1
|
Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Hodgson NW, Hensch TK, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. An increased copy number of glycine decarboxylase (GLDC) associated with psychosis reduces extracellular glycine and impairs NMDA receptor function. Mol Psychiatry 2024:10.1038/s41380-024-02711-5. [PMID: 39210012 DOI: 10.1038/s41380-024-02711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear. Using a chromosome-engineered allelic series in mice, we report that a triplication of the gene encoding the glycine-catabolizing enzyme glycine decarboxylase (GLDC) - as found on a small supernumerary marker chromosome in patients with psychosis - reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) and suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in schizophrenia-like behaviors which are in part known to be dependent on the activity of the dentate gyrus, e.g., prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results demonstrate that Gldc negatively regulates long-term synaptic plasticity in the dentate gyrus in mice, suggesting that an increase in GLDC copy number possibly contributes to the development of psychosis in humans.
Collapse
Affiliation(s)
- Maltesh Kambali
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Li
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Patrick McGuinness
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Johanna G Cobb
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Muxiao Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajasekar Nagarajan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jinrui Lyu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Elif Engin
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Joseph T Coyle
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vadim Y Bolshakov
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
2
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
Bradford DE, DeFalco A, Perkins ER, Carbajal I, Kwasa J, Goodman FR, Jackson F, Richardson LNS, Woodley N, Neuberger L, Sandoval JA, Huang HJ, Joyner KJ. Whose Signals Are Being Amplified? Toward a More Equitable Clinical Psychophysiology. Clin Psychol Sci 2024; 12:237-252. [PMID: 38645420 PMCID: PMC11028731 DOI: 10.1177/21677026221112117] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Research using psychophysiological methods holds great promise for refining clinical assessment, identifying risk factors, and informing treatment. Unfortunately, unique methodological features of existing approaches limit inclusive research participation and, consequently, generalizability. This brief overview and commentary provides a snapshot of the current state of representation in clinical psychophysiology, with a focus on the forms and consequences of ongoing exclusion of Black participants. We illustrate issues of inequity and exclusion that are unique to clinical psychophysiology, considering intersections among social constructions of Blackness and biased design of current technology used to measure electroencephalography, skin conductance, and other signals. We then highlight work by groups dedicated to quantifying and addressing these limitations. We discuss the need for reflection and input from a wider variety of stakeholders to develop and refine new technologies, given the risk of further widening disparities. Finally, we provide broad recommendations for clinical psychophysiology research.
Collapse
Affiliation(s)
| | | | | | - Iván Carbajal
- Oregon State University, School of Psychological Science
| | - Jasmine Kwasa
- Carnegie Mellon University, Center for the Neural Basis of Cognition
| | - Fallon R. Goodman
- George Washington University, Department of Psychological and Brain Sciences
| | | | | | | | | | | | - Helen J. Huang
- University of Central Florida, Department of Mechanical and Aerospace Engineering
| | | |
Collapse
|
4
|
Huang L, Mut-Arbona P, Varga B, Török B, Brunner J, Arszovszki A, Iring A, Kisfali M, Vizi ES, Sperlágh B. P2X7 purinergic receptor modulates dentate gyrus excitatory neurotransmission and alleviates schizophrenia-like symptoms in mouse. iScience 2023; 26:107560. [PMID: 37649698 PMCID: PMC10462828 DOI: 10.1016/j.isci.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
ATP-gated P2X7 receptors (P2X7Rs) play a crucial role in brain disorders. However, how they affect normal and pathological synaptic transmission is still largely unclear. Here, by using whole-cell patch-clamp technique to record AMPA- and NMDA receptor-mediated excitatory postsynaptic currents (s/mEPSCs) in dentate gyrus granule cells (DG GCs), we revealed a modulation by P2X7Rs of presynaptic sites, especially originated from entorhinal cortex (EC)-GC path but not the mossy cell (MC)-GC path. The involvement of P2X7Rs was confirmed using a pharmacological approach. Additionally, the acute activation of P2X7Rs directly elevated calcium influx from EC-GC terminals. In postnatal phencyclidine (PCP)-induced mouse model of schizophrenia, we observed that P2X7R deficiency restored the EC-GC synapse alteration and alleviated PCP-induced symptoms. To summarize, P2X7Rs participate in the modulation of GC excitatory neurotransmission in the DG via EC-GC pathway, contributing to pathological alterations of neuronal functions leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiana Török
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Antonia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - E. Sylvester Vizi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
5
|
Powell SB, Swerdlow NR. The Relevance of Animal Models of Social Isolation and Social Motivation for Understanding Schizophrenia: Review and Future Directions. Schizophr Bull 2023; 49:1112-1126. [PMID: 37527471 PMCID: PMC10483472 DOI: 10.1093/schbul/sbad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND HYPOTHESES Social dysfunction in schizophrenia includes symptoms of withdrawal and deficits in social skills, social cognition, and social motivation. Based on the course of illness, with social withdrawal occurring prior to psychosis onset, it is likely that the severity of social withdrawal/isolation contributes to schizophrenia neuropathology. STUDY DESIGN We review the current literature on social isolation in rodent models and provide a conceptual framework for its relationship to social withdrawal and neural circuit dysfunction in schizophrenia. We next review preclinical tasks of social behavior used in schizophrenia-relevant models and discuss strengths and limitations of existing approaches. Lastly, we consider new effort-based tasks of social motivation and their potential for translational studies in schizophrenia. STUDY RESULTS Social isolation rearing in rats produces profound differences in behavior, pharmacologic sensitivity, and neurochemistry compared to socially reared rats. Rodent models relevant to schizophrenia exhibit deficits in social behavior as measured by social interaction and social preference tests. Newer tasks of effort-based social motivation are being developed in rodents to better model social motivation deficits in neuropsychiatric disorders. CONCLUSIONS While experimenter-imposed social isolation provides a viable experimental model for understanding some biological mechanisms linking social dysfunction to clinical and neural pathology in schizophrenia, it bypasses critical antecedents to social isolation in schizophrenia, notably deficits in social reward and social motivation. Recent efforts at modeling social motivation using effort-based tasks in rodents have the potential to quantify these antecedents, identify models (eg, developmental, genetic) that produce deficits, and advance pharmacological treatments for social motivation.
Collapse
Affiliation(s)
- Susan B Powell
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| | - Neal R Swerdlow
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs VISN22 Mental Illness Research, Education and Clinical Center, La Jolla, CA, USA
| |
Collapse
|
6
|
Kambali M, Li Y, Unichenko P, Pliego JF, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. A marker chromosome in psychosis identifies glycine decarboxylase (GLDC) as a novel regulator of neuronal and synaptic function in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542745. [PMID: 37398055 PMCID: PMC10312439 DOI: 10.1101/2023.05.29.542745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the GLDC gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of Gldc reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results thus provide a link between a genomic copy number variation, biochemical, cellular and behavioral phenotypes, and further demonstrate that GLDC negatively regulates long-term synaptic plasticity at specific hippocampal synapses, possibly contributing to the development of neuropsychiatric disorders.
Collapse
|
7
|
DeRosa H, Smith A, Geist L, Cheng A, Hunter RG, Kentner AC. Maternal immune activation alters placental histone-3 lysine-9 tri-methylation, offspring sensorimotor processing, and hypothalamic transposable element expression in a sex-specific manner. Neurobiol Stress 2023; 24:100538. [PMID: 37139465 PMCID: PMC10149420 DOI: 10.1016/j.ynstr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Animal models of maternal immune activation (MIA) are central to identifying the biological mechanisms that underly the association between prenatal infection and neuropsychiatric disorder susceptibility. Many studies, however, have limited their scope to protein coding genes and their role in mediating this inherent risk, while much less attention has been directed towards exploring the roles of the epigenome and transposable elements (TEs). In Experiment 1, we demonstrate the ability of MIA to alter the chromatin landscape of the placenta. We induced MIA by injecting 200 μg/kg (i.p.) of lipopolysaccharide (LPS) on gestational day 15 in Sprague-Dawley rats. We found a sex-specific rearrangement of heterochromatin 24-h after exposure to MIA, as evidenced by an increase in histone-3 lysine-9 trimethylation (H3K9me3). In Experiment 2, MIA was associated with long-term sensorimotor processing deficits as indicated by reduced prepulse inhibition (PPI) of the acoustic startle reflex in adult male and female offspring and an increased mechanical allodynia threshold in males. Analyses of gene expression within the hypothalamus-chosen for its involvement in the sex-specific pathogenesis of schizophrenia and the stress response-revealed significantly higher levels of the stress-sensitive genes Gr and Fkbp5. Deleterious TE expression is often a hallmark of neuropsychiatric disease and we found sex-specific increases in the expression of several TEs including IAP, B2 SINE, and LINE-1 ORF1. The data from this study warrant the future consideration of chromatin stability and TEs as part of the mechanism that drives MIA-associated changes in the brain and behavior.
Collapse
Affiliation(s)
- Holly DeRosa
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Arianna Smith
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Ada Cheng
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Richard G. Hunter
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
8
|
Acheson DT, Baker DG, Nievergelt CM, Yurgil KA, Geyer MA, Risbrough VB. Prospective longitudinal assessment of sensorimotor gating as a risk/resiliency factor for posttraumatic stress disorder. Neuropsychopharmacology 2022; 47:2238-2244. [PMID: 36192631 PMCID: PMC9630259 DOI: 10.1038/s41386-022-01460-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Little is understood about cognitive mechanisms that confer risk and resiliency for posttraumatic stress disorder (PTSD). Prepulse Inhibition (PPI) is a measure of pre-attentional response inhibition that is a stable cognitive trait disrupted in many neuropsychiatric disorders characterized by poor behavioral or cognitive inhibition, including PTSD. Differentiating between PTSD-related phenotypes that are pre-existing factors vs. those that emerge specifically after trauma is critical to understanding PTSD etiology and can only be addressed by prospective studies. This study tested the hypothesis that sensorimotor gating performance is associated with risk/resiliency for combat-related PTSD. As part of a prospective, longitudinal study, 1226 active duty Marines and Navy Corpsman completed a PPI test as well as a clinical interview to assess PTSD symptoms both before, and 3 and 6 months after a combat deployment. Participants that developed PTSD 6 months following deployment (N=46) showed lower PPI across pre and post-deployment time points compared to participants who did not develop PTSD (N=1182) . Examination of the distribution of PTSD across PPI performance revealed a lower than expected number of cases in the highest performing quartile compared to the rest of the distribution (p < 0.04). When controlling for other factors that predict PTSD in this population, those in the top 25% of PPI performance showed a >50% reduction in chance to develop PTSD (OR = 0.32). Baseline startle reactivity and startle habituation were not significantly different between PTSD risk and control groups. These findings suggest that robust sensorimotor gating may represent a resiliency factor for development of PTSD following trauma.
Collapse
Affiliation(s)
- Dean T Acheson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Kate A Yurgil
- Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychological Sciences, Loyola University New Orleans, New Orleans, LA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Mental Illness Research, Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
9
|
Naysmith LF, Williams SCR, Kumari V. The influence of stimulus onset asynchrony, task order, sex and hormonal contraception on prepulse inhibition and prepulse facilitation: Methodological considerations for drug and imaging research. J Psychopharmacol 2022; 36:1234-1242. [PMID: 36268723 PMCID: PMC9643818 DOI: 10.1177/02698811221133469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Prepulse-induced startle modulation occurs when a weak sensory stimulus ('prepulse') is presented before a startling sensory stimulus ('pulse'), producing an inhibited (Prepulse Inhibition, PPI) or facilitated (Prepulse Facilitation, PPF) startle response. We recently identified several gaps and outlined future lines of enquiry to enable a fuller understanding of the neurobiology of PPI and PPF in healthy and clinical populations. However, before embarking on these studies, it is important to consider how task and population characteristics affect these phenomena in healthy humans. METHODS We examined PPI and PPF in separate tasks, with counterbalanced task order across participants in one session, using a range of stimulus onset asynchronies (SOAs), in 48 healthy adults (23 men, 25 women; 10 hormonal contraceptive users) to determine which SOAs produce the strongest PPI and PPF and also explored how sex and hormonal contraception might influence PPI and PPF under these experimental conditions. RESULTS Both PPI and PPF were affected by SOA, with greatest PPI observed at 60 and 120 ms, and greatest PPF at 4500 and 6000 ms. PPI was influenced by sex (more PPI in men than women) and hormonal contraception, whereas PPF was affected by task order (greater PPF when the PPF task followed, rather than preceded, the PPI task). CONCLUSIONS Our findings indicate that studies of PPI and PPF need to consider, not only sex and hormonal status of study participants, but also task characteristics and presentation order to reduce variance and increase replicability across studies.
Collapse
Affiliation(s)
- Laura F Naysmith
- Centre for Neuroimaging Sciences,
Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,
UK,Laura F Naysmith, Centre for Neuroimaging
Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, L1.12, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Steven C R Williams
- Centre for Neuroimaging Sciences,
Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,
UK
| | - Veena Kumari
- Department of Psychology, Institute of
Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Centre for Cognitive Neuroscience,
College of Health, Medicine and Life Sciences, Brunel University London, London,
UK
| |
Collapse
|
10
|
Keshavan MS, Yassin W, Stone WS. Conceptualizing psychosis as an information processing disorder: Signal, bandwidth, noise, and bias. Schizophr Res 2022; 242:70-72. [PMID: 35177283 DOI: 10.1016/j.schres.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Massachusetts Mental Health Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Walid Yassin
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Massachusetts Mental Health Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America; McLean Hospital, Belmont, MA, United States of America
| | - William S Stone
- Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Massachusetts Mental Health Center, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
11
|
Abulaiti X, Wang A, Zhang H, Su H, Gao R, Chen J, Gao S, Li L. Disrupted mossy fiber connections from defective embryonic neurogenesis contribute to SOX11-associated schizophrenia. Cell Mol Life Sci 2022; 79:180. [PMID: 35254515 PMCID: PMC11072709 DOI: 10.1007/s00018-022-04206-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Abnormal mossy fiber connections in the hippocampus have been implicated in schizophrenia. However, it remains unclear whether this abnormality in the patients is genetically determined and whether it contributes to the onset of schizophrenia. Here, we showed that iPSC-derived hippocampal NPCs from schizophrenia patients with the A/A allele at SNP rs16864067 exhibited abnormal NPC polarity, resulting from the downregulation of SOX11 by this high-risk allele. In the SOX11-deficient mouse brain, abnormal NPC polarity was also observed in the hippocampal dentate gyrus, and this abnormal NPC polarity led to defective hippocampal neurogenesis-specifically, irregular neuroblast distribution and disrupted granule cell morphology. As granule cell synapses, the mossy fiber pathway was disrupted, and this disruption was resistant to activity-induced mossy fiber remodeling in SOX11 mutant mice. Moreover, these mutant mice exhibited diminished PPI and schizophrenia-like behaviors. Activation of hippocampal neurogenesis in the embryonic brain, but not in the adult brain, partially alleviated disrupted mossy fiber connections and improved schizophrenia-related behaviors in mutant mice. We conclude that disrupted mossy fiber connections are genetically determined and strongly correlated with schizophrenia-like behaviors in SOX11-deficient mice. This disruption may reflect the pathological substrate of SOX11-associated schizophrenia.
Collapse
Affiliation(s)
- Xianmixinuer Abulaiti
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
| | - Aifang Wang
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Zhang
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hang Su
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
- Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Lingsong Li
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China.
- Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
San-Martin R, Zimiani MI, de Ávila MAV, Shuhama R, Del-Ben CM, Menezes PR, Fraga FJ, Salum C. Early Schizophrenia and Bipolar Disorder Patients Display Reduced Neural Prepulse Inhibition. Brain Sci 2022; 12:93. [PMID: 35053836 PMCID: PMC8773710 DOI: 10.3390/brainsci12010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Altered sensorimotor gating has been demonstrated by Prepulse Inhibition (PPI) tests in patients with psychosis. Recent advances in signal processing methods allow assessment of neural PPI through electroencephalogram (EEG) recording during acoustic startle response measures (classic muscular PPI). Simultaneous measurements of muscular (eye-blink) and neural gating phenomena during PPI test may help to better understand sensorial processing dysfunctions in psychosis. In this study, we aimed to assess simultaneously muscular and neural PPI in early bipolar disorder and schizophrenia patients. METHOD Participants were recruited from a population-based case-control study of first episode psychosis. PPI was measured using electromyography (EMG) and EEG in pulse alone and prepulse + pulse with intervals of 30, 60, and 120 ms in early bipolar disorder (n = 18) and schizophrenia (n = 11) patients. As control group, 15 socio-economically matched healthy subjects were recruited. All subjects were evaluated with Rating Scale, Hamilton Rating Scale for Depression, and Young Mania Rating Scale questionnaires at recruitment and just before PPI test. Wilcoxon ranked sum tests were used to compare PPI test results between groups. RESULTS In comparison to healthy participants, neural PPI was significantly reduced in PPI 30 and PPI60 among bipolar and schizophrenia patients, while muscular PPI was reduced in PPI60 and PPI120 intervals only among patients with schizophrenia. CONCLUSION The combination of muscular and neural PPI evaluations suggested distinct impairment patterns among schizophrenia and bipolar disorder patients. Simultaneous recording may contribute with novel information in sensory gating investigations.
Collapse
Affiliation(s)
- Rodrigo San-Martin
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| | - Maria Inês Zimiani
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| | | | - Rosana Shuhama
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (M.A.V.d.Á.); (R.S.); (C.M.D.-B.)
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Cristina Marta Del-Ben
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (M.A.V.d.Á.); (R.S.); (C.M.D.-B.)
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Paulo Rossi Menezes
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Francisco José Fraga
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André 09210-580, Brazil;
| | - Cristiane Salum
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| |
Collapse
|
13
|
Kirenskaya A, Samylkin D, Storozheva Z, Myamlin V, Tkachenko A. Neurophysiological differentiation of personality disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:124-130. [DOI: 10.17116/jnevro2022122111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kellman J, Radwan K. Towards an expanded neuroscientific understanding of social play. Neurosci Biobehav Rev 2021; 132:884-891. [PMID: 34767879 DOI: 10.1016/j.neubiorev.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Play has been recognized as a complex and diverse set of behaviors that has been difficult to define. Play can range from rough and tumble play among rats to a human child playing a computer game. Play has been understood to exist in multiple forms such as social, object, and locomotor (Burghardt, 2005). In this article we review the literatures on the neural basis of social play, on heart rate variability, on behavioral switching and set-shifting, on prepulse inhibition of the acoustic startle reflex, and on learning at the level of the basal ganglia. Each of these neuronal pathways, aside from heart rate variability, is rooted in the parafascicular nucleus of the thalamus, an important neural substrate for social play. We argue that social play optimally balances a number of opposing neural pathways by engaging systems involved in safety versus danger (heart rate variability), automatized reactions versus learned reactions to new stimuli (behavioral switching and set-shifting), and gating relevant versus less relevant stimuli (prepulse inhibition of the acoustic startle reflex). The idea that play, in addition to its role in interpersonal adaptation to social life, may have a central role in optimizing flexibility and creativity in individual response to novelty has been explored by previous authors (Huizinga, 1955; Spinka et al., 2001; Pellegrini et al., 2007; Pellis and Pellis, 2017). In this paper we explore the possible underlying neural basis for this function of play, having to do with balancing various neural networks, and in doing so propose an expanded understanding of the nature and function of social play.
Collapse
Affiliation(s)
- Joshua Kellman
- The University of Chicago, Department of Psychiatry and Behavioral Neuroscience, 5841 S. Maryland Ave., MC 3077, Chicago, IL, 60637, United States
| | - Karam Radwan
- The University of Chicago, Department of Psychiatry and Behavioral Neuroscience, 5841 S. Maryland Ave., MC 3077, Chicago, IL, 60637, United States.
| |
Collapse
|
15
|
Haddad FL, Lu L, Baines KJ, Schmid S. Sensory filtering disruption caused by poly I:C - Timing of exposure and other experimental considerations. Brain Behav Immun Health 2021; 9:100156. [PMID: 34589898 PMCID: PMC8474281 DOI: 10.1016/j.bbih.2020.100156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Maternal immune activation (MIA) in response to infection during pregnancy has been linked through various epidemiological and preclinical studies to an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia in exposed offspring. Sensory filtering disruptions occur in both of these disorders and are typically measured using the acoustic startle response in both humans and rodents. Our study focuses on characterizing the baseline reactivity, habituation and prepulse inhibition (PPI) of the acoustic startle response following exposure to MIA. We induced MIA using polyinosinic: polycytidylic acid (poly I:C) at gestational day (GD) 9.5 or 14.5, and we tested sensory filtering phenotypes in adolescent and adult offspring. Our results show that startle reactivity was robustly increased in adult GD9.5 but not GD14.5 poly I:C offspring. In contrast to some previous studies, we found no consistent changes in short-term habituation, long-term habituation or prepulse inhibition of startle. Our study highlights the importance of MIA exposure timing and discusses sensory filtering phenotypes as they relate to ASD, schizophrenia and the poly I:C MIA model. Moreover, we analyze and discuss the potential impact of between- and within-litter variability on behavioural findings in poly I:C studies.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Lu Lu
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Kelly J Baines
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, Canada
| |
Collapse
|
16
|
Zahova SK, Humby T, Davies JR, Morgan JE, Isles AR. Comparison of mouse models reveals a molecular distinction between psychotic illness in PWS and schizophrenia. Transl Psychiatry 2021; 11:433. [PMID: 34417445 PMCID: PMC8379171 DOI: 10.1038/s41398-021-01561-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder caused by mutations affecting paternal chromosome 15q11-q13, and characterized by hypotonia, hyperphagia, impaired cognition, and behavioural problems. Psychotic illness is a challenging problem for individuals with PWS and has different rates of prevalence in distinct PWS genotypes. Previously, we demonstrated behavioural and cognitive endophenotypes of relevance to psychiatric illness in a mouse model for one of the associated PWS genotypes, namely PWS-IC, in which deletion of the imprinting centre leads to loss of paternally imprinted gene expression and over-expression of Ube3a. Here we examine the broader gene expression changes that are specific to the psychiatric endophenotypes seen in this model. To do this we compared the brain transcriptomic profile of the PWS-IC mouse to the PWS-cr model that carries a deletion of the PWS minimal critical interval spanning the snoRNA Snord116 and Ipw. Firstly, we examined the same behavioural and cognitive endophenotypes of relevance to psychiatric illness in the PWS-cr mice. Unlike the PWS-IC mice, PWS-cr exhibit no differences in locomotor activity, sensory-motor gating, and attention. RNA-seq analysis of neonatal whole brain tissue revealed a greater number of transcriptional changes between PWS-IC and wild-type littermates than between PWS-cr and wild-type littermates. Moreover, the differentially expressed genes in the PWS-IC brain were enriched for GWAS variants of episodes of psychotic illness but, interestingly, not schizophrenia. These data illustrate the molecular pathways that may underpin psychotic illness in PWS and have implications for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simona K Zahova
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jennifer R Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Joanne E Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
17
|
Partington HS, Nutter JM, Eells JB. Nurr1 deficiency shortens free running period, enhances photoentrainment to phase advance, and disrupts circadian cycling of the dopamine neuron phenotype. Behav Brain Res 2021; 411:113347. [PMID: 33991560 DOI: 10.1016/j.bbr.2021.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Neurological and neuropsychiatric disorders, including addiction, schizophrenia, and Parkinson's disease (PD), involve dysfunction in midbrain dopamine (DA) neurotransmission with severity of disease symptoms and progression associated with disrupted circadian rhythms. The nuclear transcription factor Nurr1, essential for DA neuron (DAN) development, survival, and maintenance, is also known to interact with circadian rhythm regulating clock proteins. In the Nurr1-null heterozygous (+/-) mice, a Nurr1 deficient model which reproduces some of the alterations in DA function found in schizophrenia and PD, we measured, using wheel-running activity, the free running period (tau) and photoperiod entrainment. Because Nurr1 has a role in regulating the DA phenotype, we also measured the circadian fluctuations in the number of DANs using tyrosine hydroxylase (TH) immunofluorescence. In Nurr1 +/- mice, tau was significantly shorter and entrainment to a 6 h earlier shift in the dark cycle was accelerated. The Nurr1 wild-type (+/+) mice cycled DAN numbers across time, with a significantly greater number (∼2-fold increase) of DANs at zeitgeber time (ZT) 0 than ZT12. The +/- mice, however, did not cycle the DA phenotype, as no differences in DAN numbers were observed between ZT0 and ZT12. Additionally, the +/- mice had significantly fewer DANs at ZT0 but not at ZT12 as compared to +/+ mice. Based these data, circadian rhythms and fluctuations in the DA phenotype requires normal Nurr1 function. A better understanding is needed of the mechanisms regulating the DA phenotype and subsequent neurotransmission across the circadian cycle and how this is altered in circadian rhythm and DA neurotransmission-associated disorders.
Collapse
Affiliation(s)
- Heath S Partington
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA
| | - Jennifer Makenzie Nutter
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA
| | - Jeffrey B Eells
- East Carolina University, Department of Anatomy and Cell Biology, Brody School of Medicine, Greenville, NC, USA.
| |
Collapse
|
18
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
19
|
Gil-Miravet I, Fuertes-Saiz A, Benito A, Almodóvar I, Ochoa E, Haro G. Prepulse Inhibition in Cocaine Addiction and Dual Pathologies. Brain Sci 2021; 11:brainsci11020269. [PMID: 33672693 PMCID: PMC7924364 DOI: 10.3390/brainsci11020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cocaine addiction is frequently associated with different psychiatric disorders, especially schizophrenia and antisocial personality disorder. A small number of studies have used prepulse inhibition (PPI) as a discriminating factor between these disorders. This work evaluated PPI and the phenotype of patients with cocaine-related disorder (CRD) who presented a dual diagnosis of schizophrenia or antisocial personality disorder. A total of 74 men aged 18–60 years were recruited for this research. The sample was divided into four groups: CRD (n = 14), CRD and schizophrenia (n = 21), CRD and antisocial personality disorder (n = 16), and a control group (n = 23). We evaluated the PPI and other possible vulnerability factors in these patients by using different assessment scales. PPI was higher in the CRD group at 30 ms (F(3, 64) = 2.972, p = 0.038). Three discriminant functions were obtained which allowed us to use the overall Hare Psychopathy Checklist Revised score, reward sensitivity, and PPI at 30 ms to predict inclusion of these patients in the different groups with a success rate of 79.7% (42.9% for CRD, 76.2% for CRD and schizophrenia, 100% for CRD and antisocial personality disorder, and 91.3% in the control group). Despite the differences we observed in PPI, this factor is of little use for discriminating between the different diagnostic groups and it acts more as a non-specific endophenotype in certain mental disorders, such as in patients with a dual diagnosis.
Collapse
Affiliation(s)
- Isis Gil-Miravet
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, 12006 Castellón, Spain; (I.G.-M.); (A.B.); (I.A.); (G.H.)
- Predepartamental Unit of Medicine, Universitat Jaume I, 12071 Castellón, Spain
| | - Alejandro Fuertes-Saiz
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, 12006 Castellón, Spain; (I.G.-M.); (A.B.); (I.A.); (G.H.)
- Psychiatry Department, Consorcio Hospitalario Provincial de Castellón, 12002 Castellón, Spain
- Correspondence:
| | - Ana Benito
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, 12006 Castellón, Spain; (I.G.-M.); (A.B.); (I.A.); (G.H.)
- Torrente Mental Health Centre, Hospital General Universitario, 46014 Valencia, Spain
| | - Isabel Almodóvar
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, 12006 Castellón, Spain; (I.G.-M.); (A.B.); (I.A.); (G.H.)
| | - Enrique Ochoa
- Molecular Biopathology Department, Consorcio Hospitalario Provincial de Castellón, 12002 Castellón, Spain;
| | - Gonzalo Haro
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, 12006 Castellón, Spain; (I.G.-M.); (A.B.); (I.A.); (G.H.)
- Psychiatry Department, Consorcio Hospitalario Provincial de Castellón, 12002 Castellón, Spain
| |
Collapse
|
20
|
Balan S, Ohnishi T, Watanabe A, Ohba H, Iwayama Y, Toyoshima M, Hara T, Hisano Y, Miyasaka Y, Toyota T, Shimamoto-Mitsuyama C, Maekawa M, Numata S, Ohmori T, Shimogori T, Kikkawa Y, Hayashi T, Yoshikawa T. Role of an Atypical Cadherin Gene, Cdh23 in Prepulse Inhibition, and Implication of CDH23 in Schizophrenia. Schizophr Bull 2021; 47:1190-1200. [PMID: 33595068 PMCID: PMC8266601 DOI: 10.1093/schbul/sbab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest logarithm of odds score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility.
Collapse
Affiliation(s)
- Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan,Neuroscience Research Laboratory, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode, Kerala, India
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomonori Hara
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yuki Miyasaka
- Deafness Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan,Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | | | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan,Department of Biological Science, Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Takeshi Hayashi
- Agricultural Artificial Intelligence (AI) Research Office, Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), Tokyo, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan,To whom correspondence should be addressed; 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; tel: +81-48-467-5968, fax: +81-48-467-7462, e-mail:
| |
Collapse
|
21
|
Hedberg M, Imbeault S, Erhardt S, Schwieler L. Disrupted sensorimotor gating in first-episode psychosis patients is not affected by short-term antipsychotic treatment. Schizophr Res 2021; 228:118-123. [PMID: 33434725 DOI: 10.1016/j.schres.2020.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/23/2020] [Accepted: 12/12/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Impaired sensorimotor gating, commonly measured as disrupted prepulse inhibition (PPI) of the acoustic startle response, has been widely observed in psychotic diseases. However, most PPI studies published so far involve patients with long illness duration and different drug treatments. Few studies have investigated untreated patients at their first episode of psychotic symptoms. METHOD PPI is an acoustic startle paradigm (30, 60-, 120-ms interstimulus intervals). Startle reactivity and habituation were succesfully assessed in 49 antipsychotic-naïve first-episode psychosis (FEP) patients and compared with 35 age- and gender-matched healthy control subjects. Mean age of patients was 28 years and 27 for controls. Patients treated with antipsychotics more than 30 days were not included in the study and twenty-three out of forty-nine patients received antipsychotic treatment with a mean treatment time of 13 days. RESULTS PPI was significantly lower in FEP patients, compared to healthy controls. The PPI deficiency found in these patients was not due to antipsychotic treatment since PPI did not differ between treated (n=23) and untreated patients n=(26). By using the latent curve modeling we identified a delayed habituation in patients treated with antipsychotics, suggesting that antipsychotic treatment should be considered as a confound when investigating habituation in schizophrenia. CONCLUSIONS Our results suggest that acute pharmacological treatment does not normalize PPI in FEP patients but should be considered as a confound when investigating habituation in these patients.
Collapse
Affiliation(s)
- Mikael Hedberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Imbeault
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | -
- Dept. of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Lilly Schwieler
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Donati FL, D’Agostino A, Ferrarelli F. Neurocognitive and neurophysiological endophenotypes in schizophrenia: An overview. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
San-Martin R, Castro LA, Menezes PR, Fraga FJ, Simões PW, Salum C. Meta-Analysis of Sensorimotor Gating Deficits in Patients With Schizophrenia Evaluated by Prepulse Inhibition Test. Schizophr Bull 2020; 46:1482-1497. [PMID: 32506125 PMCID: PMC8061122 DOI: 10.1093/schbul/sbaa059] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prepulse inhibition (PPI) of startle is an operational measure of sensorimotor gating that is often impaired in patients with schizophrenia. Despite the large number of studies, there is considerable variation in PPI outcomes reported. We conducted a systematic review and meta-analysis investigating PPI impairment in patients with schizophrenia compared with healthy control subjects, and examined possible explanations for the variation in results between studies. Major databases were screened for observational studies comparing healthy subjects and patients with schizophrenia for the prepulse and pulse intervals of 60 and 120 ms as primary outcomes, ie, PPI-60 and PPI-120. Standardized mean difference (SMD) and 95% confidence intervals (CI) were extracted and pooled using random effects models. We then estimated the mean effect size of these measures with random effects meta-analyses and evaluated potential PPI heterogeneity moderators, using sensitivity analysis and meta-regressions. Sixty-seven primary studies were identified, with 3685 healthy and 4290 patients with schizophrenia. The schizophrenia group showed reduction in sensorimotor gating for both PPI-60 (SMD = -0.50, 95% CI = [-0.61, -0.39]) and PPI-120 (SMD = -0.44, 95% CI = [-0.54, -0.33]). The sensitivity and meta-regression analysis showed that sample size, gender proportion, imbalance for gender, source of control group, and study continent were sources of heterogeneity (P < .05) for both PPI-60 and PPI-120 outcomes. Our findings confirm a global sensorimotor gating deficit in schizophrenia patients, with overall moderate effect size for PPI-60 and PPI-120. Methodological consistency should decrease the high level of heterogeneity of PPI results between studies.
Collapse
Affiliation(s)
- Rodrigo San-Martin
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Leonardo Andrade Castro
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco José Fraga
- Engineering, Modeling and Applied Social Sciences Center, Universidade Federal do ABC, Santo André, Brazil
| | - Priscyla Waleska Simões
- Engineering, Modeling and Applied Social Sciences Center, Universidade Federal do ABC, Santo André, Brazil
| | - Cristiane Salum
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| |
Collapse
|
24
|
Sato K. Why is prepulse inhibition disrupted in schizophrenia? Med Hypotheses 2020; 143:109901. [DOI: 10.1016/j.mehy.2020.109901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
|
25
|
Guercio GD, Anjos-Travassos Y, Rangel I, Costa S, Poleto A, Costa D, Chaiben R, de Villers-Sidani E, Panizzutti R. Auditory cognitive training improves prepulse inhibition in serine racemase mutant mice. Psychopharmacology (Berl) 2020; 237:2499-2508. [PMID: 32483676 DOI: 10.1007/s00213-020-05549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Evidence indicates that neuroplasticity-based cognitive training can improve cognition in patients with schizophrenia, but the individual response to training varies greatly between subjects. Hence, there is a need to understand the neurological underpinnings of cognitive training to reveal predictors of treatment response. D-serine is a crucial modulator of neuroplasticity, and decreased levels of D-serine may contribute to deficits in neuroplasticity in schizophrenia. Interestingly, we observed that training mice to identify auditory oddballs increased extracellular levels of D-serine in the hippocampus during training. Serine racemase (Srr) is the only source of brain D-serine; thus, it is possible that Srr may mediate the response to training. To test this hypothesis, we trained mice that have a mutated version of Srr (SrrY269*/SrrY269*) and reduced levels of D-serine in the same auditory training. SrrY269*/SrrY269* mice showed decreased performance during auditory training (defined as the capacity to discriminate an oddball during a sequence of tones). Importantly, auditory training improved prepulse inhibition (PPI) in SrrY269*/SrrY269* but not in wild-type mice. Finally, D-serine (100 mg/kg i.p.) given 30 min before training sessions to SrrY269*/SrrY269* mice improved training performance, but it did not enhance PPI. Taken together, our results show that D-serine is involved in the response to neuroplasticity-based auditory training and that PPI deficits can be improved by auditory oddball training even in the presence of neuroplasticity deficits.
Collapse
Affiliation(s)
- Gerson D Guercio
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, University of Minnesota, 2312 S 6th St, Minneapolis, MN, USA.
| | - Yuri Anjos-Travassos
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Rangel
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Stella Costa
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Poleto
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deborah Costa
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafaela Chaiben
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rogério Panizzutti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Kwiatkowski MA, Cope ZA, Lavadia ML, van de Cappelle CJA, Dulcis D, Young JW. Short-active photoperiod gestation induces psychiatry-relevant behavior in healthy mice but a resiliency to such effects are seen in mice with reduced dopamine transporter expression. Sci Rep 2020; 10:10217. [PMID: 32576854 PMCID: PMC7311429 DOI: 10.1038/s41598-020-66873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
A higher incidence of multiple psychiatric disorders occurs in people born in late winter/early spring. Reduced light exposure/activity level impacts adult rodent behavior and neural mechanisms, yet few studies have investigated such light exposure on gestating fetuses. A dysfunctional dopamine system is implicated in most psychiatric disorders, and genetic polymorphisms reducing expression of the dopamine transporter (DAT) are associated with some conditions. Furthermore, adult mice with reduced DAT expression (DAT-HT) were hypersensitive to short active (SA; 19:5 L:D) photoperiod exposure versus their wildtype (WT) littermates. Effects of SA photoperiod exposure during gestation in these mice have not been examined. We confirmed adult females exhibit a heightened corticosterone response when in SA photoperiod. We then tested DAT-HT mice and WT littermates in psychiatry-relevant behavioral tests after SA or normal active (NA; 12:12 L:D) photoperiod exposure during gestation and early life. SA-born WT mice exhibited sensorimotor gating deficits (males), increased reward preference, less immobility, open arm avoidance (females), less motivation to obtain a reward, and reversal learning deficits, vs. NA-born WT mice. DAT-HT mice were largely resilient to these effects, however. Future studies will determine the mechanism(s) by which SA photoperiod exposure influences brain development to predispose toward emergence of psychiatry-relevant behaviors.
Collapse
Affiliation(s)
- Molly A Kwiatkowski
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Zackary A Cope
- Department of Medicine, Aging Institute, University of Pittsburgh, Pittsburgh, USA
| | - Maria L Lavadia
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Chuck J A van de Cappelle
- Department of Psychiatry, University of California, San Diego, San Diego, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Davide Dulcis
- Department of Psychiatry, University of California, San Diego, San Diego, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, San Diego, USA. .,Research Service, VA San Diego Healthcare System, San Diego, USA.
| |
Collapse
|
27
|
Togay B, Çıkrıkçılı U, Bayraktaroglu Z, Uslu A, Noyan H, Üçok A. Lower prepulse inhibition in clinical high-risk groups but not in familial risk groups for psychosis compared with healthy controls. Early Interv Psychiatry 2020; 14:196-202. [PMID: 31264797 DOI: 10.1111/eip.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
AIM Although the lower level of prepulse inhibition (PPI) of the startle response is well known in schizophrenia, the onset of this difference is not clear. The aim of the present study was to compare PPI in individuals with clinical and familial high risk for psychosis, and healthy controls. METHODS We studied PPI in individuals within three groups: ultra-high risk for psychosis (UHR, n = 29), familial high risk for psychosis (FHR, n = 24) and healthy controls (HC, n = 28). The FHR group was chosen among siblings of patients with schizophrenia, whereas UHR was defined based on the Comprehensive Assessment of At-Risk Mental States (CAARMS). We collected clinical data using the BPRS-E, SANS and SAPS when individuals with UHR were antipsychotic-naïve. A cognitive battery that assessed attention, cognitive flexibility, working memory, verbal learning and memory domains was applied to all participants. RESULTS PPI was lower in the UHR group compared with both the FHR and HC groups. Those with a positive family history for schizophrenia had lower PPI than others in the UHR group. There was no difference in PPI between the FHR and HC groups. We found no relationship between PPI and cognitive performance in the three groups. Startle reactivity was not different among the three groups. Positive and negative symptoms were not related to PPI and startle reactivity in the UHR group. CONCLUSIONS Our findings suggest that clinical and familial high-risk groups for psychosis have different patterns of PPI.
Collapse
Affiliation(s)
- Bilge Togay
- University of Health Sciences, Tepecik Training and Research Hospital, Clinic of Psychiatry, Izmir, Turkey
| | | | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, International School of Medicine, Department of Physiology, Beykoz, Istanbul, Turkey.,Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Beykoz, Istanbul, Turkey
| | - Atilla Uslu
- Istanbul Faculty of Medicine, Department of Physiology, Istanbul University, Istanbul, Turkey
| | - Handan Noyan
- Institute of Experimental Medicine and Research, Istanbul University, Istanbul, Turkey
| | - Alp Üçok
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
28
|
Rydkjaer J, Jepsen JRM, Pagsberg AK, Fagerlund B, Glenthoej BY, Oranje B. Do young adolescents with first-episode psychosis or ADHD show sensorimotor gating deficits? Psychol Med 2020; 50:607-615. [PMID: 30873927 DOI: 10.1017/s0033291719000412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Early identification is important for patients with early-onset schizophrenia (SZ). Assessment of (candidate) endophenotypic markers for SZ, such as prepulse inhibition of the startle reflex (PPI), may help distinguish between the early-onset SZ and other psychiatric disorders. We explored whether PPI deficits usually seen in adult-onset SZ are present in young adolescents with either early-onset psychosis or attention deficit/hyperactivity disorder (ADHD). METHODS Twenty-five adolescents with first-episode, non-affective psychosis (FEP), 28 adolescents with ADHD and 43 healthy controls (HC), aged 12-17 years, were assessed with an auditory PPI paradigm. RESULTS No significant group differences were found in PPI. However, when the FEP group was divided into those already diagnosed with SZ (n = 13) and those without (N-SZ) (n = 12), and all four groups (SZ, N-SZ, ADHD and HC) were compared on percentage PPI in the 85/60 trials, significantly less PPI was found in patients with SZ than in the HC as well as the ADHD group. No significant group differences were found in explorative analyses on the other trial types. Additionally, startle magnitude was significantly higher in SZ than in N-SZ patients. CONCLUSION Young adolescents with SZ showed sensorimotor gating deficits similar to those usually found in adults with SZ and had larger startle magnitude than patients with other types of non-affective early-onset psychosis. No sensorimotor gating deficits were found in adolescents with ADHD. Our findings support the theory that deficient PPI is endophenotypic for SZ.
Collapse
Affiliation(s)
- Jacob Rydkjaer
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Jens Richardt Moellegaard Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Yding Glenthoej
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
29
|
Perez SM, Lodge DJ. Adolescent stress contributes to aberrant dopamine signaling in a heritable rodent model of susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109701. [PMID: 31299274 PMCID: PMC6708463 DOI: 10.1016/j.pnpbp.2019.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022]
Abstract
Evidence suggests that both genetic and environmental factors contribute to the development of schizophrenia. Rodent models of the disorder have been developed that model either genetic or environment factors to recapitulate various aspects of the disease; however, the examination of gene by environment interactions requires a model of susceptibility. We have previously demonstrated that a proportion of the F2 generation of MAM-treated rats display a schizophrenia-like phenotype, defined as an increase in ventral tegmental area (VTA) dopamine neuron population activity. Here we use this model to examine the consequence of adolescent stress (AS), a known risk factor for psychiatric disease, on dopamine neuron activity in the VTA. Specifically, F2 MAM rats were exposed to predator odor, a stressor of high ethological relevance, intermittently over 10 days throughout the adolescent period and VTA dopamine neuron activity was evaluated in adulthood. Both saline and MAM F2 rats exposed to AS displayed significant increases in population activity; however, the proportion of F2 MAM rats exhibiting this increase was significantly greater (approximately 70%) compared to their respective controls. Given that we have previously demonstrated that the augmented dopamine neuron activity in rodent models of psychosis is directly attributable to aberrant activity in the ventral hippocampus (vHipp), we examined whether AS altered activity within the vHipp. Indeed, there was a positive correlation between dopamine neuron activity and hippocampal firing rates, such that those rats that displayed increases in population activity also had increases in the firing rates of vHipp putative pyramidal neurons. Taken together, these data further demonstrate a role for AS as a risk factor for psychosis, particularly in those with a heritable predisposition.
Collapse
Affiliation(s)
- Stephanie M Perez
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | - Daniel J Lodge
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Nakamura JP, Schroeder A, Hudson M, Jones N, Gillespie B, Du X, Notaras M, Swaminathan V, Reay WR, Atkins JR, Green MJ, Carr VJ, Cairns MJ, Sundram S, Hill RA. The maternal immune activation model uncovers a role for the Arx gene in GABAergic dysfunction in schizophrenia. Brain Behav Immun 2019; 81:161-171. [PMID: 31175998 DOI: 10.1016/j.bbi.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
A hallmark feature of schizophrenia is altered high frequency neural oscillations, including reduced auditory-evoked gamma oscillatory power, which is underpinned by parvalbumin (PV) interneuron dysfunction. Maternal immune activation (MIA) in rodents models an environmental risk factor for schizophrenia and recapitulates these PV interneuron changes. This study sought to link reduced PV expression in the MIA model with alterations to auditory-evoked gamma oscillations and transcript expression. We further aligned transcriptional findings from the animal model with human genome sequencing data. We show that MIA, induced by the viral mimetic, poly-I:C in C57Bl/6 mice, caused in adult offspring reduced auditory-evoked gamma and theta oscillatory power paralleled by reduced PV protein levels. We then showed the Arx gene, critical to healthy neurodevelopment of PV interneurons, is reduced in the forebrain of MIA exposed mice. Finally, in a whole-genome sequenced patient cohort, we identified a novel missense mutation of ARX in a patient with schizophrenia and in the Psychiatric Genomics Consortium 2 cohort, a nominal association of proximal ARX SNPs with the disorder. This suggests MIA, as a risk factor for schizophrenia, may be influencing Arx expression to induce the GABAergic dysfunction seen in schizophrenia and that the ARX gene may play a role in the prenatal origins of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Jay P Nakamura
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Anna Schroeder
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew Hudson
- University of Melbourne, Parkville, Victoria 3010, Australia; Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Nigel Jones
- University of Melbourne, Parkville, Victoria 3010, Australia; Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Xin Du
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Michael Notaras
- Centre for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York 10021, USA
| | - Vaidy Swaminathan
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia (NeuRA), Barker St, Randwick, NSW 2031, Australia
| | - Vaughan J Carr
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia; School of Psychiatry, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia (NeuRA), Barker St, Randwick, NSW 2031, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Suresh Sundram
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia; University of Melbourne, Parkville, Victoria 3010, Australia; Monash Medical Centre, Monash Health, Clayton, Victoria 3168, Australia
| | - Rachel A Hill
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
31
|
Ni P, Tian Y, Gu X, Yang L, Wei J, Wang Y, Zhao L, Zhang Y, Zhang C, Li L, Tang X, Ma X, Hu X, Li T. Plasma neuropeptides as circulating biomarkers of multifactorial schizophrenia. Compr Psychiatry 2019; 94:152114. [PMID: 31401216 DOI: 10.1016/j.comppsych.2019.152114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Promising biomarkers would be used to improve the determination of diagnosis and severity, as well as the prediction of symptomatic and functional outcomes of schizophrenia. BASIC PROCEDURES In this study, we used three different mouse models induced by a genetic factor (PV-Cre; ErbB4-/-, G group), an environmental stressor (adolescent social isolation, G group), and a combination of genetic factor and environmental stressor (PV-Cre; ErbB4-/- mice with isolation, G × E group). Attenuated PPI (%) confirmed the successful establishment of three schizophrenia-like mouse models. To evaluate whether neuropeptide levels in plasma would be potential biomarkers of different schizophrenia models in our work, we used MILLIPLEX® MAP method to simultaneously measure 6 critical neuropeptides in plasma. MAIN FINDINGS Among the evaluated neuropeptides, increased neurotensin tends to be associated with genetic factors of schizophrenia, increased orexin A seems to be a biomarker of an interplay between genetic and social isolation, while higher plasma oxytocin might be more apt to be responsive to social isolation. The potential biomarkers are mostly independent of sex. CONCLUSIONS This research would provide novel clues to develop circulating biomarkers of plasma neuropeptides for multifactorial schizophrenia.
Collapse
Affiliation(s)
- Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xiaochu Gu
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Clinical Laboratory, Suzhou Psychiatric Hospital, Suzhou, PR China
| | - Linghui Yang
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yingcheng Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yamin Zhang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Chengcheng Zhang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Liping Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xiangdong Tang
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China; Sleep Medicine Center, Mental Health Center, and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xun Hu
- Biobank, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China.
| |
Collapse
|
32
|
Fuertes-Saiz A, Benito A, Mateu C, Carratalá S, Almodóvar I, Baquero A, Haro G. Sensorimotor Gating in Cocaine-Related Disorder with Comorbid Schizophrenia or Antisocial Personality Disorder. J Dual Diagn 2019; 15:243-253. [PMID: 31287382 DOI: 10.1080/15504263.2019.1633489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Schizophrenia, cocaine-related disorder, antisocial personality disorder, and psychopathy share biological bases, but few studies discriminate between these disorders by means of prepulse inhibition. This work studies the phenotype of patients with cocaine-related disorders who are vulnerable to presenting a dual diagnosis of schizophrenia or antisocial personality disorder, by evaluating their prepulse inhibition, impulsivity and psychopathy personality traits. Methods: The sample (n = 38) was divided into three groups: (1) cocaine-related disorder (8 individuals diagnosed with cocaine-related disorder who did not present any other mental disorder), (2) cocaine-related disorder and schizophrenia (n = 14), and (3) cocaine-related disorder and antisocial personality disorder (n = 16). Results: The prepulse inhibition in the two groups with dual diagnosis was lower than that in the cocaine-related disorder group, F(2, 35) = 6.52, p = .004, while there was no significant differences between the two dual-diagnosis groups. Psychopathy was evaluated with the revised Hare Psychopathy Checklist and showed no correlation with the prepulse inhibition. Secondary psychopathy (impulsivity and poor behavior control), as evaluated with Levenson Self-Report Psychopathy Scale, was related to the prepulse inhibition. Two discriminating functions were obtained that allowed prediction of patient inclusion in the groups using the prepulse inhibition and the revised Hare Psychopathy Checklist with a success rate of 81.6% (cocaine-related disorder = 62.5%; cocaine-related disorder and schizophrenia = 78.6%; cocaine-related disorder and antisocial personality disorder = 93.8%). These results are discussed in regard to the neurobiological implications of prepulse inhibition in dual diagnosis. Conclusions: The results suggest that the prepulse inhibition is a promising dual-diagnosis vulnerability marker in individuals with cocaine addiction, because prepulse inhibition deficits are related both to schizophrenia and antisocial personality disorder. In addition, prepulse inhibition, which is considered a good endophenotype for studies on the genetic and neurobiological basis of cocaine-related disorder and schizophrenia, could be used in the same way in studies on antisocial personality disorder.
Collapse
Affiliation(s)
- Alejandro Fuertes-Saiz
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Psychiatry Department, Hospital Provincial de Castelló, Castelló, Spain
| | - Ana Benito
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Torrente Mental Health Center, Hospital General Universitario, Valencia, Spain
| | - César Mateu
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Psychiatry Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Sonia Carratalá
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Neurophysiology Department, Hospital General de Castelló, Castelló, Spain
| | - Isabel Almodóvar
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Psychiatry Department, Hospital Provincial de Castelló, Castelló, Spain
| | - Abel Baquero
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Proyecto Amigó Foundation, Castelló, Spain
| | - Gonzalo Haro
- TXP Research Group, Medicine Department, Universidad Cardenal Herrera-CEU, CEU Universities, Castelló, Spain.,Psychiatry Department, Hospital Provincial de Castelló, Castelló, Spain
| |
Collapse
|
33
|
Schizophrenia-like reduced sensorimotor gating in intact inbred and outbred rats is associated with decreased medial prefrontal cortex activity and volume. Neuropsychopharmacology 2019; 44:1975-1984. [PMID: 30986819 PMCID: PMC6784988 DOI: 10.1038/s41386-019-0392-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 02/08/2023]
Abstract
Prepulse inhibition (PPI) of startle response is a measure of sensorimotor gating that is impaired in schizophrenia and in many other clinical conditions. Rat models using pharmacological or surgical strategies reveal that PPI is modulated by the cortico-striatal-pallido-thalamic (CSPT) circuit. Here, we explore whether spontaneous variation in PPI in intact inbred and outbred rats is associated with functional and structural differences in the CSPT circuit. Inbred Roman High-(RHA) and Low-avoidance (RLA) and outbred heterogeneous stock (HS) rats were assessed for PPI, brain activity, and brain volume. Brain activity was assessed by c-Fos expression and brain volume by magnetic resonance imaging. Relevant structures of the CSPT circuit were evaluated, such as the medial prefrontal cortex (mPFC), cingulate cortex, hippocampus (HPC), amygdala, nucleus accumbens (NAc), and dorsal striatum. RHA showed lower PPI than RLA rats, while HS rats were stratified by their PPI levels in three groups. Reduced PPI was accompanied by decreased mPFC activity in Roman and HS rats and increased NAc shell activity in HS rats. Low PPI was also associated with decreased mPFC and HPC volumes in Roman and HS rats. This study reports a consistent relationship between decreased function and volume of the mPFC and spontaneous low-PPI levels in inbred and outbred intact rats. Moreover, our findings suggest that, apart from a hypoactive and smaller mPFC, a hyperactive NAc and smaller HPC may underlie reduced PPI levels. Our results support the notion that sensorimotor gating is modulated by forebrain structures and highlight the importance of the mPFC in its regulation.
Collapse
|
34
|
Domínguez-Iturza N, Lo AC, Shah D, Armendáriz M, Vannelli A, Mercaldo V, Trusel M, Li KW, Gastaldo D, Santos AR, Callaerts-Vegh Z, D'Hooge R, Mameli M, Van der Linden A, Smit AB, Achsel T, Bagni C. The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat Commun 2019; 10:3454. [PMID: 31371726 PMCID: PMC6672001 DOI: 10.1038/s41467-019-11203-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Copy-number variants of the CYFIP1 gene in humans have been linked to autism spectrum disorders (ASD) and schizophrenia (SCZ), two neuropsychiatric disorders characterized by defects in brain connectivity. Here, we show that CYFIP1 plays an important role in brain functional connectivity and callosal functions. We find that Cyfip1-heterozygous mice have reduced functional connectivity and defects in white matter architecture, similar to phenotypes found in patients with ASD, SCZ and other neuropsychiatric disorders. Cyfip1-deficient mice also present decreased myelination in the callosal axons, altered presynaptic function, and impaired bilateral connectivity. Finally, Cyfip1 deficiency leads to abnormalities in motor coordination, sensorimotor gating and sensory perception, which are also known neuropsychiatric disorder-related symptoms. These results show that Cyfip1 haploinsufficiency compromises brain connectivity and function, which might explain its genetic association to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nuria Domínguez-Iturza
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Disha Shah
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, 2610, Antwerp, Belgium
- Department of Neuroscience KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Marcelo Armendáriz
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000, Leuven, Belgium
| | - Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Valentina Mercaldo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Massimo Trusel
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081, Amsterdam, The Netherlands
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ana Rita Santos
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
- VIB Discovery Sciences, Bioincubator, 3001, Heverlee, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Faculty of Psychology and Educational Sciences, KU Leuven, Laboratory of Biological Psychology, 3000, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, KU Leuven, Laboratory of Biological Psychology, 3000, Leuven, Belgium
| | - Manuel Mameli
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Annemie Van der Linden
- Department of Biomedical Sciences, Bio-Imaging Laboratory, University of Antwerp, 2610, Antwerp, Belgium
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081, Amsterdam, The Netherlands
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Human Genetics KU Leuven, VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
35
|
Breedh J, Comasco E, Hellgren C, Papadopoulos FC, Skalkidou A, Poromaa IS. Hypothalamic-pituitary-adrenal axis responsiveness, startle response, and sensorimotor gating in late pregnancy. Psychoneuroendocrinology 2019; 106:1-8. [PMID: 30927623 DOI: 10.1016/j.psyneuen.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
During pregnancy, the hypothalamic-pituitary-adrenal (HPA) axis, the main regulator of the stress response, undergoes dramatic changes. The acoustic startle response (ASR) and the prepulse inhibition (PPI) of the startle response are neurophysiological research tools and objective measures of an individual's response to an emotional context or stressor. The ASR and PPI are influenced by psychiatric diseases characterized by anxiety symptoms and are sensitive to cortisol. Hence, the ASR and the PPI can be used to investigate the effects of pregnancy-induced endocrine changes and their contribution to affective disorders. The present study sought to investigate the association between measures of HPA-axis responsiveness, startle reactivity and sensorimotor gating during pregnancy that to date remains unknown. The eye-blink component of the ASR, and its prepulse inhibition, were measured in 107 late third trimester pregnant women. Saliva samples were collected to assess the cortisol awakening response (CAR), a measure of HPA-axis activity. Blood was sampled to measure serum levels of cortisol, cortisone and the cortisone to cortisol ratio. Ongoing anxiety disorders, sleep duration, smoking, and age were considered as potential confounders in the statistical analyses. CAR reactivity, measured as area under the curve (AUC) increase and above baseline, was positively associated with baseline startle magnitude [Cohen's d = 0.27; F (1, 105) = 4.99; p = 0.028, and Cohen's d = 0.30; F (1, 105) = 6.25; p = 0.014, respectively] as well as PPI at 86 dB [Cohen's d = 0.29; F (1, 105) = 5.93; p = 0.017; and Cohen's d = 0.34; F (1, 105) = 8.38; p = 0.005, respectively]. The observed positive correlation between startle magnitude in pregnant women and greater increase in cortisol during the awakening response may be interpreted as heightened neurophysiological reactivity, likely associated with dysregulation of the stress system.
Collapse
Affiliation(s)
- Julia Breedh
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Charlotte Hellgren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Fotios C Papadopoulos
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
36
|
Boecker L, Pauli P. Affective startle modulation and psychopathology: Implications for appetitive and defensive brain systems. Neurosci Biobehav Rev 2019; 103:230-266. [PMID: 31129237 DOI: 10.1016/j.neubiorev.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023]
Abstract
Startle reflex potentiation versus startle attenuation to unpleasant versus pleasant stimuli likely reflect priming of the defensive versus appetitive motivational systems, respectively. This review summarizes and systemizes the literature on affective startle modulation related to psychopathologies with the aim to reveal underlying mechanisms across psychopathologies. We found evidence for psychopathologies characterized by increased startle potentiation to unpleasant stimuli (anxiety disorders), decreased startle potentiation to unpleasant stimuli (psychopathy), decreased startle attenuation to pleasant stimuli (ADHD), as well as a general hyporeactivity to affective stimuli (depression). Increased versus decreased startle responses to disorder-specific stimuli characterize specific phobia and drug dependence. No psychopathology is characterized by increased startle attenuation to standard pleasant stimuli or a general hyperreactivity to affective stimuli. This review indicates that the defensive and the appetitive systems operate independently mostly in accordance with the motivational priming hypothesis and that affective startle modulation is a highly valuable paradigm to unraveling dysfunctions of the defensive and appetitive systems in psychopathologies as requested by the Research Domain Criteria initiative.
Collapse
Affiliation(s)
- Lea Boecker
- Department of Economic Psychology, Social Psychology & Experimental Methods, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstraße 9-11, 97070 Germany; Center of Mental Health, Medical Faculty, University of Würzburg, Germany
| |
Collapse
|
37
|
Abstract
Schizophrenia (SZ) is a severe psychotic disorder that is highly heritable and common in the general population. The genetic heterogeneity of SZ is substantial, with contributions from common, rare, and de novo variants, in addition to environmental factors. Large genome-wide association studies have detected many variants that are associated with SZ, yet the pathways by which these variants influence risk remain largely unknown. SZ is also clinically heterogeneous, with patients exhibiting a broad range of deficits and symptom severity that vary over the course of illness and treatment, which has complicated efforts to identify risk variants. However, the underlying brain dysfunction forms a more stable trait marker that quantitative neurocognitive and neurophysiological endophenotypes may be able to objectively measure. These endophenotypes are less likely to be heterogeneous than the disorder and provide a neurobiological context to detect risk variants and underlying pathways among genes associated with SZ diagnosis. Furthermore, many endophenotypes are translational into animal model systems, allowing for direct evaluation of the neural circuit dysfunctions and neurobiological substrates. We review a selection of the most promising SZ endophenotypes, including prepulse inhibition, mismatch negativity, oculomotor antisaccade, letter-number sequencing, and continuous performance tests. We also highlight recent findings from large consortia that suggest the potential role of genes, particularly in the neuregulin and glutamate pathways, in several of these endophenotypes. Although endophenotypes require additional time and effort to assess, the insight into the underlying neurobiology that they provide may ultimately reveal the underlying genetic architecture for SZ and suggest novel treatment targets.
Collapse
|
38
|
Kirenskaya AV, Storozheva ZI, Gruden MA, Sewell RDE. COMT and GAD1 gene polymorphisms are associated with impaired antisaccade task performance in schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 2018; 268:571-584. [PMID: 29429137 PMCID: PMC6096577 DOI: 10.1007/s00406-018-0881-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/04/2018] [Indexed: 12/19/2022]
Abstract
Genetic influences modulating executive functions engaging prefrontal cortical brain systems were investigated in 141 male subjects. The effects of variations in two genes implicated in dopamine and GABA activities in the prefrontal cortex: rs4680 (Val158/Met polymorphism of the catechol-o-methyltransferase gene-COMT) and rs3749034 (C/T) substitution in the promoter region of the glutamic acid decarboxylase gene (GAD1) were studied on antisaccade (AS) performance in healthy subjects and schizophrenic patients. Genotyping revealed a trend towards a reduced proportion of COMT Val/Met heterozygotes and a significantly increased frequency of the GAD1 rs3749034 C allele in schizophrenic patients relative to controls. Patients had elevated error rates, increased AS latencies and increased latency variability (coefficient of variation) compared to controls. The influence of polymorphisms was observed only in patients but not in controls. A substantial effect of the COMT genotype was noted on the coefficient of variation in latency, and this measure was higher in Val homozygotes compared to Met allele carriers (p < 0.05) in the patient group. The outcome from rs3749034 was also disclosed on the error rate (higher in T carriers relative to C homozygotes, p < 0.01) and latency (increased in C homozygotes relative to T carriers, p < 0.01). Binary logistic regression showed that inclusion of the genotype factor (i.e., selective estimation of antisaccade measures in CC carriers) considerably increased the validity of the diagnostic model based on the AS measures. These findings may well be derived from specific genetic associations with prefrontal cortex functioning in schizophrenia.
Collapse
Affiliation(s)
- Anna V Kirenskaya
- Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Lane. 23, 119034, Moscow, Russian Federation
| | - Zinaida I Storozheva
- Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Lane. 23, 119034, Moscow, Russian Federation
| | - Marina A Gruden
- Federal State Budgetary Scientific Institution "P. K. Anokhin Research Institute of Normal Physiology", Baltiskaya St., 8, 125315, Moscow, Russian Federation
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, Cardiff, CF10 3NB, UK.
| |
Collapse
|
39
|
Quednow BB, Ejebe K, Wagner M, Giakoumaki SG, Bitsios P, Kumari V, Roussos P. Meta-analysis on the association between genetic polymorphisms and prepulse inhibition of the acoustic startle response. Schizophr Res 2018; 198:52-59. [PMID: 29287625 DOI: 10.1016/j.schres.2017.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
Abstract
Sensorimotor gating measured by prepulse inhibition (PPI) of the acoustic startle response (ASR) has been proposed as one of the most promising electrophysiological endophenotypes of schizophrenia. During the past decade, a number of publications have reported significant associations between genetic polymorphisms and PPI in samples of schizophrenia patients and healthy volunteers. However, an overall evaluation of the robustness of these results has not been published so far. Therefore, we performed the first meta-analysis of published and unpublished associations between gene polymorphisms and PPI of ASR. Unpublished associations between genetic polymorphisms and PPI were derived from three independent samples. In total, 120 single observations from 16 independent samples with 2660 study participants and 43 polymorphisms were included. After correction for multiple testing based on false discovery rate and considering the number of analyzed polymorphisms, significant associations were shown for four variants, even though none of these associations survived a genome-wide correction (P<5∗10-8). These results imply that PPI might be modulated by four genotypes - COMT rs4680 (primarily in males), GRIK3 rs1027599, TCF4 rs9960767, and PRODH rs385440 - indicating a role of these gene variations in the development of early information processing deficits in schizophrenia. However, the overall impact of single genes on PPI is still rather small suggesting that PPI is - like the disease phenotype - highly polygenic. Future genome-wide analyses studies with large sample sizes will enhance our understanding on the genetic architecture of PPI.
Collapse
Affiliation(s)
- Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Kenechi Ejebe
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Wagner
- Department for Neurodegenerative Diseases and GeriatricPsychiatry, University Hospital Bonn, Bonn, Germany
| | - Stella G Giakoumaki
- Department of Psychology, Gallos University campus, University of Crete, Rethymno, Greece
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, Voutes University campus, University of Crete, Heraklion, Greece
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, King's College London, United Kingdom
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, New York, USA.
| |
Collapse
|
40
|
Khan A, Powell SB. Sensorimotor gating deficits in "two-hit" models of schizophrenia risk factors. Schizophr Res 2018; 198:68-83. [PMID: 29070440 PMCID: PMC5911431 DOI: 10.1016/j.schres.2017.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Genetic and environmental models of neuropsychiatric disease have grown exponentially over the last 20years. One measure that is often used to evaluate the translational relevance of these models to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of sensorimotor gating. Deficient PPI characterizes several neuropsychiatric disorders but has been most extensively studied in schizophrenia. It has become a useful tool in translational neuropharmacological and molecular genetics studies because it can be measured across species using almost the same experimental parameters. Although initial studies of PPI in rodents were pharmacological because of the robust predictive validity of PPI for antipsychotic efficacy, more recently, PPI has become standard common behavioral measures used in genetic and neurodevelopmental models of schizophrenia. Here we review "two hit" models of schizophrenia and discuss the utility of PPI as a tool in phenotyping these models of relevant risk factors. In the review, we consider approaches to rodent models of genetic and neurodevelopmental risk factors and selectively review "two hit" models of gene×environment and environment×environment interactions in which PPI has been measured.
Collapse
Affiliation(s)
- Asma Khan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States.
| |
Collapse
|
41
|
Swerdlow NR, Light GA. Sensorimotor gating deficits in schizophrenia: Advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophr Res 2018; 198. [PMID: 29525460 PMCID: PMC6103885 DOI: 10.1016/j.schres.2018.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States.
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
42
|
Takahashi H, Kamio Y. Acoustic startle response and its modulation in schizophrenia and autism spectrum disorder in Asian subjects. Schizophr Res 2018; 198:16-20. [PMID: 28578923 DOI: 10.1016/j.schres.2017.05.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022]
Abstract
The acoustic startle response (ASR) and its modulation, including prepulse inhibition (PPI), are considered to be promising neurophysiological indices for translational research in psychiatry. Impairment of the PPI has been reported in several psychiatric disorders, but particularly in schizophrenia, where PPI is considered to be a candidate endophenotype of the disorder. Although the profiles of the ASR differ between races, recent studies of single ethnicity samples in Asia were in accord with a number of studies from Western countries, in reporting that patients with schizophrenia exhibit impaired PPI. The PPI of the ASR is known to develop before 8years of age, and PPI impairment has only been reported in adults (not children) with autism spectrum disorder (ASD), which involves atypical features that are present from early development. Recent Asian studies of children with ASD suggest that comprehensive investigation of the ASR and its modulation, including the startle response to weak startle stimuli, peak startle latency, and PPI, may contribute to an understanding of the impairment of the neural circuitry in children with ASD and its comorbid behavioral problems. In this review, we review recent findings on the ASR and its modulation from Asian countries, and discuss its potential use for studying sensorimotor gating and its relationship to schizophrenia and ASD. In conclusion, the ASR and its modulation can provide a well-established global neurophysiological index for translational research in psychiatric disorders. Future studies investigating the development of sensorimotor gating in early development may contribute to prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Hidetoshi Takahashi
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8551, Japan.
| | - Yoko Kamio
- Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo 187-8553, Japan.
| |
Collapse
|
43
|
Sedgwick O, Young S, Greer B, Arnold J, Parsons A, Puzzo I, Terracciano M, Das M, Kumari V. Sensorimotor gating characteristics of violent men with comorbid psychosis and dissocial personality disorder: Relationship with antisocial traits and psychosocial deprivation. Schizophr Res 2018; 198:21-27. [PMID: 28689756 DOI: 10.1016/j.schres.2017.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
Abstract
Evidence suggests violence amongst those with psychosis is not aetiologically homogeneous, and that a large proportion of those who engage in violent behaviour have a comorbid antisocial personality disorder. Initial investigations indicate that this subgroup has distinct historical and neuropsychological characteristics, which may indicate diverse treatment needs. This study investigated sensorimotor gating characteristics of violent men with diagnoses of both psychosis and dissocial personality disorder (DPD) (n=21) relative to violent men with psychosis alone (n=12), DPD alone (n=14) and healthy, non-violent male controls (n=27), using the prepulse inhibition (PPI) paradigm. The results indicated that, relative to the psychosis alone and healthy control groups, the comorbid group had lower PPI, especially at 60-ms prepulse-to-pulse interval. The DPD group took an intermediary position and did not differ from any group. Antisocial personality traits (factor two scores of the Psychopathy Checklist - Revised), and greater severity of childhood psychosocial deprivation (including physical and sexual abuse), were significantly correlated with poor PPI across the clinical sample. The findings suggest diverse sensorimotor gating profiles amongst subgroups of violent offenders, with comorbid psychosis and DPD showing most impairment. This is consistent with a 'double dose' of deficit explanation amongst those with both diagnoses, explained at least in part by presence of antisocial personality traits and childhood psychosocial deprivation.
Collapse
Affiliation(s)
- Ottilie Sedgwick
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK.
| | - Susan Young
- Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK; Centre for Mental Health, Department of Medicine, Imperial College London, UK
| | - Ben Greer
- Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK
| | - Jack Arnold
- Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK
| | - Aisling Parsons
- Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK
| | - Ignazio Puzzo
- Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK
| | - Mariafatima Terracciano
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Mrigendra Das
- Forensic Research Domain, Broadmoor Hospital, West London Mental Health Trust, UK
| | - Veena Kumari
- Division of Psychology, College of Health and Life Sciences, Brunel University London, UK.
| |
Collapse
|
44
|
Swerdlow NR, Light GA, Thomas ML, Sprock J, Calkins ME, Green MF, Greenwood TA, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophr Res 2018; 198:6-15. [PMID: 28549722 PMCID: PMC5700873 DOI: 10.1016/j.schres.2017.05.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Consortium on the Genetics of Schizophrenia (COGS) collected case-control endophenotype and genetic information from 2457 patients and healthy subjects (HS) across 5 test sites over 3.5 years. Analysis of the first "wave" (W1) of 1400 subjects identified prepulse inhibition (PPI) deficits in patients vs. HS. Data from the second COGS "wave" (W2), and the combined W(1+2), were used to assess: 1) the replicability of PPI deficits in this design; 2) the impact of response criteria on PPI deficits; and 3) PPI in a large cohort of antipsychotic-free patients. METHODS PPI in W2 HS (n=315) and schizophrenia patients (n=326) was compared to findings from W1; planned analyses assessed the impact of diagnosis, "wave" (1 vs. 2), and startle magnitude criteria. Combining waves allowed us to assess PPI in 120 antipsychotic-free patients, including many in the early course of illness. RESULTS ANOVA of all W(1+2) subjects revealed robust PPI deficits in patients across "waves" (p<0.0004). Strict response criteria excluded almost 39% of all subjects, disproportionately impacting specific subgroups; ANOVA in this smaller cohort confirmed no significant effect of "wave" or "wave x diagnosis" interaction, and a significant effect of diagnosis (p<0.002). Antipsychotic-free, early-illness patients had particularly robust PPI deficits. DISCUSSION Schizophrenia-linked PPI deficits were replicable across two multi-site "waves" of subjects collected over 3.5years. Strict response criteria disproportionately excluded older, male, non-Caucasian patients with low-normal hearing acuity. These findings set the stage for genetic analyses of PPI using the combined COGS wave 1 and 2 cohorts.
Collapse
Affiliation(s)
- Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Corresponding Author: Neal R. Swerdlow, M.D., Ph.D., University of California San Diego, Dept. of Psychiatry, 9500 Gilman Drive, La Jolla, CA 92093-0804 619-543-6270 (office); 619-543-2493 (fax);
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Michael L. Thomas
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | | | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Laura C. Lazzeroni
- Departments of Psychiatry and Behavioral Sciences and of Pediatrics, Stanford University, Stanford, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA,Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN 22, Mental Illness Research, Education & Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
45
|
Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:35-51. [PMID: 29998117 PMCID: PMC6032037 DOI: 10.1159/000488679] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Swerdlow NR, Bhakta SG, Talledo JA, Franz DM, Hughes EL, Rana BK, Light GA. Effects of Amphetamine on Sensorimotor Gating and Neurocognition in Antipsychotic-Medicated Schizophrenia Patients. Neuropsychopharmacology 2018; 43:708-717. [PMID: 29154367 PMCID: PMC5809803 DOI: 10.1038/npp.2017.285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/18/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
Prepulse inhibition (PPI) of startle is being explored both as an indicator of target engagement for, and a biomarker predicting the sensitivity to, procognitive effects of drugs. We now report the effects of the pro-attentional drug, d-amphetamine, on PPI and neurocognition in antipsychotic-medicated schizophrenia patients and healthy subjects (HS) who were also tested in a targeted cognitive training (TCT) module. 44 HS and 38 schizophrenia patients completed a double-blind, placebo-controlled crossover study of the effects of a single dose of amphetamine (10 mg po) on PPI and MATRICS Consensus Cognitive Battery (MCCB) performance; TCT results were previously reported from 60 of these subjects. Moderators predicting AMPH sensitivity were assessed, including the rs4680 single-nucleotide polymorphism for catechol-O-methyltransferase (COMT). After placebo, patients exhibited PPI deficits with 60 ms prepulse intervals; these deficits were 'rescued' by amphetamine. The magnitude of amphetamine-enhanced PPI was greater in patients than in HS (p<0.032), and was associated with positive symptoms (p<0.007), antipsychotic load (p<0.015), hedonic effects of AMPH (p<0.003), and with the presence of at least one methionine allele in rs4680 (p<0.008). No significant effects of amphetamine on MCCB performance were detected in either group, though pro-attentional effects of amphetamine in patients were associated with greater amphetamine-enhanced TCT learning. Amphetamine acutely 'normalized' PPI in antipsychotic-medicated schizophrenia patients; no concurrent acute neurocognitive changes were detected by the MCCB. Findings suggest that in the context of appropriate antipsychotic medication, a low dose of amphetamine enhances brain processes associated with higher function in schizophrenia patients, without accompanying changes in MCCB performance.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA,Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA, Tel: +619-543-6270, Fax: +619-543-2493, E-mail:
| | - Savita G Bhakta
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Jo A Talledo
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Daniel M Franz
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Erica L Hughes
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Brinda K Rana
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| | - Gregory A Light
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, USA
| |
Collapse
|
47
|
Owens SJ, Murphy CE, Purves-Tyson TD, Weickert TW, Shannon Weickert C. Considering the role of adolescent sex steroids in schizophrenia. J Neuroendocrinol 2018; 30. [PMID: 28941299 DOI: 10.1111/jne.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/06/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a disabling illness that is typically first diagnosed during late adolescence to early adulthood. It has an unremitting course and is often treatment-resistant. Many clinical aspects of the illness suggest that sex steroid-nervous system interactions may contribute to the onset, course of symptoms and the cognitive impairment displayed by men and women with schizophrenia. Here, we discuss the actions of oestrogen and testosterone on the brain during adolescent development and in schizophrenia from the perspective of experimental studies in animals, human post-mortem studies, magnetic resonance imaging studies in living humans and clinical trials of sex steroid-based treatments. We present evidence of potential beneficial, as well as detrimental, effects of both testosterone and oestrogen. We provide a rationale for the necessity to further elucidate sex steroid mechanisms of action at different ages, sexes and brain regions to more fully understand the role of testosterone and oestrogen in the pathophysiology of schizophrenia. The weight of the evidence suggests that sex steroid hormones influence mammalian brain function, including both cognition and emotion, and that pharmaceutical agents aimed at sex steroid receptors appear to provide a novel treatment avenue to reduce symptoms and improve cognition in men and women with schizophrenia.
Collapse
Affiliation(s)
- S J Owens
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - C E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - T D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - T W Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - C Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
48
|
Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry 2018; 8:30. [PMID: 29382821 PMCID: PMC5802623 DOI: 10.1038/s41398-017-0071-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
The stagnation in drug development for schizophrenia highlights the need for better translation between basic and clinical research. Understanding the neurobiology of schizophrenia presents substantial challenges but a key feature continues to be the involvement of subcortical dopaminergic dysfunction in those with psychotic symptoms. Our contemporary knowledge regarding dopamine dysfunction has clarified where and when dopaminergic alterations may present in schizophrenia. For example, clinical studies have shown patients with schizophrenia show increased presynaptic dopamine function in the associative striatum, rather than the limbic striatum as previously presumed. Furthermore, subjects deemed at high risk of developing schizophrenia show similar presynaptic dopamine abnormalities in the associative striatum. Thus, our view of subcortical dopamine function in schizophrenia continues to evolve as we accommodate this newly acquired information. However, basic research in animal models has been slow to incorporate these clinical findings. For example, psychostimulant-induced locomotion, the commonly utilised phenotype for positive symptoms in rodents, is heavily associated with dopaminergic activation in the limbic striatum. This anatomical misalignment has brought into question how we assess positive symptoms in animal models and represents an opportunity for improved translation between basic and clinical research. The current review focuses on the role of subcortical dopamine dysfunction in psychosis and schizophrenia. We present and discuss alternative phenotypes that may provide a more translational approach to assess the neurobiology of positive symptoms in schizophrenia. Incorporation of recent clinical findings is essential if we are to develop meaningful translational animal models.
Collapse
Affiliation(s)
- JP Kesby
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia
| | - DW Eyles
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia
| | - JJ McGrath
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 1956 2722grid.7048.bNational Centre for Register-based Research, Aarhus University, Aarhus C, Denmark
| | - JG Scott
- 0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 0688 4634grid.416100.2Metro North Mental Health, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
49
|
Matsuo J, Ota M, Hidese S, Teraishi T, Hori H, Ishida I, Hiraishi M, Kunugi H. Sensorimotor Gating in Depressed and Euthymic Patients with Bipolar Disorder: Analysis on Prepulse Inhibition of Acoustic Startle Response Stratified by Gender and State. Front Psychiatry 2018; 9:123. [PMID: 29720950 PMCID: PMC5915895 DOI: 10.3389/fpsyt.2018.00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/23/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Prepulse inhibition (PPI) of the acoustic startle reflex is an operational measure of sensorimotor gating. The findings on PPI deficits in bipolar disorder (BD) are inconsistent among studies due to various confounding factors such as gender. This study aimed to assess sensorimotor gating deficits in patients with BD stratified by gender and state (depressed/euthymic), and to explore related clinical variables. METHODS Subjects were 106 non-manic BD patients (26 BD I and 80 BD II; 63 with depression and 43 euthymic) and 232 age-, gender-, and ethnicity-matched (Japanese) healthy controls. Depression severity was assessed using the Hamilton Depression Rating Scale-21. The electromyographic activity of the orbicularis oculi muscle was measured by a computerized startle reflex test unit. Startle magnitude, habituation, and PPI were compared among the three clinical groups: depressed BD, euthymic BD, and healthy controls. In a second analysis, patients were divided into four groups using the quartile PPI levels of controls of each gender, and a ratio of the low-PPI group (<1st quartile of controls) was compared. Effects of psychosis and medication status were examined by the Mann-Whitney U test. Clinical correlates such as medication dosage and depression severity with startle measurements were examined by Spearman's correlation. RESULTS Male patients with depression, but not euthymic male patients, showed significantly lower PPI at a prepulse of 86 dB and 120 ms lead interval than did male controls. More than half of the male patients with depression showed low-PPI. In contrast, PPI in female patients did not differ from that in female controls in either the depressed or euthymic state. Female patients with active psychosis showed significantly lower PPI than those without psychosis. Female patients on typical antipsychotics had significantly lower PPI, than those without such medication. PPI showed a significant positive correlation with lamotrigine dosage in male patients and lithium dosage in female patients. CONCLUSION These findings suggest that sensorimotor gating is impaired in male BD patients with depression. However, we obtained no evidence for such abnormalities in female BD patients except for those with current psychosis. The observed associations between medication and startle measurements warrant further investigation.
Collapse
Affiliation(s)
- Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Moeko Hiraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
50
|
O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ SCHIZOPHRENIA 2017; 3:32. [PMID: 28935880 PMCID: PMC5608761 DOI: 10.1038/s41537-017-0037-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Altered glutamate transporter expression is a common feature of many neuropsychiatric conditions, including schizophrenia. Excitatory amino acid transporters (EAATs) are responsible for the reuptake of glutamate, preventing non-physiological spillover from the synapse. Postmortem studies have revealed significant dysregulation of EAAT expression in various brain regions at the cellular and subcellular level. Recent animal studies have also demonstrated a role for glutamate spillover as a mechanism of disease. In this review, we describe current evidence for the role of glutamate transporters in regulating synaptic plasticity and transmission. In neuropsychiatric conditions, EAAT splice variant expression is altered. There are changes in the localization of the transporters and disruption of the metabolic and structural protein network that supports EAAT activity. This results in aberrant neuroplasticity and excitatory signaling, contributing to the symptoms associated with neuropsychiatric disease. Understanding the complex functions of glutamate transporters will clarify the relevance of their role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Courtney R Sullivan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | |
Collapse
|