1
|
Moradkhani A, Turki Jalil A, Mahmood Saleh M, Vanaki E, Daghagh H, Daghighazar B, Akbarpour Z, Ghahramani Almanghadim H. Correlation of rs35753505 polymorphism in Neuregulin 1 gene with psychopathology and intelligence of people with schizophrenia. Gene 2023; 867:147285. [PMID: 36905948 DOI: 10.1016/j.gene.2023.147285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND AND AIM Schizophrenia is one of the most severe psychiatric disorders. About 0.5 to 1% of the world's population suffers from this non-Mendelian disorder. Environmental and genetic factors seem to be involved in this disorder. In this article, we investigate the alleles and genotypic correlation of mononucleotide rs35753505 polymorphism of Neuregulin 1 (NRG1), one of the selected genes of schizophrenia, with psychopathology and intelligence. MATERIALS AND METHODS 102 independent and 98 healthy patients participated in this study. DNA was extracted by the salting out method and the polymorphism (rs35753505) were amplified by polymerase chain reaction (PCR). Sanger sequencing was performed on PCR products. Allele frequency analysis was performed using COCAPHASE software, and genotype analysis was performed using Clump22 software. RESULTS According to our study's statistical findings, all case samples from the three categories of men, women, and overall participants significantly differed from the control group in terms of the prevalence of allele C and the CC risk genotype. The rs35753505 polymorphism significantly raised Positive and Negative Syndrome Scale (PANSS) test results, according to a correlation analysis between the two variables. However, this polymorphism led to a significant decrease in overall intelligence in case samples compared to control samples. CONCLUSION In this study, it seems that the rs35753505 polymorphism of NRG1 gene has a significant role in the sample of patients with schizophrenia in Iran and also in psychopathology and intelligence disorders.
Collapse
Affiliation(s)
- Atefeh Moradkhani
- Department of Biology, Faculty of Science, Zanjan Branch, Islamic Azad University, Zanjan, Islamic Republic of Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Elmira Vanaki
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Daghagh
- Biochemistry Department of Biological Science, Kharazmi University Tehran, Iran
| | - Behrouz Daghighazar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Akbarpour
- Department of Basic Science, Biotechnology Research Center, Tabriz Branch, Azad Islamic University, Tabriz, Iran
| | | |
Collapse
|
2
|
Wang X, Xiu M, Wang K, Su X, Li X, Wu F. Plasma linoelaidyl carnitine levels positively correlated with symptom improvement in olanzapine-treated first-episode drug-naïve schizophrenia. Metabolomics 2022; 18:50. [PMID: 35819637 DOI: 10.1007/s11306-022-01909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Olanzapine (OLA) is one of the most commonly used second-generation antipsychotics for the treatment of schizophrenia. However, the heterogeneity of therapeutic response to OLA among schizophrenia patients deserves further exploration. The role of carnitine in the clinical response to OLA monotherapy remains unclear. OBJECTIVES The current study was designed to investigate whether carnitine and its derivatives are linked to the response to OLA treatment. Drug-naïve first-episode patients with schizophrenia were recruited and treated with OLA for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) in pre and post treatment. RESULTS After treatment, we found a significant decrease in 2-Octenoylcarnitine levels and a significant increase in linoelaidyl carnitine, 11Z-Octadecenylcarnitine and 9-Decenoylcarnitine levels. Furthermore, baseline linoelaidyl carnitine levels were correlated with the reduction of PANSS positive symptom subscore. Linear regression and logistic regression analyses found that the baseline linoelaidyl carnitine level was a predictive marker for the therapeutic response to OLA monotherapy for 4 weeks. CONCLUSION Our pilot study suggests that linoelaidyl carnitine levels at baseline may have a predictive role for the improvement of positive symptoms after OLA monotherapy in the patients with schizophrenia.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Keqiang Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xirong Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Liwan District, Guangzhou, 510370, China.
| |
Collapse
|
3
|
Pharmacogenetic associations of NRG1 polymorphisms with neurocognitive performance and clinical symptom response to risperidone in the untreated schizophrenia. Schizophr Res 2021; 231:67-69. [PMID: 33770628 DOI: 10.1016/j.schres.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore pharmacogenetic relationships of NRG1 genotypes with neurocognitive performance and clinical symptoms after 12 week treatment of risperidone in Chinese Han first-episode schizophrenia. METHODS A cohort of 221 patients with schizophrenia were recruited for this research. Finally 177 untreated first-episode patients were clinically evaluated with the Positive and Negative Syndrome Scale (PANSS), Raven's Standard Progressive Matrices (RSPM), Digit Vigilance Test (DVT), Digit Span (DS), underwent genotyping for five polymorphisms of NRG1, and completed a 12-week prospective study of risperidone monotherapy. RESULTS 1. After risperidone treatment of 12 weeks, the total scores, positive score, negative score and general score of PANSS decreased significantly; the scores of RSPM, DVT and DS increased significantly. 2. No significant association with PANSS scores at baseline or change in scores after 12 weeks'treatment was found with any of the five SNPs. There was also neither significant association of DVT, DS or RSPM at baseline with any of the five SNPs. 3. After risperidone treatment of 12 weeks, rs3924999 and rs35753505 showed significant association with change in DVT and in RSPM in which there were significant differences among different genotype groups. CONCLUSION This study suggested pharmacogenetic relationships between NRG1 variants and changes in cognition response with exposure to 12 weeks of treatment with risperidone. Two variants, rs3924999 and rs35753505, in the NRG1 gene were associated with the changes in attention and reasoning ability after risperidone treatment of 12 weeks.
Collapse
|
4
|
Graber K, Bosquet Enlow M, Duffy FH, D'Angelo E, Sideridis G, Hyde DE, Morelli N, Tembulkar S, Gonzalez-Heydrich J. P300 amplitude attenuation in high risk and early onset psychosis youth. Schizophr Res 2019; 210:228-238. [PMID: 30685392 DOI: 10.1016/j.schres.2018.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/16/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
Little research has investigated the use of electrophysiological biomarkers in childhood and adolescence to distinguish early onset psychosis and the clinical high risk state. The P300 evoked potential is a robust neurophysiological marker of schizophrenia that is dampened in patients with schizophrenia and, less consistently, in those with affective psychoses and those at clinical high risk for psychosis (CHR). How it may differ between patients with psychotic disorders (PS) and CHR is less studied, especially in youth. The current study compared P300 activity among children and adolescents, aged 5-18 years, at CHR (n = 43), with PS (n = 28), and healthy controls (HC; n = 24). Participants engaged in an auditory event-related potential (ERP) task to elicit a P300 response and completed clinical interviews to verify symptoms and diagnoses. Linear regression analyses revealed a decrease in P300 amplitude with increased severity of psychotic symptoms. PS participants showed a diminished P300 response compared to those at CHR and HC, particularly among adolescents aged 13-18. This response was most evident at centroparietal and parietal locations in the right hemisphere. The findings suggest that high risk and psychotic symptomatology is linked to attenuated parietal P300 activity in youth as young as 13 years. Further exploration of the P300 as a biomarker for psychosis in very young patients could inform tailored, appropriate interventions at early stages of disease progression. Future research should evaluate whether specific phenotypic and genotypic characteristics are differentially associated with neurophysiological biomarkers and whether P300 attenuation in CHR youth can predict later symptom severity.
Collapse
Affiliation(s)
- Kelsey Graber
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Frank H Duffy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Eugene D'Angelo
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Georgios Sideridis
- Department of Developmental Medicine Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Damon E Hyde
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Nicholas Morelli
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Sahil Tembulkar
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhang Z, Cui J, Gao F, Li Y, Zhang G, Liu M, Yan R, Shen Y, Li R. Elevated cleavage of neuregulin-1 by beta-secretase 1 in plasma of schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:161-168. [PMID: 30500411 DOI: 10.1016/j.pnpbp.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 01/22/2023]
Abstract
Neuregulin 1 (NRG1) is a key candidate susceptibility gene for schizophrenia. It is reported that the function of NRG1 can be regulated by cleavage via the β-Secretase (BACE1), particularly during early development. While current knowledge suggested that schizophrenia might have different phenotypes, it is unknown whether BACE1-cleaved-NRG1 (BACE1-NRG1) activity is related to clinical phenotypes of schizophrenia. In the current study, we used a newly developed enzymatic assay to detect BACE1-NRG1 activity in the human plasma and investigated the levels of cleavage of NRG1 by BACE1 in the plasma from schizophrenia patients. Our results are the first to demonstrate that the level of plasma BACE1-NRG1 activity was significantly increased in subjects affected with schizophrenia compared with healthy controls. Interestingly, the elevated BACE1-NRG1 activity was correlated with the disease severity and duration of schizophrenia, such as patients suffering from shorter-term course and worse disease status expressed higher BACE1-NRG1 activity levels compared to whom with longer duration and less severity of the disease. Furthermore, this is also the first report that the alternation of BACE1-NRG1 activity was a substrate -specific event in schizophrenia. Together, our findings suggested that the plasma BACE1-NRG1 activity can be a potential biomarker for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jie Cui
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA
| | - Feng Gao
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guofu Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Min Liu
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Riqiang Yan
- Department of Neurosciences, University of Connecticut School of Medicine, Farmington, CT 06269, USA
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Anand S, Govindaraju A, Vairavan V, Narayanan SK, Rajagopal R, Chellappa A, Ayyappa A, Thiagarajan K, Kumar AK, ArunKumar G. Association of Neuregulin-1 gene polymorphisms with neuro-cognitive features of schizophrenia patients from South India: A pilot study. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Zhang Z, Huang J, Shen Y, Li R. BACE1-Dependent Neuregulin-1 Signaling: An Implication for Schizophrenia. Front Mol Neurosci 2017; 10:302. [PMID: 28993723 PMCID: PMC5622153 DOI: 10.3389/fnmol.2017.00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder with a lifetime prevalence of about 1% in the general population. Recent studies have shown that Neuregulin-1 (Nrg1) is a candidate gene for schizophrenia. At least 15 alternative splicing of NRG1 isoforms all contain an extracellular epidermal growth factor (EGF)-like domain, which is sufficient for Nrg1 biological activity including the formation of myelin sheaths and the regulation of synaptic plasticity. It is known that Nrg1 can be cleaved by β-secretase (BACE1) and the resulting N-terminal fragment (Nrg1-ntf) binds to receptor tyrosine kinase ErbB4, which activates Nrg1/ErbB4 signaling. While changes in Nrg1 expression levels in schizophrenia still remain controversial, understanding the BACE1-cleaved Nrg1-ntf and Nrg1/ErbB4 signaling in schizophrenia neuropathogenesis is essential and important. In this review paper, we included three major parts: (1) Nrg1 structure and cleavage pattern by BACE1; (2) BACE1-dependent Nrg1 cleavage associated with schizophrenia in human studies; and (3) Animal studies of Nrg1 and BACE1 mutations with behavioral observations. Our review will provide a better understanding of Nrg1 in schizophrenia and a potential strategy for using BACE1 cleavage of Nrg1 as a unique biomarker for diagnosis, as well as a new therapeutic target, of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of ChinaHefei, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States.,Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| |
Collapse
|
8
|
Díez Á, Ranlund S, Pinotsis D, Calafato S, Shaikh M, Hall MH, Walshe M, Nevado Á, Friston KJ, Adams RA, Bramon E. Abnormal frontoparietal synaptic gain mediating the P300 in patients with psychotic disorder and their unaffected relatives. Hum Brain Mapp 2017; 38:3262-3276. [PMID: 28345275 DOI: 10.1002/hbm.23588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/29/2023] Open
Abstract
The "dysconnection hypothesis" of psychosis suggests that a disruption of functional integration underlies cognitive deficits and clinical symptoms. Impairments in the P300 potential are well documented in psychosis. Intrinsic (self-)connectivity in a frontoparietal cortical hierarchy during a P300 experiment was investigated. Dynamic Causal Modeling was used to estimate how evoked activity results from the dynamics of coupled neural populations and how neural coupling changes with the experimental factors. Twenty-four patients with psychotic disorder, twenty-four unaffected relatives, and twenty-five controls underwent EEG recordings during an auditory oddball paradigm. Sixteen frontoparietal network models (including primary auditory, superior parietal, and superior frontal sources) were analyzed and an optimal model of neural coupling, explaining diagnosis and genetic risk effects, as well as their interactions with task condition were identified. The winning model included changes in connectivity at all three hierarchical levels. Patients showed decreased self-inhibition-that is, increased cortical excitability-in left superior frontal gyrus across task conditions, compared with unaffected participants. Relatives had similar increases in excitability in left superior frontal and right superior parietal sources, and a reversal of the normal synaptic gain changes in response to targets relative to standard tones. It was confirmed that both subjects with psychotic disorder and their relatives show a context-independent loss of synaptic gain control at the highest hierarchy levels. The relatives also showed abnormal gain modulation responses to task-relevant stimuli. These may be caused by NMDA-receptor and/or GABAergic pathologies that change the excitability of superficial pyramidal cells and may be a potential biological marker for psychosis. Hum Brain Mapp 38:3262-3276, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Álvaro Díez
- Division of Psychiatry, University College London, London, United Kingdom.,Department of Basic Psychology II - Cognitive processes, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory of Cognitive and Computational Neuroscience - Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - Siri Ranlund
- Division of Psychiatry, University College London, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom
| | - Dimitris Pinotsis
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Stella Calafato
- Division of Psychiatry, University College London, London, United Kingdom
| | - Madiha Shaikh
- North East London NHS Foundation Trust, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Muriel Walshe
- Division of Psychiatry, University College London, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom
| | - Ángel Nevado
- Department of Basic Psychology II - Cognitive processes, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory of Cognitive and Computational Neuroscience - Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Rick A Adams
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom.,Psychology & Neuroscience - King's College London, Institute of Psychiatry, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
9
|
Variation at NRG1 genotype related to modulation of small-world properties of the functional cortical network. Eur Arch Psychiatry Clin Neurosci 2017; 267:25-32. [PMID: 26650688 DOI: 10.1007/s00406-015-0659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/17/2015] [Indexed: 01/11/2023]
Abstract
Functional brain networks possess significant small-world (SW) properties. Genetic variation relevant to both inhibitory and excitatory transmission may contribute to modulate these properties. In healthy controls, genotypic variation in Neuregulin 1 (NRG1) related to the risk of psychosis (risk alleles) would contribute to functional SW modulation of the cortical network. Electroencephalographic activity during an odd-ball task was recorded in 144 healthy controls. Then, small-worldness (SWn) was calculated in five frequency bands (i.e., theta, alpha, beta1, beta2 and gamma) for baseline (from -300 to the stimulus onset) and response (150-450 ms post-target stimulus) windows. The SWn modulation was defined as the difference in SWn between both windows. Association between SWn modulation and carrying the risk allele for three single nucleotide polymorphisms (SNP) of NRG1 (i.e., rs6468119, rs6994992 and rs7005606) was assessed. A significant association between three SNPs of NRG1 and the SWn modulation was found, specifically: NRG1 rs6468119 in alpha and beta1 bands; NRG1 rs6994992 in theta band; and NRG1 rs7005606 in theta and beta1 bands. Genetic variation at NRG1 may influence functional brain connectivity through the modulation of SWn properties of the cortical network.
Collapse
|
10
|
Earls HA, Curran T, Mittal V. A Meta-analytic Review of Auditory Event-Related Potential Components as Endophenotypes for Schizophrenia: Perspectives From First-Degree Relatives. Schizophr Bull 2016; 42:1504-1516. [PMID: 27217271 PMCID: PMC5049529 DOI: 10.1093/schbul/sbw047] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION As endophenotypes bridge the gap between genetics and phenotypic disease expression, identifying reliable markers is important for fostering understanding of pathophysiology. The present aim was to conduct current meta-analyses of 3 key auditory event-related potential (ERP) components that have been held as potential endophenotypes for schizophrenia: P50, P300 amplitude and latency, and mismatch negativity (MMN), reflective of sensory gating, attention and classification speed, and perceptual discrimination ability, respectively. In order to assess endophenotype viability, these components were examined in unaffected relatives of patients with schizophrenia and healthy controls. METHODS Effect sizes (ES) were examined between relatives and controls for P50 suppression (10 studies, n = 360 relatives, 473 controls), P300 amplitude (20 studies, n = 868 relatives, 961 controls), P300 latency (17 studies, n = 674 relatives, 792 controls), and MMN (11 studies, n = 377 relatives, 552 controls). RESULTS Reliable differences in P50 suppression (ES = 0.86, P < .001), P300 amplitude (ES = -0.52, P < .001), and P300 latency (ES = 0.44, P < .05) were found between unaffected relatives and controls. A trend was found between relatives and controls for MMN (ES = 0.21, P = 0.06), and the use of extraneous channels was found to be a significant moderator (P = 0.01). When MMN was analyzed using frontocentral channel Fz, a significant difference was found (ES = 0.26, P < 0.01). DISCUSSION The results indicate that P50 suppression, P300 amplitude and P300 latency, and MMN may serve as viable endophenotypes for schizophrenia.
Collapse
Affiliation(s)
- Holly A. Earls
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Tim Curran
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Vijay Mittal
- Department of Psychology, Northwestern University, Evanston, IL
- Department of Psychiatry, Northwestern University, Chicago, IL
| |
Collapse
|
11
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
12
|
Qiao Y, Zhang L, He S, Wen H, Yu YM, Cao CH, Li HF. Plasma metabonomics study of first-Episode schizophrenia treated with olanzapine in female patients. Neurosci Lett 2016; 617:270-6. [DOI: 10.1016/j.neulet.2016.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
|
13
|
Malone SM, Vaidyanathan U, Basu S, Miller MB, McGue M, Iacono WG. Heritability and molecular-genetic basis of the P3 event-related brain potential: a genome-wide association study. Psychophysiology 2015; 51:1246-58. [PMID: 25387705 DOI: 10.1111/psyp.12345] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
P3 amplitude is a candidate endophenotype for disinhibitory psychopathology, psychosis, and other disorders. The present study is a comprehensive analysis of the behavioral- and molecular-genetic basis of P3 amplitude and a P3 genetic factor score in a large community sample (N = 4,211) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric models indicated that as much as 65% of the variance in each measure was due to additive genes. All SNPs in aggregate accounted for approximately 40% to 50% of the heritable variance. However, analyses of individual SNPs did not yield any significant associations. Analyses of individual genes did not confirm previous associations between P3 amplitude and candidate genes but did yield a novel association with myelin expression factor 2 (MYEF2). Main effects of individual variants may be too small to be detected by GWAS without larger samples.
Collapse
Affiliation(s)
- Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
14
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
15
|
Wu CH, Hwang TJ, Chen YJ, Hsu YC, Lo YC, Liu CM, Hwu HG, Liu CC, Hsieh MH, Chien YL, Chen CM, Tseng WYI. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: a sibling study using tractography-based analysis of the whole brain. Hum Brain Mapp 2014; 36:1065-76. [PMID: 25366810 DOI: 10.1002/hbm.22686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022] Open
Abstract
Trait markers of schizophrenia aid the dissection of the heterogeneous phenotypes into distinct subtypes and facilitate the genetic underpinning of the disease. The microstructural integrity of the white matter tracts could serve as a trait marker of schizophrenia, and tractography-based analysis (TBA) is the current method of choice. Manual tractography is time-consuming and limits the analysis to preselected fiber tracts. Here, we sought to identify a trait marker of schizophrenia from among 74 fiber tracts across the whole brain using a novel automatic TBA method. Thirty-one patients with schizophrenia, 31 unaffected siblings and 31 healthy controls were recruited to undergo diffusion spectrum magnetic resonance imaging at 3T. Generalized fractional anisotropy (GFA), an index reflecting tract integrity, was computed for each tract and compared among the three groups. Ten tracts were found to exhibit significant differences between the groups with a linear, stepwise order from controls to siblings to patients; they included the right arcuate fasciculus, bilateral fornices, bilateral auditory tracts, left optic radiation, the genu of the corpus callosum, and the corpus callosum to the bilateral dorsolateral prefrontal cortices, bilateral temporal poles, and bilateral hippocampi. Posthoc between-group analyses revealed that the GFA of the right arcuate fasciculus was significantly decreased in both the patients and unaffected siblings compared to the controls. Furthermore, the GFA of the right arcuate fasciculus exhibited a trend toward positive symptom scores. In conclusion, the right arcuate fasciculus may be a candidate trait marker and deserves further study to verify any genetic association.
Collapse
Affiliation(s)
- Chen-Hao Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qiu YQ, Tang YX, Chan RCK, Sun XY, He J. P300 aberration in first-episode schizophrenia patients: a meta-analysis. PLoS One 2014; 9:e97794. [PMID: 24933577 PMCID: PMC4059623 DOI: 10.1371/journal.pone.0097794] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Decreased P300 amplitude is one of the most consistent findings in patients with schizophrenia. However, whether prolonged P300 latency occurs in patients with schizophrenia, especially first-episode schizophrenia (FES) patients, remains controversial. METHODS A meta-analyses of P300 aberration in FES patients and healthy control(HC) group was conducted. The meta-regression analysis was performed using a random effects model. The pooled standardized effect size (PSES) was calculated as the division of the difference between the means of the two groups by the common standard deviation. RESULTS A total of 569 FES patients and 747 HCs were included in this meta-analysis. P300 amplitude was significantly reduced (PSES = -0.83, 95% CI: -1.02-0.65, P = 0.00001) and P300 latency was delayed significantly in FES patients (PSES = -0.48, 95% CI: 0.14-0.81, P = 0.005). The meta-regression analysis showed that task difficulty was a source of heterogeneity. CONCLUSIONS The meta-analysis confirms that disrupted information processing is found in FES patients, which is manifested by smaller P300 amplitude and delayed P300 latency.
Collapse
Affiliation(s)
- Yao-qin Qiu
- School of Nursing, Second Military Medical University, Shanghai, P.R. China
- Department of Statistics, Faculty of Medical Services, Second Military Medical University, Shanghai, P.R. China
| | - Yun-xiang Tang
- Department of Medical Psychology, Faculty of psychology and mental healthy, Second Military Medical University, Shanghai, P.R. China
| | - Raymond C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-yang Sun
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jia He
- Department of Statistics, Faculty of Medical Services, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
17
|
O'Donoghue T, Morris DW, Fahey C, Da Costa A, Moore S, Cummings E, Leicht G, Karch S, Hoerold D, Tropea D, Foxe JJ, Gill M, Corvin A, Donohoe G. Effects of ZNF804A on auditory P300 response in schizophrenia. Transl Psychiatry 2014; 4:e345. [PMID: 24424391 PMCID: PMC3905225 DOI: 10.1038/tp.2013.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/07/2013] [Accepted: 10/29/2013] [Indexed: 12/23/2022] Open
Abstract
The common variant rs1344706 within the zinc-finger protein gene ZNF804A has been strongly implicated in schizophrenia (SZ) susceptibility by a series of recent genetic association studies. Although associated with a pattern of altered neural connectivity, evidence that increased risk is mediated by an effect on cognitive deficits associated with the disorder has been equivocal. This study investigated whether the same ZNF804A risk allele was associated with variation in the P300 auditory-evoked response, a cognitively relevant putative endophenotype for SZ. We compared P300 responses in carriers and noncarriers of the ZNF804A risk allele genotype groups in Irish patients and controls (n=97). P300 response was observed to vary according to genotype in this sample, such that risk allele carriers showed relatively higher P300 response compared with noncarriers. This finding accords with behavioural data reported by our group and others. It is also consistent with the idea that ZNF804A may have an impact on cortical efficiency, reflected in the higher levels of activations required to achieve comparable behavioural accuracy on the task used.
Collapse
Affiliation(s)
- T O'Donoghue
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - D W Morris
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - C Fahey
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - A Da Costa
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - S Moore
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - E Cummings
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - G Leicht
- The Cognitive Neurophysiology Lab, Children's Evaluation and Rehabilitation Center (CERC), Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S Karch
- The Cognitive Neurophysiology Lab, Children's Evaluation and Rehabilitation Center (CERC), Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - D Hoerold
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - D Tropea
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - J J Foxe
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- The School of Psychology, The National University of Ireland, Galway, Ireland
| | - M Gill
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - A Corvin
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - G Donohoe
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, St James Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- The School of Psychology, The National University of Ireland, Galway, Ireland
| |
Collapse
|
18
|
Díez A, Cieza-Borrella C, Suazo V, González-Sarmiento R, Papiol S, Molina V. Cognitive outcome and gamma noise power unrelated to neuregulin 1 and 3 variation in schizophrenia. Ann Gen Psychiatry 2014; 13:18. [PMID: 24976857 PMCID: PMC4065086 DOI: 10.1186/1744-859x-13-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/29/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Neuregulins are a family of signalling proteins that orchestrate a broad range of cellular responses. Four genes encoding Neuregulins 1-4 have been identified so far in vertebrates. Among them, Neuregulin 1 and Neuregulin 3 have been reported to contribute to an increased risk for developing schizophrenia. We hypothesized that three specific variants of these genes (rs6994992 and rs3924999 for Neuregulin 1 and rs10748842 for Neuregulin 3) that have been related to this illness may modify information processing capacity in the cortex, which would be reflected in electrophysiological parameters (P3b amplitude or gamma noise power) and/or cognitive performance. METHODS We obtained DNA from 31 patients with schizophrenia and 23 healthy controls and analyzed NRG1 rs6994992, NRG1 rs3924999 and NRG3 rs10748842 promoter polymorphisms by allelic discrimination with real-time polymerase chain reaction (PCR). We compared cognitive outcome, P300 amplitude parameters and an electroencephalographic measure of noise power in the gamma band between the groups dichotomized according to genotype. RESULTS Contrary to our hypothesis, we could not detect any significant influence of variation in Neuregulin 1/Neuregulin 3 polymorphisms on cognitive performance or electrophysiological parameters of patients with schizophrenia. CONCLUSIONS Despite our findings, we cannot discard that other genetic variants and, more likely, interactions between those variants and with genetic variation related to different pathways may still influence cerebral processing in schizophrenia.
Collapse
Affiliation(s)
- Alvaro Díez
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London W1W 7EJ, UK
| | - Clara Cieza-Borrella
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Molecular Medicine Unit, Department of Medicine and Institute of Molecular and Cellular Cancer Biology (IBMCC), University of Salamanca & CSIC, Salamanca 37007, Spain
| | - Vanessa Suazo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Neuroscience Institute of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Molecular Medicine Unit, Department of Medicine and Institute of Molecular and Cellular Cancer Biology (IBMCC), University of Salamanca & CSIC, Salamanca 37007, Spain
| | - Sergi Papiol
- Anthropology Unit, Animal Biology Department, University of Barcelona, Barcelona 08028, Spain ; Clinical Neuroscience Section, Max Planck Institute of Experimental Medicine, Göttingen 37075, Germany
| | - Vicente Molina
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain ; Neuroscience Institute of Castilla y León (INCYL), University of Salamanca, Salamanca 37007, Spain ; Psychiatry Department, School of Medicine, University of Valladolid, Valladolid 47005, Spain ; Psychiatry Service, University Hospital of Valladolid, Avenida Ramón y Cajal, 7, Valladolid 47005, Spain
| |
Collapse
|
19
|
Shaikh M, Hall MH, Schulze K, Dutt A, Li K, Williams I, Walshe M, Constante M, Broome M, Picchioni M, Toulopoulou T, Collier D, Stahl D, Rijsdijk F, Powell J, Murray RM, Arranz M, Bramon E. Effect of DISC1 on the P300 waveform in psychosis. Schizophr Bull 2013; 39:161-7. [PMID: 21878470 PMCID: PMC3523903 DOI: 10.1093/schbul/sbr101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Abnormalities in the neurophysiological measures P300 amplitude and latency constitute endophenotypes for psychosis. Disrupted-in-Schizophrenia-1 (DISC1) has been proposed as a promising susceptibility gene for schizophrenia, and a previous study has suggested that it is associated with P300 deficits in schizophrenia. METHODS We examined the role of variation in DISC1 polymorphisms on the P300 endophenotype in a large sample of patients with schizophrenia or psychotic bipolar disorder (n = 149), their unaffected relatives (n = 130), and unrelated healthy controls (n = 208) using linear regression and haplotype analysis. RESULTS Significant associations between P300 amplitude and latency and DISC1 polymorphisms/haplotypes were found. Those homozygous for the A allele of single-nucleotide polymorphism (SNP) rs821597 displayed significantly reduced P300 amplitudes in comparison with homozygous for the G allele (P = .009) and the heterozygous group (P = .018). Haplotype analysis showed a significant association for DISC1 haplotypes (rs3738401|rs6675281|rs821597|rs821616|rs967244|rs980989) and P300 latency. Haplotype GCGTCG and ACGTTT were associated with shorter latencies. DISCUSSION The P300 waveform appears to be modulated by variation in individual SNPs and haplotypes of DISC1. Because DISC1 is involved in neurodevelopment, one hypothesis is that disruption in neural connectivity impairs cognitive processes illustrated by P300 deficits observed in this sample.
Collapse
Affiliation(s)
- Madiha Shaikh
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College Londonand The South London and Maudsley NHS Foundation Trust, London SE58AF, UK.
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Katja Schulze
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Anirban Dutt
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Kuang Li
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Ian Williams
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Muriel Walshe
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Miguel Constante
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Matthew Broome
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Marco Picchioni
- St Andrew’s Academic Centre, Institute of Psychiatry, King’s College London, Northampton, UK
| | - Timothea Toulopoulou
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - David Collier
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK,Medical Research Council, Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College, London, UK
| | - Daniel Stahl
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Fruhling Rijsdijk
- Medical Research Council, Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College, London, UK
| | - John Powell
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Robin M. Murray
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Maria Arranz
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Elvira Bramon
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London and The South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| |
Collapse
|
20
|
Decoster J, De Hert M, Viechtbauer W, Nagels G, Myin-Germeys I, Peuskens J, van Os J, van Winkel R. Genetic association study of the P300 endophenotype in schizophrenia. Schizophr Res 2012; 141:54-9. [PMID: 22910404 DOI: 10.1016/j.schres.2012.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Although reduced amplitude of the P300 event-related potential is a well-documented intermediate phenotype of schizophrenia, little is known about its genetic underpinnings in patients with schizophrenia. This study aims to examine associations between P300 and a range of candidate genetic variants, selected from either candidate gene studies or genome-wide association studies, in a large sample of patients with schizophrenia. METHODS P300 amplitude at the midline parietal electrode and 193 single nucleotide polymorphisms (SNPs) in 67 genes were assessed in 336 patients with schizophrenia. The association between each SNP and P300 amplitude, controlled for illness duration and gender, was evaluated. Associations at p<.01 were considered of potential relevance, while Bonferroni correction was applied to determine formal statistical significance (Bonferroni-corrected threshold of significance p=.0003). RESULTS Of the 193 selected SNPs, 4 SNPs showed potentially relevant association with P300 amplitude at a significance level of p<.01. One of these SNPs, rs1045642 in ABCB1, was most convincingly associated with P300 amplitude, reaching formal (Bonferroni-corrected) significance, while there was evidence for possible association with rs1572899 in DISC-1, rs6265 in BDNF and rs1625579 in MIR137. CONCLUSION Genetic variation in ABCB1 may be associated with P300 amplitude in patients with schizophrenia. This result may encourage further efforts to elucidate the genetic underpinnings of P300 generation.
Collapse
Affiliation(s)
- Jeroen Decoster
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dias AM. The Integration of the Glutamatergic and the White Matter Hypotheses of Schizophrenia's Etiology. Curr Neuropharmacol 2012; 10:2-11. [PMID: 22942875 PMCID: PMC3286845 DOI: 10.2174/157015912799362742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/27/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND schizophrenia's endophenotipic profile is not only generally complex, but often varies from case to case. The perspective of trying to define specific anatomic correlates of the syndrome has led to disappointing results. In that context, neurophysiologic hypotheses (e.g. glutamatergic hypothesis) and connectivity hypotheses became prominent. Nevertheless, despite their commitment to the principle of denying 'localist' views and approaching the syndrome's endophenotype from a whole brain perspective, efforts to integrate both have not flourished at this moment in time. OBJECTIVES This paper aims to introduce a new etiological model that integrates the glutamatergic and the WM (WM) hypotheses of schizophrenia's etiology. This model proposes to serve as a framework in order to relate to patterns of brain abnormalities from the onset of the syndrome to stages of advanced chronification. HIGHLIGHTS Neurotransmitter abnormalities forego noticeable WM abnormalities. The former, chiefly represented by NMDAR hypo-function and associated molecular cascades, is related to the first signs of cell loss. This process is both directly and indirectly integrated to the underpinning of WM structural abnormalities; not only is the excess of glutamate toxic to the WM, but its disruption is associated to the expression of known genetic risk factors (e.g., NRG-1). A second level of the model develops the idea that abnormal neurotransmission within specific neural populations ('motifs') impair particular cognitive abilities, while subsequent WM structural abnormalities impair the integration of brain functions and multimodality. As a result of this two-stage dynamic, the affected individual progresses from experiencing specific cognitive and psychological deficits, to a condition of cognitive and existential fragmentation, linked to hardly reversible decreases in psychosocial functioning.
Collapse
|
22
|
Kang C, Yang X, Xu X, Liu H, Su P, Yang J. Association study of neuregulin 1 gene polymorphisms with auditory P300 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:422-8. [PMID: 22467496 DOI: 10.1002/ajmg.b.32045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/01/2012] [Indexed: 11/11/2022]
Abstract
Neuregulin 1 (NRG1), a gene involved with myelin production has been shown to have a positive correlation with schizophrenia. Event-related potentials (ERPs) studies provide the evidence of disturbed electrophysiologic marker in schizophrenia. The present study investigated the association of NRG1 genotypes with P300 in schizophrenia. Three polymorphisms in NRG1 gene were detected in 287 Chinese Han schizophrenics and 120 healthy control subjects. Among the total sample, 140 patients and 96 controls underwent P300. There were no significant differences for genotype distributions and allele frequencies between schizophrenic group and the control. A significant difference was observed between the schizophrenic patients and controls in the AT haplotype, with Odds Ratio 0.304 (P = 0.000882, 95% CI = 0.145-0.636). P300 amplitude in the schizophrenic group was significantly lower than that of the controls at Fz, Cz, Pz. P300 latency in the schizophrenic group was also significantly longer than that of the controls at Cz, Pz, Fz. Significant differences of P300 latency between three genotypes of rs3924999 were found at Cz and Pz both in schizophrenic group and the controls. The G/G carriers of rs3924999 tended to perform worse in the P300 latency as compared to A/A or A/G carriers both in the schizophrenia and controls. There were no significant differences for P300 latency and amplitude between schizophrenic group and controls for AT haplotype. NRG1 gene is a susceptible gene for Chinese Han schizophrenia and AT haplotype might have the protective role in the schizophrenia. Rs3924999 in NRG1 gene might functionally impact cognitive processing.
Collapse
Affiliation(s)
- ChuanYuan Kang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical College, Kunming, China
| | | | | | | | | | | |
Collapse
|
23
|
Walshe M, Vassos E, Picchioni M, Shaikh M, Toulopoulou T, Collier D, McDonald C, Murray R, Bramon E. The Association between COMT, BDNF, and NRG1 and Premorbid Social Functioning in Patients with Psychosis, Their Relatives, and Controls. SCIENTIFICA 2012; 2012:560514. [PMID: 24278715 PMCID: PMC3820633 DOI: 10.6064/2012/560514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/15/2012] [Indexed: 06/02/2023]
Abstract
We investigated the influences of putative candidate genes for psychosis on premorbid social adjustment and on premorbid schizoid-schizotypal traits. A family-based sample was used including 177 patients with schizophrenia or bipolar I disorder with a history of psychotic symptoms, 86 of their unaffected relatives, and 116 unrelated healthy controls. Association analyses on the combined sample were conducted using the Statistical Analysis for Genetic Epidemiology software (SAGE) and adjusting for age, sex, clinical group, and the family-based nature of the data. The COMT Val(158)Met and BDNF Val(66)Met polymorphisms showed no evidence of association with either phenotype. The SNP rs221533 of the NRG1 gene was significantly associated with premorbid adjustment in adolescence with TT homozygous subjects having a poorer performance than C allele carriers. In the context of neurodevelopmental disorders such as schizophrenia and other psychoses, this finding is plausible; however, it is preliminary and requires replication in an independent sample. In a broader sense, the use of intermediate quantitative phenotypes such as the ones presented in this study may be of help to understand the mechanism of action of genetic risk factors.
Collapse
Affiliation(s)
- Muriel Walshe
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - Evangelos Vassos
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - Marco Picchioni
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - Madiha Shaikh
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - Timothea Toulopoulou
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - David Collier
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - Colm McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Robin Murray
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| | - Elvira Bramon
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, P.O. Box 63, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
24
|
Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol 2011; 95:686-702. [DOI: 10.1016/j.pneurobio.2011.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
|
25
|
Dutt A, Ganguly T, Shaikh M, Walshe M, Schulze K, Marshall N, Constante M, McDonald C, Murray RM, Allin MPG, Bramon E. Association between hippocampal volume and P300 event related potential in psychosis: support for the Kraepelinian divide. Neuroimage 2011; 59:997-1003. [PMID: 21924362 DOI: 10.1016/j.neuroimage.2011.08.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/08/2011] [Accepted: 08/21/2011] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Abnormalities of the P300 event related potential (ERP) and of hippocampal structure are observed in individuals with psychotic disorders and their unaffected relatives. The understanding and clinical management of psychotic disorders are largely based on the descriptive Kraepelinian distinction between 'dementia praecox' and 'manic depressive psychosis', and not dependant on any well demarcated biological underpinnings. The hippocampus is postulated to be one of the main P300 generators, yet it remains unknown whether hippocampal volume decrements are associated with P300 deficits in psychosis, and whether any association is shared across non-affective and affective psychotic disorders. METHODS 228 subjects from the Maudsley Family Psychosis Study comprising 55 patients with non-affective psychosis, 23 patients with psychotic bipolar disorder, 98 unaffected relatives, and 52 unrelated controls contributed structural MRI and ERP data. To study the relationship between hippocampal volume and P300 ERP, a seemingly unrelated regression methodology was used, accounting for whole brain volumes, clinical groups, age and gender in the analysis. RESULTS An association between left hippocampal volume and P300 latency in the combined sample comprising non-affective and affective psychotic patients, their relatives and controls was observed. There was an inverse relationship between brain structure and function in that prolongation of P300 latencies was associated with smaller left hippocampal volumes. On subdividing the sample based on Kraepelinian dichotomy, this association remained significant only for the non-affective psychosis group, comprising patients and their unaffected relatives. CONCLUSIONS Based on our findings, P300 latency, a measure of the speed of neural transmission, appears to be related to the size of the left hippocampus in schizophrenia, but not in psychotic bipolar disorder. It seems that underlying neuro-biological characteristics could help in unravelling the traditional Kraepelinian differentiation between the two major psychoses. The specificity of this brain structure-function association for schizophrenia opens the scope for further research using integration of multimodal biological data for objective categorisation of psychosis.
Collapse
Affiliation(s)
- Anirban Dutt
- NIHR Biomedical Research Centre, Institute of Psychiatry (King's College London)/South London and Maudsley NHS Foundation Trust, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Smyrnis N, Kattoulas E, Stefanis NC, Avramopoulos D, Stefanis CN, Evdokimidis I. Schizophrenia-related neuregulin-1 single-nucleotide polymorphisms lead to deficient smooth eye pursuit in a large sample of young men. Schizophr Bull 2011; 37:822-31. [PMID: 19965935 PMCID: PMC3122292 DOI: 10.1093/schbul/sbp150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neuregulin-1 (NRG1) variations have been shown to modulate schizophrenia candidate endophenotypes related to brain structure and function. The aim of this study was to determine the effect of NRG1 on several oculomotor schizophrenia endophenotypes. The effects of 5 core single-nucleotide polymorphisms (SNPs) within the NRG1 gene to oculomotor parameters in a battery of oculomotor tasks (saccade, antisaccade, smooth eye pursuit, fixation) were investigated in a sample of 2243 young male military conscripts. Additive regression models, bootstrap and permutation techniques, were used as well as structural equation modeling and haplotype analysis. A deficit in global smooth eye pursuit performance measured using the root-mean-square error (RMSE) was related to the risk allele of SNP8NRG243177, and a deficit in global smooth eye pursuit performance measured using the saccade frequency was related with the risk allele of SNP8NRG433E1006. Structural equation modeling confirmed a global effect of NRG1 genotype on smooth eye pursuit performance using the RMSE, while the effect on saccade frequency was not confirmed. Haplotype analysis further confirmed the prediction from the structural equation modeling that a combination of alleles corresponding to the Icelandic high-risk haplotype was related to a deficit in global pursuit performance. NRG1 genotype variations were related to smooth eye pursuit variations both at the SNP level and at the haplotype level adding to the validation of this gene as a candidate gene for the disorder.
Collapse
Affiliation(s)
- Nikolaos Smyrnis
- Psychiatry Department, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 72 Vas. Sofias Avenue, Athens, Greece.
| | | | - Nicholas C. Stefanis
- University Mental Health Research Institute, Athens, Greece,Psychiatry Department
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, MD
| | | | - Ioannis Evdokimidis
- Neurology Department, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
27
|
Shaikh M, Hall MH, Schulze K, Dutt A, Walshe M, Williams I, Constante M, Picchioni M, Toulopoulou T, Collier D, Rijsdijk F, Powell J, Arranz M, Murray RM, Bramon E. Do COMT, BDNF and NRG1 polymorphisms influence P50 sensory gating in psychosis? Psychol Med 2011; 41:263-276. [PMID: 20102668 DOI: 10.1017/s003329170999239x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Auditory P50 sensory gating deficits correlate with genetic risk for schizophrenia and constitute a plausible endophenotype for the disease. The well-supported role of catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF) and neuregulin 1 (NRG1) genes in neurodevelopment and cognition make a strong theoretical case for their influence on the P50 endophenotype. METHOD The possible role of NRG1, COMT Val158Met and BDNF Val66Met gene polymorphisms on the P50 endophenotype was examined in a large sample consisting of psychotic patients, their unaffected relatives and unrelated healthy controls using linear regression analyses. RESULTS Although P50 deficits were present in patients and their unaffected relatives, there was no evidence for an association between NRG1, COMT Val158Met or BDNF Val66Met genotypes and the P50 endophenotype. CONCLUSIONS The evidence from our large study suggests that any such association between P50 indices and NRG1, COMT Val158Met or BDNF Val66Met genotypes, if present, must be very subtle.
Collapse
Affiliation(s)
- M Shaikh
- NIHR Biomedical Research Centre, Institute of Psychiatry, King's College London/South London and Maudsley NHS Foundation Trust, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo) 2011; 66 Suppl 1:71-7. [PMID: 21779725 PMCID: PMC3118440 DOI: 10.1590/s1807-59322011001300009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 02/01/2023] Open
Abstract
Beside its role in motor coordination, the cerebellum is involved in cognitive function such as attention, working memory, verbal learning, and sensory discrimination. In schizophrenia, a disturbed prefronto-thalamo-cerebellar circuit has been proposed to play a role in the pathophysiology. In addition, a deficit in the glutamatergic N-methyl-D-aspartate (NMDAf) receptor has been hypothesized. The risk gene neuregulin 1 may play a major role in this process. We demonstrated a higher expression of the NMDA receptor subunit 2D in the right cerebellar regions of schizophrenia patients, which may be a secondary upregulation due to a dysfunctional receptor. In contrast, the neuregulin 1 risk variant containing at least one C-allele was associated with decreased expression of NMDA receptor subunit 2C, leading to a dysfunction of the NMDA receptor, which in turn may lead to a dysfunction of the gamma amino butyric acid (GABA) system. Accordingly, from post-mortem studies, there is accumulating evidence that GABAergic signaling is decreased in the cerebellum of schizophrenia patients. As patients in these studies are treated with antipsychotics long term, we evaluated the effect of long-term haloperidol and clozapine treatment in an animal model. We showed that clozapine may be superior to haloperidol in restoring a deficit in NMDA receptor subunit 2C expression in the cerebellum. We discuss the molecular findings in the light of the role of the cerebellum in attention and cognitive deficits in schizophrenia.
Collapse
|
29
|
Dutt A, Shaikh M, Ganguly T, Nosarti C, Walshe M, Arranz M, Rifkin L, McDonald C, Chaddock CA, McGuire P, Murray RM, Bramon E, Allin MPG. COMT gene polymorphism and corpus callosum morphometry in preterm born adults. Neuroimage 2010; 54:148-53. [PMID: 20659569 DOI: 10.1016/j.neuroimage.2010.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Preterm birth is associated with a range of neurodevelopmental deficits, including corpus callosum (CC) abnormalities, which persist into late adolescence and early adulthood. A common single-nucleotide polymorphism in the catechol-o-methyl transferase (COMT) gene (Val158Met) is associated with cognition and brain structure and may play a role in neurodevelopment. It is not known whether this polymorphism is associated with CC morphometry in individuals born preterm. METHODS Structural MRI scans were acquired in 33 adults born very preterm (before 33 weeks' gestation) and 29 healthy controls. DNA was collected and COMT Val158Met polymorphism status determined using standard available assays. The mid-sagittal area of four antero-posterior subdivisions of the CC was measured. The effect of COMT Val158Met polymorphism on cross-sectional CC areas was studied using multivariate analysis and generalised linear models, adjusted for the effects of the clinical sample group (preterm vs. control), age and sex. RESULTS The COMT Val/Val homozygous genotype was observed to be significantly associated with reduced size of the total corpus callosum, and this relationship was present for the anterior, midposterior and posterior quarters of the CC. CONCLUSIONS The COMT Val158Met polymorphism possibly influences the morphometry of the corpus callosum associated with very preterm births. Further studies with larger sample sizes are warranted to conclusively establish the effects of individual genotypes of the COMT gene on corpus callosum in preterm born adults.
Collapse
Affiliation(s)
- Anirban Dutt
- NIHR Biomedical Research Centre, Institute of Psychiatry (King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Walker RM, Christoforou A, Thomson PA, McGhee KA, Maclean A, Mühleisen TW, Strohmaier J, Nieratschker V, Nöthen MM, Rietschel M, Cichon S, Morris SW, Jilani O, Stclair D, Blackwood DH, Muir WJ, Porteous DJ, Evans KL. Association analysis of Neuregulin 1 candidate regions in schizophrenia and bipolar disorder. Neurosci Lett 2010; 478:9-13. [PMID: 20435087 DOI: 10.1016/j.neulet.2010.04.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/15/2010] [Accepted: 04/23/2010] [Indexed: 02/07/2023]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BPD) are severe heritable psychiatric disorders involving a complex genetic aetiology. Neuregulin 1 (NRG1) is a leading candidate gene for SCZ, and has recently been implicated in BPD. We previously reported association of two NRG1 haplotypes with SCZ and BPD in a Scottish case-control sample. One haplotype is located at the 5' end of the gene (region A), and the other is located at the 3' end (region B). Here, association to haplotypes within regions A and B was assessed in patients with SCZ and BPD in a second Scottish case-control sample and in the two Scottish samples combined. Association to region B was also assessed in patients with SCZ and BPD in a German case-control sample, and in all three samples combined. No evidence was found for association in the new samples when analysed individually; however, in the joint analysis of the two Scottish samples, a region B haplotype comprising two SNPs (rs6988339 and rs3757930) was associated with SCZ and the combined case group (SCZ: p=0.0037, OR=1.3, 95% CI: 1.1-1.6; BPD+SCZ: p=0.0080, OR=1.2, 95% CI: 1.1-1.5), with these associations withstanding multiple testing correction at the single-test level (SCZ: p(st)=0.022; BPD+SCZ: p(st)=0.044). This study supports the involvement of NRG1 variants in the less well studied 3' region in conferring susceptibility to SCZ and BPD in the Scottish population.
Collapse
Affiliation(s)
- Rosie M Walker
- Medical Genetics Section, Centre for Molecular Medicine and Institute of Genetics and Molecular Medicine, Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ivleva EI, Morris DW, Moates AF, Suppes T, Thaker GK, Tamminga CA. Genetics and intermediate phenotypes of the schizophrenia--bipolar disorder boundary. Neurosci Biobehav Rev 2010; 34:897-921. [PMID: 19954751 DOI: 10.1016/j.neubiorev.2009.11.022] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 12/20/2022]
Abstract
Categorization of psychotic illnesses into schizophrenic and affective psychoses remains an ongoing controversy. Although Kraepelinian subtyping of psychosis was historically beneficial, modern genetic and neurophysiological studies do not support dichotomous conceptualization of psychosis. Evidence suggests that schizophrenia and bipolar disorder rather present a clinical continuum with partially overlapping symptom dimensions, neurophysiology, genetics and treatment responses. Recent large scale genetic studies have produced inconsistent findings and exposed an urgent need for re-thinking phenomenology-based approach in psychiatric research. Epidemiological, linkage and molecular genetic studies, as well as studies in intermediate phenotypes (neurocognitive, neurophysiological and anatomical imaging) in schizophrenia and bipolar disorders are reviewed in order to support a dimensional conceptualization of psychosis. Overlapping and unique genetic and intermediate phenotypic signatures of the two psychoses are comprehensively recapitulated. Alternative strategies which may be implicated into genetic research are discussed.
Collapse
Affiliation(s)
- Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75235, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Neuregulin 1-erbB4 pathway in schizophrenia: From genes to an interactome. Brain Res Bull 2010; 83:132-9. [PMID: 20433909 DOI: 10.1016/j.brainresbull.2010.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 02/06/2023]
Abstract
Recently identified candidate susceptibility genes for schizophrenia are likely to play, important roles in the pathophysiology of the illness. It is also clear, however, that the etiologic, contribution of these genes is not only via their own functions but also through interactions with other, genes and environmental factors. Genetic, transgenic and postmortem brain studies support a, potential role for NRG1-erbB4 signaling in schizophrenia. Embedded in the results of these studies, however, are clues to the notion that NRG1-erbB4 signaling does not act alone but in conjunction with, other pathways. This article aims to re-evaluate the evidence for the role of neuregulin 1 (NRG1)-erbB4 signaling in schizophrenia by focusing on its interactions with other candidate susceptibility, pathways. In addition, we consider molecular substrates upon which the NRG1-erbB4 and other, candidate pathways converge contributing to susceptibility for the illness (schizophrenia interactome). Glutamatergic signaling can be an interesting candidate for schizophrenia interactome. Schizophrenia is associated with NMDA receptor hypofunction and moreover, several susceptibility genes for, schizophrenia converge on NMDA receptor signaling. These candidate genes influence NMDA receptor, signaling via diverse mechanisms, yet all eventually impact on protein composition of NMDA receptor, complexes. Likewise, the protein associations in the receptor complexes can themselves modulate, signaling molecules of candidate genes and their pathways. Therefore, protein-protein interactions in the NMDA receptor complexes can mediate reciprocal interactions between NMDA receptor function, and susceptibility candidate pathways including NRG1-erbB4 signaling and thus can be a, schizophrenia interactome.
Collapse
|
33
|
Schmitt A, Koschel J, Zink M, Bauer M, Sommer C, Frank J, Treutlein J, Schulze T, Schneider-Axmann T, Parlapani E, Rietschel M, Falkai P, Henn FA. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2010; 260:101-11. [PMID: 19856012 PMCID: PMC2830629 DOI: 10.1007/s00406-009-0017-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 04/22/2009] [Indexed: 02/05/2023]
Abstract
To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry, University of Goettingen, von-Siebold Strasse 5, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kirby BP, Waddington JL, O'Tuathaigh CMP. Advancing a functional genomics for schizophrenia: psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Res Bull 2009; 83:162-76. [PMID: 19800398 DOI: 10.1016/j.brainresbull.2009.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 08/18/2009] [Accepted: 09/21/2009] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a complex, heritable psychotic disorder in which numerous genes and environmental adversities appear to interact in determining disease phenotype. In addition to genes regulating putative pathophysiological mechanisms, a new generation of molecular studies has indicated numerous candidate genes to be associated with risk for schizophrenia. The present review focuses on studies in mice mutant for genes associated with putative pathophysiological mechanisms and candidate risk genes for the disorder. It seeks to evaluate the extent to which each mutation of a schizophrenia-related gene accurately models multiple aspects of the schizophrenia phenotype or more circumscribed, distinct endophenotypes in terms of psychopathology and pathobiology; in doing so, it places particular emphasis on positive symptoms, negative symptoms and cognitive dysfunction. To further this goal, it juxtaposes continually evolving mutant genomics with emergent clinical genomic studies. Opportunities and challenges associated with the use of such mutants, including diagnostic specificity and the translational barrier associated with modelling schizophrenia, are discussed. The potential value of genetic models for exploring gene-gene and gene-environment interactions relating to schizophrenia is highlighted. Elucidation of the contribution of genetic variation to specific symptom clusters and underlying aspects of pathobiology will have important implications for identifying treatments that target distinct domains of psychopathology and dysfunction on an individual patient basis.
Collapse
Affiliation(s)
- Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | |
Collapse
|
35
|
Höistad M, Segal D, Takahashi N, Sakurai T, Buxbaum JD, Hof PR. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat 2009; 3:9. [PMID: 19636386 PMCID: PMC2713751 DOI: 10.3389/neuro.05.009.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malin Höistad
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Devorah Segal
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Nagahide Takahashi
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|