1
|
Hadi AF, Arta RK, Kushima I, Egawa J, Watanabe Y, Ozaki N, Someya T. Association Analysis of Rare CNTN5 Variants With Autism Spectrum Disorder in a Japanese Population. Neuropsychopharmacol Rep 2025; 45:e12527. [PMID: 39887962 PMCID: PMC11781355 DOI: 10.1002/npr2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Contactin-5 (CNTN5), a neural adhesion molecule involved in synaptogenesis and synaptic maturation in the auditory pathway, has been associated with the pathophysiology of autism spectrum disorder (ASD), particularly hyperacusis. To investigate the role of rare CNTN5 variants in ASD susceptibility, we performed resequencing and association analysis in a Japanese population. METHODS We resequenced the CNTN5 coding regions in 302 patients with ASD and prioritized rare putatively damaging variants. The prioritized variants were then genotyped in 313 patients with ASD and 1065 controls. Subsequently, we conducted an association study of selected variants with ASD in 614 patients with ASD and 61 057 controls. Clinical data were reviewed for patients carrying prioritized variants. RESULTS Through resequencing, we prioritized three rare putatively damaging missense variants (W69G, I227L, and L1000S) in patients with ASD. Although we found a nominally significant association between the I227L variant and ASD, it did not remain significant after post hoc correction. Hyperacusis was found in three out of nine patients carrying prioritized variants. CONCLUSION This study does not provide evidence for the contribution of rare CNTN5 variants to the genetic etiology of ASD in the Japanese population.
Collapse
Affiliation(s)
- Abdul Fuad Hadi
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Reza K. Arta
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaAichiJapan
- Medical Genomics CenterNagoya University HospitalNagoyaAichiJapan
| | - Jun Egawa
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yuichiro Watanabe
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
- Department of PsychiatryUonuma Kikan HospitalNiigataJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Toshiyuki Someya
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
2
|
Vajagathali M, Ramakrishnan V. Genetic predisposition of BDNF (rs6265) gene is susceptible to Schizophrenia: A prospective study and updated meta-analysis. Neurologia 2024; 39:361-371. [PMID: 38616064 DOI: 10.1016/j.nrleng.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Genetic polymorphism in the BDNF gene has been found to cause neuronal alterations and has been identified as a causal factor for many neuropsychiatric disorders. Therefore, various neurological case-control studies and meta-analyses have been conducted to find the possible link between BDNF and susceptibility to schizophrenia. METHOD This meta-analysis gathered data from 25 case-control studies including a total of 8384 patients with schizophrenia and 8821 controls in order to identify the relationship between the rs6265 single nucleotide polymorphism and the disease, evaluating the combined odds ratio and 95% confidence intervals under 5 different genetic models. Validation followed the "Leave one out" method, and we used the Egger test and Begg's funnel plot to identify publication bias. RESULTS Research into the rs6265 (G/A) polymorphism revealed a non-significant association with schizophrenia in all 5 genetic models; in the subgroup analysis, no association was found between white and Asian populations, with a p value>.05. CONCLUSIONS Overall, the updated meta-analysis revealed that rs6265 exonic polymorphisms do not increase susceptibility to this disease. However, to better understand the pathogenesis of the disease, there is a need for further case-control studies into the BDNF polymorphism including larger sample sizes and different ethnic groups.
Collapse
Affiliation(s)
- M Vajagathali
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamilnadu, India
| | - V Ramakrishnan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamilnadu, India.
| |
Collapse
|
3
|
Morozova A, Ushakova V, Pavlova O, Bairamova S, Andryshenko N, Ochneva A, Abramova O, Zorkina Y, Spektor VA, Gadisov T, Ukhov A, Zubkov E, Solovieva K, Alexeeva P, Khobta E, Nebogina K, Kozlov A, Klimenko T, Gurina O, Shport S, Kostuyk G, Chekhonin V, Pavlov K. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes (Basel) 2024; 15:240. [PMID: 38397229 PMCID: PMC10887670 DOI: 10.3390/genes15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.
Collapse
Affiliation(s)
- Anna Morozova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeriya Ushakova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Neurobiology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Pavlova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Sakeena Bairamova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Nika Andryshenko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
| | - Aleksandra Ochneva
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Abramova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valery A. Spektor
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Timur Gadisov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Andrey Ukhov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Eugene Zubkov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Kristina Solovieva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Polina Alexeeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Elena Khobta
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Kira Nebogina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Alexander Kozlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Tatyana Klimenko
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Olga Gurina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Svetlana Shport
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - George Kostuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Konstantin Pavlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| |
Collapse
|
4
|
Yamaguchi R, Matsudaira I, Takeuchi H, Imanishi T, Kimura R, Tomita H, Kawashima R, Taki Y. RELN rs7341475 associates with brain structure in japanese healthy females. Neuroscience 2022; 494:38-50. [DOI: 10.1016/j.neuroscience.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
5
|
Morikawa R, Watanabe Y, Igeta H, Arta RK, Ikeda M, Okazaki S, Hoya S, Saito T, Otsuka I, Egawa J, Tanifuji T, Iwata N, Someya T. Novel missense SETD1A variants in Japanese patients with schizophrenia: Resequencing and association analysis. Psychiatry Res 2022; 310:114481. [PMID: 35235885 DOI: 10.1016/j.psychres.2022.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
SETD1A has been identified as a substantial risk gene for schizophrenia. To further investigate the role of SETD1A in the genetic etiology of schizophrenia in the Japanese population, we performed resequencing and association analyses. First, we resequenced the SETD1A coding regions of 974 patients with schizophrenia. Then, we genotyped variants, prioritized via resequencing, in 2,027 patients with schizophrenia and 2,664 controls. Next, we examined the association between SETD1A and schizophrenia in 3,001 patients with schizophrenia and 2,664 controls. Finally, we performed a retrospective chart review of patients with prioritized SETD1A variants. We identified two novel missense variants (p.Ser575Pro and p.Glu857Gln) via resequencing. We did not detect these variants in 4,691 individuals via genotyping. These variants were not significantly associated with schizophrenia in the association analysis. Additionally, we found that a schizophrenia patient with the p.Glu857Gln variant had developmental delays. In conclusion, novel SETD1A missense variants were exclusively identified in Japanese patients with schizophrenia. However, our study does not provide evidence for the contribution of these variants to the genetic etiology of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan.
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Reza K Arta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
6
|
Vajagathali M, Ramakrishnan V. Genetic predisposition of BDNF (rs6265) gene is susceptible to Schizophrenia: A prospective study and updated meta-analysis. Neurologia 2022. [DOI: 10.1016/j.nrl.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Igeta H, Watanabe Y, Morikawa R, Ikeda M, Otsuka I, Hoya S, Koizumi M, Egawa J, Hishimoto A, Iwata N, Someya T. Rare compound heterozygous missense SPATA7 variations and risk of schizophrenia; whole-exome sequencing in a consanguineous family with affected siblings, follow-up sequencing and a case-control study. Neuropsychiatr Dis Treat 2019; 15:2353-2363. [PMID: 31695380 PMCID: PMC6707433 DOI: 10.2147/ndt.s218773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Whole-exome sequencing (WES) of multiplex families is a promising strategy for identifying causative variations for common diseases. To identify rare recessive risk variations for schizophrenia, we performed a WES study in a consanguineous family with affected siblings. We then performed follow-up sequencing of SPATA7 in schizophrenia-affected families. In addition, we performed a case-control study to investigate association between SPATA7 variations and schizophrenia. PATIENTS AND METHODS WES was performed on two affected siblings and their unaffected parents, who were second cousins, of a multiplex schizophrenia family. Subsequently, we sequenced the coding region of SPATA7, a potential risk gene identified by the WES analysis, in 142 affected offspring from 137 families for whom parental DNA samples were available. We further tested rare recessive SPATA7 variations, identified by WES and sequencing, for associations with schizophrenia in 2,756 patients and 2,646 controls. RESULTS Our WES analysis identified rare compound heterozygous missense SPATA7 variations, p.Asp134Gly and p.Ile332Thr, in both affected siblings. Sequencing SPATA7 coding regions from 137 families identified no rare recessive variations in affected offspring. In the case-control study, we did not detect the rare compound heterozygous SPATA7 missense variations in patients or controls. CONCLUSION Our data does not support the role of the rare compound heterozygous SPATA7 missense variations p.Asp134Gly and p.Ile332Thr in conferring a substantial risk of schizophrenia.
Collapse
Affiliation(s)
- Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Koizumi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation. Brain Topogr 2018; 31:780-794. [PMID: 29737438 PMCID: PMC6097743 DOI: 10.1007/s10548-018-0648-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/02/2018] [Indexed: 10/31/2022]
Abstract
Paired-pulse depression (PPD) has been widely used to investigate the functional profiles of somatosensory cortical inhibition. However, PPD induced by somatosensory stimulation is variable, and the reasons for between- and within-subject PPD variability remains unclear. Therefore, the purpose of this study was to clarify the factors influencing PPD variability induced by somatosensory stimulation. The study participants were 19 healthy volunteers. First, we investigated the relationship between the PPD ratio of each component (N20m, P35m, and P60m) of the somatosensory magnetic field, and the alpha, beta, and gamma band changes in power [event-related desynchronization (ERD) and event-related synchronization (ERS)] induced by median nerve stimulation. Second, because brain-derived neurotrophic factor (BDNF) gene polymorphisms reportedly influence the PPD ratio, we assessed whether BDNF genotype influences PPD ratio variability. Finally, we evaluated the test-retest reliability of PPD and the alpha, beta, and gamma ERD/ERS induced by somatosensory stimulation. Significant positive correlations were observed between the P60m_PPD ratio and beta power change, and the P60m_PPD ratio was significantly smaller for the beta ERD group than for the beta ERS group. P35m_PPD was found to be robust and highly reproducible; however, P60m_PPD reproducibility was poor. In addition, the ICC values for alpha, beta, and gamma ERD/ERS were 0.680, 0.760, and 0.552 respectively. These results suggest that the variability of PPD for the P60m deflection may be influenced by the ERD/ERS magnitude, which is induced by median nerve stimulation.
Collapse
|
9
|
Hoya S, Watanabe Y, Hishimoto A, Nunokawa A, Kaneko N, Muratake T, Shinmyo N, Otsuka I, Okuda S, Inoue E, Igeta H, Shibuya M, Egawa J, Orime N, Sora I, Someya T. Rare PDCD11 variations are not associated with risk of schizophrenia in Japan. Psychiatry Clin Neurosci 2017; 71:780-788. [PMID: 28657695 DOI: 10.1111/pcn.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 12/26/2022]
Abstract
AIM Rare gene variations are thought to confer substantial risk for schizophrenia. We performed a three-stage study to identify rare variations that have a strong impact on the risk of developing schizophrenia. METHODS In the first stage, we prioritized rare missense variations using whole-exome sequencing (WES) data from three families, consisting of a proband, an affected sibling, and parents. In the second stage, we performed targeted resequencing of the PDCD11 coding region in 96 patients. In the third stage, we conducted an association study of rare PDCD11 variations with schizophrenia in a total of 1357 patients and 1394 controls. RESULTS Via WES, we identified two rare missense PDCD11 variations, p.(Asp961Asn) and p.(Val1240Leu), shared by two affected siblings within families. Targeted resequencing of the PDCD11 coding region identified three rare non-synonymous variations: p.(Asp961Asn), p.(Phe1835del), and p.(Arg1837His). The case-control study demonstrated no significant associations between schizophrenia and four rare PDCD11 variations: p.(Asp961Asn), p.(Val1240Leu), p.(Phe1835del), and p.(Arg1837His). CONCLUSION Our data do not support the role of rare PDCD11 variations in conferring substantial risk for schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Niigata, Japan
| | - Naoshi Kaneko
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Niigata, Japan
| | - Tatsuyuki Muratake
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Furumachi Mental Clinic, Niigata, Japan
| | - Naofumi Shinmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Orime
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
10
|
McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front Neuroendocrinol 2017; 47:19-33. [PMID: 28673758 DOI: 10.1016/j.yfrne.2017.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a complex neuropsychiatric illness with marked sex differences. Women have later onset and lesser symptoms, which has led to the hypothesis that estrogens are protective in schizophrenia. Cognitive dysfunction is a hallmark of the disease and the symptom most correlated with functional outcome. Here we describe a number of mechanisms by which estrogens may be therapeutic in schizophrenia, with a focus on cognitive symptoms. We review the relationship between estrogens and brain derived neurotrophic factor, neuroinflammation, NMDA receptors, GABA receptors, and luteinizing hormone. Exploring these pathways may enable novel treatments for schizophrenia and a greater understanding of this devastating disease.
Collapse
Affiliation(s)
- Claire McGregor
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Alexander Riordan
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
11
|
Hoya S, Watanabe Y, Hishimoto A, Nunokawa A, Inoue E, Igeta H, Otsuka I, Shibuya M, Egawa J, Sora I, Someya T. Rare FBXO18 variations and risk of schizophrenia: Whole-exome sequencing in two parent-affected offspring trios followed by resequencing and case-control studies. Psychiatry Clin Neurosci 2017; 71:562-568. [PMID: 28317220 DOI: 10.1111/pcn.12526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 11/27/2022]
Abstract
AIM Rare variations are suggested to play a role in the genetic etiology of schizophrenia; to further investigate their role, we performed a three-stage study in a Japanese population. METHODS In the first stage, we performed whole-exome sequencing (WES) of two parent-affected offspring trios. In the second stage, we resequenced the FBXO18 coding region in 96 patients. In the third stage, we tested rare non-synonymous FBXO18 variations for association with schizophrenia in two independent populations comprising a total of 1376 patients and 1496 controls. RESULTS A rare frameshift variation (L116fsX) in the FBXO18 gene was recurrently identified by WES in both trios. Resequencing FBXO18 coding regions, we detected three rare non-synonymous variations (V15L, L116fsX, and V1006I). However, there were no significant associations between these rare FBXO18 variations and schizophrenia in the case-control study. CONCLUSION Our present study does not provide evidence for the contribution of rare non-synonymous FBXO18 variations to the genetic etiology of schizophrenia in the Japanese population. However, to draw a definitive conclusion, further studies should be performed using sufficiently large sample sizes.
Collapse
Affiliation(s)
- Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Psychiatry, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Sanjo, Japan
| | - Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Medical Education, Comprehensive Medical Education Center, School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
12
|
Egawa J, Hoya S, Watanabe Y, Nunokawa A, Shibuya M, Ikeda M, Inoue E, Okuda S, Kondo K, Saito T, Kaneko N, Muratake T, Igeta H, Iwata N, Someya T. Rare UNC13B variations and risk of schizophrenia: Whole-exome sequencing in a multiplex family and follow-up resequencing and a case-control study. Am J Med Genet B Neuropsychiatr Genet 2016; 171:797-805. [PMID: 26990377 DOI: 10.1002/ajmg.b.32444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/25/2016] [Indexed: 01/03/2023]
Abstract
Rare genomic variations inherited in multiplex schizophrenia families are suggested to play a role in the genetic etiology of the disease. To identify rare variations with large effects on the risk of developing schizophrenia, we performed whole-exome sequencing (WES) in two affected and one unaffected individual of a multiplex family with 10 affected individuals. We also performed follow-up resequencing of the unc-13 homolog B (Caenorhabditis elegans) (UNC13B) gene, a potential risk gene identified by WES, in the multiplex family and undertook a case-control study to investigate association between UNC13B and schizophrenia. UNC13B coding regions (39 exons) from 15 individuals of the multiplex family and 111 affected offspring for whom parental DNA samples were available were resequenced. Rare missense UNC13B variations identified by resequencing were further tested for association with schizophrenia in two independent case-control populations comprising a total of 1,753 patients and 1,602 controls. A rare missense variation (V1525M) in UNC13B was identified by WES in the multiplex family; this variation was present in five of six affected individuals, but not in eight unaffected individuals or one individual of unknown disease status. Resequencing UNC13B coding regions identified five rare missense variations (T103M, M813T, P1349T, I1362T, and V1525M). In the case-control study, there was no significant association between rare missense UNC13B variations and schizophrenia, although single-variant meta-analysis indicated that M813T was nominally associated with schizophrenia. These results do not support a contribution of rare missense UNC13B variations to the genetic etiology of schizophrenia in the Japanese population. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Sanjo, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kenji Kondo
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Naoshi Kaneko
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Sanjo, Niigata, Japan
| | - Tatsuyuki Muratake
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Furumachi Mental Clinic, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Rare truncating variations and risk of schizophrenia: Whole-exome sequencing in three families with affected siblings and a three-stage follow-up study in a Japanese population. Psychiatry Res 2016; 235:13-8. [PMID: 26706132 DOI: 10.1016/j.psychres.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
Rare inherited variations in multiplex families with schizophrenia are suggested to play a role in the genetic etiology of schizophrenia. To further investigate the role of rare inherited variations, we performed whole-exome sequencing (WES) in three families, each with two affected siblings. We also performed a three-stage follow-up case-control study in a Japanese population with a total of 2617 patients and 2396 controls. WES identified 15 rare truncating variations that were variously present in the two affected siblings in each family. These variations did not necessarily segregate with schizophrenia within families, and they were different in each family. In the follow-up study, four variations (NWD1 W169X, LCORL R7fsX53, CAMK2B L497fsX497, and C9orf89 Q102X) had a higher mutant allele frequency in patients compared with controls, although these associations were not significant in the combined population, which comprised the first-, second- and third-stage populations. These results do not support a contribution of the rare truncating variations identified in the three families to the genetic etiology of schizophrenia.
Collapse
|
14
|
Kheirollahi M, Kazemi E, Ashouri S. Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism and Risk of Schizophrenia: A Meta-analysis of Case-Control Studies. Cell Mol Neurobiol 2016; 36:1-10. [PMID: 26134309 PMCID: PMC11482494 DOI: 10.1007/s10571-015-0229-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023]
Abstract
According to evidences from previous family and association studies, it has been claimed that genetic factors are involved in the neuropathogenesis of Schizophrenia disorder. Whether the Val66Met variant of brain-derived neurotrophic factor (BDNF) gene plays any roles in the pathogenesis of this syndrome or could be a potential biomarker for prognosis of this disorder has been a long-standing controversial issue. We performed a meta-analysis restricted to case-control studies and searched Pubmed, PsychInfo, and Google scholar using keywords including 'association,' 'Val66Met,' 'BDNF,' and 'schizophrenia' published up to May 1, 2015. A total of 39 studies for schizophrenia were combined by fixed- and random-effects models. The pooled results from the schizophrenia sample indicated no significant evidence for the association of Val/Val and Val/Met genotypes of BDNF gene with schizophrenia, but it was observed that there is an association between Met/Met polymorphism and schizophrenia in Asian, European, and Chinese populations, this means that the risk of schizophrenia in Asian, European, and Chinese populations with Met/Met genotype is, respectively, 9, 26, and 9%. There was a significant association between BDNF Val66Met polymorphism and schizophrenia in our meta-analysis study. We cannot rule out the possibility that other polymorphisms in the BDNF gene are involved in the pathophysiology of schizophrenia. In addition, more studies should be conducted on the polymorphisms in other genes to elucidate their possible roles in schizophrenia.
Collapse
Affiliation(s)
- Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Elahe Kazemi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Saeideh Ashouri
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| |
Collapse
|
15
|
Inoue E, Watanabe Y, Xing J, Kushima I, Egawa J, Okuda S, Hoya S, Okada T, Uno Y, Ishizuka K, Sugimoto A, Igeta H, Nunokawa A, Sugiyama T, Ozaki N, Someya T. Resequencing and Association Analysis of CLN8 with Autism Spectrum Disorder in a Japanese Population. PLoS One 2015; 10:e0144624. [PMID: 26657971 PMCID: PMC4682829 DOI: 10.1371/journal.pone.0144624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022] Open
Abstract
Rare variations contribute substantially to autism spectrum disorder (ASD) liability. We recently performed whole-exome sequencing in two families with affected siblings and then carried out a follow-up study and identified ceroid-lipofuscinosis neuronal 8 (epilepsy, progressive with mental retardation) (CLN8) as a potential genetic risk factor for ASD. To further investigate the role of CLN8 in the genetic etiology of ASD, we performed resequencing and association analysis of CLN8 with ASD in a Japanese population. Resequencing the CLN8 coding region in 256 ASD patients identified five rare missense variations: g.1719291G>A (R24H), rs201670636 (F39L), rs116605307 (R97H), rs143701028 (T108M) and rs138581191 (N152S). These variations were genotyped in 568 patients (including the resequenced 256 patients) and 1017 controls. However, no significant association between these variations and ASD was identified. This study does not support a contribution of rare missense CLN8 variations to ASD susceptibility in the Japanese population.
Collapse
Affiliation(s)
- Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsunori Sugimoto
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Oojima Hospital, Sanjo, Niigata, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Egawa J, Watanabe Y, Sugimoto A, Nunokawa A, Shibuya M, Igeta H, Inoue E, Hoya S, Orime N, Hayashi T, Sugiyama T, Someya T. Whole-exome sequencing in a family with a monozygotic twin pair concordant for autism spectrum disorder and a follow-up study. Psychiatry Res 2015; 229:599-601. [PMID: 26189338 DOI: 10.1016/j.psychres.2015.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 11/17/2022]
Abstract
Two truncating variations (WDR90 V1125fs and EFCAB5 L1210fs), identified by whole-exome sequencing in a family with a monozygotic twin pair concordant for autism spectrum disorder (ASD), were not detected in 257 ASD patients, 677 schizophrenia patients or 667 controls in a follow-up study. Thus, these variations were exclusively identified in the family, suggesting that rare truncating variations may have a role in the genetic etiology of ASD, at least in a subset of ASD patients.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan; Department of Pediatric Psychiatry, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan; Department of Psychiatry, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiunonuma, Niigata, Japan.
| | - Atsunori Sugimoto
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan; Oojima Hospital, Sanjo, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan; Health Administration Center, Headquarters for Health Administration, Niigata University, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| | - Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| | - Naoki Orime
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| | - Taketsugu Hayashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, Japan
| |
Collapse
|
17
|
Inoue E, Watanabe Y, Egawa J, Sugimoto A, Nunokawa A, Shibuya M, Igeta H, Someya T. Rare heterozygous truncating variations and risk of autism spectrum disorder: Whole-exome sequencing of a multiplex family and follow-up study in a Japanese population. Psychiatry Clin Neurosci 2015; 69:472-6. [PMID: 25601189 DOI: 10.1111/pcn.12274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/05/2014] [Accepted: 01/10/2015] [Indexed: 01/24/2023]
Abstract
AIMS Rare heterozygous truncating variations in multiplex families with autism spectrum disorder (ASD) are suggested to play a major role in the genetic etiology of ASD. To further investigate the role of rare heterozygous truncating variations, we performed whole-exome sequencing (WES) in a multiplex ASD family with four affected individuals (two siblings and two maternal cousins), and a follow-up case-control study in a Japanese population. METHODS WES was performed in four individuals (a proband, his affected and unaffected siblings, and their putative carrier mother) from the multiplex ASD family. Rare heterozygous truncating variations prioritized in WES were genotyped in 243 patients and 667 controls. RESULTS By WES of the multiplex family, we prioritized two rare heterozygous truncating variations, RPS24 Q191X and CD300LF P261fsX266. However, we did not identify these variations in patients or controls in the follow-up study. CONCLUSIONS Our findings suggest that two rare heterozygous truncating variations (RPS24 Q191X and CD300LF P261fsX266) are risk candidates for ASD.
Collapse
Affiliation(s)
- Emiko Inoue
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Medical Education, Comprehensive Medical Education Center, School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Pediatric Psychiatry, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Atsunori Sugimoto
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Oojima Hospital, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Health Administration Center, Headquarters for Health Administration, Niigata University, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
18
|
Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 2015; 20:916-30. [PMID: 25824305 DOI: 10.1038/mp.2015.27] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a primary role in neuronal development, differentiation and plasticity in both the developing and adult brain. A single-nucleotide polymorphism in the proregion of BDNF, termed the Val66Met polymorphism, results in deficient subcellular translocation and activity-dependent secretion of BDNF, and has been associated with impaired neurocognitive function in healthy adults and in the incidence and clinical features of several psychiatric disorders. Research investigating the Val66Met polymorphism has increased markedly in the past decade, and a gap in integration exists between and within academic subfields interested in the effects of this variant. Here we comprehensively review the role and relevance of the Val66Met polymorphism in psychiatric disorders, with emphasis on suicidal behavior and anxiety, eating, mood and psychotic disorders. The cognitive and molecular neuroscience of the Val66Met polymorphism is also concisely reviewed to illustrate the effects of this genetic variant in healthy controls, and is complemented by a commentary on the behavioral neuroscience of BDNF and the Val66Met polymorphism where relevant to specific disorders. Lastly, a number of controversies and unresolved issues, including small effect sizes, sampling of allele inheritance but not genotype and putative ethnicity-specific effects of the Val66Met polymorphism, are also discussed to direct future research.
Collapse
Affiliation(s)
- M Notaras
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - R Hill
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M van den Buuse
- 1] Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia [2] School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Gervasini G, Gamero-Villarroel C. Discussing the putative role of obesity-associated genes in the etiopathogenesis of eating disorders. Pharmacogenomics 2015; 16:1287-1305. [DOI: 10.2217/pgs.15.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In addition to the identification of mutations clearly related to Mendelian forms of obesity; genome-wide association studies and follow-up studies have in the last years pinpointed several loci associated with BMI. These genetic alterations are located in or near genes expressed in the hypothalamus that are involved in the regulation of eating behavior. Accordingly, it seems plausible that these SNPs, or others located in related genes, could also help develop aberrant conduct patterns that favor the establishment of eating disorders should other susceptibility factors or personality dimensions be present. However, and somewhat surprisingly, with few exceptions such as BDNF, the great majority of the genes governing these pathways remain untested in patients with anorexia nervosa, bulimia nervosa or binge-eating disorder. In the present work, we review the few existing studies, but also indications and biological concepts that point to these genes in the CNS as good candidates for association studies with eating disorder patients.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| | - Carmen Gamero-Villarroel
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| |
Collapse
|
20
|
Egawa J, Watanabe Y, Wang C, Inoue E, Sugimoto A, Sugiyama T, Igeta H, Nunokawa A, Shibuya M, Kushima I, Orime N, Hayashi T, Okada T, Uno Y, Ozaki N, Someya T. Novel rare missense variations and risk of autism spectrum disorder: whole-exome sequencing in two families with affected siblings and a two-stage follow-up study in a Japanese population. PLoS One 2015; 10:e0119413. [PMID: 25806950 PMCID: PMC4373693 DOI: 10.1371/journal.pone.0119413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
Rare inherited variations in multiplex families with autism spectrum disorder (ASD) are suggested to play a major role in the genetic etiology of ASD. To further investigate the role of rare inherited variations, we performed whole-exome sequencing (WES) in two families, each with three affected siblings. We also performed a two-stage follow-up case-control study in a Japanese population. WES of the six affected siblings identified six novel rare missense variations. Among these variations, CLN8 R24H was inherited in one family by three affected siblings from an affected father and thus co-segregated with ASD. In the first stage of the follow-up study, we genotyped the six novel rare missense variations identified by WES in 241 patients and 667 controls (the Niigata sample). Only CLN8 R24H had higher mutant allele frequencies in patients (1/482) compared with controls (1/1334). In the second stage, this variation was further genotyped, yet was not detected in a sample of 309 patients and 350 controls (the Nagoya sample). In the combined Niigata and Nagoya samples, there was no significant association (odds ratio = 1.8, 95% confidence interval = 0.1–29.6). These results suggest that CLN8 R24H plays a role in the genetic etiology of ASD, at least in a subset of ASD patients.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatric Psychiatry, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Medical Education, Comprehensive Medical Education Center, School of Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
- * E-mail: (YW)
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Emiko Inoue
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsunori Sugimoto
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Oojima Hospital, Sanjo, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Health Administration Center, Headquarters for Health Administration, Niigata University, Niigata, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoki Orime
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taketsugu Hayashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
21
|
Egawa J, Watanabe Y, Shibuya M, Endo T, Sugimoto A, Igeta H, Nunokawa A, Inoue E, Someya T. Resequencing and association analysis of OXTR with autism spectrum disorder in a Japanese population. Psychiatry Clin Neurosci 2015; 69:131-5. [PMID: 24836510 DOI: 10.1111/pcn.12205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2014] [Accepted: 05/11/2014] [Indexed: 12/12/2022]
Abstract
AIMS The oxytocin receptor (OXTR) is implicated in the pathophysiology of autism spectrum disorder (ASD). A recent study found a rare non-synonymous OXTR gene variation, rs35062132 (R376G), associated with ASD in a Japanese population. In order to investigate the association between rare non-synonymous OXTR variations and ASD, we resequenced OXTR and performed association analysis with ASD in a Japanese population. METHODS We resequenced the OXTR coding region in 213 ASD patients. Rare non-synonymous OXTR variations detected by resequencing were genotyped in 213 patients and 667 controls. RESULTS We detected three rare non-synonymous variations: rs35062132 (R376G/C), rs151257822 (G334D), and g.8809426G>T (R150S). However, there was no significant association between these rare non-synonymous variations and ASD. CONCLUSIONS Our present study does not support the contribution of rare non-synonymous OXTR variations to ASD susceptibility in the Japanese population.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Psychiatry, Center for Transdisciplinary Research, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Otsuka I, Watanabe Y, Hishimoto A, Boku S, Mouri K, Shiroiwa K, Okazaki S, Nunokawa A, Shirakawa O, Someya T, Sora I. Association analysis of the Cadherin13 gene with schizophrenia in the Japanese population. Neuropsychiatr Dis Treat 2015; 11:1381-93. [PMID: 26082635 PMCID: PMC4461090 DOI: 10.2147/ndt.s84736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cadherin13 (CDH13) is a glycosylphosphatidylinositol-anchored cell adhesion molecule that plays a crucial role in morphogenesis and the maintenance of neuronal circuitry. CDH13 has been implicated in the susceptibility to a variety of psychiatric diseases. A recent genome-wide association study using Danish samples showed, for the first time, the involvement of a single nucleotide polymorphism (SNP) of CDH13 (intronic SNP rs8057927) in schizophrenia. Here, we investigated the association between other SNPs of CDH13 and schizophrenia and tried to replicate the association for the SNP of rs8057927, in the Japanese population. METHODS Using TaqMan(®) SNP genotyping assays, five tag SNPs (rs12925602, rs7193788, rs736719, rs6565051, and rs7204454) in the promoter region of CDH13 were examined for their association with schizophrenia in two independent samples. The first sample comprised 665 patients and 760 controls, and the second sample comprised 677 patients and 667 controls. One tag SNP for rs8057927 was also examined for the association with schizophrenia in the first sample set. RESULTS A GACAG haplotype of the five SNPs in the promoter region of CDH13 was significantly associated with schizophrenia in the first sample set (P=0.016 and corrected P=0.098). A combined analysis of the GACAG haplotype with the second sample set enhanced the significance (P=0.0026 and corrected P=0.021). We found no association between rs8057927 and schizophrenia in the first sample set. CONCLUSION Our results suggest that CDH13 may contribute to the genetic risk of schizophrenia. Further replication on the association of CDH13 with schizophrenia and functional studies are required to confirm the current findings.
Collapse
Affiliation(s)
- Ikuo Otsuka
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Kyoichi Shiroiwa
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, School of Medicine, Kinki University, Osaka, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ichiro Sora
- Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
23
|
Zhao X, Huang Y, Chen K, Li D, Han C, Kan Q. The brain-derived neurotrophic factor Val66Met polymorphism is not associated with schizophrenia: An updated meta-analysis of 11,480 schizophrenia cases and 13,490 controls. Psychiatry Res 2015; 225:217-220. [PMID: 25468641 DOI: 10.1016/j.psychres.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 02/05/2023]
|
24
|
Cheah SY, Lawford BR, Young RM, Connor JP, Morris CP, Voisey J. BDNF SNPs Are Implicated in Comorbid Alcohol Dependence in Schizophrenia But Not in Alcohol-Dependent Patients Without Schizophrenia. Alcohol Alcohol 2014; 49:491-7. [DOI: 10.1093/alcalc/agu040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Okazaki S, Watanabe Y, Hishimoto A, Sasada T, Mouri K, Shiroiwa K, Eguchi N, Ratta-Apha W, Otsuka I, Nunokawa A, Kaneko N, Shibuya M, Someya T, Shirakawa O, Sora I. Association analysis of putative cis-acting polymorphisms of interleukin-19 gene with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:151-6. [PMID: 24361379 DOI: 10.1016/j.pnpbp.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) and gene expression analyses have revealed that single nucleotide polymorphisms (SNPs) associated with multifactorial diseases, such as schizophrenia, are significantly more likely to be associated with expression quantitative trait loci (eQTL). It was recently suggested that an immune system imbalance plays an important role in the pathogenesis of schizophrenia. Interleukin-19 is a novel cytokine that may play multiple roles in immune regulation and various diseases. METHOD We selected eight tag SNPs in the eQTL of the IL-19 gene. Seven of the SNPs are putative cis-acting SNPs. Then, we conducted a case-control study using two independent samples. The first sample comprised 567 schizophrenia patients and 710 controls, and the second sample comprised 677 schizophrenia patients and 667 controls. RESULT We identified the TGAA haplotype as being significantly associated with schizophrenia (p=0.0036 and corrected p=0.0264), although a combined analysis of the TGAA haplotype with the replication samples exhibited a nominally significant difference (p=0.022 and corrected p=0.235). CONCLUSIONS These results suggest that the IL-19 gene might slightly contribute to the genetic risk of schizophrenia. Thus, further research on the association of eQTL SNPs with schizophrenia is warranted.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Toru Sasada
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoichi Shiroiwa
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriomi Eguchi
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Woraphat Ratta-Apha
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoshi Kaneko
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kinki University School of Medicine, Osaka, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
26
|
Watanabe Y, Shibuya M, Nunokawa A, Kaneko N, Igeta H, Egawa J, Someya T, Hishimoto A, Mouri K, Sora I. A rare MIR138-2 gene variation is associated with schizophrenia in a Japanese population. Psychiatry Res 2014; 215:801-2. [PMID: 24411711 DOI: 10.1016/j.psychres.2013.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan.
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Naoshi Kaneko
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | | | | | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
27
|
Liu J, Numata S, Ikeda M, Watanabe Y, Zheng XB, Luo X, Kinoshita M, Nunokawa A, Someya T, Ohmori T, Bei JX, Chong SA, Lee J, Li Z, Liu J, Iwata N, Shi Y, Li M, Su B. An evaluation of association between a novel hippocampal biology related SNP (rs7294919) and schizophrenia. PLoS One 2013; 8:e80696. [PMID: 24278305 PMCID: PMC3838413 DOI: 10.1371/journal.pone.0080696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 10/15/2013] [Indexed: 12/27/2022] Open
Abstract
Recent genetic analyses have implicated several candidate susceptibility variants for schizophrenia. The single nucleotide polymorphism (SNP) rs7294919 is likely a schizophrenia-susceptibility variant according to its significant association with hippocampal volume, hippocampus function, and cognitive performance as well as the nominal association with schizophrenia. However, all previous analyses were conducted only in Europeans, and whether rs7294919 is associated with schizophrenia in other populations are yet to be tested. Here, we conducted a case-control analysis of rs7294919 with schizophrenia in six independent Chinese (N = 3) and Japanese (N = 3) samples, including a total of 7,352 cases and 10,824 controls. The results of our association analysis were not able to confirm the association of rs7294919 with schizophrenia (p = 0.51 in total samples, odds ratio = 1.02 for allele[C]). The absence of rs7294919's association in Chinese and Japanese suggest a potential genetic heterogeneity in the susceptibility of schizophrenia on this locus and also demonstrate the difficulties in replicating associations of schizophrenia across different ethnic populations.
Collapse
Affiliation(s)
- Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shusuke Numata
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Xue-bin Zheng
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Xiongjian Luo
- Flaum Eye Institute and Department of Ophthalmology, University of Rochester, Rochester, New York, United States of America
| | - Makoto Kinoshita
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho, Tokushima, Japan
| | - Jin-xin Bei
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | | | - Jimmy Lee
- Institute of Mental Health, Singapore
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ming Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (ML) (ML); (BS) (BS)
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (ML) (ML); (BS) (BS)
| |
Collapse
|
28
|
Replication in a Japanese population that a MIR30E gene variation is associated with schizophrenia. Schizophr Res 2013; 150:596-7. [PMID: 24025694 DOI: 10.1016/j.schres.2013.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 12/19/2022]
|
29
|
Li W, Zhou N, Yu Q, Li X, Yu Y, Sun S, Kou C, Chen DC, Xiu MH, Kosten TR, Zhang XY. Association of BDNF gene polymorphisms with schizophrenia and clinical symptoms in a Chinese population. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:538-45. [PMID: 23832605 DOI: 10.1002/ajmg.b.32183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/14/2013] [Indexed: 11/07/2022]
Abstract
The neurodevelopmental hypothesis is well established in schizophrenia. Accumulating evidence has shown that BDNF may be involved in the pathogenesis of schizophrenia. This study aimed to investigate the potential association of BDNF gene polymorphisms with susceptibility to schizophrenia and with the psychopathological symptoms in patients with schizophrenia in a Han Chinese population. Three polymorphisms (rs6265, rs12273539, and rs10835210) of the BDNF gene were analyzed in a case-control study of 709 Han Chinese individuals (375 patients and 334 controls). The patients' psychopathology was assessed using the positive and negative syndrome scale (PANSS). We found no significant differences in the genotype and allele distributions of all three polymorphisms between the patient and control groups; however, we found a trend toward to significant overall difference in the estimated haplotype frequencies, with more frequent haplotype ATC of rs6265-rs12273539-rs10835210 in the schizophrenic patients than in controls (P = 0.027). The quantitative trait analysis by the UNPHASED program showed significant associations between the rs6265 (A)-rs12273539 (C)-rs10835210 (A) haplotype and negative symptom scores from the PANSS (x(2) = 5.79, P = 0.016). Our findings suggest that the BDNF gene polymorphisms may play a small effect on susceptibility to schizophrenia, but may contribute to the negative symptoms of the disease.
Collapse
Affiliation(s)
- Wenjun Li
- School of Public Health, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Egawa J, Nunokawa A, Shibuya M, Watanabe Y, Kaneko N, Igeta H, Someya T. Resequencing and association analysis of MIR137 with schizophrenia in a Japanese population. Psychiatry Clin Neurosci 2013; 67:277-9. [PMID: 23683160 DOI: 10.1111/pcn.12047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 02/03/2023]
Abstract
MicroRNA may play a role in the pathophysiology of schizophrenia. A recent meta-analysis of genome-wide association studies indicated a significant association between schizophrenia and a common intronic variation in MIR137HG (microRNA 137 host gene) encoding the primary microRNA-137. To explore additional risk variations for schizophrenia, we resequenced MIR137 and performed an association analysis in 1321 Japanese individuals. By resequencing, we detected four sequence variations in the 5' and 3' flanking regions. There were no significant associations between these variations and schizophrenia. Our resequencing and association analysis of MIR137 failed to find additional risk variations for schizophrenia.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Watanabe Y, Nunokawa A, Someya T. Association of the BDNF C270T polymorphism with schizophrenia: updated meta-analysis. Psychiatry Clin Neurosci 2013; 67:123-5. [PMID: 23438165 DOI: 10.1111/pcn.12018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/01/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been suggested to play a role in the pathophysiology of schizophrenia. The C270T polymorphism (rs56164415) in the BDNF 5'-non-coding region has been extensively investigated for an association with schizophrenia, but with conflicting results. An updated meta-analysis was therefore performed of 13 case-control association studies (3505 patients and 3992 controls). An association was found between the T allele and schizophrenia. The association was significant in the East Asian population, but not in the Caucasian population. It is suggested that the BDNF C270T polymorphism contributes to schizophrenia susceptibility, especially in East Asian subjects.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | |
Collapse
|
32
|
Supriyanto I, Watanabe Y, Mouri K, Shiroiwa K, Ratta-Apha W, Yoshida M, Tamiya G, Sasada T, Eguchi N, Okazaki K, Shirakawa O, Someya T, Hishimoto A. A missense mutation in the ITGA8 gene, a cell adhesion molecule gene, is associated with schizophrenia in Japanese female patients. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:347-52. [PMID: 23153507 DOI: 10.1016/j.pnpbp.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/23/2012] [Accepted: 11/06/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cell adhesion molecules (CAMs) play pivotal role in the development of the central nervous system (CNS) and have also been reported to play role in the pathophysiology of schizophrenia. Missense mutations in the CAMs genes might alter the binding of their ligands, increasing the vulnerability to develop schizophrenia. METHODS We selected 15 missense mutations in the CAMs genes of the CNS reported in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and examined the association between these mutations and schizophrenia in 278 patients and 284 control subjects (first batch). We also genotyped the positive single nucleotide polymorphisms (SNPs) in 567 patients and 710 control subjects (second batch) and in 635 patients and 639 control subjects (replication samples). RESULTS Genotypic and allelic distributions of rs2298033 in the ITGA8 gene between the schizophrenia and control groups were significantly different in the first batch (p=0.005 and 0.007, respectively). Gender-based analysis revealed that the allelic and genotypic distributions of rs2298033 in the ITGA8 were significantly different between the schizophrenia and control groups among females in both batches (p=0.010, 0.011 and 0.0086, 0.010, respectively) but not among males. Combine analysis of rs2298033 with the replication samples revealed a more significant differences (p=0.0032; 0.0035 in the overall subjects and p=0.0024; 0.0025 in the female subjects, respectively). The significant differences for rs2802808 of the NFASC gene were only observed in the female subgroup of the first batch. CONCLUSION These results suggest that the ITGA8 gene might have gender-specific roles in the development of schizophrenia. Further replication and functional studies are required to confirm these findings.
Collapse
Affiliation(s)
- Irwan Supriyanto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Watanabe Y, Nunokawa A, Kaneko N, Shibuya M, Egawa J, Someya T. Supportive evidence for the association between the Gln2Pro polymorphism in the SIGMAR1 gene and schizophrenia in the Japanese population: a case-control study and an updated meta-analysis. Schizophr Res 2012; 141:279-80. [PMID: 22818711 DOI: 10.1016/j.schres.2012.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 06/13/2012] [Accepted: 06/24/2012] [Indexed: 11/28/2022]
|
34
|
Unalp A, Bora E, Cankaya T, Giray Bozkaya O, Ercal D, Ozturk A, Ulgenalp A. Lack of association of childhood partial epilepsy with brain derived neurotrophic factor gene. ScientificWorldJournal 2012; 2012:414797. [PMID: 22654603 PMCID: PMC3361251 DOI: 10.1100/2012/414797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/30/2011] [Indexed: 01/19/2023] Open
Abstract
Brain-derived factor (BDNF) is a member of neurotrophin family and is localized and upregulated in areas implicated in epileptogenesis. Several lines of evidence make the BDNF gene a plausible candidate gene for predisposition to epilepsy. In this study, we tested that BDNF might be involved in the etiology of childhood PE. To assess whether BDNF gene C270T polimorphism could be implicated in vulnerability to PE, we conducted a case-control association analysis (112 partial epileptic and 100 controls) in Turkish children. Epileptic children were divided into two groups: 1—idiopathic (n = 85) and 2—symptomathic epilepsy (n = 27). There was no significant difference in genotypic distribution and allelic frequencies of the BDNF gene C270T polimorphism between the PE and control groups. However, the BDNF gene TT genotype was more frequently seen in the epileptic children (15 versus 11 patients, resp.). Interestingly, in the epilepsy group, both two children with TT genotype have posttraumatic epilepsy. The data indicate a possible association with the 270T genotype of the BDNF gene with a posttraumatic epilepsy. To draw any conclusion, further studies using larger sample sizes should be carried out in various ethnic populations in childhood epilepsies.
Collapse
Affiliation(s)
- Aycan Unalp
- Dr Behcet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Montro, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
35
|
Watanabe Y, Egawa J, Iijima Y, Nunokawa A, Kaneko N, Shibuya M, Arinami T, Ujike H, Inada T, Iwata N, Tochigi M, Kunugi H, Itokawa M, Ozaki N, Hashimoto R, Someya T. A two-stage case-control association study between the tryptophan hydroxylase 2 (TPH2) gene and schizophrenia in a Japanese population. Schizophr Res 2012; 137:264-6. [PMID: 22342331 DOI: 10.1016/j.schres.2012.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/16/2012] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
|
36
|
Abstract
Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development.
Collapse
Affiliation(s)
- Anita E Autry
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
37
|
Rybakowski JK, Czerski P, Dmitrzak-Weglarz M, Kliwicki S, Leszczynska-Rodziewicz A, Permoda-Osip A, Skibinska M, Suwalska A, Szczepankiewicz A, Hauser J. Clinical and pathogenic aspects of candidate genes for lithium prophylactic efficacy. J Psychopharmacol 2012; 26:368-73. [PMID: 21890592 DOI: 10.1177/0269881111415736] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of candidate genes for lithium prophylactic efficacy have been proposed, some of them being also associated with a predisposition to bipolar illness. The aim of the present study was to investigate a possible association between polymorphisms of 14 common genes with the quality of prophylactic lithium response in patients with bipolar mood disorder, in relation to the putative role of these genes in the pathogenesis of this disorder. Some association with lithium prophylactic efficacy was found for the polymorphisms of 5HTT, DRD1, COMT, BDNF and FYN genes, but not for 5HT2A, 5HT2C, DRD2, DRD3, DRD4, GSK-3, NTRK2, GRIN2B and MMP-9. Possible aspects of these genes with regard to the mechanism of lithium activity and pathogenesis of bipolar mood disorder are discussed.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carrard A, Salzmann A, Perroud N, Gafner J, Malafosse A, Karege F. Genetic association of the Phosphoinositide-3 kinase in schizophrenia and bipolar disorder and interaction with a BDNF gene polymorphism. Brain Behav 2011; 1:119-24. [PMID: 22399091 PMCID: PMC3236546 DOI: 10.1002/brb3.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/08/2011] [Accepted: 09/10/2011] [Indexed: 01/14/2023] Open
Abstract
Phosphoinositide-3-kinase, class III (PIK3C3) is a member of the phosphoinosite-3-kinases family, involved in cell signaling, membrane trafficking, and neurodevelopment. Previous studies have indeed shown an association between PIK3C3 gene variants and both bipolar disorder (BD) and schizophrenia (SZ). Brain-derived neurotrophic factor (BDNF) is a neurodevelopmental factor, which can regulate the PI3K signaling pathway. Associations have been reported between BDNF gene polymorphisms and affective and psychotic disorders. The aim of the present study was to replicate an association between PIK3C3 and BDNF gene variants in SZ and BD and a putative epistasis between the two genes. Patients meeting the DSM-IV criteria of BD and SZ were included in this study (98 BD and 79 SZ) as well as 158 healthy controls. Blood DNA was extracted and genotyping was performed either by the polymerase chain reaction (PCR) technique followed by enzymatic digestion or by the high-resolution melt (HRM) method. Genotype and haplotype association was assessed with the UNPHASED statistical program.The results showed one nominal association with BD (P < 0.02) and two risk haplotypes in both SZ (P < 0.001) and BP (P < 0.0005), which survived multiple testing correction. A modest interaction between a BDNF variant and PI3KC3 polymorphism was observed (P < 0.04).These preliminary results confirm the genetic association of PI3K gene variants with both SZ and BD, and support the hypothesis that SZ and BD share a genetic background.
Collapse
Affiliation(s)
- Anthony Carrard
- Department of Psychiatry, University of Geneva, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
| | - Annick Salzmann
- Department of Psychiatry, University of Geneva, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
| | - Nader Perroud
- Department of Medical Genetics and Laboratory, Geneva University Hospitals, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
| | - Jérémie Gafner
- Department of Psychiatry, University of Geneva, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
| | - Alain Malafosse
- Department of Psychiatry, University of Geneva, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
- Department of Medical Genetics and Laboratory, Geneva University Hospitals, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
| | - Félicien Karege
- Department of Psychiatry, University of Geneva, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
- Department of Medical Genetics and Laboratory, Geneva University Hospitals, 2 ch Petit Bel‐Air, CH‐1225 Chêne‐Bourg, Geneva, Switzerland
| |
Collapse
|
39
|
Watanabe Y, Nunokawa A, Kaneko N, Someya T. A case-control study and meta-analysis of association between a common copy number variation of the glutathione S-transferase mu 1 (GSTM1) gene and schizophrenia. Schizophr Res 2010; 124:236-7. [PMID: 20797839 DOI: 10.1016/j.schres.2010.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/30/2023]
|
40
|
Zdanys KF, Kleiman TG, Zhang H, Ozbay F, MacAvoy MG, Gelernter J, van Dyck CH. BDNF variants, premorbid educational attainment, and disease characteristics in Alzheimer's disease: an exploratory study. J Alzheimers Dis 2010; 17:887-98. [PMID: 19542613 DOI: 10.3233/jad-2009-1106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that promotes neuronal survival, growth, and differentiation. The role of BDNF in learning and memory suggests that it may also modulate the clinical course of Alzheimer's disease (AD). This study aimed to determine whether BDNF genetic variants are related to premorbid educational attainment, progression of cognitive and functional decline, and associated neuropsychiatric symptoms in AD patients. A sample of AD subjects (N = 341) was genotyped for the BDNF polymorphisms: Val66Met, C270T, and G-712A. Subjects received tests of cognition and daily function at baseline and at multiple subsequent time points. They were also characterized for the frequency and severity of neuropsychiatric symptoms. There was a significant effect of Val66Met genotype on educational attainment (F = 7.49, df = 2,329, P = 0.00066), with Met/Met homozygotes having significantly lower education than both the Val/Met and Val/Val groups. No association was observed between any BDNF polymorphism and measures of cognitive or functional decline. The T-allele of the C270T polymorphism was associated with a higher prevalence of neuropsychiatric symptoms and specifically with the presence of hallucinations. The effect of the Val66Met polymorphism on premorbid educational attainment is intriguing and should be verified in a larger sample.
Collapse
Affiliation(s)
- Kristina F Zdanys
- Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Amagane H, Watanabe Y, Kaneko N, Nunokawa A, Muratake T, Ishiguro H, Arinami T, Ujike H, Inada T, Iwata N, Kunugi H, Sasaki T, Hashimoto R, Itokawa M, Ozaki N, Someya T. Failure to find an association between myosin heavy chain 9, non-muscle (MYH9) and schizophrenia: a three-stage case-control association study. Schizophr Res 2010; 118:106-12. [PMID: 20188514 DOI: 10.1016/j.schres.2010.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/27/2022]
Abstract
Several genome-wide linkage studies have suggested linkage between markers on the long arm of chromosome 22 and schizophrenia. It has also been reported that 22q11.2 deletions increase the risk of schizophrenia. Therefore, 22q is a candidate region for schizophrenia. To search for genetic susceptibility loci for schizophrenia on 22q, we conducted a three-stage case-control association study in Japanese individuals. In the first stage, we examined 13 microsatellite markers on 22q in 766 individuals (340 patients with schizophrenia and 426 control individuals) and found a potential association of AFM262VH5 (D22S283) with schizophrenia. In the second stage, we performed fine mapping of the myosin heavy chain 9, non-muscle (MYH9) gene, where AFM262VH5 is located, using 25 tagging single nucleotide polymorphisms (SNPs). We obtained potential associations between three SNPs in MYH9 and schizophrenia in 1193 individuals (595 patients and 598 controls), which included the individuals analyzed in the first stage. In the third stage, however, we could not replicate these associations in 4694 independent individuals (2288 patients and 2406 controls). Our results suggest that MYH9 does not confer increased susceptibility to schizophrenia in the Japanese population, although we could not exclude possible contributions of other genes on 22q to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Hideki Amagane
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A case–control association analysis of CABIN1 with schizophrenia in a Japanese population. J Hum Genet 2010; 55:179-81. [DOI: 10.1038/jhg.2009.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Nunokawa A, Watanabe Y, Kaneko N, Sugai T, Yazaki S, Arinami T, Ujike H, Inada T, Iwata N, Kunugi H, Sasaki T, Itokawa M, Ozaki N, Hashimoto R, Someya T. The dopamine D3 receptor (DRD3) gene and risk of schizophrenia: case-control studies and an updated meta-analysis. Schizophr Res 2010; 116:61-7. [PMID: 19897343 DOI: 10.1016/j.schres.2009.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/15/2009] [Accepted: 10/17/2009] [Indexed: 10/20/2022]
Abstract
The dopamine D3 receptor (DRD3) has been suggested to be involved in the pathophysiology of schizophrenia. DRD3 has been tested for an association with schizophrenia, but with conflicting results. A recent meta-analysis suggested that the haplotype T-T-T-G for the SNPs rs7631540-rs1486012-rs2134655-rs963468 may confer protection against schizophrenia. However, almost all previous studies of the association between DRD3 and schizophrenia have been performed using a relatively small sample size and a limited number of markers. To assess whether DRD3 is implicated in vulnerability to schizophrenia, we conducted case-control association studies and performed an updated meta-analysis. In the first population (595 patients and 598 controls), we examined 16 genotyped single nucleotide polymorphisms (SNPs), including tagging SNPs selected from the HapMap database and SNPs detected through resequencing, as well as 58 imputed SNPs that are not directly genotyped. To confirm the results obtained, we genotyped the SNPs rs7631540-rs1486012-rs2134655-rs963468 in a second, independent population (2126 patients and 2228 controls). We also performed an updated meta-analysis of the haplotype, combining the results obtained in five populations, with a total sample size of 7551. No supportive evidence was obtained for an association between DRD3 and schizophrenia in our Japanese subjects. Our updated meta-analysis also failed to confirm the existence of a protective haplotype. To draw a definitive conclusion, further studies using larger samples and sufficient markers should be carried out in various ethnic populations.
Collapse
Affiliation(s)
- Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kawashima K, Ikeda M, Kishi T, Kitajima T, Yamanouchi Y, Kinoshita Y, Okochi T, Aleksic B, Tomita M, Okada T, Kunugi H, Inada T, Ozaki N, Iwata N. BDNF is not associated with schizophrenia: data from a Japanese population study and meta-analysis. Schizophr Res 2009; 112:72-9. [PMID: 19406621 DOI: 10.1016/j.schres.2009.03.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/21/2009] [Accepted: 03/28/2009] [Indexed: 12/23/2022]
Abstract
A variety of evidence suggests brain-derived neurotrophic factor (BDNF) as a candidate gene for schizophrenia, and several genetic studies have shown a significant association between the disease and certain SNPs within BDNF (specifically, Val66Met and C270T). According to a recent study, the functional microsatellite marker BDNF-LCPR (BDNF-linked complex polymorphic region), which affects the expression level of BDNF, is associated with bipolar disorder. The goals of our current study were to 1) evaluate the quality of HapMap-based linkage disequilibrium (LD) tagging of BDNF-LCPR, 2) examine whether these tagging SNPs are associated with schizophrenia in a Japanese population, and 3) conduct a meta-analysis of the two most extensively studied polymorphisms: Val66Met and C270T. We genotyped eight tagging SNPs, including Val66Met and C270T. Our LD evaluation showed that BDNF-LCPR could be represented by these tagging SNPs in controls (with 73.5% allelic coverage). However, the functional A1 allele was not captured due to its low minor allele frequency (2.2%). In a case-control study (1117 schizophrenics and 1102 controls), no association was found in single-marker or multimarker analysis. Moreover, in a meta-analysis, the Val66Met polymorphism was not associated with schizophrenia, whereas C270T showed a trend for association in a fixed model (p=0.036), but not in a random model (p=0.053). From these findings, we conclude that if BDNF is indeed associated with schizophrenia, the A1 allele in BDNF-LCPR would be the most promising candidate. Further LD evaluation, as well as an association study in which BDNF-LCPR is genotyped directly, would be required for a more conclusive result.
Collapse
Affiliation(s)
- Kunihiro Kawashima
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Peptidylarginine deiminases (PADIs), five isoforms of which have been identified, catalyze the conversion of arginine residues to citrulline residues in proteins. Recent studies have revealed that abnormal activation of PADI2, the gene for which is expressed throughout the nervous system, is likely to be related to the pathogenesis of neuropsychiatric diseases with neurodegenerative processes, such as Alzheimer's disease and multiple sclerosis. Such a progressive neurodegenerative process could be involved in the etiology and/or course of schizophrenia, and PADI2 may be a candidate gene for schizophrenia. To assess whether PADI2 has a role in vulnerability to schizophrenia, we conducted a two-stage case-control association study in Japanese individuals. In a screening population of 534 patients and 559 control individuals, we examined eight single-nucleotide polymorphisms (SNPs) including four haplotype tag SNPs and four coding SNPs in PADI2. There was a potential association of a synonymous SNP in exon 7 with schizophrenia. However, we could not replicate this association in a confirmatory population of 2126 patients and 2228 control individuals. The results of this study suggest that PADI2 does not contribute to genetic susceptibility to schizophrenia.
Collapse
|
46
|
Kas MJH, Gelegen C, Schalkwyk LC, Collier DA. Interspecies comparisons of functional genetic variations and their implications in neuropsychiatry. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:309-17. [PMID: 18561257 DOI: 10.1002/ajmg.b.30815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Animal studies are important for the identification and functional characterization of the biological substrates underlying complex psychiatric disorders. However, novel insights into the relationship between the genome and behavior are needed for the development of fully valid translational models. Based on the notion that in different species, the same genes may independently give rise to alleles with similar functional and phenotypic effects, either under similar selection or through similar genomic mechanisms, we propose the use of genetic validity as a tool for identifying analogous pathology between animals and human neuropsychiatric disorders. Furthermore, the identification of copy number variants which disrupt entire genes, reinforces the notion that transgenic animals, such as knockouts or knock-ins, may provide unexpectedly valid disease models for psychiatric traits. To illustrate interspecies comparison of genetic variations in relation to neurobehavioral traits, examples are provided for the BDNF, COMT, and DISC1 genes in mouse and man. We propose that alignment of individual genetic variations with endophenotypes obtained from mice and across categories of neuropsychiatric disorders will provide an important step in translational research.
Collapse
Affiliation(s)
- Martien J H Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Szczepankiewicz A, Hauser J. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics 2009; 9:1595-603. [PMID: 19018715 DOI: 10.2217/14622416.9.11.1595] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuroplasticity hypothesis of bipolar disorder indicates that the BDNF/Trk signaling pathway is associated with the pathogenesis of this illness and treatment with mood stabilizers, such as lithium. This paper describes a relationship between response to lithium prophylaxis and polymorphisms of two functionally connected genes: BDNF and NTRK2, in bipolar illness. Analyses of four SNPs of the BDNF gene (rs2030324, rs988748, rs6265 [Val66Met]and rs2203877) and three of the NTRK2 gene (rs1187326, rs2289656, rs1187327) were performed in the 108 bipolar patients, classified as excellent responders (23%), partial responders (51%) and nonresponders (26%) to lithium. An association of C/G (rs988748) and G/A (rs6265) polymorphisms of the BDNF gene with a degree of prophylactic lithium response were found. No association with lithium response was revealed with the polymorphism of NTRK2 gene, neither with interaction of BDNF and NTRK2 genes.
Collapse
Affiliation(s)
- Monika Dmitrzak-Weglarz
- Laboratory of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, ul. Szpitalna 27/33, 60-572 Poznan, Poland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gupta M, Chauhan C, Bhatnagar P, Gupta S, Grover S, Singh PK, Purushottam M, Mukherjee O, Jain S, Brahmachari SK, Kukreti R. Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 2009; 10:277-91. [DOI: 10.2217/14622416.10.2.277] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We investigated 16 polymorphisms from three genes, dopamine receptor D2 (DRD2), catechol-O-methyl transferase (COMT) and brain derived neurotrophic factor (BDNF), which are involved in the dopaminergic pathways, and have been reported to be associated with susceptibility to schizophrenia and response to antipsychotic therapy. Materials & methods: Single-locus association analyses of these polymorphisms were carried out in 254 patients with schizophrenia and 225 controls, all of southern Indian origin. Additionally, multifactor-dimensionality reduction analysis was performed in 422 samples (243 cases and 179 controls) to examine the gene–gene interactions and to identify combinations of multilocus genotypes associated with either high or low risk for the disease. Results: Our results demonstrated initial significant associations of two SNPs for DRD2 (rs11608185, genotype: χ2 = 6.29, p-value = 0.043; rs6275, genotype: χ2 = 8.91, p-value = 0.011), and one SNP in the COMT gene (rs4680, genotype: χ2 = 6.67, p-value = 0.035 and allele: χ2 = 4.75, p-value = 0.029; odds ratio: 1.33, 95% confidence interval: 1.02–1.73), but not after correction for multiple comparisons indicating a weak association of individual markers of DRD2 and COMT with schizophrenia. Multifactor-dimensionality reduction analysis suggested a two locus model (rs6275/DRD2 and rs4680/COMT) as the best model for gene–gene interaction with 90% cross-validation consistency and 42.42% prediction error in predicting disease risk among schizophrenia patients. Conclusion: The present study thus emphasizes the need for multigene interaction studies in complex disorders such as schizophrenia and to understand response to drug treatment, which could lead to a targeted and more effective treatment.
Collapse
Affiliation(s)
- Meenal Gupta
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Chitra Chauhan
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Pallav Bhatnagar
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Simone Gupta
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Sandeep Grover
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Prashant K Singh
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | | | - Odity Mukherjee
- National Institute of Mental Health and Neuro Sciences, India
| | - Sanjeev Jain
- National Institute of Mental Health and Neuro Sciences, India
| | - Samir K Brahmachari
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Ritushree Kukreti
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| |
Collapse
|
49
|
Two-stage case-control association study of polymorphisms in rheumatoid arthritis susceptibility genes with schizophrenia. J Hum Genet 2009; 54:62-5. [PMID: 19158815 DOI: 10.1038/jhg.2008.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is strong evidence for a negative association between schizophrenia and rheumatoid arthritis (RA). However, the mechanism for this association is unknown. We hypothesize that these two diseases share susceptibility genes. Recently, extensive studies have identified some RA susceptibility genes, including NFKBIL1, SLC22A4, RUNX1, FCRL3 and PADI4, in the Japanese population. To assess whether polymorphisms in these RA susceptibility genes are implicated in vulnerability to schizophrenia, we conducted a two-stage case-control association study in Japanese subjects. In a screening population of 534 patients and 559 control subjects, we examined eight polymorphisms in RA susceptibility genes and found a potential association of padi4_94 in PADI4 with schizophrenia. However, we could not replicate this association in a confirmatory population of 2126 patients and 2228 control subjects. The results of this study suggest that these polymorphisms in RA susceptibility genes do not contribute to genetic susceptibility to schizophrenia.
Collapse
|
50
|
Association study of interleukin 2 (IL2) and IL4 with schizophrenia in a Japanese population. Eur Arch Psychiatry Clin Neurosci 2008; 258:422-7. [PMID: 18574615 DOI: 10.1007/s00406-008-0813-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/17/2008] [Indexed: 10/21/2022]
Abstract
Interleukin 2 (IL-2) and IL-4 are pleiotropic cytokines regulating Th1/Th2 balance and have a regulatory activity in brain function. Thus these cytokines have been implicated in the pathophysiology of schizophrenia. The latest studies provided controversial results regarding the genetic associations of these cytokines. The functional polymorphisms, IL2-330T/G and IL4-590C/T, were associated with schizophrenia in a German population, although contradictory findings were also reported in a Korean population. To ascertain whether IL2 and IL4 contribute to vulnerability to schizophrenia, we conducted a moderate-scale case-control (536 patients and 510 controls) association study for seven polymorphisms in Japanese subjects. There were no significant associations of these genes with schizophrenia using either single marker or haplotype analyses. The present study suggests that IL2 and IL4 do not contribute to vulnerability to schizophrenia in the Japanese population.
Collapse
|