like enzyme-linked immunosorbent assay are effective in allergen detection but slow in providing a response. Most of these methods are incapable of quantifying the level of allergen contamination. There are emerging non-destructive methods that combine the power of sensors and machine learning to provide reliable detection and quantification. This review paper highlights some of the critical information on the types of prevalent food allergens, the mechanism of an allergic reaction in humans, the measure of allergenic sensitivity and eliciting doses, and the conventional and emerging AI-based methods of detection and quantification-the merits and downsides of each type.
Collapse
Affiliation(s)
- Akinbode A. Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
| | - Paul V. Priyesh
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA;
| | | |
Collapse
|
3
|
Bellassai N, D'Agata R, Spoto G. Plasmonic aptasensor with antifouling dual-functional surface layer for lysozyme detection in food. Anal Chim Acta 2023; 1283:341979. [PMID: 37977796 DOI: 10.1016/j.aca.2023.341979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Antifouling coatings are critically necessary for optical biosensors for various analytical application sectors, from medical diagnostics to foodborne pathogen detection. They help avoid non-specific protein/cell attachment on the active biosensor surface and catch the analytes directly in the complex media. Advances in antifouling plasmonic surfaces have been mainly focused on detecting clinical biomarkers in real biofluids, whereas developing antifouling coatings for direct analysis of analytes in complex media has been scarcely investigated for food quality control and safety. Herein, we propose a new low-fouling poly-l-lysine (PLL)-based surface layer for directly detecting an allergen protein, lysozyme, in the food matrix using surface plasmon resonance. The PLL-based polymer contains densely immobilized anionic oligopeptide side chains to create an electric charge-balanced layer able to repel the non-specific adsorption of undesired molecules on the biosensor surface. It also includes sparsely attached aptamer probes for capturing lysozyme directly in food sources with no pre-analytical sample treatment. We optimized the surface layer fabrication condition and tested the dual-functional surface to evaluate its ability to detect the target protein selectively. The developed analytical approach allowed for achieving a limit of detection of 0.04 μg mL-1 (2.95 nM) and a limit of quantification of 0.13 μg mL-1 (8.95 nM). Lysozyme was successfully quantified in milk samples using the plasmonic dual-functional aptasensor without sample pre-treatment or target isolation, illustrating the device's utility.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
4
|
Erdoğan NÖ, Uslu B, Aydoğdu Tığ G. Development of an electrochemical biosensor utilizing a combined aptamer and MIP strategy for the detection of the food allergen lysozyme. Mikrochim Acta 2023; 190:471. [PMID: 37975892 DOI: 10.1007/s00604-023-06054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
This study aims to develop a MIP-Apt-based electrochemical biosensor for the sensitive and selective determination of Lysozyme (Lyz), a food allergen. For the development of the sensor, in the first stage, modifications were made to the screen-printed electrode (SPE) surface with graphene oxide (GO) and gold nanoparticles (AuNPs) to increase conductivity and surface area. The advantages of using aptamer (Apt) and molecularly imprinted polymer (MIP) technology were combined in a single biointerface in the prepared sensing tool. Surface characterization of the biosensor was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), contact angle measurements, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A wide linear range from 0.001 to 100 pM was obtained under optimized conditions for the determination of Lyz detection using the proposed MIP-Apt sensing strategy. The limit of detection (LOD) and limit of quantification (LOQ) for Lyz were 3.67 fM and 12 fM, respectively. This biosensor displays high selectivity, repeatability, reproducibility, and long storage stability towards Lyz detection. The results show that a sensitive and selective sensor fabrication is achieved compared with existing methods.
Collapse
Affiliation(s)
- Niran Öykü Erdoğan
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey.
| |
Collapse
|
5
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
6
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
7
|
Xiao C, Ross G, Nielen MWF, Eriksson J, Salentijn GI, Mak WC. A portable smartphone-based imaging surface plasmon resonance biosensor for allergen detection in plant-based milks. Talanta 2023; 257:124366. [PMID: 36863294 DOI: 10.1016/j.talanta.2023.124366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Food allergies are hypersensitivity immune responses triggered by (traces of) allergenic compounds in foods and drinks. The recent trend towards plant-based and lactose-free diets has driven an increased consumption of plant-based milks (PBMs) with the risk of cross-contamination of various allergenic plant-based proteins during the food manufacturing process. Conventional allergen screening is usually performed in the laboratory, but portable biosensors for on-site screening of food allergens at the production site could improve quality control and food safety. Here, we developed a portable smartphone imaging surface plasmon resonance (iSPR) biosensor composed of a 3D-printed microfluidic SPR chip for the detection of total hazelnut protein (THP) in commercial PBMs and compared its instrumentation and analytical performance with a conventional benchtop SPR. The smartphone iSPR shows similar characteristic sensorgrams compared with the benchtop SPR and enables the detection of trace levels of THP in spiked PBMs with the lowest tested concentration of 0.625 μg/mL THP. The smartphone iSPR achieved LoDs of 0.53, 0.16, 0.14, 0.06, and 0.04 μg/mL THP in 10x-diluted soy, oat, rice, coconut, and almond PBMs, respectively, with good correlation with the conventional benchtop SPR system (R2 0.950-0.991). The portability and miniaturized characteristics of the smartphone iSPR biosensor platform make it promising for the future on-site detection of food allergens by food producers.
Collapse
Affiliation(s)
- Chi Xiao
- Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden
| | - Georgina Ross
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Michel W F Nielen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jens Eriksson
- Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden
| | - Gert Ij Salentijn
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700, AE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Wing Cheung Mak
- Division of Sensor and Actuator Systems, IFM - Linköping University, S58183, Linköping, Sweden; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
8
|
Rady A, Watson N. Detection and quantification of peanut contamination in garlic powder using NIR sensors and machine learning. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Escandell L, Álvarez-Rodríguez C, Barreda Á, Zaera R, García-Cámara B. All-Optical Nanosensor for Displacement Detection in Mechanical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4107. [PMID: 36432392 PMCID: PMC9696814 DOI: 10.3390/nano12224107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we propose the design of an optical system based on two parallel suspended silicon nanowires that support a range of optical resonances that efficiently confine and scatter light in the infrared range as the base of an all-optical displacement sensor. The effects of the variation of the distance between the nanowires are analyzed. The simulation models are designed by COMSOL Multiphysics software, which is based on the finite element method. The diameter of the nanocylinders (d = 140 nm) was previously optimized to achieve resonances at the operating wavelengths (λ = 1064 nm and 1310 nm). The results pointed out that a detectable change in their resonant behavior and optical interaction was achieved. The proposed design aims to use a simple light source using a commercial diode laser and simplify the readout systems with a high sensitivity of 1.1 × 106 V/m2 and 1.14 × 106 V/m2 at 1064 nm and 1310 nm, respectively. The results may provide an opportunity to investigate alternative designs of displacement sensors from an all-optical approach and explore their potential use.
Collapse
Affiliation(s)
- Lorena Escandell
- Group of Displays and Photonics Applications, Carlos III University of Madrid, Avda. de la Universidad, 30, Leganés, 28911 Madrid, Spain
| | - Carlos Álvarez-Rodríguez
- Group of Displays and Photonics Applications, Carlos III University of Madrid, Avda. de la Universidad, 30, Leganés, 28911 Madrid, Spain
| | - Ángela Barreda
- Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, 07743 Jena, Germany
| | - Ramón Zaera
- Department of Continuum Mechanics and Structural Analysis, Carlos III University of Madrid, Avda. de la Universidad, 30, Leganés, 28911 Madrid, Spain
| | - Braulio García-Cámara
- Group of Displays and Photonics Applications, Carlos III University of Madrid, Avda. de la Universidad, 30, Leganés, 28911 Madrid, Spain
| |
Collapse
|
11
|
Zhao J, Timira V, Ahmed I, Chen Y, Wang H, Zhang Z, Lin H, Li Z. Crustacean shellfish allergens: influence of food processing and their detection strategies. Crit Rev Food Sci Nutr 2022; 64:3794-3822. [PMID: 36263970 DOI: 10.1080/10408398.2022.2135485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
12
|
Applications of Artificial Intelligence to Eosinophilic Esophagitis. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eosinophilic Esophagitis (EoE) is a chronic immune-related inflammation, and challenges to its diagnosis and treatment evaluation persist. This literature review evaluates all AI applications to EOE, including 15 studies using AI algorithms for counting eosinophils in biopsies, as well as newer diagnostics using mRNA transcripts in biopsies, endoscopic photos, blood and urine biomarkers, and an improved scoring system for disease classification. We also discuss the clinical impact of these models, challenges faced in applying AI to EoE, and future applications. In conclusion, AI has the potential to improve diagnostics and clinical evaluation in EoE, improving patient outcomes.
Collapse
|
13
|
Sakdaphetsiri K, Teanphonkrang S, Schulte A. Cheap and Sustainable Biosensor Fabrication by Enzyme Immobilization in Commercial Polyacrylic Acid/Carbon Nanotube Films. ACS OMEGA 2022; 7:19347-19354. [PMID: 35721902 PMCID: PMC9202243 DOI: 10.1021/acsomega.2c00925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Novel glucose biosensors were constructed by loading glucose oxidase (GOx) into the nanopores of homogenous carbon nanotube (CNT) films on the surface of Pt disk electrodes and trapping the enzyme by subsequent deposition of polyacrylic acid (PAA), forming PAA/GOx-CNT-modified Pt disks. In amperometric biosensing with anodic hydrogen peroxide (H2O2) detection at a potential of +600 mV, increasing electrolyte glucose concentrations produced instantaneous steps in the H2O2 oxidation current. Glucose biosensor amperometry was feasible down to 10 μM, with a sensitivity of about 34 μA mM-1 cm-2 and linear current response up to 5 mM. The biosensors reliably determined glucose concentrations in human serum and a beverage. Successful trials with PAA/GOx-CNT-modified screen-printed Pt electrode disks demonstrated the potential of this means of enzyme fixation in biosensor mass fabrication, which offers a unique combination of cheap availability of the two matrix constituents and sensor layer formation through simple drop-and-dry steps. PAA/GOx-CNT/Pt biosensors are green and user-friendly bioanalytical tools that do not need large budgets, special skills, or laboratory amenities for their production. Any user, from industrial, university, or school laboratories, even if inexperienced in biosensor construction, can prepare functional biosensors with GOx, as in these proof-of-principle studies, or with other redox enzymes, for clinical, environmental, pharmaceutical, or food sample analysis.
Collapse
|
14
|
A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials. Food Chem 2022; 388:132951. [PMID: 35447585 DOI: 10.1016/j.foodchem.2022.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
The present review throws a spotlight on new and emerging food safety concerns in view of a well-established food allergen risk arising from global socio-economic changes, international trade, circular economy, environmental sustainability, and upcycling. Food culture globalization needs harmonization of regulations, technical specifications, and reference materials towards mutually recognised results. In parallel, routine laboratories require high-throughput reliable analytical strategies, even in-situ testing devices, to test both food products and food contact surfaces for residual allergens. Finally, the currently neglected safety issues associated to possible allergen exposure due to the newly proposed bio- and plant-based sustainable food contact materials require an in-depth investigation.
Collapse
|
15
|
Honda H, Kusaka Y, Wu H, Endo H, Tsuya D, Ohnuki H. Toward a Practical Impedimetric Biosensor: A Micro-Gap Parallel Plate Electrode Structure That Suppresses Unexpected Device-to-Device Variations. ACS OMEGA 2022; 7:11017-11022. [PMID: 35415349 PMCID: PMC8991901 DOI: 10.1021/acsomega.1c06942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
We propose a rational electrode design concept for affinity biosensors based on electrochemical impedance spectroscopy to substantially suppress unexpected device-to-device variations. On the basis that the uniformity of the current distribution affects the variation, a novel micro-gap parallel plate electrode (PPE) was developed, where two planar electrodes with edges covered with a SiO2 layer were placed face to face. The structure provides a uniform current distribution over the planar electrode surface and maximizes the contribution of the planar electrode surface to sensing. For a comparative study, we also fabricated a micro-structured interdigitated electrode (IDE) that has been widely adopted for high-sensitivity measurement, although its current is highly concentrated on the electrode edge corner. Protein G (PrG) molecules were immobilized on both electrodes to prepare an immunoglobulin G (IgG) biosensor on which the specific binding of PrG-IgG can occur. We demonstrated that the IgG sensor with the PPE has small device-to-device variations, in strong contrast to the sensor with the IDE having large device-to-device variations. The results indicate that the current distribution on the electrode surface is important to fabricating electrochemical impedance spectroscopy biosensors with small device-to-device variations. Furthermore, it was found that the PPE allows ultrasensitive detection, that is, the sensor exhibited a linear range from 1 × 10-13 to 1 × 10-7 mol/L with a detection limit of 1 × 10-14 mol/L, which is a record sensitivity at low concentrations for EIS-based IgG sensors.
Collapse
Affiliation(s)
- Haruka Honda
- Department
of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533, Japan
| | - Yusuke Kusaka
- Department
of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533, Japan
| | - Haiyun Wu
- Department
of Ocean Sciences, Tokyo University of Marine
Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hideaki Endo
- Department
of Ocean Sciences, Tokyo University of Marine
Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Daiju Tsuya
- National
Institute for Material Science, 1-21 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hitoshi Ohnuki
- Department
of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533, Japan
| |
Collapse
|
16
|
Svigelj R, Zuliani I, Grazioli C, Dossi N, Toniolo R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. NANOMATERIALS 2022; 12:nano12060987. [PMID: 35335800 PMCID: PMC8953296 DOI: 10.3390/nano12060987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Nanomaterials can be used to modify electrodes and improve the conductivity and the performance of electrochemical sensors. Among various nanomaterials, gold-based nanostructures have been used as an anchoring platform for the functionalization of biosensor surfaces. One of the main advantages of using gold for the modification of electrodes is its great affinity for thiol-containing molecules, such as proteins, forming a strong Au-S bond. In this work, we present an impedimetric biosensor based on gold nanoparticles and a truncated aptamer for the quantification of gluten in hydrolyzed matrices such as beer and soy sauce. A good relationship between the Rct values and PWG-Gliadin concentration was found in the range between 0.1–1 mg L−1 of gliadin (corresponding to 0.2–2 mg L−1 of gluten) with a limit of detection of 0.05 mg L−1 of gliadin (corresponding to 0.1 mg L−1 of gluten). The label-free assay was also successfully applied for the determination of real food samples.
Collapse
|
17
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
18
|
Couto C, Almeida A. Metallic Nanoparticles in the Food Sector: A Mini-Review. Foods 2022; 11:402. [PMID: 35159552 PMCID: PMC8833908 DOI: 10.3390/foods11030402] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Nanomaterials, and in particular metallic nanoparticles (MNPs), have significantly contributed to the production of healthier, safer, and higher-quality foods and food packaging with special properties, such as greater mechanical strength, improved gas barrier capacity, increased water repellency and ability to inhibit microbial contamination, ensuring higher quality and longer product shelf life. MNPs can also be incorporated into chemical and biological sensors, enabling the design of fast and sensitive monitoring devices to assess food quality, from freshness to detection of allergens, food-borne pathogens or toxins. This review summarizes recent developments in the use of MNPs in the field of food science and technology. Additionally, a brief overview of MNP synthesis and characterization techniques is provided, as well as of the toxicity, biosafety and regulatory issues of MNPs in the agricultural, feed and food sectors.
Collapse
Affiliation(s)
- Cristina Couto
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
19
|
Allergen Immunotherapy: Current and Future Trends. Cells 2022; 11:cells11020212. [PMID: 35053328 PMCID: PMC8774202 DOI: 10.3390/cells11020212] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Allergen immunotherapy (AIT) is the sole disease-modifying treatment for allergic rhinitis; it prevents rhinitis from progressing to asthma and lowers medication use. AIT against mites, insect venom, and certain kinds of pollen is effective. The mechanism of action of AIT is based on inducing immunological tolerance characterized by increased IL-10, TGF-β, and IgG4 levels and Treg cell counts. However, AIT requires prolonged schemes of administration and is sometimes associated with adverse reactions. Over the last decade, novel forms of AIT have been developed, focused on better allergen identification, structural modifications to preserve epitopes for B or T cells, post-traductional alteration through chemical processes, and the addition of adjuvants. These modified allergens induce clinical-immunological effects similar to those mentioned above, increasing the tolerance to other related allergens but with fewer side effects. Clinical studies have shown that molecular AIT is efficient in treating grass and birch allergies. This article reviews the possibility of a new AIT to improve the treatment of allergic illness.
Collapse
|
20
|
Melinte G, Hosu O, Ștefan G, Bogdan D, Cristea C, Marrazza G. Poly-L-Lysine@gold nanostructured hybrid platform for Lysozyme aptamer sandwich-based detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Freitas M, Nouws HPA, Delerue-Matos C. Voltammetric Immunosensor to Track a Major Peanut Allergen (Ara h 1) in Food Products Employing Quantum Dot Labels. BIOSENSORS 2021; 11:426. [PMID: 34821642 PMCID: PMC8615361 DOI: 10.3390/bios11110426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 05/25/2023]
Abstract
Tracking unreported allergens in commercial foods can avoid acute allergic reactions. A 2-step electrochemical immunosensor was developed for the analysis of the peanut allergen Ara h 1 in a 1-h assay (<15 min hands-on time). Bare screen-printed carbon electrodes (SPCE) were used as transducers and monoclonal capture and detection antibodies were applied in a sandwich-type immunoassay. The short assay time was achieved by previously combining the target analyte and the detection antibody. Core/shell CdSe@ZnS Quantum Dots were used as electroactive label for the detection of the immunological interaction by differential pulse anodic stripping voltammetry. A linear range between 25 and 1000 ng·mL-1 (LOD = 3.5 ng·mL-1), an adequate precision of the method (Vx0 ≈ 6%), and a sensitivity of 23.0 nA·mL·ng-1·cm-2 were achieved. The immunosensor was able to detect Ara h 1 in a spiked allergen-free product down to 0.05% (m/m) of peanut. Commercial organic farming cookies and cereal and protein bars were tested to track and quantify Ara h 1. The results were validated by comparison with an ELISA kit.
Collapse
Affiliation(s)
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (M.F.); (C.D.-M.)
| | | |
Collapse
|
22
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
23
|
Khan MU, Lin H, Ahmed I, Chen Y, Zhao J, Hang T, Dasanayaka BP, Li Z. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Compr Rev Food Sci Food Saf 2021; 20:4480-4510. [PMID: 34288394 DOI: 10.1111/1541-4337.12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Whey and its components are recognized as value-added ingredients in infant formulas, beverages, sports nutritious foods, and other food products. Whey offers opportunities for the food industrial sector to develop functional foods with potential health benefits due to its unique physiological and functional attributes. Despite all the above importance, the consumption of whey protein (WP) can trigger hypersensitive reactions and is a constant threat for sensitive individuals. Although avoiding such food products is the most successful approach, there is still a chance of incorrect labeling and cross-contamination during food processing. As whey allergens in food products are cross-reactive, the phenomenon of homologous milk proteins of various species may escalate to a more serious problem. In this review, nonthermal processing technologies used to prevent and eliminate WP allergies are presented and discussed in detail. These processing technologies can either enhance or mitigate the impact of potential allergenicity. Therefore, the development of highly precise analytical technologies to detect and quantify the existence of whey allergens is of considerable importance. The present review is an attempt to cover all the updated approaches used for the detection of whey allergens in processed food products. Immunological and DNA-based assays are generally used for detecting allergenic proteins in processed food products. In addition, mass spectrometry is also employed as a preliminary technique for detection. We also highlighted the latest improvements in allergen detection toward biosensing strategies particularly immunosensors and aptasensors.
Collapse
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, No. 7 Panjiayuan Nanli, Beijing, Chaoyang, 100021, China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Tian Hang
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| |
Collapse
|
24
|
Fan PS, Sun MJ, Qin D, Yuan CS, Chen XG, Liu Y. Nanosystems as curative platforms for allergic disorder management. J Mater Chem B 2021; 9:1729-1744. [PMID: 33475131 DOI: 10.1039/d0tb02590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergy, IgE-mediated inflammatory disorders including allergic rhinitis, asthma, and conjunctivitis, affects billions of people worldwide. Conventional means of allergy management include allergen avoidance, pharmacotherapy, and emerging therapies. Among them, chemotherapeutant intake via oral, intravenous, and intranasal routes is always the most common mean. Although current pharmacotherapy exhibit splendid anti-allergic effects, short in situ retention, low bioavailability, and systemic side effects are inevitable. Nowadays, nanoplatforms have provided alternative therapeutic options to obviate the existing weakness via enhancing the solubility of hydrophobic therapeutic agents, achieving in situ drug accumulation, exhibiting controlled and long-time drug release at lesion areas, and providing multi-functional therapeutic strategies. Herein, we highlight the clinical therapeutic strategies and deal with characteristics of the nanoplatform design in allergy interventions via intratracheal, gastrointestinal, intravenous, and ocular paths. The promising therapeutic utilization in a variety of allergic disorders is discussed, and recent perspectives on the feasible advances of nanoplatforms in allergy management are also exploited.
Collapse
Affiliation(s)
- Peng-Sheng Fan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Meng-Jie Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Cong-Shan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| |
Collapse
|
25
|
Costa R, Costa J, Sagastizábal I, Brandão ATSC, Moreira P, Mafra I, Silva AF, Pereira CM. Electrochemical and optical biosensing platforms for the immunorecognition of hazelnut Cor a 14 allergen. Food Chem 2021; 361:130122. [PMID: 34082386 DOI: 10.1016/j.foodchem.2021.130122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Two immunosensors were advanced to target hazelnut Cor a 14 based on electrochemical and optical transduction. Both approaches were developed with two types of custom-made antibodies, namely anti-Cor a 14 IgG (rabbit) and anti-Cor a 14 IgY (hen's egg) targeting the Cor a 14 allergen. Antibody immobilisation was performed via EDC/NHS onto disposable screen-printed electrodes. The detection limit (LOD) of the electrochemical immunoassay for Cor a 14 was 5-times lower than the optical, being down to 0.05 fg mL-1 with a dynamic range of 0.1 fg mL-1 to 0.01 ng mL-1. Antibody selectivity was verified against non-target 2S albumins (potential cross-reactive plant species). Anti-Cor a 14 IgY exhibited the best specificity, presenting minor cross-reactivity with peanut/walnut. Preliminary results of the application of anti-Cor a 14 IgY electrochemical immunosensor to incurred foods established a LOD of 1 mg kg-1 of hazelnut in wheat (0.16 mg kg-1 hazelnut protein).
Collapse
Affiliation(s)
- Renata Costa
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês Sagastizábal
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Ana T S C Brandão
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Patrícia Moreira
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Fernando Silva
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Carlos M Pereira
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
26
|
The Role of Enolases in Allergic Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3026-3032. [PMID: 33862268 DOI: 10.1016/j.jaip.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Enolase is one of the most abundant cytosolic enzymes as well as an important glycolytic metalloenzyme highly conserved among organisms from different taxonomical groups. Participation of enolase in processes in which its enzymatic activity is not required has been widely reported. Some of these processes provide special qualities to microorganisms, which favor, in some cases, their pathogenicity. Remarkably, enolase has been reported as an allergen by itself, it is well recognized as allergenic in molds and yeasts, whereas it has also been recognized by the immune system of susceptible individuals acting as a food and inhaled allergen from other diverse sources such as insects, birds, fishes, and plants. To date, 14 enolases have been officially recognized by the World Health Organization/International Union of Immunological Societies Allergen Nomenclature Subcommittee. The use of discovery proteomics has also uncovered novel allergenic enolases, particularly from pollen sources. Here, we review the relevance of enolases as sensitizers and as nonsensitizing cross-reactive allergens in allergic disease.
Collapse
|
27
|
|
28
|
Tsai W, Yin H, Chen S, Chang H, Wen H. Development of monoclonal antibody‐based sandwich
ELISA
for detecting major mango allergen Man i1 in processed foods. J Food Saf 2021. [DOI: 10.1111/jfs.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wen‐Che Tsai
- Department of Food Science and Biotechnology National Chung Hsing University Taiwan
| | - Hsin‐Yi Yin
- Department of Food Science and Biotechnology National Chung Hsing University Taiwan
- Food and Livestock Product Safety Inspection Center National Chung Hsing University Taiwan
| | - Ssu‐Ning Chen
- Department of Food Science and Biotechnology National Chung Hsing University Taiwan
| | - Hung‐Chi Chang
- Department of Golden‐Ager Industry Management Chaoyang University of Technology Taiwan
| | - Hsiao‐Wei Wen
- Department of Food Science and Biotechnology National Chung Hsing University Taiwan
- Graduate Institute of Food Safety National Chung Hsing University Taiwan
| |
Collapse
|
29
|
Melinte G, Selvolini G, Cristea C, Marrazza G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021; 226:122169. [PMID: 33676711 DOI: 10.1016/j.talanta.2021.122169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lysozyme is an enzyme existing in multiple organisms where it plays various vital roles. The most important role is its antibacterial activity in the human body; in fact, it is also called "the body's own antibiotic". Despite its proven utility, lysozyme can potentially trigger allergic reactions in sensitive individuals, even in trace amounts. Therefore, lysozyme determination in foods is becoming of paramount importance. Traditional detection methods are expensive, time-consuming and they cannot be applied for fast in-situ quantification. Electrochemical and optical sensors have attracted an increasing attention due to their versatility and ability to reduce the disadvantages of traditional methods. Using an aptamer as the bioreceptor, the sensor selectivity is amplified due to the specific recognition of the analyte. This review is presenting the progresses made in lysozyme determination by means of electrochemical and optical aptasensors in the last five years. A critical overview on the methodologies employed for aptamer immobilization and on the strategies for signal amplification of the assays will be described. Different optical and electrochemical aptasensors will be discussed and compared in terms of analytical performances, versatility and real samples applications.
Collapse
Affiliation(s)
- Gheorghe Melinte
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy; Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Louis Pasteur 4, Cluj-Napoca, 400349, Romania
| | - Giulia Selvolini
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Louis Pasteur 4, Cluj-Napoca, 400349, Romania.
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale Delle Medaglie D'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
30
|
Aquino A, Conte-Junior CA. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. BIOSENSORS-BASEL 2020; 10:bios10120194. [PMID: 33260424 PMCID: PMC7760337 DOI: 10.3390/bios10120194] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Several individuals will experience accidental exposure to an allergen. In this sense, the industry has invested in the processes of removing allergenic compounds in food. However, accidental exposure to allergenic proteins can result from allergenic substances not specified on labels. Analysis of allergenic foods is involved in methods based on immunological, genetic, and mass spectrometry. The traditional methods have some limitations, such as high cost. In recent years, biosensor and nanoparticles combined have emerged as sensitive, selective, low-cost, and time-consuming techniques that can replace classic techniques. Nevertheless, each nanomaterial has shown a different potential to specific allergens or classes. This review used Preferred Reporting Items for Systematic Reviews and the Meta-Analysis guidelines (PRISMA) to approach these issues. A total of 104 articles were retrieved from a standardized search on three databases (PubMed, Scopus and Web of Science). The systematic review article is organized by the category of allergen detection and nanoparticle detection. This review addresses the relevant biosensors and nanoparticles as gold, carbon, graphene, quantum dots to allergen protein detection. Among the selected articles it was possible to notice a greater potential application on the allergic proteins Ah, in peanuts and gold nanoparticle-base as a biosensor. We envision that in our review, the association between biosensor and nanoparticles has shown promise in the analysis of allergenic proteins present in different food samples.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7825
| |
Collapse
|
31
|
Fu L, Qian Y, Zhou J, Zheng L, Wang Y. Fluorescence-based quantitative platform for ultrasensitive food allergen detection: From immunoassays to DNA sensors. Compr Rev Food Sci Food Saf 2020; 19:3343-3364. [PMID: 33337031 DOI: 10.1111/1541-4337.12641] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023]
Abstract
Food allergies are global health issue with an increasing prevalence that affect food safety; hence, food allergen detection, labeling, and management are considered to be important priorities in the food industry. In this critical review, we provide a comprehensive overview of several fluorescence-based platforms based on different biorecognition ligands, such as antibodies, DNA, aptamers, and cells, for food allergen quantification. Traditional analytical methods are generally unsuitable for food manufacturers to accomplish the real-time identification of food allergens in food products. Therefore, it is important to develop simple, rapid, inexpensive, accurate, and sensitive methods to improve user accessibility. A fluorescence-based quantitative platform provides an excellent detection platform for food allergens because of its high sensitivity. This review summarizes the traditional antibody-based fluorescent techniques for food allergen detection, such as the time-resolved fluoroimmunoassay , immunofluorescence imaging, fluorescence enzyme-linked immune sorbent assay, flow injection fluoroimmunoassay, and fluorescence immunosensors. However, these methods suffer from disadvantages such as the significant rate of false-positive and false-negative results due to antibody cross-reactivity with nontarget food components in the complex food matrix and epitope degradation during food processing. Hence, different types of fluorescence-based immunoassays are suitable for standardization and quantification of allergens in fresh foods. In addition, we summarize new fluorescence-based quantitative platforms, including fluorescence genosensors, fluorescence cell sensors, and fluorescence aptamer sensors. With the advantages of high sensitivity and simple operation, fluorescence biosensors will have great potential in the future and could provide portable methods for multiallergen real-time detection in complex food systems.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Yifan Qian
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Lei Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| |
Collapse
|
32
|
Abstract
Food manufacturers are aiming to manage the levels of cross-contamination of allergens within food processing plants and ultimately move away from precautionary labelling. Hence, the need for rapid methods to detect allergens cross-contamination. A sensitive and selective label-free nanoMIPs based sensor was developed and tested for the detection of β-lactoglobulin (BLG). NanoMIPs were synthesized using solid-phase synthesis and appeared as spherical nanoparticles with sizes ranging from 264–294 nm, using dynamic light scattering (DLS). The nanoMIPs were functionalized with amine groups and attached to the surface of the SPR gold chip via amine-coupling protocol. The SPR nanoMIPs-based sensor demonstrated a detection limit of 3 ng mL−1 (211 pM) over a linear range of 1–5000 ng mL−1, with binding affinity of 7.0 × 10−8 M and specificity towards BLG. With further testing and final optimization, the developed nanosensor can be integrated on-line or at-line cleaning-in-place (CIP) wash systems, allowing to effectively monitor milk protein allergens as a rapid, point-of-source methodology.
Collapse
|
33
|
Development and validation of immunoassay for whole cell detection of Brucella abortus and Brucella melitensis. Sci Rep 2020; 10:8543. [PMID: 32444793 PMCID: PMC7244763 DOI: 10.1038/s41598-020-65347-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/16/2020] [Indexed: 01/30/2023] Open
Abstract
Brucella is alpha-2 Proteobacteria mainly responsible for multi-factorial bacterial zoonotic disease brucellosis with low concentration (10–100 CFU) required to establish the infection. In this study, we developed sandwich ELISA with detection range of 102 to 108 cells mL−1 and limit of detection at 103 cells mL−1 by employing polyclonal rabbit IgG (capture antibody, 10 µg mL−1) and mice IgG (detection antibody, 50 µg mL−1) antibody for its detection. Surface Plasmon Resonance evaluated the interaction of detection antibody with whole cell spiked serum samples at LOD of 102 cells mL−1 along with non co-operative interaction of protein albumin. Further, kinetic evaluation study using detection antibody against cell envelope antigen was performed whereby, Equilibrium Dissociation Constant (KD) and Maximum Binding Capacity (Bmax) were found to be 16.48 pM and 81.67 m° for Brucella abortus S99 and 0.42 pM and 54.50 m° for Brucella melitensis 16 M, respectively. During interference study, sandwich ELISA assay cross-reacted with either of the polyclonal antibody of above Brucella species. Upon validation, no cross-reactivity observed with bacteria-closely related to Brucella. In conclusion, developed semi-quantitative sandwich immunoassay is sensitively rapid in whole cell detection of Brucella and will be useful in development of detection assays from environmental and clinical matrices.
Collapse
|
34
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
35
|
Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT, de la Escosura-Muñiz A, Marrazza G. Folding-Based Electrochemical Aptasensor for the Determination of β-Lactoglobulin on Poly-L-Lysine Modified Graphite Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2349. [PMID: 32326088 PMCID: PMC7219239 DOI: 10.3390/s20082349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, food allergy is a very important health issue, causing adverse reactions of the immune system when exposed to different allergens present in food. Because of this, the development of point-of-use devices using miniaturized, user-friendly, and low-cost instrumentation has become of outstanding importance. According to this, electrochemical aptasensors have been demonstrated as useful tools to quantify a broad variety of targets. In this work, we develop a simple methodology for the determination of β-lactoglobulin (β-LG) in food samples using a folding-based electrochemical aptasensor built on poly-L-lysine modified graphite screen-printed electrodes (GSPEs) and an anti-β-lactoglobulin aptamer tagged with methylene blue (MB). This aptamer changes its conformation when the sample contains β-LG, and due to this, the spacing between MB and the electrode surface (and therefore the electron transfer efficiency) also changes. The response of this biosensor was linear for concentrations of β-LG within the range 0.1-10 ng·mL-1, with a limit of detection of 0.09 ng·mL-1. The biosensor was satisfactorily employed for the determination of spiked β-LG in real food samples.
Collapse
Affiliation(s)
- Olaya Amor-Gutiérrez
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Giulia Selvolini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
| | - M. Teresa Fernández-Abedul
- BioNanoAnalytical Spectrometry and Electrochemistry Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
| |
Collapse
|
36
|
Campuzano S, Ruiz-Valdepeñas Montiel V, Serafín V, Yáñez-Sedeño P, Pingarrón JM. Cutting-Edge Advances in Electrochemical Affinity Biosensing at Different Molecular Level of Emerging Food Allergens and Adulterants. BIOSENSORS 2020; 10:E10. [PMID: 32041251 PMCID: PMC7168206 DOI: 10.3390/bios10020010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
The presence of allergens and adulterants in food, which represents a real threat to sensitized people and a loss of consumer confidence, is one of the main current problems facing society. The detection of allergens and adulterants in food, mainly at the genetic level (characteristic fragments of genes that encode their expression) or at functional level (protein biomarkers) is a complex task due to the natural interference of the matrix and the low concentration at which they are present. Methods for the analysis of allergens are mainly divided into immunological and deoxyribonucleic acid (DNA)-based assays. In recent years, electrochemical affinity biosensors, including immunosensors and biosensors based on synthetic sequences of DNA or ribonucleic acid (RNA), linear, aptameric, peptide or switch-based probes, are gaining special importance in this field because they have proved to be competitive with the methods commonly used in terms of simplicity, test time and applicability in different environments. These unique features make them highly promising analytical tools for routine determination of allergens and food adulterations at the point of care. This review article discusses the most significant trends and developments in electrochemical affinity biosensing in this field over the past two years as well as the challenges and future prospects for this technology.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (V.R.-V.M.); (V.S.); (P.Y.-S.)
| | | | | | | | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (V.R.-V.M.); (V.S.); (P.Y.-S.)
| |
Collapse
|
37
|
|
38
|
Nehra M, Lettieri M, Dilbaghi N, Kumar S, Marrazza G. Nano-Biosensing Platforms for Detection of Cow's Milk Allergens: An Overview. SENSORS (BASEL, SWITZERLAND) 2019; 20:E32. [PMID: 31861555 PMCID: PMC6982970 DOI: 10.3390/s20010032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Among prevalent food allergies, cow milk allergy (CMA) is most common and may persist throughout the life. The allergic individuals are exposed to a constant threat due to milk proteins' presence in uncounted food products like yogurt, cheese, and bakery items. The problem can be more severe due to cross-reactivity of the milk allergens in the food products due to homologous milk proteins of diverse species. This problem can be overcome by proper and reliable food labeling in order to ensure the life quality of allergic persons. Therefore, highly sensitive and accurate analytical techniques should be developed to detect the food allergens. Here, significant research advances in biosensors (specifically immunosensors and aptasensors) are reviewed for detection of the milk allergens. Different allergic proteins of cow milk are described here along with the analytical standard methods for their detection. Additionally, the commercial status of biosensors is also discussed in comparison to conventional techniques like enzyme-linked immunosorbent assay (ELISA). The development of novel biosensing mechanisms/kits for milk allergens detection is imperative from the perspective of enforcement of labeling regulations and directives keeping in view the sensitive individuals.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; (M.N.)
| | - Mariagrazia Lettieri
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 350019 Sesto Fiorentino (Fi), Italy;
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; (M.N.)
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; (M.N.)
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 350019 Sesto Fiorentino (Fi), Italy;
| |
Collapse
|
39
|
Ponce-Alcántara S, Martínez-Pérez P, Pérez-Márquez A, Maudes J, Murillo N, García-Rupérez J. Stabilization of Polymeric Nanofibers Layers for Use as Real-Time and In-Flow Photonic Sensors. SENSORS 2019; 19:s19183847. [PMID: 31489881 PMCID: PMC6767253 DOI: 10.3390/s19183847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
In order to increase the sensitivity of a sensor, the relationship between its volume and the surface available to be functionalized is of great importance. Accordingly, porous materials are becoming very relevant, because they have a notable surface-to-volume ratio. Moreover, they offer the possibility to infiltrate the target substances on them. Among other porous structures, polymeric nanofibers (NFs) layers fabricated by electrospinning have emerged as a very promising alternative to low-cost and easy-to-produce high-performance photonic sensors. However, experimental results show a spectrum drift when performing sensing measurements in real-time. That drift is responsible for a significant error when trying to determine the refractive index variation for a target solution, and, because of that, for the detection of the presence of certain analytes. In order to avoid that problem, different chemical and thermal treatments were studied. The best results were obtained for thermal steps at 190 °C during times between 3 and 5 h. As a result, spectrum drifts lower than 5 pm/min and sensitivities of 518 nm/refractive index unit (RIU) in the visible range of the spectrum were achieved in different electrospun NFs sensors.
Collapse
Affiliation(s)
- Salvador Ponce-Alcántara
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Paula Martínez-Pérez
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Ana Pérez-Márquez
- TECNALIA Research & Innovation, Mikeletegi Pasealekua, 2, 20009 Donostia-San Sebastián, Spain.
| | - Jon Maudes
- TECNALIA Research & Innovation, Mikeletegi Pasealekua, 2, 20009 Donostia-San Sebastián, Spain.
| | - Nieves Murillo
- TECNALIA Research & Innovation, Mikeletegi Pasealekua, 2, 20009 Donostia-San Sebastián, Spain.
| | - Jaime García-Rupérez
- Nanophotonics Technology Center (NTC), Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
40
|
|
41
|
Fortunati S, Rozzi A, Curti F, Giannetto M, Corradini R, Careri M. Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens Bioelectron 2019; 129:7-14. [PMID: 30682690 DOI: 10.1016/j.bios.2019.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 02/09/2023]
Abstract
A novel amperometric genosensor based on PNA probes covalently bound on the surface of Single Walled Carbon Nanotubes - Screen Printed Electrodes (SWCNT-SPEs) was developed and validated in samples of non-amplified genomic DNA extracted from genetically modified (GM)-Soy. The sandwich assay is based on a first recognition of a 20-mer portion of the target DNA by a complementary PNA Capture Probe (CP) and a second hybridization with a PNA Signalling Probe (SP), with a complementary sequence to a different portion of the target DNA. The SP was labelled with biotin to measure current signal by means of a final incubation of an Alkaline Phosphatase-streptavidin conjugate (ALP-Strp). The electrochemical detection was carried out using hydroquinone diphosphate (HQDP) as enzymatic substrate. The genoassay provided a linear range from 250 pM to 2.5 nM, LOD of 64 pM and LOQ of 215 pM Excellent selectivity towards one base mismatch (1-MM) or scrambled (SCR) sequences was obtained. A simple protocol for extraction and analysis of non-amplified soybean genomic DNA without sample treatment was developed and validated. Our study provides insight into how the outstanding recognition efficiency of PNAs can be combined with the unique properties of CNTs in terms of signal response enhancement for direct detection of genomic DNA samples at the level of interest without previous amplification.
Collapse
Affiliation(s)
- Simone Fortunati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Rozzi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Federica Curti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Marco Giannetto
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Roberto Corradini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
42
|
Prasad A, Tran T, Gartia MR. Multiplexed Paper Microfluidics for Titration and Detection of Ingredients in Beverages. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1286. [PMID: 30875737 PMCID: PMC6471555 DOI: 10.3390/s19061286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
Food safety and access to systematic approaches for ensuring detection of food hazards is an important issue in most developing countries. With the arrival of paper-based analytical devices (µPADs) as a promising, rapid, easy-to-use, and low-cost analytical tool, we demonstrated a simple microfluidic-based titration study for the analysis of packaged fruit juices. Similar, to the titration experiments using traditional glassware in chemistry laboratories, in this study the titration experiments were developed using paper microfluidics for the analysis of several analytes such as pH, vitamin C, sugars, and preservatives present in the packaged fruit juices. The allergen found commonly in dairy based mixtures and the non-pathogenic biochemical component responsible for food spoilage in cider based fruit juices were also determined. The results obtained using paper microfluidics were compared with those obtained using a conventional spectrophotometric technique. Finally, a paper microfluidics based multiplexed sensor was developed for the analysis of common nutritional ingredients, an allergen, and a non-pathogenic byproduct present in packaged fruit juices on a single platform. Overall, the results presented in this study reveal that the proposed paper microfluidic assisted colorimetric multiplexed sensor offers a quick and reliable tool for on-spot routine analysis for food safety applications.
Collapse
Affiliation(s)
- Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Tiffany Tran
- St. Jospeh's Academy, 3015 Broussard St, Baton Rouge, LA 70808, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
43
|
The role of incurred materials in method development and validation to account for food processing effects in food allergen analysis. Anal Bioanal Chem 2019; 411:4465-4480. [PMID: 30758527 DOI: 10.1007/s00216-019-01642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
The issue of undeclared allergens represents a matter of great concern, being the subject of many alert notifications by the Rapid Alert System for Food and Feed portal of the European Commission, often leading to food recalls. The availability of reliable analytical approaches able to detect and quantify hidden allergens in processed foods is increasingly requested by the food industry, food safety authorities and regulatory bodies to protect sensitive consumers' health. The present review discusses the fundamental role of incurred materials for method development and analytical performance assessment in a metrology perspective on testing for undeclared allergens in processed foodstuffs. Due to the nature of the analytes and their susceptibility to various processing effects, reliability and comparability of results have posed a great challenge. In this context, the use of incurred samples as reference materials permits simulation of the effects of food processing on target analyte structure affecting analyte extractability and detectability. Graphical abstract ᅟ.
Collapse
|
44
|
Single-Walled Carbon Nanotubes as Enhancing Substrates for PNA-Based Amperometric Genosensors. SENSORS 2019; 19:s19030588. [PMID: 30704111 PMCID: PMC6387446 DOI: 10.3390/s19030588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
A new amperometric sandwich-format genosensor has been implemented on single-walled carbon nanotubes screen printed electrodes (SWCNT-SPEs) and compared in terms of performance with analogous genoassays developed using the same methodology on non-nanostructured glassy carbon platforms (GC-SPE). The working principle of the genosensors is based on the covalent immobilization of Peptide Nucleic Acid (PNA) capture probes (CP) on the electrode surface, carried out through the carboxylic functions present on SWCNT-SPEs (carboxylated SWCNT) or electrochemically induced on GC-SPEs. The sequence of the CP was complementary to a 20-mer portion of the target DNA; a second biotin-tagged PNA signalling probe (SP), with sequence complementary to a different contiguous portion of the target DNA, was used to obtain a sandwich hybrid with an Alkaline Phosphatase-streptavidin conjugate (ALP-Strp). Comparison of the responses obtained from the SWCNT-SPEs with those produced from the non-nanostructured substrates evidenced the remarkable enhancement effect given by the nanostructured electrode platforms, achieved both in terms of loading capability of PNA probes and amplification of the electron transfer phenomena exploited for the signal transduction, giving rise to more than four-fold higher sensitivity when using SWCNT-SPEs. The nanostructured substrate allowed to reach limit of detection (LOD) of 71 pM and limit of quantitation (LOQ) of 256 pM, while the corresponding values obtained with GC-SPEs were 430 pM and 1.43 nM, respectively.
Collapse
|
45
|
Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Crit Rev Anal Chem 2019; 49:510-533. [DOI: 10.1080/10408347.2018.1561243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shalini Muniandy
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Swe Jyan Teh
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Ignatius Julian Dinshaw
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Biomedical Engineering, Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Central Unit of Advanced Research Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Abstract
Gluten is among the 14 major food allergens officially recognized by Regulation (EU) No. 1169/2011. The risk to coeliac patients from gluten presence in the food products they consume is likely due to the unintentional contamination of naturally gluten-free (GF) and GF-labelled products, or to hidden sources of gluten in processed GF products. The aim of this paper is to provide a snapshot of gluten risk analysis, with emphasis on immunological methods currently used in gluten detection. The study highlights that immunoassays have some advantages over other analytical methods in gluten determination and are suitable for routine tests. However, some factors (e.g., complexity of the food matrix, type of the applied antibody, gluten extraction procedures and lack of reference material) affect the reliability of obtained results. Hence, efforts are required at an analytical level to overcome the drawbacks of the immunological methods currently available. Harmonization is necessary, so as to assist both consumers in making safe food choices, and the food industry in gluten risk assessment, management and communication.
Collapse
|
47
|
Molinari J, Florez L, Medrano A, Monsalve L, Ybarra G. Electrochemical Determination of β-Lactoglobulin Employing a Polystyrene Bead-Modified Carbon Nanotube Ink. BIOSENSORS 2018; 8:bios8040109. [PMID: 30445706 PMCID: PMC6316051 DOI: 10.3390/bios8040109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
In this article, we introduce the use of a carboxy-functionalized waterborne carbon nanotube ink for the fabrication of an amperometric biosensor aimed at the quantification of β-lactoglobulin. Detection of this protein from cow's milk was performed by a sandwich immunoassay onto printed carbon nanotube electrodes. The electrodes were printed using a carbon nanotube ink modified with polystyrene beads containing a high amount of carboxylic groups for protein immobilization. This strategy showed enhanced sensing performance compared to the use of oxidative treatments for the functionalization of electrodes. These electrodes showed an excellent electrochemical behavior, and proteins could be immobilized on their surface via the carbodiimide reaction. These antibody-immobilized carbon nanotube electrodes allowed for the detection of β-lactoglobulin in sub-ppm concentrations.
Collapse
Affiliation(s)
- Judith Molinari
- U.T. Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| | - Laura Florez
- U.T. Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| | - Anahí Medrano
- Centro de Micro y Nanoelectrónica, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| | - Leandro Monsalve
- Centro de Micro y Nanoelectrónica, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina.
| | - Gabriel Ybarra
- U.T. Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| |
Collapse
|
48
|
Mustafa F, Andreescu S. Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging. Foods 2018; 7:E168. [PMID: 30332833 PMCID: PMC6210272 DOI: 10.3390/foods7100168] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The growing interest in food quality and safety requires the development of sensitive and reliable methods of analysis as well as technology for freshness preservation and food quality. This review describes the status of chemical and biological sensors for food monitoring and smart packaging. Sensing designs and their analytical features for measuring freshness markers, allergens, pathogens, adulterants and toxicants are discussed with example of applications. Their potential implementation in smart packaging could facilitate food-status monitoring, reduce food waste, extend shelf-life, and improve overall food quality. However, most sensors are still in the development stage and need significant work before implementation in real-world applications. Issues like sensitivity, selectivity, robustness, and safety of the sensing materials due to potential contact or migration in food need to be established. The current development status of these technologies, along with a discussion of the challenges and opportunities for future research, are discussed.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
49
|
Pedersen RO, Nowatzke WL, Cho CY, Oliver KG, Garber EAE. Cross-reactivity by botanicals used in dietary supplements and spices using the multiplex xMAP food allergen detection assay (xMAP FADA). Anal Bioanal Chem 2018; 410:5791-5806. [DOI: 10.1007/s00216-018-1187-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022]
|