1
|
Ghamri KA. Mutual effects of gestational diabetes and schizophrenia: how can one promote the other?: A review. Medicine (Baltimore) 2024; 103:e38677. [PMID: 38905391 PMCID: PMC11191934 DOI: 10.1097/md.0000000000038677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
Although the physical complications of gestational diabetes mellitus (GDM) are well known, emerging evidence suggests a significant link with psychiatric conditions such as schizophrenia (SCZ). This review aimed to explore the extent, nature, and implications of the association between GDM and SCZ, exploring how the 2 conditions may reciprocally influence each other. We conducted a comprehensive literature review and, analyzed clinical and mechanistic evidence supporting the mutual effects of GDM and SCZ. This review examined factors such as neurodevelopment and the impact of antipsychotics. The study found that Maternal GDM increases the risk of SCZ in offspring. Conversely, women with SCZ were more prone to hyperglycemic pregnancies. The research highlights significant regional variations in GDM prevalence, with the highest rate in the Middle East, North Africa, and South-East Asia regions. These regional variations may have an impact on the epidemiology of SCZ. Furthermore, this review identifies the potential biological and environmental mechanisms underlying these associations. There is a bidirectional relationship between GDM and SCZ, with each disorder potentially exacerbating the others. This relationship has significant implications for maternal and offspring health, particularly in regions with high GDM prevalence. These findings underline the need for integrated care approaches for women with SCZ during pregnancy and the importance of monitoring and managing GDM to mitigate the risk of SCZ in the offspring. Notably, this study recognizes the need for further research to fully understand these complex interactions and their implications for healthcare.
Collapse
Affiliation(s)
- Kholoud A. Ghamri
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Zhuo C, Liu W, Jiang R, Li R, Yu H, Chen G, Shan J, Zhu J, Cai Z, Lin C, Cheng L, Xu Y, Liu S, Luo Q, Jin S, Liu C, Chen J, Wang L, Yang L, Zhang Q, Li Q, Tian H, Song X. Metabolic risk factors of cognitive impairment in young women with major psychiatric disorder. Front Psychiatry 2022; 13:880031. [PMID: 35966480 PMCID: PMC9373724 DOI: 10.3389/fpsyt.2022.880031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cognitive performance improves clinical outcomes of patients with major psychiatric disorder (MPD), but is impaired by hyperglycemia. Psychotropic agents often induce metabolism syndrome (MetS). The identification of modifiable metabolic risk factors of cognitive impairment may enable targeted improvements of patient care. OBJECTIVE To investigate the relationship between MetS and cognitive impairment in young women with MPD, and to explore risk factors. METHODS We retrospectively studied women of 18-34 years of age receiving psychotropic medications for first-onset schizophrenia (SCH), bipolar disorder (BP), or major depressive disorder (MDD). Data were obtained at four time points: presentation but before psychotropic medication; 4-8 and 8-12 weeks of psychotropic therapy; and enrollment. MATRICS Consensus Cognitive Battery, (MCCB)-based Global Deficit Scores were used to assess cognitive impairment. Multiple logistic analysis was used to calculate risk factors. Multivariate models were used to investigate factors associated with cognitive impairment. RESULTS We evaluated 2,864 participants. Cognitive impairment was observed in 61.94% of study participants, and was most prevalent among patients with BP (69.38%). HbA1c within the 8-12 week-treatment interval was the most significant risk factor and highest in BP. Factors in SCH included pre-treatment waist circumference and elevated triglycerides during the 8-12 weeks treatment interval. Cumulative dosages of antipsychotics, antidepressants, and valproate were associated with cognitive impairment in all MPD subgroups, although lithium demonstrated a protect effect (all P < 0.001). CONCLUSIONS Cognitive impairment was associated with elevated HbA1c and cumulative medication dosages. Pre-treatment waist circumference and triglyceride level at 8-12 weeks were risk factors in SCH. Monitoring these indices may inform treatment revisions to improve clinical outcomes.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformational Research Key Laboratory, Zhengzhou University, Zhengzhou, China.,Multiple Organs Damage in the Mental Disorder (MODMD) Center of Wenzhou Seventh Hospital, Wenzhou, China.,Department of Psychiatry, Tianjin Anding Hospital, Tianjin, China
| | - Wei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ronghuan Jiang
- Department of Psychiatry, General Hospital of PLA, Beijing, China
| | - Ranli Li
- Key Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Haiping Yu
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Guangdong Chen
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jianmin Shan
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jingjing Zhu
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Ziyao Cai
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chongguang Lin
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Inpatient Department of Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shili Jin
- Inpatient Department, Shandong Daizhuang Hospital, Jining, China
| | - Chuanxin Liu
- Inpatient Department, Shandong Daizhuang Hospital, Jining, China
| | - Jiayue Chen
- Department of Psychiatry, Tianjin Fourth Center Hospital, Tianjin, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin, China
| | - Lei Yang
- Department of Psychiatry, Yanan Fifth Hospital, Yan'An, China
| | - Qiuyu Zhang
- Department of Psychiatry, Tianjin Anning Hospital, Tianjin, China
| | - Qianchen Li
- Department of Psychiatry, Hebei Fifth Peoples Hospital, Shijiazhuang, China
| | - Hongjun Tian
- Key Laboratory of Multiple Organ Damage in Patients With Mental Disorder, Tianjin Fourth Center Hospital of Tianjin Medical University, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Psychiatric Transformational Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | | |
Collapse
|
4
|
Glucagon-like peptide-1 serum levels are associated with weight gain in patients treated with clozapine. Psychiatry Res 2021; 306:114227. [PMID: 34610543 DOI: 10.1016/j.psychres.2021.114227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/21/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome and related cardiovascular risk factors are well-known comorbidities among patients with schizophrenia. Biomarkers of these antipsychotic-associated metabolic adverse effects and antipsychotic-induced weight gain are needed. Glucagon-like peptide-1 (GLP-1) is involved in insulin secretion, regulation of satiety, inhibition of food intake, and inhibition of gastric emptying. GLP-1 also induces reduction in body weight. Visfatin/ NAMPT/ PBEF is an adipocytokine secreted by several cells and tissues. Increased plasma visfatin levels have been associated with overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases, low grade inflammation, and proinflammatory markers. Associations between antipsychotic-induced weight gain and serum visfatin and GLP-1 levels have been little studied in patients with schizophrenia. The aim of the present study was to test the possible role of serum GLP-1 and visfatin level alterations as markers of weight gain in association with metabolic and inflammatory markers in 190 patients (109 male, 81 female) with schizophrenia on clozapine treatment. High serum levels of GLP-1 correlated significantly with higher levels of visfatin, leptin, insulin, HOMA-IR, higher BMI, and weight change among men. Associations between serum visfatin levels and BMI or weight change were not found in the present patients. Serum GLP-1 level seems to be a marker of metabolic risk factors among men with schizophrenia on clozapine treatment. Female patients may be more sensitive to suppressive effects of clozapine on GLP-1 secretion. Patients on clozapine would benefit from GLP-1 agonists as preventive treatment.
Collapse
|
5
|
Barbosa M, Fernandes V. Rapid-onset clozapine-induced hyperglycaemia: pathways of glycaemic dysregulation. BMJ Case Rep 2021; 14:e243938. [PMID: 34518181 PMCID: PMC8438955 DOI: 10.1136/bcr-2021-243938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 11/04/2022] Open
Abstract
Clozapine is an atypical antipsychotic used in refractory schizophrenia, also efficient in alleviating dyskinesia in Parkinson's disease. Despite its potency, this drug is associated with severe metabolic side effects, including increased risk for diabetes. We report the case of a 45-year-old overweight woman with Parkinson's disease who presented with rapid-onset hyperglycaemia within 2 months after starting clozapine for refractory dyskinaesia. She had a history of gestational diabetes. At presentation, her blood glucose level was 505 mg/dL and glycated haemoglobin 12.4%, with no catabolic symptoms. Clozapine was suspended and metformin was started, but adequate glycaemic control was achieved only with insulin therapy, along with exenatide and empagliflozin afterwards. We assume that clozapine acted as a trigger for rapid deterioration of glycaemic control through direct pathophysiological mechanisms, rather than an indirect slowly evolving weight gain-related metabolic syndrome pathway. Clinicians should be aware of this complication, enabling timely diagnosis and proper treatment.
Collapse
Affiliation(s)
| | - Vera Fernandes
- Endocrinology Department, Braga Hospital, Braga, Portugal
| |
Collapse
|
6
|
Cernea S, Dima L, Correll CU, Manu P. Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics. Drugs 2021; 80:1763-1781. [PMID: 32930957 DOI: 10.1007/s40265-020-01393-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fasting hyperglycemia, impaired glucose tolerance, prediabetes, and diabetes are frequently present in patients treated with second-generation antipsychotics (SGAPs) for schizophrenia, bipolar disorder, and other severe mental illnesses. These drugs are known to produce weight gain, which may lead to insulin resistance, glucose intolerance, and metabolic syndrome, which constitute important risk factors for the emergence of diabetes. The aim of this review was to formulate therapeutic guidelines for the management of diabetes in patients treated with SGAPs, based on the association between SGAP-induced weight gain and glucose dysregulation. A systematic search in PubMed from inception to March 2020 for randomized controlled trials (RCTs) of diabetes or prediabetes in patients treated with SGAPs was performed. PubMed was also searched for the most recent clinical practice guidelines of interventions for co-morbid conditions associated with diabetes mellitus (DM) (arterial hypertension and dyslipidemia), lifestyle interventions and switching from high metabolic liability SGAPs to safer SGAPs. The search identified 14 RCTs in patients treated with SGAPs. Drug therapy using metformin as first-line therapy and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) or perhaps sodium-glucose cotransporter-2 (SGLT2) inhibitors as add-on therapy, might be preferred in these patients as well, as they favorably influence glucose metabolism and body mass index, and provide cardio-renal benefits in general to the DM population, although for the SGLT-2 inhibitors there are no RCTs in this specific patient category so far. Metformin is also useful for treatment of prediabetes. Arterial hypertension should be treated with angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers, and statins should be used for correction of dyslipidemia. The outcome of lifestyle-changing interventions has been disappointing. Switching from clozapine, olanzapine, or quetiapine to lower cardiometabolic-risk SGAPs, like aripiprazole, brexpiprazole, cariprazine, lurasidone, or ziprasidone, has been recommended.
Collapse
Affiliation(s)
- Simona Cernea
- Faculty of Medicine/Department M4/Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.,Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Universitatea Transilvania, Nicolae Balcescu Str 59, Brașov, 500019, Romania.
| | - Christoph U Correll
- Charite Universitaetsmedizin, Department of Child and Adolescent Psychiatry, Berlin, and Campus Virchow-Klinikum, Mittelallee 5A, Berlin, 13353, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry and Molecular Medicine, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| | - Peter Manu
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| |
Collapse
|
7
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Babic I, Sellers D, Else PL, Nealon J, Osborne AL, Pai N, Weston-Green K. Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats. J Psychopharmacol 2021; 35:284-302. [PMID: 33570012 DOI: 10.1177/0269881120981377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist that prevents metabolic side effects of the antipsychotic drugs (APDs) olanzapine and clozapine through unknown mechanisms. AIM This study aimed to investigate the effect of chronic APD and liraglutide co-treatment on key neural and peripheral metabolic signals, and acute liraglutide co-treatment on clozapine-induced hyperglycaemia. METHODS In study 1, rats were administered olanzapine (2 mg/kg), clozapine (12 mg/kg), liraglutide (0.2 mg/kg), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle for six weeks. Feeding efficiency was examined weekly. Examination of brain tissue (dorsal vagal complex (DVC) and mediobasal hypothalamus (MBH)), plasma metabolic hormones and peripheral (liver and kidney) cellular metabolism and oxidative stress was conducted. In study 2, rats were administered a single dose of clozapine (12 mg/kg), liraglutide (0.4 mg/kg), clozapine + liraglutide co-treatment or vehicle. Glucose tolerance and plasma hormone levels were assessed. RESULTS Liraglutide co-treatment prevented the time-dependent increase in feeding efficiency caused by olanzapine, which plateaued by six weeks. There was no effect of chronic treatment on melanocortinergic, GABAergic, glutamatergic or endocannabionoid markers in the MBH or DVC. Peripheral hormones and cellular metabolic markers were unaltered by chronic APD treatment. Acute liraglutide co-treatment was unable to prevent clozapine-induced hyperglycaemia, but it did alter catecholamine levels. CONCLUSION The unexpected lack of change to central and peripheral markers following chronic treatment, despite the presence of weight gain, may reflect adaptive mechanisms. Further studies examining alterations across different time points are required to continue to elucidate the mechanisms underlying the benefits of liraglutide on APD-induced metabolic side effects.
Collapse
Affiliation(s)
- Ilijana Babic
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Dominic Sellers
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Paul L Else
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jessica Nealon
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Ashleigh L Osborne
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nagesh Pai
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| |
Collapse
|
9
|
Yuen JWY, Kim DD, Procyshyn RM, Panenka WJ, Honer WG, Barr AM. A Focused Review of the Metabolic Side-Effects of Clozapine. Front Endocrinol (Lausanne) 2021; 12:609240. [PMID: 33716966 PMCID: PMC7947876 DOI: 10.3389/fendo.2021.609240] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
The second generation antipsychotic drug clozapine represents the most effective pharmacotherapy for treatment-resistant psychosis. It is also associated with low rates of extrapyramidal symptoms and hyperprolactinemia compared to other antipsychotic drugs. However, clozapine tends to be underutilized in clinical practice due to a number of disabling and serious side-effects. These are characterized by a constellation of metabolic side-effects which include dysregulation of glucose, insulin, plasma lipids and body fat. Many patients treated with clozapine go on to develop metabolic syndrome at a higher rate than the general population, which predisposes them for Type 2 diabetes mellitus and cardiovascular disease. Treatments for the metabolic side-effects of clozapine vary in their efficacy. There is also a lack of knowledge about the underlying physiology of how clozapine exerts its metabolic effects in humans. In the current review, we focus on key studies which describe how clozapine affects each of the main symptoms of the metabolic syndrome, and cover some of the treatment options. The clinical data are then discussed in the context of preclinical studies that have been conducted to identify the key biological substrates involved, in order to provide a better integrated overview. Suggestions are provided about key areas for future research to better understand how clozapine causes metabolic dysregulation.
Collapse
Affiliation(s)
- Jessica W. Y. Yuen
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David D. Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ric M. Procyshyn
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William J. Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William G. Honer
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Alasdair M. Barr,
| |
Collapse
|
10
|
Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019; 8:cells8111336. [PMID: 31671770 PMCID: PMC6912706 DOI: 10.3390/cells8111336] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the cornerstone of treatment for schizophrenia because of their high clinical efficacy. However, SGA treatment is associated with severe metabolic alterations and body weight gain, which can increase the risk of type 2 diabetes and cardiovascular disease, and greatly accelerate mortality. Several underlying mechanisms have been proposed for antipsychotic-induced weight gain (AIWG), but some studies suggest that metabolic changes in insulin-sensitive tissues can be triggered before the onset of AIWG. In this review, we give an outlook on current research about the metabolic disturbances provoked by SGAs, with a particular focus on whole-body glucose homeostasis disturbances induced independently of AIWG, lipid dysregulation or adipose tissue disturbances. Specifically, we discuss the mechanistic insights gleamed from cellular and preclinical animal studies that have reported on the impact of SGAs on insulin signaling, endogenous glucose production, glucose uptake and insulin secretion in the liver, skeletal muscle and the endocrine pancreas. Finally, we discuss some of the genetic and epigenetic changes that might explain the different susceptibilities of SGA-treated patients to the metabolic side-effects of antipsychotics.
Collapse
|
11
|
High prevalence of prediabetes and metabolic abnormalities in overweight or obese schizophrenia patients treated with clozapine or olanzapine. CNS Spectr 2019; 24:441-452. [PMID: 30596361 DOI: 10.1017/s1092852918001311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To assess the prevalence of prediabetes and metabolic abnormalities among overweight or obese clozapine- or olanzapine-treated schizophrenia patients, and to identify characteristics of the schizophrenia group with prediabetes. METHODS A cross-sectional study assessing the presence of prediabetes and metabolic abnormalities in schizophrenia clozapine- or olanzapine-treated patients with a body mass index (BMI) ≥27 kg/m2. Procedures were part of the screening process for a randomized, placebo-controlled trial evaluating liraglutide vs placebo for improving glucose tolerance. For comparison, an age-, sex-, and BMI-matched healthy control group without psychiatric illness and prediabetes was included. Prediabetes was defined as elevated fasting plasma glucose and/or impaired glucose tolerance and/or elevated glycated hemoglobin A1c. RESULTS Among 145 schizophrenia patients (age = 42.1 years; males = 59.3%) on clozapine or olanzapine (clozapine/olanzapine/both: 73.8%/24.1%/2.1%), prediabetes was present in 69.7% (101 out of 145). While schizophrenia patients with and without prediabetes did not differ regarding demographic, illness, or antipsychotic treatment variables, metabolic abnormalities (waist circumference: 116.7±13.7 vs 110.1±13.6 cm, P = 0.007; triglycerides: 2.3±1.4 vs 1.6±0.9 mmol/L, P = 0.0004) and metabolic syndrome (76.2% vs 40.9%, P<0.0001) were significantly more pronounced in schizophrenia patients with vs without prediabetes. The age-, sex-, and BMI-matched healthy controls had significantly better glucose tolerance compared to both groups of patients with schizophrenia. The healthy controls also had higher levels of high-density lipoprotein compared to patients with schizophrenia and prediabetes. CONCLUSION Prediabetes and metabolic abnormalities were highly prevalent among the clozapine- and olanzapine-treated patients with schizophrenia, putting these patients at great risk for later type 2 diabetes and cardiovascular disease. These results stress the importance of identifying and adequately treating prediabetes and metabolic abnormalities among clozapine- and olanzapine-treated patients with schizophrenia.
Collapse
|
12
|
Nagata M, Kimura Y, Ishiwata Y, Takahashi H, Yasuhara M. Clozapine-Induced Acute Hyperglycemia Is Accompanied with Elevated Serum Concentrations of Adrenaline and Glucagon in Rats. Biol Pharm Bull 2018; 41:1286-1290. [DOI: 10.1248/bpb.b18-00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Masashi Nagata
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yuri Kimura
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yasuyoshi Ishiwata
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
| | - Hiromitsu Takahashi
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
| | - Masato Yasuhara
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
13
|
Abstract
Clozapine is superior to all other antipsychotics in treatment-resistant schizophrenia. However, metabolic side effects are common while treating patients with clozapine. Administering clozapine in a patient who already is diabetic involves careful weighing of risks and benefits. Here, we report our experience of starting clozapine in a known diabetic patient. Clozapine was started in a patient with treatment-resistant psychosis in view of suicidal risk. Her diabetes mellitus was under good control with oral medications. After initiation of clozapine, blood sugars increased several fold within few days. Blood glucose continued to increase even with high doses of insulin and insulin infusion. Finally, blood sugars came under control only after discontinuation of clozapine. Precautionary measures while initiating clozapine in a diabetic patient are suggested - close monitoring of blood sugar during the initial few days and intensive intervention if blood sugar levels increase. Discontinuation of clozapine should also be kept in mind as a last resort.
Collapse
Affiliation(s)
- Vijay Chathoth
- Department of Psychiatry, Pondicherry Institute of Medical Sciences, Puducherry, India
| | | | - Susan Solomon
- Department of Psychiatry, Pondicherry Institute of Medical Sciences, Puducherry, India
| |
Collapse
|
14
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
15
|
Piatkov I, Caetano D, Assur Y, Lau SL, Coelho M, Jones T, Nguyen T, Boyages S, McLean M. CYP2C19*17 protects against metabolic complications of clozapine treatment. World J Biol Psychiatry 2017; 18:521-527. [PMID: 28664816 DOI: 10.1080/15622975.2017.1347712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Clozapine (CZ) is the most effective drug for managing treatment-resistant schizophrenic disorders. Its use has been limited due to adverse effects, which include weight gain and new-onset diabetes, but the incidence of these varies between patients. METHODS We investigated 187 Clozapine Clinic patients (of whom 137 consented for genotyping) for the presence of CYP2C19*17 and its association with CZ and norclozapine (NCZ) levels, and clinical outcomes. RESULTS Thirty-nine percent of genotyped patients were carriers of the CYP2C 19*17 polymorphism. This group demonstrated significantly higher NCZ serum levels, and significantly lower fasting glucose (5.66 ± 1.19 vs 6.72 ± 3.01 mmol/l, P = 0.009) and Hb1Ac (35.36 ± 4.78 vs 49.40 ± 20.60 mmol/mol, P = 0.006) levels compared to non-carriers of this polymorphism. CZ-treated patients with CYP2C19*17/*17 had a significantly lower prevalence of diabetes as well as a higher likelihood of clinical improvement of their schizophrenia, compared to those without this polymorphism (P = 0.012 and P = 0.031, respectively). CONCLUSIONS Our data suggest that CYP2C19*17 ultra-rapid-metaboliser status is a protective factor against the development of diabetes during clozapine treatment, and increases the likelihood of improvement in schizophrenia. The role of NCZ in treatment response and side effects, including metabolic syndrome, warrants further pharmacogenetic, pharmacokinetic and pharmacodynamic studies.
Collapse
Affiliation(s)
- Irina Piatkov
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Dorgival Caetano
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia.,c Blacktown Mental Health Service , Blacktown Hospital, WSLHD , Blacktown , Australia
| | - Yolinda Assur
- c Blacktown Mental Health Service , Blacktown Hospital, WSLHD , Blacktown , Australia
| | - Sue Lynn Lau
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| | - Micheline Coelho
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Trudi Jones
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Tristan Nguyen
- a Molecular Research Laboratory, Blacktown Clinical School and Research Centre , Blacktown Hospital, WSU/WSLHD , Blacktown , Australia
| | - Steven Boyages
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| | - Mark McLean
- b Western Sydney University School of Medicine , Campbelltown , NSW , Australia
| |
Collapse
|
16
|
Porras-Segovia A, Krivoy A, Horowitz M, Thomas G, Bolstridge M, Ion D, Shergill SS. Rapid-onset clozapine-induced loss of glycaemic control: case report. BJPsych Open 2017; 3:138-140. [PMID: 28507773 PMCID: PMC5425930 DOI: 10.1192/bjpo.bp.117.004481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Clozapine has proved to be an effective antipsychotic for the treatment of refractory schizophrenia - characterised by the persistence of symptoms despite optimal treatment trials with at least two different antipsychotics at adequate dose and duration - but its use is hampered by adverse effects. The development of clozapine-induced diabetes is commonly considered to arise as part of a metabolic syndrome, associated with weight gain, and thus evolves slowly. We present the case of an individual with refractory schizophrenia and metformin-controlled diabetes who developed rapid-onset insulin-dependent hyperglycaemia immediately after starting clozapine. Given the refractory nature of his illness, the decision was made to continue clozapine and manage the diabetes. This case supports the existence of a more direct mechanism by which clozapine alters glycaemic control, aside from the more routine slow development of a metabolic syndrome. DECLARATION OF INTEREST S.S.S. is supported by a European Research Council Consolidator Award (Grant Number 311686) and the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. The funders had no role in study design, data collection, data analysis, data interpretation or writing of the report. COPYRIGHT AND USAGE © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license.
Collapse
Affiliation(s)
| | - Amir Krivoy
- , MD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Psychosis Unit, Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust London, London, UK
| | - Mark Horowitz
- , MBBS PhD, National Psychosis Unit, Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust London, London, UK
| | - George Thomas
- , BSc, Hull York Medical School, University of York, York, UK
| | - Mark Bolstridge
- , MBCHP MRCPsych, National Psychosis Unit, Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust London, London, UK
| | - Dragos Ion
- , RMN, National Psychosis Unit, Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust London, London, UK
| | - Sukhwinder S Shergill
- , PhD FRCPsych, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Psychosis Unit, Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust London, London, UK
| |
Collapse
|
17
|
Mayfield K, Siskind D, Winckel K, Russell AW, Kisely S, Smith G, Hollingworth S. Glucagon-like peptide-1 agonists combating clozapine-associated obesity and diabetes. J Psychopharmacol 2016; 30:227-36. [PMID: 26801056 DOI: 10.1177/0269881115625496] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clozapine is the most effective antipsychotic, but its use is tempered by adverse metabolic effects such as weight gain, glucose intolerance and type II diabetes. Current interventions do not facilitate compelling or sustained improvement in metabolic status. Recent studies suggest that glucagon-like peptide-1 (GLP-1) may play a key role in clozapine's metabolic effects, possibly suggesting that clozapine-associated obesity and diabetes are mediated independently through reduced GLP-1. As a result, GLP-1 agonists could show promise in reversing antipsychotic-induced metabolic derangements, providing mechanistic justification that they may represent a novel approach to treat, and ultimately prevent, both diabetes and obesity in patients on clozapine. GLP-1 agonists are already used for diabetes, and they provide a unique combination of glycaemic improvement and metabolically relevant weight loss in diabetic and non-diabetic patients, in the context of a currently favourable safety profile. Using GLP-1 agonists for clozapine-associated obesity and diabetes could be a potentially effective intervention that may reduce cardiometabolic morbidity and mortality in this vulnerable patient population.
Collapse
Affiliation(s)
- Karla Mayfield
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, QLD, Australia
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Princess Alexandra Hospital, Brisbane, QLD, Australia School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Karl Winckel
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, QLD, Australia Pharmacy Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Anthony W Russell
- School of Medicine, University of Queensland, Brisbane, QLD, Australia Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Steve Kisely
- Metro South Addiction and Mental Health Service, Princess Alexandra Hospital, Brisbane, QLD, Australia School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Greg Smith
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Samantha Hollingworth
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Chowdhury MKH, Montgomery MK, Morris MJ, Cognard E, Shepherd PR, Smith GC. Glucagon phosphorylates serine 552 of β-catenin leading to increased expression of cyclin D1 and c-Myc in the isolated rat liver. Arch Physiol Biochem 2015; 121:88-96. [PMID: 26135564 DOI: 10.3109/13813455.2015.1048693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last 20 years the prevalence of metabolic disorders, in particular type 2 diabetes (T2D), has more than doubled. Recently, a strong link between T2D and cancer, in particularly liver cancer has been reported. However, the mechanism connecting the development of type 2 diabetes and cancer remains unknown. One of the biggest drivers of liver cancer is alterations in the Wnt/β-catenin pathway. In this study, we aimed to identify the effect of glucagon on β-catenin in the isolated rat liver. We found glucagon, which is substantially raised in patients with T2D, rapidly phosphorylates β-catenin on serine 552 that is associated with increased expression of genes cyclin D1 (CCND1) and c-Myc (MYC), which are known to be involved in liver cancer. This finding may explain the increased risk of liver cancer in people with T2D.
Collapse
|