1
|
Abalo-Rodríguez I, Blithikioti C. Let's fail better: Using philosophical tools to improve neuroscientific research in psychiatry. Eur J Neurosci 2024. [PMID: 39400986 DOI: 10.1111/ejn.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Despite predictions that neuroscientific discoveries would revolutionize psychiatry, decades of research have not yet led to clinically significant advances in psychiatric care. For this reason, an increasing number of researchers are recognizing the limitations of a purely biomedical approach in psychiatric research. These researchers call for reevaluating the conceptualization of mental disorders and argue for a non-reductionist approach to mental health. The aim of this paper is to discuss philosophical assumptions that underly neuroscientific research in psychiatry and offer practical tools to researchers for overcoming potential conceptual problems that are derived from those assumptions. Specifically, we will discuss: the analogy problem, questioning whether mental health problems are equivalent to brain disorders, the normativity problem, addressing the value-laden nature of psychiatric categories and the priority problem, which describes the level of analysis (e.g., biological, psychological, social, etc.) that should be prioritized when studying psychiatric conditions. In addition, we will explore potential strategies to mitigate practical problems that might arise due to these implicit assumptions. Overall, the aim of this paper is to suggest philosophical tools of practical use for neuroscientists, demonstrating the benefits of a closer collaboration between neuroscience and philosophy.
Collapse
Affiliation(s)
- Inés Abalo-Rodríguez
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Chrysanthi Blithikioti
- Department of General Psychology, Faculty of Psychology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Chatterjee I, Baumgärtner L. Unveiling Functional Biomarkers in Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning. J Integr Neurosci 2024; 23:179. [PMID: 39344241 DOI: 10.31083/j.jin2309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neuroimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very little. By employing machine learning techniques with age-matched samples from the auditory oddball task using multi-site functional magnetic resonance imaging (fMRI) data, this study aims to address these challenges. METHODS The study employed a three-stage model to gain a better understanding of the neurobiology underlying schizophrenia and techniques that could be applied for diagnosis. At first, we constructed four-level hierarchical sets from each fMRI volume of 34 schizophrenia patients (SZ) and healthy controls (HC) individually in terms of hemisphere, gyrus, lobes, and Brodmann areas. Second, we employed statistical methods, namely, t-tests and Pearson's correlation, to assess the group differences in cortical activation. Finally, we assessed the predictive power of the brain regions for machine learning algorithms using K-nearest Neighbor (KNN), Naive Bayes, Decision Tree (DT), Random Forest (RF), Support Vector Machines (SVMs), and Extreme Learning Machine (ELM). RESULTS Our investigation depicts promising results, obtaining an accuracy of up to 84% when applying Pearson's correlation-selected features at lobes and Brodmann region level (81% for Gyrus), as well as Hemispheres involving different stages. Thus, the results of our study were consistent with previous studies that have revealed some functional abnormalities in several brain regions. We also discovered the involvement of other brain regions which were never sufficiently studied in previous literature, such as the posterior lobe (posterior cerebellum), Pyramis, and Brodmann Area 34. CONCLUSIONS We present a unique and comprehensive approach to investigating the neurological basis of schizophrenia in this study. By bridging the gap between neuroimaging and computable analysis, we aim to improve diagnostic accuracy in patients with schizophrenia and identify potential prognostic markers for disease progression.
Collapse
Affiliation(s)
- Indranath Chatterjee
- Department of Computing and Mathematics, Manchester Metropolitan University, M1 5GD Manchester, UK
- School of Technology, Woxsen University, 502345 Hyderabad, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Lea Baumgärtner
- Department of Media, Hochschule der Medien, University of Applied Science, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Vignando M, Ffytche D, Mazibuko N, Palma G, Montagnese M, Dave S, Nutt DJ, Gabay AS, Tai YF, Batzu L, Leta V, Williams Gray CH, Chaudhuri KR, Mehta MA. Visual mismatch negativity in Parkinson's psychosis and potential for testing treatment mechanisms. Brain Commun 2024; 6:fcae291. [PMID: 39355002 PMCID: PMC11443450 DOI: 10.1093/braincomms/fcae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Psychosis and visual hallucinations are a prevalent non-motor symptom of Parkinson's disease, negatively affecting patients' quality of life and constituting a greater risk for dementia. Understanding neural mechanisms associated to these symptoms is instrumental for treatment development. The mismatch negativity is an event-related potential evoked by a violation in a sequence of sensory events. It is widely considered an index of sensory change-detection. Reduced mismatch negativity response is one of the most replicated results in schizophrenia and has been suggested to be a superior psychosis marker. To understand whether this event-related potential component could be a similarly robust marker for Parkinson's psychosis, we used electroencephalography with a change-detection task to study the mismatch negativity in the visual modality in 20 participants with Parkinson's and visual hallucinations and 18 matched Parkinson's participants without hallucinations. We find that visual mismatch negativity is clearly present in participants with Parkinson's disease without hallucinations at both parieto-occipital and frontal sites, whereas participants with Parkinson's and visual hallucinations show reduced or no differences in the two waveforms, confirming the sensitivity of mismatch negativity to psychosis, even within the same diagnostic group. We also explored the relationship between hallucination severity and visual mismatch negativity amplitude, finding a negative correlation between visual hallucinations severity scores and visual mismatch negativity amplitude at a central frontal and a parieto-occipital electrodes, whereby the more severe or complex (illusions, formed visual hallucinations) the symptoms the smaller the amplitude. We have also tested the potential role of the serotonergic 5-HT2A cascade in visual hallucinations in Parkinson's with these symptoms, following the receptor trafficking hypothesis. We did so with a pilot study in healthy controls (N = 18) providing support for the role of the Gi/o-dependent pathway in the psychedelic effect and a case series in participants with Parkinson's and visual hallucinations (N = 5) using a double-blind crossover design. Positive results on psychosis scores and mismatch amplitude add further to the potential role of serotonergic modulation of visual hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Miriam Vignando
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dominic Ffytche
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Giulio Palma
- Department of Psychology, University of Southampton, Southampton, SO17 1PS, UK
| | - Marcella Montagnese
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2PY, UK
| | - Sonali Dave
- Department of Optometry and Visual Sciences, City, University of London, London, EC1V 0HB, UK
| | - David J Nutt
- Imperial College London, Faculty of Medicine, Department of Brain Sciences, Burlington Danes, The Hammersmith Hospital, London W12 0NN, UK
| | | | - Yen F Tai
- Imperial College London, Faculty of Medicine, Department of Brain Sciences, Charing Cross Hospital, London W6 8RF, UK
| | - Lucia Batzu
- Parkinson Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, SW9 8R, London, UK
| | - Valentina Leta
- Parkinson Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, SW9 8R, London, UK
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Caroline H Williams Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge/Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0PY, UK
| | - K Ray Chaudhuri
- Parkinson Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, SW9 8R, London, UK
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| |
Collapse
|
4
|
Bissonnette JN, Anderson TJ, Crocker CE, Tibbo PG, Salisbury DF, Fisher DJ. Examining the Complex Mismatch Negativity in Early Phase Psychosis Using the Dual Rule Paradigm. Clin EEG Neurosci 2024:15500594241273287. [PMID: 39150248 DOI: 10.1177/15500594241273287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Using electroencephalography (EEG) to examine the simple mismatch negativity (MMN), a marker of auditory cortex function, has been of great interest in the exploration of biomarkers for psychotic illness. Despite many studies reporting MMN deficits in chronic schizophrenia, there are inconsistent reports of MMN reductions in the early phases of psychotic illness, suggesting the MMN elicited by traditional paradigms may not be a sensitive enough measure of vulnerability to be used as a biomarker. Recently, a more computationally complex measure of auditory cortex function (the complex mismatch negativity; cMMN) has been hypothesized to provide a more sensitive marker of illness vulnerability. The current study employed a novel dual rule paradigm, in which two pattern rules are established and violated, to examine the cMMN in 14 individuals with early phase psychosis (EPP, < 5 years illness) and 15 healthy controls (HC). Relationships between cMMN waveforms, symptom severity, and measures of functioning were explored. We found reductions of cMMN amplitudes at the site of maximal amplitude in EPP (p = .017) with large effect sizes (Hedges' g = 0.96). This study is an early step in the exploration of the cMMN as a biomarker for psychosis. Our results provide evidence that the dual rule cMMN paradigm shows promise as a method for cMMN elicitation that captures more subtle neurofunctional changes in the early stages of illness.
Collapse
Affiliation(s)
- Jenna N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Candice E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Francis AM, Slaunwhite-Hay S, Dempster K, Jaworska N, Tibbo PG, Fisher DJ. The Complex Pattern Mismatch Negativity as a Potential Indicator of Psychosis Across all Phases of Illness: A Meta-Analysis. Clin EEG Neurosci 2024:15500594241264870. [PMID: 39094550 DOI: 10.1177/15500594241264870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Over the past decade, there has been extensive research on the mismatch negativity (MMN) and its promise as a biomarker of illness in people with schizophrenia (SZ). Nevertheless, when attempting to assess the early stages of illness progression, the utility of MMN has been inconsistent. Recently, researchers have been investigating a more advanced MMN paradigm (the complex MMN [cMMN]) which is believed to index higher-order cognitive processing and has been suggested to be a more effective indicator of the early phases of SZ. The cMMN is defined as a paradigm that relies on alterations within a pre-established pattern of stimuli. In this meta-analysis, we investigated cMMN deficits in individuals with SZ, including an analysis involving those in the first 5 years of illness. Our search also included individuals with bipolar disorder who experience psychosis; however, no related papers were found and thus, no findings are reported. Our findings indicate a small/moderate effect (d = 0.47), suggesting that individuals with SZ exhibit reduced cMMN amplitudes compared to individuals without SZ. Interestingly, this effect seems to be more pronounced in individuals within the first 5 years of their illness (d = 0.58), suggesting that cMMN might be a more sensitive biomarker in the early phases of SZ compared to traditional paradigms.
Collapse
Affiliation(s)
| | | | - Kara Dempster
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Natalia Jaworska
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Derek J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Canada
| |
Collapse
|
6
|
McCutcheon RA, Weber LAE, Nour MM, Cragg SJ, McGuire PM. Psychosis as a disorder of muscarinic signalling: psychopathology and pharmacology. Lancet Psychiatry 2024; 11:554-565. [PMID: 38795721 DOI: 10.1016/s2215-0366(24)00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/28/2024]
Abstract
Dopaminergic receptor antagonism is a crucial component of all licensed treatments for psychosis, and dopamine dysfunction has been central to pathophysiological models of psychotic symptoms. Some clinical trials, however, indicate that drugs that act through muscarinic receptor agonism can also be effective in treating psychosis, potentially implicating muscarinic abnormalities in the pathophysiology of psychosis. Here, we discuss understanding of the central muscarinic system, and we examine preclinical, behavioural, post-mortem, and neuroimaging evidence for its involvement in psychosis. We then consider how altered muscarinic signalling could contribute to the genesis and maintenance of psychotic symptoms, and we review the clinical evidence for muscarinic agents as treatments. Finally, we discuss future research that could clarify the relationship between the muscarinic system and psychotic symptoms.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Lilian A E Weber
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Matthew M Nour
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Cellular and Molecular Neurobiology, University of Oxford, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip M McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
7
|
Bouteldja AA, Penichet D, Srivastava LK, Cermakian N. The circadian system: A neglected player in neurodevelopmental disorders. Eur J Neurosci 2024; 60:3858-3890. [PMID: 38816965 DOI: 10.1111/ejn.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Patients with neurodevelopmental disorders, such as autism spectrum disorder, often display abnormal circadian rhythms. The role of the circadian system in these disorders has gained considerable attention over the last decades. Yet, it remains largely unknown how these disruptions occur and to what extent they contribute to the disorders' development. In this review, we examine circadian system dysregulation as observed in patients and animal models of neurodevelopmental disorders. Second, we explore whether circadian rhythm disruptions constitute a risk factor for neurodevelopmental disorders from studies in humans and model organisms. Lastly, we focus on the impact of psychiatric medications on circadian rhythms and the potential benefits of chronotherapy. The literature reveals that patients with neurodevelopmental disorders display altered sleep-wake cycles and melatonin rhythms/levels in a heterogeneous manner, and model organisms used to study these disorders appear to support that circadian dysfunction may be an inherent characteristic of neurodevelopmental disorders. Furthermore, the pre-clinical and clinical evidence indicates that circadian disruption at the environmental and genetic levels may contribute to the behavioural changes observed in these disorders. Finally, studies suggest that psychiatric medications, particularly those prescribed for attention-deficit/hyperactivity disorder and schizophrenia, can have direct effects on the circadian system and that chronotherapy may be leveraged to offset some of these side effects. This review highlights that circadian system dysfunction is likely a core pathological feature of neurodevelopmental disorders and that further research is required to elucidate this relationship.
Collapse
Affiliation(s)
- Ahmed A Bouteldja
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Danae Penichet
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Bose A, Agarwal SM, Nawani H, Shivakumar V, Sreeraj VS, Narayanaswamy JC, Kumar D, Venkatasubramanian G. Mismatch Negativity in Schizophrenia, Unaffected First-degree Relatives, and Healthy Controls. J Psychiatr Res 2024; 175:81-88. [PMID: 38718443 DOI: 10.1016/j.jpsychires.2024.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Mismatch negativity (MMN) amplitude is attenuated in schizophrenia patients (SZ). However, variability in illness course among SZ samples and types of deviant stimuli used in MMN paradigms have contributed to inconsistent findings across studies. Though MMN is suggested to be impaired in schizotypy, the potential link between the two is yet to be systematically examined in unaffected first-degree relatives of schizophrenia patients (FDR). METHODS The SZ sample had twenty-two drug-naïve or drug-free patients (dSZ) and thirty chronic/medicated patients (cSZ). dSZ and cSZ patients were compared with thirty-six unaffected FDR and thirty-two healthy controls (HC) using a two-tone passive auditory oddball MMN paradigm in an event-related potential experiment with two conditions (presented as separate blocks)-duration-deviant (duration-MMN) and frequency-deviant (frequency-MMN). Schizotypy scores and MMN indices were examined for correlation in FDR. RESULTS Duration-MMN amplitude was significantly attenuated in both dSZ and cSZ compared to other groups. dSZ and cSZ did not differ on MMN indices. Psychopathology scores and features of illness (illness duration, medication dosage, etc.) did not correlate with MMN indices. In FDR, Schizotypal trait measures did not correlate with MMN indices. CONCLUSIONS Duration-MMN emerged as a more robust indicator of prediction error signalling deficit in SZ. Frequency-MMN amplitude did not significantly differ among the groups, and MMN indices did not correlate with state and trait measures of schizophrenia-related psychopathology. These findings reiterates that auditory sensory processing captured by MMN is likely reflective of dynamic cognitive functions at the point of testing, and is unlikely to be an expression of enduring symptomatology.
Collapse
Affiliation(s)
- Anushree Bose
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hema Nawani
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
9
|
Mazer P, Carneiro F, Domingo J, Pasion R, Silveira C, Ferreira-Santos F. Systematic review and meta-analysis of the visual mismatch negativity in schizophrenia. Eur J Neurosci 2024; 59:2863-2874. [PMID: 38739367 DOI: 10.1111/ejn.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Mismatch negativity (MMN) is an event-related potential component automatically elicited by events that violate predictions based on prior events. To elicit this component, researchers use stimulus repetition to induce predictions, and the MMN is obtained by subtracting the brain response to rare or unpredicted stimuli from that of frequent stimuli. Under the Predictive Processing framework, one increasingly popular interpretation of the mismatch response postulates that MMN represents a prediction error. In this context, the reduced MMN amplitude to auditory stimuli has been considered a potential biomarker of Schizophrenia, representing a reduced prediction error and the inability to update the mental model of the world based on the sensory signals. It is unclear, however, whether this amplitude reduction is specific for auditory events or if the visual MMN reveals a similar pattern in schizophrenia spectrum disorder. This review and meta-analysis aimed to summarise the available literature on the vMMN in schizophrenia. A systematic literature search resulted in 10 eligible studies that resulted in a combined effect size of g = -.63, CI [-.86, -.41], reflecting lower vMMN amplitudes in patients. These results are in line with the findings in the auditory domain. This component offers certain advantages, such as less susceptibility to overlap with components generated by attentional demands. Future studies should use vMMN to explore abnormalities in the Predictive Processing framework in different stages and groups of the SSD and increase the knowledge in the search for biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Prune Mazer
- ESS, Polytechnic Institute of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fábio Carneiro
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Neurology, ULS do Alto Ave, Guimarães, Portugal
| | - Juan Domingo
- Faculty of Health Sciences, Universidad Rey Juan Carlos, Madrid, Spain
| | - Rita Pasion
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
- HEI-LAB, Lusófona University, Porto, Portugal
| | - Celeste Silveira
- Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry Department, Hospital S. João, Porto, Portugal
| | - Fernando Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Salisbury DF, López Caballero F, Coffman BA. Development of Biomarkers Potentially Sensitive to Early Psychosis Using Mismatch Negativity (MMN) to Complex Pattern Deviations. Clin EEG Neurosci 2024:15500594241254896. [PMID: 38755955 DOI: 10.1177/15500594241254896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Infrequent stimulus deviations from repetitive sequences elicit mismatch negativity (MMN) even passively, making MMN practical for clinical applications. Auditory MMN is typically elicited by a change in one (or more) physical stimulus parameters (eg, pitch, duration). This lower-order simple MMN (sMMN) is impaired in long-term schizophrenia. However, sMMN contains activity from release from stimulus adaptation, clouding its face validity as purely deviance-related. More importantly, it is unreliably reduced in samples of first-episode psychosis, limiting its utility as a biomarker. Complex pattern-deviant MMN (cMMN) tasks, which elicit early and late responses, are based on higher-order abstractions and better isolate deviance detection. Their abstract nature may increase the sensitivity to processing deficits in early psychosis. However, both the early and late cMMNs are small, limiting separation between healthy and psychotic samples. In 29 healthy individuals, we tested a new dual-rule cMMN paradigm to assess additivity of deviance. Sounds alternated lateralization between left and right, and low and high pitches, creating a left-low, right-high alternating pattern. Deviants were a repeated left-low, violating lateralization and pitch patterns. Early and late cMMNs on the dual-rule task were significantly larger than those on the one-rule extra tone cMMN task (P < .05). Further, the dual-rule early cMMN was not significantly smaller than pitch or duration sMMNs (P > .48, .28, respectively). These results demonstrate additivity for cMMN pattern-violating rules. This increase in cMMN amplitude should increase group difference effect size, making it a prime candidate for a biomarker of disease presence at first psychotic episode, and perhaps even prior to the emergence of psychosis.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fran López Caballero
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Wester Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Yasoda-Mohan A, Faubert J, Ost J, Kropotov JD, Vanneste S. Investigating sensitivity to multi-domain prediction errors in chronic auditory phantom perception. Sci Rep 2024; 14:11036. [PMID: 38744906 PMCID: PMC11094085 DOI: 10.1038/s41598-024-61045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The perception of a continuous phantom in a sensory domain in the absence of an external stimulus is explained as a maladaptive compensation of aberrant predictive coding, a proposed unified theory of brain functioning. If this were true, these changes would occur not only in the domain of the phantom percept but in other sensory domains as well. We confirm this hypothesis by using tinnitus (continuous phantom sound) as a model and probe the predictive coding mechanism using the established local-global oddball paradigm in both the auditory and visual domains. We observe that tinnitus patients are sensitive to changes in predictive coding not only in the auditory but also in the visual domain. We report changes in well-established components of event-related EEG such as the mismatch negativity. Furthermore, deviations in stimulus characteristics were correlated with the subjective tinnitus distress. These results provide an empirical confirmation that aberrant perceptions are a symptom of a higher-order systemic disorder transcending the domain of the percept.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, School of Psychology, Trinity College Institute for Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jocelyn Faubert
- Faubert Lab, School of Optometry, University of Montreal, Montreal, Canada
| | - Jan Ost
- Brain Research Center for Advanced International Innovative and Interdisciplinary Neuromodulation, Ghent, Belgium
| | - Juri D Kropotov
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, St. Petersburg, Russia
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Psychology, Trinity College Institute for Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland.
- Brain Research Center for Advanced International Innovative and Interdisciplinary Neuromodulation, Ghent, Belgium.
| |
Collapse
|
12
|
Kammerer MK, Bott A, Strakeljahn F, Lincoln TM. Sleep spindle activity and psychotic experiences: Examining the mediating roles of attentional performance and perceptual distortions in a daytime nap study. Sleep Med 2024; 116:43-50. [PMID: 38422784 DOI: 10.1016/j.sleep.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Decreased sleep spindle activity in individuals with psychotic disorders is well studied, but its contribution to psychotic symptom formation is not well understood. This study explored potential underlying mechanisms explaining the association between decreased sleep spindle activity and psychotic symptoms. To this end, we analysed the links between sleep spindle activity and psychotic experiences and probed for the mediating roles of attentional performance and perceptual distortions in a community sample of young adults (N = 70; 26.33 ± 4.84 years). Polysomnography was recorded during a 90-min daytime nap and duration, amplitude, and density from slow (10-13 Hz) and fast (13-16 Hz) spindles were extracted. Attentional performance was assessed via a test battery and with an antisaccadic eye movement task. Psychotic experiences (i.e., paranoid thoughts; hallucinatory experiences) and perceptual distortions (i.e., anomalous perceptions; sensory gating deficits) were assessed via self-report questionnaires. We conducted sequential mediation analyses with spindle activity as predictor, psychotic experiences as dependent variable, and attentional performance and perceptual distortions as mediators. We found reduced right central spindle amplitude to be associated with paranoid thoughts. Increased antisaccadic error rate was associated with anomalous perceptions and perceptual distortions were associated with psychotic experiences. We did not find significant mediation effects. The findings support the notion that reduced sleep spindle activity is involved in the formation of paranoid thoughts and that decreased antisaccadic performance is indicative of perceptual distortions as potential precursors for psychotic experiences. However, further research is needed to corroborate the proposed mediation hypothesis.
Collapse
Affiliation(s)
- Mathias K Kammerer
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany.
| | - Antonia Bott
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Felix Strakeljahn
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Tania M Lincoln
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| |
Collapse
|
13
|
López-Caballero F, Curtis M, Coffman BA, Salisbury DF. Is source-resolved magnetoencephalographic mismatch negativity a viable biomarker for early psychosis? Eur J Neurosci 2024; 59:1889-1906. [PMID: 37537883 PMCID: PMC10837325 DOI: 10.1111/ejn.16107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Mismatch negativity (MMN) is an auditory event-related response reflecting the pre-attentive detection of novel stimuli and is a biomarker of cortical dysfunction in schizophrenia (SZ). MMN to pitch (pMMN) and to duration (dMMN) deviant stimuli are impaired in chronic SZ, but it is less clear if MMN is reduced in first-episode SZ, with inconsistent findings in scalp-level EEG studies. Here, we investigated the neural generators of pMMN and dMMN with MEG recordings in 26 first-episode schizophrenia spectrum (FEsz) and 26 matched healthy controls (C). We projected MEG inverse solutions into precise functionally meaningful auditory cortex areas. MEG-derived MMN sources were in bilateral primary auditory cortex (A1) and belt areas. In A1, pMMN FEsz reduction showed a trend towards statistical significance (F(1,50) = 3.31; p = .07), and dMMN was reduced in FEsz (F(1,50) = 4.11; p = .04). Hypothesis-driven comparisons at each hemisphere revealed dMMN reduction in FEsz occurred in the left (t(56) = 2.23; p = .03; d = .61) but not right (t(56) = 1.02; p = .31; d = .28) hemisphere, with a moderate effect size. The added precision of MEG source solution with high-resolution MRI and parcellation of A1 may be requisite to detect the emerging pathophysiology and indicates a critical role for left hemisphere pathology at psychosis onset. However, the moderate effect size in left A1, albeit larger than reported in scalp MMN meta-analyses, casts doubt on the clinical utility of MMN for differential diagnosis, as a majority of patients will overlap with the healthy individual's distribution.
Collapse
Affiliation(s)
- Fran López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
López-Caballero F, Auksztulewicz R, Howard Z, Rosch RE, Todd J, Salisbury DF. Computational Synaptic Modeling of Pitch and Duration Mismatch Negativity in First-Episode Psychosis Reveals Selective Dysfunction of the N-Methyl-D-Aspartate Receptor. Clin EEG Neurosci 2024:15500594241238294. [PMID: 38533562 PMCID: PMC11427614 DOI: 10.1177/15500594241238294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mismatch negativity (MMN) to pitch (pMMN) and to duration (dMMN) deviant stimuli is significantly more attenuated in long-term psychotic illness compared to first-episode psychosis (FEP). It was recently shown that source-modeling of magnetically recorded MMN increases the detection of left auditory cortex MMN deficits in FEP, and that computational circuit modeling of electrically recorded MMN also reveals left-hemisphere auditory cortex abnormalities. Computational modeling using dynamic causal modeling (DCM) can also be used to infer synaptic activity from EEG-based scalp recordings. We measured pMMN and dMMN with EEG from 26 FEP and 26 matched healthy controls (HCs) and used a DCM conductance-based neural mass model including α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, N-methyl-D-Aspartate (NMDA), and Gamma-aminobutyric acid receptors to identify any changes in effective connectivity and receptor rate constants in FEP. We modeled MMN sources in bilateral A1, superior temporal gyrus, and inferior frontal gyrus (IFG). No model parameters distinguished groups for pMMN. For dMMN, reduced NMDA receptor activity in right IFG in FEP was detected. This finding is in line with literature of prefrontal NMDA receptor hypofunction in chronic schizophrenia and suggests impaired NMDA-induced synaptic plasticity may be present at psychosis onset where scalp dMMN is only moderately reduced. To the best of our knowledge, this is the first report of impaired NMDA receptor activity in FEP found through computational modeling of dMMN and shows the potential of DCM to non-invasively reveal synaptic-level abnormalities that underly subtle functional auditory processing deficits in early psychosis.
Collapse
Affiliation(s)
- F López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Z Howard
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - R E Rosch
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - J Todd
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia
| | - D F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Wolff A, Northoff G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol Psychiatry 2024; 29:425-438. [PMID: 38228893 DOI: 10.1038/s41380-023-02337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
16
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
17
|
Pentz AB, O'Connel KS, van Jole O, Timpe CMF, Slapø NB, Melle I, Lagerberg TV, Steen NE, Westlye LT, Haukvik UK, Moberget T, Jönsson EG, Andreassen OA, Elvsåshagen T. Mismatch negativity and polygenic risk scores for schizophrenia and bipolar disorder. Schizophr Res 2024; 264:314-326. [PMID: 38215567 DOI: 10.1016/j.schres.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Auditory mismatch negativity (MMN) impairment is a candidate endophenotype in psychotic disorders, yet the genetic underpinnings remain to be clarified. Here, we examined the relationships between auditory MMN and polygenic risk scores (PRS) for individuals with psychotic disorders, including schizophrenia spectrum disorders (SSD) and bipolar disorder (BD) and in healthy controls (HC). METHODS Genotyped and clinically well-characterized individuals with psychotic disorders (n = 102), including SSD (n = 43) and BD (n = 59), and HC (n = 397) underwent a roving MMN paradigm. In addition MMN, we measured the memory traces of the repetition positivity (RP) and the deviant negativity (DN), which is believed to reflect prediction encoding and prediction error signals, respectively. SCZ and BD PRS were computed using summary statistics from the latest genome-wide association studies. The relationships between the MMN, RP, and DN and the PRSs were assessed with linear regressions. RESULTS We found no significant association between the SCZ or BD PRS and grand average MMN in the psychotic disorders group or in the HCs group (all p > 0.05). SCZ PRS and BD PRS were negatively associated with RP in the psychotic disorders group (β = -0.46, t = -2.86, p = 0.005 and β = -0.29, t = -0.21, p = 0.034, respectively). No significant associations were found between DN and PRS. CONCLUSION These findings suggest that genetic variants associated with SCZ and BD may be associated with MMN subcomponents linked to predictive coding among patients with psychotic disorders. Larger studies are needed to confirm these findings and further elucidate the genetic underpinnings of MMN impairment in psychotic disorders.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kevin Sean O'Connel
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Oda van Jole
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Clara Maria Fides Timpe
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nora Berz Slapø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health - Sciences, Oslo Metropolitan University - OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
18
|
Molnár H, Marosi C, Becske M, Békési E, Farkas K, Stefanics G, Czigler I, Csukly G. A comparison of visual and acoustic mismatch negativity as potential biomarkers in schizophrenia. Sci Rep 2024; 14:992. [PMID: 38200103 PMCID: PMC10782025 DOI: 10.1038/s41598-023-49983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Mismatch negativity (MMN) is an event-related potential (ERP) component generated when an unexpected deviant stimulus occurs in a pattern of standard stimuli. Several studies showed that the MMN response to both auditory and visual stimuli is attenuated in schizophrenia. While previous studies investigated auditory and visual MMN in different cohorts, here we examined the potential clinical utility of MMN responses to auditory and visual stimuli within the same group of patients. Altogether 39 patients with schizophrenia and 39 healthy controls matched in age, gender, and education were enrolled. We recorded EEG using 64 channels in eight experimental blocks where we presented auditory and visual stimulus sequences. Mismatch responses were obtained by subtracting responses to standard from the physically identical deviant stimuli. We found a significant MMN response to the acoustic stimuli in the control group, whereas no significant mismatch response was observed in the patient group. The group difference was significant for the acoustic stimuli. The 12 vane windmill pattern evoked a significant MMN response in the early time window in the control group but not in the patient group. The 6 vane windmill pattern evoked MMN only in the patient group. However, we found no significant difference between the groups. Furthermore, we found no correlation between the clinical variables and the MMN amplitudes. Our results suggest that predictive processes underlying mismatch generation in patients with schizophrenia may be more affected in the acoustic compared to the visual domain. Acoustic MMN tends to be a more promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Emese Békési
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Stefanics
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, RCNS, HU-RES, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
19
|
Isenstein EL, Freedman EG, Xu AJ, DeAndrea-Lazarus IA, Foxe JJ. Probing the Neurophysiology of Temporal Sensitivity in the Somatosensory System Using the Mismatch Negativity (MMN) Sensory Memory Paradigm. Neuroscience 2024; 536:47-56. [PMID: 37979841 PMCID: PMC11008681 DOI: 10.1016/j.neuroscience.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Duration is an amodal feature common to all sensory experiences, but low-level processing of the temporal qualities of somatosensation remains poorly understood. The goal of the present study was to evaluate electrophysiological discrimination of parametric somatosensory stimuli to better understand how the brain processes the duration of tactile information. This research used a somatosensory mismatch negativity (sMMN) paradigm to evaluate electrophysiological sensitivity to differences in the duration of vibrotactile stimuli in healthy young adults. Specifically, a 100 ms standard vibration was presented 80% of the time while the remaining 20% of presentations were made up of deviant stimuli with one of the following durations: 115, 130, 145, or 160 ms. When a deviation from the anticipated tactile input is detected, the distinct electrophysiological signature of the sMMN is present. A companion behavioral task assessed individual thresholds for cognizant awareness of the standard and deviant vibrotactile stimuli. The results of the present study demonstrated a sMMN response when deviant stimuli were 130, 145, and 160 ms, but not when they were 115 ms. This suggests that on average the participants did not electrophysiologically discriminate between the 100 and 115 ms. Future work may apply this paradigm to better understand atypical tactile sensitivity in various clinical conditions.
Collapse
Affiliation(s)
- Emily L Isenstein
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience and The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience and The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley J Xu
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience and The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ian A DeAndrea-Lazarus
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience and The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience and The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
20
|
Larsen KM, Madsen KS, Ver Loren van Themaat AH, Thorup AAE, Plessen KJ, Mors O, Nordentoft M, Siebner HR. Children at Familial High risk of Schizophrenia and Bipolar Disorder Exhibit Altered Connectivity Patterns During Pre-attentive Processing of an Auditory Prediction Error. Schizophr Bull 2024; 50:166-176. [PMID: 37379847 PMCID: PMC10754183 DOI: 10.1093/schbul/sbad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Individuals with schizophrenia or bipolar disorder have attenuated auditory mismatch negativity (MMN) responses, indicating impaired sensory information processing. Computational models of effective connectivity between brain areas underlying MMN responses show reduced connectivity between fronto-temporal areas in individuals with schizophrenia. Here we ask whether children at familial high risk (FHR) of developing a serious mental disorder show similar alterations. STUDY DESIGN We recruited 67 children at FHR for schizophrenia, 47 children at FHR for bipolar disorder as well as 59 matched population-based controls from the Danish High Risk and Resilience study. The 11-12-year-old participants engaged in a classical auditory MMN paradigm with deviations in frequency, duration, or frequency and duration, while we recorded their EEG. We used dynamic causal modeling (DCM) to infer on the effective connectivity between brain areas underlying MMN. STUDY RESULTS DCM yielded strong evidence for differences in effective connectivity among groups in connections from right inferior frontal gyrus (IFG) to right superior temporal gyrus (STG), along with differences in intrinsic connectivity within primary auditory cortex (A1). Critically, the 2 high-risk groups differed in intrinsic connectivity in left STG and IFG as well as effective connectivity from right A1 to right STG. Results persisted even when controlling for past or present psychiatric diagnoses. CONCLUSIONS We provide novel evidence that connectivity underlying MMN responses in children at FHR for schizophrenia and bipolar disorder is altered at the age of 11-12, echoing findings that have been found in individuals with manifest schizophrenia.
Collapse
Affiliation(s)
- Kit Melissa Larsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Anna Hester Ver Loren van Themaat
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Anne Amalie Elgaard Thorup
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Hellerup, Denmark
- Copenhagen Research Centre for Mental Health - CORE, Mental Health Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Kerstin Jessica Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Hellerup, Denmark
- Department of Psychiatry, Service of Child and Adolescent Psychiatry, University Medical Center, University of Lausanne, Switzerland
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health - CORE, Mental Health Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
21
|
Kuba M, Kremláček J, Vít F, Masopust J, Hubeňák J, Kubová Z, Szanyi J, Ramešová L, Chutná M, Langrová J. New portable device for an examination of visual cognitive evoked potentials might extend their diagnostic applications in psychiatry. Psychiatry Res Neuroimaging 2024; 337:111768. [PMID: 38128365 DOI: 10.1016/j.pscychresns.2023.111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Despite positive prior results obtained by using event-related potentials (ERPs) in psychiatric patients, they are not routinely used in the clinical setting. This may in part be due to problems regarding a lack of transportable equipment availability. It can be difficult for these patients to repeatedly visit electrophysiological laboratories. To address this issue, we propose using a new, fully portable device for visually evoked potentials (VEP) and cognitive function assessment, that can be used for quick examinations (https://www.veppeak.com). Our device, called "VEPpeak", is built into a headset with a color LED visual stimulator. It weighs 390 g and is connected to a notebook (PC) with evaluation software via USB. In this pilot study, we verified the device's usability in 31 patients with schizophrenia. We used the oddball paradigm with the recognition of colors for the P300 wave and choice reaction time evaluation. The examination lasted only about ten minutes. The results indicated good reproducibility of large cognitive potentials (P300) with prolonged P300 latencies and reduced amplitudes in patients compared to 15 control subjects. The P300 latency and reaction time prolongation in patients correlated with their age and the sedative effect of the pharmacotherapy.
Collapse
Affiliation(s)
- Miroslav Kuba
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic.
| | - Jan Kremláček
- Electrophysiological lab, Department of Medical Biophysics, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| | - František Vít
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jiří Masopust
- Department of Psychiatry, University Hospital in Hradec Králové, Czech Republic
| | - Jan Hubeňák
- Department of Psychiatry, University Hospital in Hradec Králové, Czech Republic
| | - Zuzana Kubová
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jana Szanyi
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| | - Lenka Ramešová
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| | - Marie Chutná
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| | - Jana Langrová
- Electrophysiological lab, Department of Pathophysiology, Charles University - Faculty of Medicine in Hradec Králové, Czech Republic
| |
Collapse
|
22
|
Fuentes-Claramonte P, Estradé A, Solanes A, Ramella-Cravaro V, Garcia-Leon MA, de Diego-Adeliño J, Molins C, Fung E, Valentí M, Anmella G, Pomarol-Clotet E, Oliver D, Vieta E, Radua J, Fusar-Poli P. Biomarkers for Psychosis: Are We There Yet? Umbrella Review of 1478 Biomarkers. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae018. [PMID: 39228676 PMCID: PMC11369642 DOI: 10.1093/schizbullopen/sgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background and Hypothesis This umbrella review aims to comprehensively synthesize the evidence of association between peripheral, electrophysiological, neuroimaging, neuropathological, and other biomarkers and diagnosis of psychotic disorders. Study Design We selected systematic reviews and meta-analyses of observational studies on diagnostic biomarkers for psychotic disorders, published until February 1, 2018. Data extraction was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Evidence of association between biomarkers and psychotic disorders was classified as convincing, highly suggestive, suggestive, weak, or non-significant, using a standardized classification. Quality analyses used the Assessment of Multiple Systematic Reviews (AMSTAR) tool. Study Results The umbrella review included 110 meta-analyses or systematic reviews corresponding to 3892 individual studies, 1478 biomarkers, and 392 210 participants. No factor showed a convincing level of evidence. Highly suggestive evidence was observed for transglutaminase autoantibodies levels (odds ratio [OR] = 7.32; 95% CI: 3.36, 15.94), mismatch negativity in auditory event-related potentials (standardized mean difference [SMD] = 0.73; 95% CI: 0.5, 0.96), P300 component latency (SMD = -0.6; 95% CI: -0.83, -0.38), ventricle-brain ratio (SMD = 0.61; 95% CI: 0.5, 0.71), and minor physical anomalies (SMD = 0.99; 95% CI: 0.64, 1.34). Suggestive evidence was observed for folate, malondialdehyde, brain-derived neurotrophic factor, homocysteine, P50 sensory gating (P50 S2/S1 ratio), frontal N-acetyl-aspartate, and high-frequency heart rate variability. Among the remaining biomarkers, weak evidence was found for 626 and a non-significant association for 833 factors. Conclusions While several biomarkers present highly suggestive or suggestive evidence of association with psychotic disorders, methodological biases, and underpowered studies call for future higher-quality research.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrés Estradé
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Aleix Solanes
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
| | - Valentina Ramella-Cravaro
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Javier de Diego-Adeliño
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Conrad Molins
- Psychiatric Service, Hospital Universitari Santa Maria, Lleida, Catalonia, Spain
| | - Eric Fung
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Marc Valentí
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Gerard Anmella
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Dominic Oliver
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford OX3 7JX, UK
- OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Eduard Vieta
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- OASIS Service, South London and the Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Haigh SM, Van Key L, Brosseau P, Eack SM, Leitman DI, Salisbury DF, Behrmann M. Assessing Trial-to-Trial Variability in Auditory ERPs in Autism and Schizophrenia. J Autism Dev Disord 2023; 53:4856-4871. [PMID: 36207652 PMCID: PMC10079782 DOI: 10.1007/s10803-022-05771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Sensory abnormalities are characteristic of autism and schizophrenia. In autism, greater trial-to-trial variability (TTV) in sensory neural responses suggest that the system is more unstable. However, these findings have only been identified in the amplitude and not in the timing of neural responses, and have not been fully explored in schizophrenia. TTV in event-related potential amplitudes and inter-trial coherence (ITC) were assessed in the auditory mismatch negativity (MMN) in autism, schizophrenia, and controls. MMN was largest in autism and smallest in schizophrenia, and TTV was greater in autism and schizophrenia compared to controls. There were no differences in ITC. Greater TTV appears to be characteristic of both autism and schizophrenia, implicating several neural mechanisms that could underlie sensory instability.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, USA.
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Laura Van Key
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, USA
| | - Pat Brosseau
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Hua JPY, Roach BJ, Ford JM, Mathalon DH. Mismatch Negativity and Theta Oscillations Evoked by Auditory Deviance in Early Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1186-1196. [PMID: 36931469 DOI: 10.1016/j.bpsc.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco, California; San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Brian J Roach
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Judith M Ford
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Daniel H Mathalon
- San Francisco VA Medical Center, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
25
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
26
|
Pentz AB, Timpe CMF, Normann EM, Slapø NB, Melle I, Lagerberg TV, Steen NE, Westlye LT, Jönsson EG, Haukvik UK, Moberget T, Andreassen OA, Elvsåshagen T. Mismatch negativity in schizophrenia spectrum and bipolar disorders: Group and sex differences and associations with symptom severity. Schizophr Res 2023; 261:80-93. [PMID: 37716205 DOI: 10.1016/j.schres.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Research increasingly implicates glutamatergic dysfunction in the pathophysiologies of psychotic disorders. Auditory mismatch negativity (MMN) is an electroencephalography (EEG) waveform linked to glutamatergic neurotransmission and is consistently attenuated in schizophrenia (SCZ). MMN consists of two subcomponents, the repetition positivity (RP) and deviant negativity (DN) possibly reflecting different neural mechanisms. However, whether MMN reduction is present across different psychotic disorders, linked to distinct symptom clusters, or related to sex remain to be clarified. METHODS Four hundred participants including healthy controls (HCs; n = 296) and individuals with SCZ (n = 39), bipolar disorder (BD) BD typeI (n = 35), or BD type II (n = 30) underwent a roving MMN paradigm and clinical evaluation. MMN, RP and DN as well their memory traces were recorded at the FCZ electrode. Analyses of variance and linear regression models were used both transdiagnostically and within clinical groups. RESULTS MMN was reduced in SCZ compared to BD (p = 0.006, d = 0.55) and to HCs (p < 0.001, d = 0.63). There was a significant group × sex interaction (p < 0.003) and the MMN impairment was only detected in males with SCZ. MMN amplitude correlated positively with Positive and Negative Syndrome Scale total score and negatively with Global Assessment of Functioning Scale score. The deviant negativity was impaired in males with SCZ. No group differences in memory trace indices of the MMN, DN, or RP. CONCLUSION MMN was attenuated in SCZ and correlated with greater severity of psychotic symptoms and lower level of functioning. Our results may indicate sex-dependent differences of glutamatergic function in SCZ.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Clara Maria Fides Timpe
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Nora Berz Slapø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
27
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
28
|
Martín-Cuevas C, Ramos-Herrero VD, Crespo-Facorro B, Sánchez-Hidalgo AC. Prenatal risk factors and postnatal cannabis exposure: Assessing dual models of schizophrenia-like rodents. Neurosci Biobehav Rev 2023; 154:105409. [PMID: 37783300 DOI: 10.1016/j.neubiorev.2023.105409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Schizophrenia (SCZ) is a multifactorial neurodevelopmental disorder caused by genetic and environmental alterations, especially during prenatal stages. On the other hand, cannabis consumption in adolescence has been also linked to an increased risk of developing SCZ. The combination of both hits has been proposed as the dual hit hypothesis of SCZ. We systematically reviewed prenatal environmental alterations and cannabis consumption during adolescence that are associated with an increased risk of SCZ, following the PRISMA model. The analysis focused on dual animal models where the first hit is prenatal environmental exposure and the second hit consists of postnatal cannabis exposure. The articles were evaluated by three independent reviewers based on inclusion criteria. We extracted the first author´s name, year, model species, sex and analysis. The articles reported on dual murine models and their effects on weight, behavior, genetics, electrophysiology and brain structure and function. We conclude that the defects caused by the dual hits depend on the sex of the model, as well as type of hits.
Collapse
Affiliation(s)
- Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain.
| | - Víctor Darío Ramos-Herrero
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain.
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain; Department of Psychiatry, School of Medicine, University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain.
| | - Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Sevilla, Manuel Siurot AV, 41013 Seville, Spain; Spanish Network for Research in Mental Health (CIBERSAM, ISCIII), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Sauer A, Grent-'t-Jong T, Zeev-Wolf M, Singer W, Goldstein A, Uhlhaas PJ. Spectral and phase-coherence correlates of impaired auditory mismatch negativity (MMN) in schizophrenia: A MEG study. Schizophr Res 2023; 261:60-71. [PMID: 37708723 DOI: 10.1016/j.schres.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.
Collapse
Affiliation(s)
- Andreas Sauer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany
| | - Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Maor Zeev-Wolf
- Department of Education and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wolf Singer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
30
|
Okazaki M, Yumoto M, Kaneko Y, Maruo K. Correlation of motor-auditory cross-modal and auditory unimodal N1 and mismatch responses of schizophrenic patients and normal subjects: an MEG study. Front Psychiatry 2023; 14:1217307. [PMID: 37886112 PMCID: PMC10598755 DOI: 10.3389/fpsyt.2023.1217307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction It has been suggested that the positive symptoms of schizophrenic patients (hallucinations, delusions, and passivity experience) are caused by dysfunction of their internal and external sensory prediction errors. This is often discussed as related to dysfunction of the forward model that executes self-monitoring. Several reports have suggested that dysfunction of the forward model in schizophrenia causes misattributions of self-generated thoughts and actions to external sources. There is some evidence that the forward model can be measured using the electroencephalography (EEG) and magnetoencephalography (MEG) components such as N1 (m) and mismatch negativity (MMN) (m). The objective in this MEG study is to investigate differences in the N1m and MMNm-like activity generated in motor-auditory cross-modal tasks in normal control (NC) subjects and schizophrenic (SC) patients, and compared that activity with N1m and MMNm in the auditory unimodal task. Methods The N1m and MMNm/MMNm-like activity were recorded in 15 SC patients and 12 matched NC subjects. The N1m-attenuation effects and peak amplitude of MMNm/MMNm-like activity of the NC and SC groups were compared. Additionally, correlations between MEG measures (N1m suppression rate, MMNm, and MMNm-like activity) and clinical variables (Positive and Negative Syndrome Scale (PANSS) scores and antipsychotic drug (APD) dosages) in SC patients were investigated. Results It was found that (i) there was no significant difference in N1m-attenuation for the NC and SC groups, and that (ii) MMNm in the unimodal task in the SC group was significantly smaller than that in the NC group. Further, the MMNm-like activity in the cross-modal task was smaller than that of the MMNm in the unimodal task in the NC group, but there was no significant difference in the SC group. The PANSS positive symptoms and general psychopathology score were moderately negatively correlated with the amplitudes of the MMNm-like activity, and the APD dosage was moderately negatively correlated with the N1m suppression rate. However, none of these correlations reached statistical significance. Discussion The findings suggest that schizophrenic patients perform altered predictive processes differently from healthy subjects in latencies reflecting MMNm, depending on whether they are under forward model generation or not. This may support the hypothesis that schizophrenic patients tend to misattribute their inner experience to external agents, thus leading to the characteristic schizophrenia symptoms.
Collapse
Affiliation(s)
- Mitsutoshi Okazaki
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Ome Municipal General Hospital, Ome, Japan
| | - Masato Yumoto
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, Takasaki, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital of Neurology and Psychiatry, Kodaira, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
31
|
Donaldson KR, Jonas K, Foti D, Larsen EM, Mohanty A, Kotov R. Mismatch negativity and clinical trajectories in psychotic disorders: Five-year stability and predictive utility. Psychol Med 2023; 53:5818-5828. [PMID: 36226640 PMCID: PMC10782876 DOI: 10.1017/s0033291722003075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) amplitude is reduced in psychotic disorders and associated with symptoms and functioning. Due to these robust associations, it is often considered a biomarker for psychotic illness. The relationship between MMN and clinical outcomes has been examined well in early onset psychotic illness; however, its stability and predictive utility in chronic samples are not clear. METHOD We examined the five-year stability of MMN amplitude over two timepoints in individuals with established psychotic disorders (cases; N = 132) and never-psychotic participants (NP; N = 170), as well as longitudinal associations with clinical symptoms and functioning. RESULTS MMN amplitude exhibited good temporal stability (cases, r = 0.53; never-psychotic, r = 0.52). In cases, structural equation models revealed MMN amplitude to be a significant predictor of worsening auditory hallucinations (β = 0.19), everyday functioning (β = -0.13), and illness severity (β = -0.12) at follow-up. Meanwhile, initial IQ (β = -0.24), negative symptoms (β = 0.23), and illness severity (β = -0.16) were significant predictors of worsening MMN amplitude five years later. CONCLUSIONS These results imply that MMN measures a neural deficit that is reasonably stable up to five years. Results support disordered cognition and negative symptoms as preceding reduced MMN, which then may operate as a mechanism driving reductions in everyday functioning and the worsening of auditory hallucinations in chronic psychotic disorders. This pattern may inform models of illness course, clarifying the relationships amongst biological mechanisms of predictive processing and clinical deficits in chronic psychosis and allowing us to better understand the mechanisms driving such impairments over time.
Collapse
Affiliation(s)
| | | | - Dan Foti
- Purdue University, Department of Psychological Sciences
| | | | | | - Roman Kotov
- Stony Brook Medicine, Department of Psychiatry
| |
Collapse
|
32
|
Todd J, Salisbury D, Michie PT. Why mismatch negativity continues to hold potential in probing altered brain function in schizophrenia. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e144. [PMID: 38867817 PMCID: PMC11114358 DOI: 10.1002/pcn5.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
The brain potential known as mismatch negativity (MMN) is one of the most studied indices of altered brain function in schizophrenia. This review looks at what has been learned about MMN in schizophrenia over the last three decades and why the level of interest and activity in this field of research remains strong. A diligent consideration of available evidence suggests that MMN can serve as a biomarker in schizophrenia, but perhaps not the kind of biomarker that early research supposed. This review concludes that MMN measurement is likely to be most useful as a monitoring and response biomarker enabling tracking of an underlying pathology and efficacy of interventions, respectively. The role of, and challenges presented by, pre-clinical models is discussed as well as the merits of different methodologies that can be brought to bear in pursuing a deeper understanding of pathophysiology that might explain smaller MMN in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Dean Salisbury
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Patricia T. Michie
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| |
Collapse
|
33
|
Joshi YB, Molina JL, Braff DL, Green MF, Gur RC, Gur RE, Nuechterlein KH, Stone WS, Greenwood TA, Lazzeroni LC, Radant AD, Silverman JM, Sprock J, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Swerdlow NR, Light GA. Sensitivity of Schizophrenia Endophenotype Biomarkers to Anticholinergic Medication Burden. Am J Psychiatry 2023; 180:519-523. [PMID: 37038743 DOI: 10.1176/appi.ajp.20220649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Affiliation(s)
- Yash B Joshi
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Juan L Molina
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - David L Braff
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Michael F Green
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Ruben C Gur
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Raquel E Gur
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Keith H Nuechterlein
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - William S Stone
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Tiffany A Greenwood
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Laura C Lazzeroni
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Allen D Radant
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Jeremy M Silverman
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Joyce Sprock
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Catherine A Sugar
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Debby W Tsuang
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Ming T Tsuang
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Bruce I Turetsky
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Neal R Swerdlow
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| | - Gregory A Light
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System (Joshi, Molina, Braff, Sprock, Swerdlow, Light); Department of Psychiatry, University of California, San Diego (Joshi, Molina, Braff, Greenwood, Sprock, M. Tsuang, Swerdlow, Light); Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles (Green, Neuchterlein); Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles (Green, Sugar); Department of Psychiatry, University of Pennsylvania, Philadelphia (Ruben C. Gur, Raquel E. Gur, Turetsky); Department of Psychiatry, Harvard Medical School, Boston (Stone); Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston (Stone); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Lazzeroni); Department of Biomedical Data Science, Stanford University, Stanford (Lazzeroni); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Radant, D. Tsuang); Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle (D. Tsuang); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Silverman); Research & Development, James J. Peters VA Medical Center, New York (Silverman); Department of Biostatistics, UCLA School of Public Health, Los Angeles (Sugar)
| |
Collapse
|
34
|
Parker DA, Cubells JF, Imes SL, Ruban GA, Henshey BT, Massa NM, Walker EF, Duncan EJ, Ousley OY. Deep psychophysiological phenotyping of adolescents and adults with 22q11.2 deletion syndrome: a multilevel approach to defining core disease processes. BMC Psychiatry 2023; 23:425. [PMID: 37312091 PMCID: PMC10262114 DOI: 10.1186/s12888-023-04888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal interstitial-deletion disorder, occurring in approximately 1 in 2000 to 6000 live births. Affected individuals exhibit variable clinical phenotypes that can include velopharyngeal anomalies, heart defects, T-cell-related immune deficits, dysmorphic facial features, neurodevelopmental disorders, including autism, early cognitive decline, schizophrenia, and other psychiatric disorders. Developing comprehensive treatments for 22q11.2DS requires an understanding of both the psychophysiological and neural mechanisms driving clinical outcomes. Our project probes the core psychophysiological abnormalities of 22q11.2DS in parallel with molecular studies of stem cell-derived neurons to unravel the basic mechanisms and pathophysiology of 22q11.2-related psychiatric disorders, with a primary focus on psychotic disorders. Our study is guided by the central hypothesis that abnormal neural processing associates with psychophysiological processing and underlies clinical diagnosis and symptomatology. Here, we present the scientific background and justification for our study, sharing details of our study design and human data collection protocol. METHODS Our study is recruiting individuals with 22q11.2DS and healthy comparison subjects between the ages of 16 and 60 years. We are employing an extensive psychophysiological assessment battery (e.g., EEG, evoked potential measures, and acoustic startle) to assess fundamental sensory detection, attention, and reactivity. To complement these unbiased measures of cognitive processing, we will develop stem-cell derived neurons and examine neuronal phenotypes relevant to neurotransmission. Clinical characterization of our 22q11.2DS and control participants relies on diagnostic and research domain criteria assessments, including standard Axis-I diagnostic and neurocognitive measures, following from the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) and the North American Prodrome Longitudinal Study (NAPLS) batteries. We are also collecting measures of autism spectrum (ASD) and attention deficit/hyperactivity disorder (ADHD)-related symptoms. DISCUSSION Studying 22q11.2DS in adolescence and adulthood via deep phenotyping across multiple clinical and biological domains may significantly increase our knowledge of its core disease processes. Our manuscript describes our ongoing study's protocol in detail. These paradigms could be adapted by clinical researchers studying 22q11.2DS, other CNV/single gene disorders, or idiopathic psychiatric syndromes, as well as by basic researchers who plan to incorporate biobehavioral outcome measures into their studies of 22q11.2DS.
Collapse
Affiliation(s)
- David A Parker
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA.
| | - Joseph F Cubells
- Department of Human Genetics; Emory Autism Center; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1551 Shoup Court, Decatur, GA, 30033, USA
| | - Sid L Imes
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Gabrielle A Ruban
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Brett T Henshey
- Emory University, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Nicholas M Massa
- Atlanta Veterans Administration Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Psychology and Interdisciplinary Sciences Building Suite 487, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Erica J Duncan
- Atlanta Veterans Administration Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Brain Health Center, 12 Executive Park Dr, Atlanta, GA, 30329, USA
| | - Opal Y Ousley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1551 Shoup Court, Decatur, GA, USA
| |
Collapse
|
35
|
Haigh SM, Berryhill ME, Kilgore-Gomez A, Dodd M. Working memory and sensory memory in subclinical high schizotypy: An avenue for understanding schizophrenia? Eur J Neurosci 2023; 57:1577-1596. [PMID: 36895099 PMCID: PMC10178355 DOI: 10.1111/ejn.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The search for robust, reliable biomarkers of schizophrenia remains a high priority in psychiatry. Biomarkers are valuable because they can reveal the underlying mechanisms of symptoms and monitor treatment progress and may predict future risk of developing schizophrenia. Despite the existence of various promising biomarkers that relate to symptoms across the schizophrenia spectrum, and despite published recommendations encouraging multivariate metrics, they are rarely investigated simultaneously within the same individuals. In those with schizophrenia, the magnitude of purported biomarkers is complicated by comorbid diagnoses, medications and other treatments. Here, we argue three points. First, we reiterate the importance of assessing multiple biomarkers simultaneously. Second, we argue that investigating biomarkers in those with schizophrenia-related traits (schizotypy) in the general population can accelerate progress in understanding the mechanisms of schizophrenia. We focus on biomarkers of sensory and working memory in schizophrenia and their smaller effects in individuals with nonclinical schizotypy. Third, we note irregularities across research domains leading to the current situation in which there is a preponderance of data on auditory sensory memory and visual working memory, but markedly less in visual (iconic) memory and auditory working memory, particularly when focusing on schizotypy where data are either scarce or inconsistent. Together, this review highlights opportunities for researchers without access to clinical populations to address gaps in knowledge. We conclude by highlighting the theory that early sensory memory deficits contribute negatively to working memory and vice versa. This presents a mechanistic perspective where biomarkers may interact with one another and impact schizophrenia-related symptoms.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Marian E. Berryhill
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Michael Dodd
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
36
|
Dondé C, Kantrowitz JT, Medalia A, Saperstein AM, Balla A, Sehatpour P, Martinez A, O'Connell MN, Javitt DC. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications. Neurosci Biobehav Rev 2023; 148:105098. [PMID: 36796472 PMCID: PMC10106448 DOI: 10.1016/j.neubiorev.2023.105098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Cognitive deficits are a key feature of the disorder and a primary cause of long-term disability. Over the past decades, significant literature has accumulated demonstrating impairments in early auditory perceptual processes in schizophrenia. In this review, we first describe early auditory dysfunction in schizophrenia from both a behavioral and neurophysiological perspective and examine their interrelationship with both higher order cognitive constructs and social cognitive processes. Then, we provide insights into underlying pathological processes, especially in relationship to glutamatergic and N-methyl-D-aspartate receptor (NMDAR) dysfunction models. Finally, we discuss the utility of early auditory measures as both treatment targets for precision intervention and as translational biomarkers for etiological investigation. Altogether, this review points out the crucial role of early auditory deficits in the pathophysiology of schizophrenia, in addition to major implications for early intervention and auditory-targeted approaches.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, F-38000 Grenoble, France; Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France; Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Alice Medalia
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Alice M Saperstein
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Pejman Sehatpour
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Antigona Martinez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
37
|
McCutcheon RA, Keefe RSE, McGuire PK. Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry 2023; 28:1902-1918. [PMID: 36690793 PMCID: PMC10575791 DOI: 10.1038/s41380-023-01949-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK.
| | - Richard S E Keefe
- Departments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Philip K McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford health NHS Foundation Trust, Oxford health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| |
Collapse
|
38
|
Teixeira FL, Costa MRE, Abreu JP, Cabral M, Soares SP, Teixeira JP. A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10040493. [PMID: 37106680 PMCID: PMC10135748 DOI: 10.3390/bioengineering10040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a mental illness that affects an estimated 21 million people worldwide. The literature establishes that electroencephalography (EEG) is a well-implemented means of studying and diagnosing mental disorders. However, it is known that speech and language provide unique and essential information about human thought. Semantic and emotional content, semantic coherence, syntactic structure, and complexity can thus be combined in a machine learning process to detect schizophrenia. Several studies show that early identification is crucial to prevent the onset of illness or mitigate possible complications. Therefore, it is necessary to identify disease-specific biomarkers for an early diagnosis support system. This work contributes to improving our knowledge about schizophrenia and the features that can identify this mental illness via speech and EEG. The emotional state is a specific characteristic of schizophrenia that can be identified with speech emotion analysis. The most used features of speech found in the literature review are fundamental frequency (F0), intensity/loudness (I), frequency formants (F1, F2, and F3), Mel-frequency cepstral coefficients (MFCC's), the duration of pauses and sentences (SD), and the duration of silence between words. Combining at least two feature categories achieved high accuracy in the schizophrenia classification. Prosodic and spectral or temporal features achieved the highest accuracy. The work with higher accuracy used the prosodic and spectral features QEVA, SDVV, and SSDL, which were derived from the F0 and spectrogram. The emotional state can be identified with most of the features previously mentioned (F0, I, F1, F2, F3, MFCCs, and SD), linear prediction cepstral coefficients (LPCC), linear spectral features (LSF), and the pause rate. Using the event-related potentials (ERP), the most promissory features found in the literature are mismatch negativity (MMN), P2, P3, P50, N1, and N2. The EEG features with higher accuracy in schizophrenia classification subjects are the nonlinear features, such as Cx, HFD, and Lya.
Collapse
Affiliation(s)
- Felipe Lage Teixeira
- Research Centre in Digitalization and Intelligent Robotics (CEDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Engineering Department, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Miguel Rocha E Costa
- Research Centre in Digitalization and Intelligent Robotics (CEDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pio Abreu
- Faculty of Medicine of the University of Coimbra, 3000-548 Coimbra, Portugal
- Hospital da Universidade de Coimbra, 3004-561 Coimbra, Portugal
| | - Manuel Cabral
- Engineering Department, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Salviano Pinto Soares
- Engineering Department, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Paulo Teixeira
- Research Centre in Digitalization and Intelligent Robotics (CEDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
39
|
The D-amino acid oxidase inhibitor luvadaxistat improves mismatch negativity in patients with schizophrenia in a randomized trial. Neuropsychopharmacology 2023; 48:1052-1059. [PMID: 36928351 PMCID: PMC10018616 DOI: 10.1038/s41386-023-01560-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Several attempts have been made to enhance N-methyl-D-aspartate (NMDA) receptor function in schizophrenia, but they have yielded mixed results. Luvadaxistat, a D-amino acid oxidase (DAAO) inhibitor that increases the glutamate co-agonist D-serine levels, is being developed for the treatment of cognitive impairment associated with schizophrenia. We conducted a biomarker study in patients, assessing several endpoints related to physiological outcomes of NMDA receptor modulation to determine whether luvadaxistat affects neural circuitry biomarkers relevant to NMDA receptor function and schizophrenia. This was a randomized, placebo-controlled, double-blind, two-period crossover phase 2a study assessing luvadaxistat 50 mg and 500 mg for 8 days in 31 patients with schizophrenia. There were no treatment effects of luvadaxistat at either dose in eyeblink conditioning, a cerebellar-dependent learning measure, compared with placebo. We observed a nominally significant improvement in mismatch negativity (MMN) and a statistical trend to improvement for auditory steady-state response at 40 Hz, in both cases with 50 mg, but not with 500 mg, compared with placebo. Although the data should be interpreted cautiously owing to the small sample size, they suggest that luvadaxistat can improve an illness-related circuitry biomarker at doses associated with partial DAAO inhibition. These results are consistent with 50 mg, but not higher doses, showing a signal of efficacy in cognitive endpoints in a larger phase 2, 12-week study conducted in parallel. Thus, MMN responses after a short treatment period may predict cognitive function improvement. MMN and ASSR should be considered as biomarkers in early trials addressing NMDA receptor hypofunction.
Collapse
|
40
|
Choueiry J, Blais CM, Shah D, Smith D, Fisher D, Labelle A, Knott V. An α7 nAChR approach for the baseline-dependent modulation of deviance detection in schizophrenia: A pilot study assessing the combined effect of CDP-choline and galantamine. J Psychopharmacol 2023; 37:381-395. [PMID: 36927273 PMCID: PMC10101183 DOI: 10.1177/02698811231158903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Cognitive operations including pre-attentive sensory processing are markedly impaired in patients with schizophrenia (SCZ) but evidence significant interindividual heterogeneity, which moderates treatment response with nicotinic acetylcholine receptor (nAChR) agonists. Previous studies in healthy volunteers have shown baseline-dependency effects of the α7 nAChR agonist cytidine 5'-diphosphocholine (CDP-choline) administered alone and in combination with a nicotinic allosteric modulator (galantamine) on auditory deviance detection measured with the mismatch negativity (MMN) event-related potential (ERP). AIM The objective of this pilot study was to assess the acute effect of this combined α7 nAChR-targeted treatment (CDP-choline/galantamine) on speech MMN in patients with SCZ (N = 24) stratified by baseline MMN responses into low, medium, and high baseline auditory deviance detection subgroups. METHODS Patients with a stable diagnosis of SCZ attended two randomized, double-blind, placebo-controlled and counter-balanced testing sessions where they received a placebo or a CDP-choline (500 mg) and galantamine (16 mg) treatment. MMN ERPs were recorded during the presentation of a fast multi-feature speech MMN paradigm including five speech deviants. Clinical measures were acquired before and after treatment administration. RESULTS While no main treatment effect was observed, CDP-choline/galantamine significantly increased MMN amplitudes to frequency, duration, and vowel speech deviants in low group individuals. Individuals with higher positive and negative symptom scale negative, general, and total scores expressed the greatest MMN amplitude improvement following CDP-choline/galantamine. CONCLUSIONS These baseline-dependent nicotinic effects on early auditory information processing warrant different dosage and repeated administration assessments in patients with low baseline deviance detection levels.
Collapse
Affiliation(s)
- Joëlle Choueiry
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Crystal M Blais
- Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Derek Fisher
- Department of Psychology, Faculty of Social Sciences, Mount Saint Vincent University, Halifax, NS, Canada
| | - Alain Labelle
- The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Verner Knott
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.,Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
41
|
Mahmoud AMA, Eissa MAE, Kolkaila EA, Amer RAR, Kotait MA. Mismatch negativity as an early biomarker of cognitive impairment in schizophrenia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Abstract
Background
Due to its disturbance in schizophrenic patients, mismatch negativity (MMN) generation is believed to be a potential biomarker for recognizing primary impairments in auditory sensory processing during the course of the disease. However, great controversy exists regarding the type and onset of MMN-related impairments, with the deficits to frequency deviants is more debatable. This cross-sectional, case–control study was conducted to assess the cognitive functions among 33 eligible Egyptian schizophrenics (15 early and 18 chronic), and 30 matched healthy controls by assessing their psychometric tests and correlating them to the coexisting frequency deviant MMN responses (using both tone and speech stimuli).
Results
Deficits in frequency MMN and neuropsychological tests were evident among early and chronic schizophrenics compared to their matched control counterparts, and also between early versus chronic schizophrenia in favor of the later. MMN deficits to speech stimuli were more elicited than tone stimuli among schizophrenics. Moreover, significant correlations were identified between MMN parameters and the results of psychiatric cognitive scales.
Conclusions
We demonstrated that frequency-deviant MMN deficits are evident feature among the enrolled Egyptian schizophrenics. The cognitive functions as indexed by MMN seem affected early, with the striking decrease of MMN amplitude and delay of latency point towards the progression of the illness. The normal lateralization of MMN was absent in chronic schizophrenia. These findings could be helpful in using the MMN as an additional objective tool for confirming cognitive impairments among schizophrenics and to differentiate between early- and chronic-schizophrenic patients for medico-legal purposes and clinical implication for medications.
Collapse
|
42
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. The effect of schizophrenia risk factors on mismatch responses in a rat model. Psychophysiology 2023; 60:e14175. [PMID: 36087044 PMCID: PMC10909418 DOI: 10.1111/psyp.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023]
Abstract
Reduced mismatch negativity (MMN), a robust finding in schizophrenia, has prompted interest in MMN as a preclinical biomarker of schizophrenia. The rat brain can generate human-like mismatch responses (MMRs) which therefore enables the exploration of the neurobiology of reduced MMRs. Given epidemiological evidence that two developmental factors, maternal infection and adolescent cannabis use, increase the risk of schizophrenia, we determined the effect of these two developmental risk factors on rat MMR amplitude in different auditory contexts. MMRs were assessed in awake adult male and female Wistar rats that were offspring of pregnant dams treated with either a viral infection mimetic (poly I:C) inducing maternal immune activation (MIA) or saline control. In adolescence, subgroups of the prenatal treatment groups were exposed to either a synthetic cannabinoid (adolescent cannabinoid exposure: ACE) or vehicle. The context under which MMRs were obtained was manipulated by employing two different oddball paradigms, one that manipulated the physical difference between rare and common auditory stimuli, and another that manipulated the probability of the rare stimulus. The design of the multiple stimulus sequences across the two paradigms also allowed an investigation of context on MMRs to two identical stimulus sequences. Male offspring exposed to each of the risk factors for schizophrenia (MIA, ACE or both) showed a reduction in MMR, which was evident only in the probability paradigm, with no effects seen in the physical difference. Our findings highlight the importance of contextual factors induced by paradigm manipulations and sex for modeling schizophrenia-like MMN impairments in rats.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Juanita Todd
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Patricia T. Michie
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Deborah M. Hodgson
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Lauren Harms
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
43
|
Li X, Deng W, Xue R, Wang Q, Ren H, Wei W, Zhang Y, Li M, Zhao L, Du X, Meng Y, Ma X, Hall MH, Li T. Auditory event-related potentials, neurocognition, and global functioning in drug naïve first-episode schizophrenia and bipolar disorder. Psychol Med 2023; 53:785-794. [PMID: 34474699 DOI: 10.1017/s0033291721002130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Deficits in event-related potential (ERP) including duration mismatch negativity (MMN) and P3a have been demonstrated widely in chronic schizophrenia (SZ) but inconsistent findings were reported in first-episode patients. Psychotropic medications and diagnosis might contribute to different findings on MMN/P3a ERP in first-episode patients. The present study examined MMN and P3a in first episode drug naïve SZ and bipolar disorder (BPD) patients and explored the relationships among ERPs, neurocognition and global functioning. METHODS Twenty SZ, 24 BPD and 49 age and sex-matched healthy controls were enrolled in this study. Data of clinical symptoms [Positive and Negative Symptoms Scale (PANSS), Young Manic Rating Scale (YMRS), Hamilton Depression Rating Scale (HAMD)], neurocognition [Wechsler Adult Intelligence Scale (WAIS), Cattell's Culture Fair Intelligence Test (CCFT), Delay Matching to Sample (DMS), Rapid Visual Information Processing (RVP)], and functioning [Functioning Assessment Short Test (FAST)] were collected. P3a and MMN were elicited using a passive auditory oddball paradigm. RESULTS Significant MMN and P3a deficits and impaired neurocognition were found in both SZ and BPD patients. In SZ, MMN was significantly correlated with FAST (r = 0.48) and CCFT (r = -0.31). In BPD, MMN was significantly correlated with DMS (r = -0.54). For P3a, RVP and FAST scores were significant predictors in SZ, whereas RVP, WAIS and FAST were significant predictors in BPD. CONCLUSIONS The present study found deficits in MMN, P3a, neurocognition in drug naïve SZ and BPD patients. These deficits appeared to link with levels of higher-order cognition and functioning.
Collapse
Affiliation(s)
- Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Rui Xue
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Hongyan Ren
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiangdong Du
- Suzhou Psychiatry hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
| | - Yajing Meng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
- Suzhou Psychiatry hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
45
|
Torrens WA, Pablo JN, Shires J, Haigh SM, Berryhill ME. People with high schizotypy experience more illusions in the Pattern Glare Test: Consistent with the hyperexcitability hypothesis. Eur J Neurosci 2023; 57:388-399. [PMID: 36484768 PMCID: PMC9847329 DOI: 10.1111/ejn.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Individuals diagnosed with schizophrenia spectrum disorders (SSD) exhibit a constellation of sensory and perceptual impairments, including hyporeactivity to external input. However, individuals with SSD also report subjective experiences of sensory flooding, suggesting sensory hyperexcitability. To identify the extent to which behavioural indices of hyperexcitability are related to non-psychotic symptoms of schizophrenia, we tested a non-clinical population measured for schizophrenia-like traits (schizotypy), and a behavioural measure of sensory hyperexcitability, specifically the number of illusions seen in the Pattern Glare Test. Two samples totaling 913 individuals completed an online version of the Schizotypal Personality Questionnaire - Brief Revised (SPQ-BR) and the Pattern Glare Test. Individuals with higher schizotypy traits reported more illusions in the Pattern Glare Test. Additionally, one of the three SPQ-BR factors, the disorganized factor, significantly predicted the number of illusions reported. These data illustrate the potential for research in non-clinical samples to inform clinically relevant research.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jenna N Pablo
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jorja Shires
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Sarah M Haigh
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | | |
Collapse
|
46
|
Scheliga S, Schwank R, Scholle R, Habel U, Kellermann T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res 2022; 318:114934. [PMID: 36347125 DOI: 10.1016/j.psychres.2022.114934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Psychotic symptoms may be traced back to sensory sensitivity. Thereby, visual motion (VM) processing particularly has been suggested to be impaired in schizophrenia (SCZ). In healthy brains, VM underlies predictive processing within hierarchically structured systems. However, less is known about predictive VM processing in SCZ. Therefore, we performed fMRI during a VM paradigm with three conditions of varying predictability, i.e., Predictable-, Random-, and Arbitrary motion. The study sample comprised 17 SCZ patients and 23 healthy controls. We calculated general linear model (GLM) analysis to assess group differences in VM processing across motion conditions. Here, we identified significantly lower activity in right temporoparietal junction (TPJ) for SCZ patients. Therefore, right TPJ was set as seed for connectivity analyses. For patients, across conditions we identified increased connections to higher regions, namely medial prefrontal cortex, or paracingulate gyrus. Healthy subjects activated sensory regions as area V5, or superior parietal lobule. Reduced TPJ activity may reflect both a failure in the bottom-up flow of visual information and a decrease of signal processing as consequence of increased top-down input from frontal areas. In sum, these altered neural patterns provide a framework for future studies focusing on predictive VM processing to identify potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Rosalie Schwank
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ruben Scholle
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
47
|
Duncan E, Roach BJ, Massa N, Hamilton HK, Bachman PM, Belger A, Carrion RE, Johannesen JK, Light GA, Niznikiewicz MA, Addington JM, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Tsuang M, Walker EF, Woods SW, Nasiri N, Mathalon DH. Auditory N100 amplitude deficits predict conversion to psychosis in the North American Prodrome Longitudinal Study (NAPLS-2) cohort. Schizophr Res 2022; 248:89-97. [PMID: 35994912 PMCID: PMC10091223 DOI: 10.1016/j.schres.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The auditory N100 is an event related potential (ERP) that is reduced in schizophrenia, but its status in individuals at clinical high risk for psychosis (CHR) and its ability to predict conversion to psychosis remains unclear. We examined whether N100 amplitudes are reduced in CHR subjects relative to healthy controls (HC), and this reduction predicts conversion to psychosis in CHR. METHODS Subjects included CHR individuals (n = 552) and demographically similar HC subjects (n = 236) from the North American Prodrome Longitudinal Study. Follow-up assessments identified CHR individuals who converted to psychosis (CHRC; n = 73) and those who did not (CHR-NC; n = 225) over 24 months. Electroencephalography data were collected during an auditory oddball task containing Standard, Novel, and Target stimuli. N100 peak amplitudes following each stimulus were measured at electrodes Cz and Fz. RESULTS The CHR subjects had smaller N100 absolute amplitudes than HC subjects at Fz (F(1,786) = 4.00, p 0.046). A model comparing three groups (CHRC, CHR-NC, HC) was significant for Group at the Cz electrode (F(2,531) = 3.58, p = 0.029). Both Standard (p = 0.019) and Novel (p = 0.017) stimuli showed N100 absolute amplitude reductions in CHR-C relative to HC. A smaller N100 amplitude at Cz predicted conversion to psychosis in the CHR cohort (Standard: p = 0.009; Novel: p = 0.001) and predicted shorter time to conversion (Standard: p = 0.013; Novel: p = 0.001). CONCLUSION N100 amplitudes are reduced in CHR individuals which precedes the onset of psychosis. N100 deficits in CHR individuals predict a greater likelihood of conversion to psychosis. Our results highlight N100's utility as a biomarker of psychosis risk.
Collapse
Affiliation(s)
- Erica Duncan
- Atlanta VA Health Care System, Decatur, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States.
| | - Brian J Roach
- San Francisco VA Health Care System, San Francisco, CA, United States
| | - Nicholas Massa
- Atlanta VA Health Care System, Decatur, GA, United States
| | - Holly K Hamilton
- San Francisco VA Health Care System, San Francisco, CA, United States; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Peter M Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Ricardo E Carrion
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Jason K Johannesen
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | | | - Jean M Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Thomas H McGlashan
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Scott W Woods
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Nima Nasiri
- Atlanta VA Health Care System, Decatur, GA, United States
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, United States; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
48
|
Quantitative electroencephalography parameters as neurophysiological biomarkers of schizophrenia-related deficits: A Phase II substudy of patients treated with iclepertin (BI 425809). Transl Psychiatry 2022; 12:329. [PMID: 35953474 PMCID: PMC9372178 DOI: 10.1038/s41398-022-02096-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with schizophrenia experience cognitive impairment related to neural network dysfunction and deficits in sensory processing. These deficits are thought to be caused by N-methyl-D-aspartate receptor hypofunction and can be assessed in patient populations using electroencephalography (EEG). This substudy from a Phase II, randomized, double-blind, placebo-controlled, parallel-group study investigating the safety and efficacy of the novel glycine transporter-1 inhibitor, iclepertin (BI 425809), assessed the potential of EEG parameters as clinically relevant biomarkers of schizophrenia and response to iclepertin treatment. Eligible patients were randomized to once-daily add-on iclepertin (2, 5, 10, or 25 mg), or placebo (1:1:1:1:2 ratio) for 12 weeks. EEG data were recorded from a subgroup of patients (n = 79) at baseline and end of treatment (EoT). EEG parameters of interest were mismatch negativity (MMN), auditory steady-state response (ASSR), and resting state gamma power, and their correlations with clinical assessments. At baseline, MMN and ASSR exhibited consistent correlations with clinical assessments, indicating their potential value as neurophysiological biomarkers of schizophrenia-related deficits. ASSR measures were positively correlated to the MATRICS Consensus Cognitive Battery overall and neurocognitive composite scores; MMN amplitude was positively correlated with Positive and Negative Syndrome Scale scores. However, correlations between change from baseline (CfB) at EoT in clinical assessments, and baseline or CfB at EoT for EEG parameters were modest and inconsistent between dose groups, which might indicate low potential of these EEG parameters as predictive and treatment response biomarkers. Further methodological refinement is needed to establish EEG parameters as useful drug development tools for schizophrenia.
Collapse
|
49
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity in Response to Auditory Deviance and Risk for Future Psychosis in Youth at Clinical High Risk for Psychosis. JAMA Psychiatry 2022; 79:780-789. [PMID: 35675082 PMCID: PMC9178501 DOI: 10.1001/jamapsychiatry.2022.1417] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance Although clinical criteria for identifying youth at risk for psychosis have been validated, they are not sufficiently accurate for predicting outcomes to inform major treatment decisions. The identification of biomarkers may improve outcome prediction among individuals at clinical high risk for psychosis (CHR-P). Objective To examine whether mismatch negativity (MMN) event-related potential amplitude, which is deficient in schizophrenia, is reduced in young people with the CHR-P syndrome and associated with outcomes, accounting for effects of antipsychotic medication use. Design, Setting, and Participants MMN data were collected as part of the multisite case-control North American Prodrome Longitudinal Study (NAPLS-2) from 8 university-based outpatient research programs. Baseline MMN data were collected from June 2009 through April 2013. Clinical outcomes were assessed throughout 24 months. Participants were individuals with the CHR-P syndrome and healthy controls with MMN data. Participants with the CHR-P syndrome who developed psychosis (ie, converters) were compared with those who did not develop psychosis (ie, nonconverters) who were followed up for 24 months. Analysis took place between December 2019 and December 2021. Main Outcomes and Measures Electroencephalography was recorded during a passive auditory oddball paradigm. MMN elicited by duration-, pitch-, and duration + pitch double-deviant tones was measured. Results The CHR-P group (n = 580; mean [SD] age, 19.24 [4.39] years) included 247 female individuals (42.6%) and the healthy control group (n = 241; mean age, 20.33 [4.74] years) included 114 female individuals (47.3%). In the CHR-P group, 450 (77.6%) were not taking antipsychotic medication at baseline. Baseline MMN amplitudes, irrespective of deviant type, were deficient in future CHR-P converters to psychosis (n = 77, unmedicated n = 54) compared with nonconverters (n = 238, unmedicated n = 190) in both the full sample (d = 0.27) and the unmedicated subsample (d = 0.33). In the full sample, baseline medication status interacted with group and deviant type indicating that double-deviant MMN, compared with single deviants, was reduced in unmedicated converters compared with nonconverters (d = 0.43). Further, within the unmedicated subsample, deficits in double-deviant MMN were most strongly associated with earlier conversion to psychosis (hazard ratio, 1.40 [95% CI, 1.03-1.90]; P = .03], which persisted over and above positive symptom severity. Conclusions and Relevance This study found that MMN amplitude deficits were sensitive to future psychosis conversion among individuals at risk of CHR-P, particularly those not taking antipsychotic medication at baseline, although associations were modest. While MMN shows limited promise as a biomarker of psychosis onset on its own, it may contribute novel risk information to multivariate prediction algorithms and serve as a translational neurophysiological target for novel treatment development in a subgroup of at-risk individuals.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Peter M. Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ricardo E. Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Erica Duncan
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jason K. Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Margaret A. Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston
- Veterans Affairs Boston Healthcare System, Brockton, Massachusetts
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles
- Department of Psychology, University of California, Los Angeles, Los Angeles
| | | | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York
| | - Thomas H. McGlashan
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Elaine F. Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W. Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Tyrone D. Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
- Department of Psychology, Yale University, School of Medicine, New Haven, Connecticut
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| |
Collapse
|
50
|
Kool L, Oranje B, Meijs H, De Wilde B, Van Hecke J, Niemegeers P, Luykx JJ. Event-related potentials and use of psychotropic medication in major psychiatric disorders. Psychiatry Res 2022; 314:114637. [PMID: 35649338 DOI: 10.1016/j.psychres.2022.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Attention deficits measured using event-related potentials (ERPs) have been frequently reported in several major psychiatric disorders, e.g. mood disorder (MD), psychotic disorder (PD) and substance use disorder (SUD). However, comparisons between these specific categories are lacking. Here we investigated if electrophysiological parameters of basic information processing are associated with the above-mentioned categories of psychiatric disorders, or instead were associated with general psychopathology. METHODS 579 subjects with MD, PD or SUD and healthy controls (HC) were included. Participants were tested in a passive auditory and an active visual oddball paradigm to assess mismatch negativity (MMN), P3A and P3B amplitudes. Additionally, we examined associations between these measures and psychoactive medication treatments. RESULTS All patients had significantly lower P3B amplitudes compared to healthy controls, while only SUD patients had lower P3A amplitudes than MD, PD and HC. PD patients also produced significantly less MMN than both MD and SUD patients. Additionally, we found significantly higher P3B amplitude in HC compared to patients without psychopharmacological treatment and patients treated with two or more psychoactive compounds (polypharmacy), but no significant associations with medication on P3A and MMN amplitudes. CONCLUSIONS Our results add to the theory that P3B deficits are associated with general psychopathology, whereas P3A and MMN deficits appear to be associated with substance abuse and psychotic disorders respectively.
Collapse
Affiliation(s)
- Lindy Kool
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Huispostnummer Str. 4.205, Universiteitsweg 100, Utrecht 3584 CG, The Netherlands; Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Academic Hospital Glostrup, Glostrup, Denmark
| | - Hannah Meijs
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Huispostnummer Str. 4.205, Universiteitsweg 100, Utrecht 3584 CG, The Netherlands; Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands
| | - Bieke De Wilde
- Department of Psychiatry, Ziekenhuis Netwerk Antwerpen (ZNA), Antwerp, Belgium
| | - Jan Van Hecke
- Department of Psychiatry, Ziekenhuis Netwerk Antwerpen (ZNA), Antwerp, Belgium
| | - Peter Niemegeers
- Department of Psychiatry, Ziekenhuis Netwerk Antwerpen (ZNA), Antwerp, Belgium
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Huispostnummer Str. 4.205, Universiteitsweg 100, Utrecht 3584 CG, The Netherlands; Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Outpatient second opinion clinic, GGNet Mental Health, Apeldoorn, The Netherlands
| |
Collapse
|