1
|
Hong S, Tomar JS, Shen J. Metabolic coupling between glutamate and N-acetylaspartate in the human brain. J Cereb Blood Flow Metab 2024; 44:1608-1617. [PMID: 38483126 PMCID: PMC11418672 DOI: 10.1177/0271678x241239783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 09/06/2024]
Abstract
A metabolic coupling between glutamate and N-acetylaspartate measured by in vivo magnetic resonance spectroscopy has been recently reported in the literature with inconsistent findings. In this study, confounders originating from Pearson's spurious correlation of ratios and spectral correlation due to overlapping magnetic resonance spectroscopy signals of glutamate and N-acetylaspartate were practically eliminated to facilitate the determination of any metabolic link between glutamate and N-acetylaspartate in the human brain using in vivo magnetic resonance spectroscopy. In both occipital and medial prefrontal cortices of healthy individuals, correlations between glutamate and N-acetylaspartate were found to be insignificant. Our results do not lend support to a recent hypothesis that N-acetylaspartate serves as a significant reservoir for the rapid replenishment of glutamate during signaling or stress.
Collapse
Affiliation(s)
- Sungtak Hong
- Section on Magnetic Resonance Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jyoti Singh Tomar
- Section on Magnetic Resonance Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- Section on Magnetic Resonance Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Zhang M, Chen L, Ren Z, Wang Z, Luo W. Applications of TMS in individuals with methamphetamine use disorder: A review. Heliyon 2024; 10:e25565. [PMID: 38420394 PMCID: PMC10900420 DOI: 10.1016/j.heliyon.2024.e25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Methamphetamine abuse results in a host of social and medical issues. Methamphetamine use disorder (MUD) can hinder the brain and impair cognitive functions and mental health. Transcranial magnetic stimulation (TMS) is a non-invasive approach in the treatment of MUD. Recent studies have demonstrated encouraging and positive effects of TMS on the craving, affective symptoms, sleep quality, and cognitive functions in individuals with MUD. The regulation of specific brain activities through TMS has also been found to be a contributing factor to these positive outcomes. It is essential to employ more techniques, participants, and stimulation parameters and targets in the future.
Collapse
Affiliation(s)
- Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Lei Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Ziwei Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Zhiyan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| |
Collapse
|
4
|
Smucny J, Maddock RJ. Spectroscopic meta-analyses reveal novel metabolite profiles across methamphetamine and cocaine substance use disorder. Drug Alcohol Depend 2023; 248:109900. [PMID: 37148676 PMCID: PMC11187716 DOI: 10.1016/j.drugalcdep.2023.109900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although proton magnetic resonance spectroscopy (MRS) has been used to study metabolite alterations in stimulant (methamphetamine and cocaine) substance use disorders (SUDs) for over 25 years, data-driven consensus regarding the nature and magnitude of these alterations is lacking. METHOD In this meta-analysis, we examined associations between SUD and regional metabolites (N-acetyl aspartate (NAA), choline, myo-inositol, creatine, glutamate, and glutamate+glutamine (glx)) in the medial prefrontal cortex (mPFC), frontal white matter (FWM), occipital cortex, and basal ganglia as measured by 1 H-MRS. We also examined moderating effects of MRS acquisition parameters (echo time (TE), field strength), data quality (coefficient of variation (COV)), and demographic/clinical variables. RESULTS A MEDLINE search revealed 28 articles that met meta-analytic criteria. Significant effects included lower mPFC NAA, higher mPFC myo-inositol, and lower mPFC creatine in SUD relative to people without SUD. mPFC NAA effects were moderated by TE, with larger effects at longer TEs. For choline, although no group effects were observed, effect sizes in the mPFC were related to MRS technical indicators (field strength, COV). No effects of age, sex, primary drug of use (methamphetamine vs. cocaine), duration of use, or duration of abstinence were observed. Evidence for moderating effects of TE and COV may have implications for future MRS studies in SUDs. CONCLUSIONS The observed metabolite profile in methamphetamine and cocaine SUD (lower NAA and creatine with higher myo-inositol) parallels that observed in Alzheimer's disease and mild cognitive impairment, suggesting these drugs are associated with neurometabolic differences similar to those characterizing these neurodegenerative conditions.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA.
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
5
|
Liang X, Li X, Jin Y, Wang Y, Wei C, Zhu Z. Effect of Aerobic Exercise on Intestinal Microbiota with Amino Acids and Short-Chain Fatty Acids in Methamphetamine-Induced Mice. Metabolites 2023; 13:metabo13030361. [PMID: 36984800 PMCID: PMC10055719 DOI: 10.3390/metabo13030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
This study aimed to investigate the changes in intestinal homeostasis and metabolism in mice after methamphetamine (MA) administration and exercise intervention. In this study, male C57BL/B6J mice were selected to establish a model of methamphetamine-induced addiction, and the gut microbiota composition, short-chain fatty acids (SCFAs), and amino acid levels were assessed by 16S rRNA, liquid chromatography–tandem mass spectrometry, and gas chromatography–tandem mass spectrometry, respectively. The results showed that 23 dominant microbiota, 12 amino acids, and 1 SCFA were remarkably higher and 9 amino acids and 6 SCFAs were remarkably lower in the exercise model group than in the control group. Among the top 10 markers with opposite trends between the exercise intervention group and model group, the differential microbiomes included Oscillibacter, Alloprevotella, Colidextribacter, Faecalibaculum, Uncultured, Muribaculaceae, and Negativibacillus; amino acids included proline; and SCFAs included isovaleric acid and pentanoic acid. Proline was negatively correlated with Negativibacillus and positively correlated with pentanoic acid. The results suggested that moderate-intensity aerobic exercise may modulate changes in the composition of the gut microbiota and the levels of amino acids and SCFAs induced by MA administration.
Collapse
Affiliation(s)
- Xin Liang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-135-5014-6822
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yi Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Changling Wei
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhicheng Zhu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| |
Collapse
|
6
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
7
|
Bissonnette JN, Francis AM, MacNeil S, Crocker CE, Tibbo PG, Fisher DJ. Glutamate and N-Acetylaspartate Alterations Observed in Early Phase Psychosis: A Systematic Review of Proton Magnetic Resonance Spectroscopy Studies. Psychiatry Res Neuroimaging 2022; 321:111459. [PMID: 35183897 DOI: 10.1016/j.pscychresns.2022.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Glutamate and N-acetylaspartate have been investigated in the neuropathology of chronic schizophrenia, with fewer studies focusing on early phase psychosis. Additionally, there has been little review and synthesis of the literature focused on multiple brain regions. This systematic review aims to provide a clear report of the current state of research on glutamate and n-acetylaspartate concentrations in early phase psychosis (defined as the first five years following psychosis onset) in multiple brain regions. Existing literature was searched systematically to compile reports of glutamate/glutamate+glutamine (Glx) and n-acetylaspartate absolute levels and ratios in both male and female individuals with early phase psychosis. Reports on glutamate/Glx concentrations in the medial prefrontal region and thalamus were varied, but the majority of reports suggested no alterations in EPP. No studies reported glutamate alterations in the hippocampus or cerebellum. There was no evidence for n-acetylaspartate alterations in the caudate, basal ganglia, and medial prefrontal cortex, and minimal evidence for NAA reductions in the thalamus, anterior cingulate cortex, and hippocampus. Future research should focus on the regions that are less commonly reported, and should aim to explore possible confounds, such as medication status and substance use.
Collapse
Affiliation(s)
- J N Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS.
| | - A M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS.
| | - S MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| | - C E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS; Department of Diagnostic Imaging, Dalhousie University, Halifax, NS.
| | - P G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS; Nova Scotia Early Psychosis Program, Halifax, NS.
| | - D J Fisher
- Department of Psychiatry, Dalhousie University, Halifax, NS; Department of Psychology, Saint Mary's University, Halifax, NS; Department of Psychology, Mount Saint Vincent University, Halifax, NS.
| |
Collapse
|
8
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
9
|
Chen T, Tan H, Lei H, Li X, Wu Q, Xu X, Ye Y, Zhong N, Du J, Jiang H, Su H, Zhao M. Nature of glutamate alterations in substance dependence: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Psychiatry Res Neuroimaging 2021; 315:111329. [PMID: 34271295 DOI: 10.1016/j.pscychresns.2021.111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Animal studies have reported the brain glutamatergic dysfunction in substance dependence. However, proton magnetic resonance spectroscopy (1H-MRS) studies of glutamate in substance-dependent patients published contradicting results. In order to investigate the characteristics of brain glutamatergic alterations in substance-dependent patients, we conducted systematic reviews and meta-analyses of 1H-MRS studies that have investigated the glutamate, glutamine, and Glx (glutamate + glutamine) concentration in substance-dependent patients. Multiple databases were searched until Sep 10, 2020. Twenty-nine studies comprising 982 patients and 787 controls were included. There was significantly decreased glutamate level in dorsolateral prefrontal cortex in patients compared with controls. Higher glutamate levels in medial prefrontal cortex and basal ganglia region were also demonstrated in patients compared with controls. Subgroup analyses based on the substance type and abstinence period (short vs medium-term abstinence period) were performed. The results revealed Glx and glutamate concentrations in all investigated brain regions were not different in patients with any types of substance dependence compared with controls. The abstinence period had no effect on the glutamate levels. In summary, substance dependence is associated with glutamatergic dysfunction of prefrontal cortex and basal ganglia. Present findings partially support the hypothesis that addiction is associated with abnormal brain glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Haoye Tan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Huiting Lei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Qianying Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xiaomin Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Yujian Ye
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Yang C, Fu X, Hao W, Xiang X, Liu T, Yang B, Zhang X. Gut dysbiosis associated with the rats' responses in methamphetamine-induced conditioned place preference. Addict Biol 2021; 26:e12975. [PMID: 33094505 DOI: 10.1111/adb.12975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Methamphetamine (MA) is a potent stimulant and notoriously addictive. Individuals respond to MA effects differently and thus have a varying susceptible risk of developing MA use disorder. Cumulative evidence has indicated that gut dysbiosis contributes to behavioral response to drug effects. However, the role of gut microbiota in the susceptible risk of developing MA use disorder has remained elusive. Using an MA-induced conditioned place preference (CPP) rat model, we administrated the same dose of MA to rats, which then showed distinct preferences in drug-related place, indicating their different responses to MA. From all of the MA-exposed rats, the eight with the highest CPP scores were labeled as group high CPP (H-CPP), and the eight with the lowest were labeled as group low CPP (L-CPP). By 16S ribosomal RNA (rRNA) sequencing, we found that the gut microbiota compositions differed between H-CPP and L-CPP. Specifically, Akkermansia was significantly higher in H-CPP and positively correlated with the CPP scores. Notably, H-CPP and L-CPP differed in the gut microbiota composition prior to the CPP training; Ruminococcus was the dominant phylotype in H-CPP at baseline. More importantly, rats pretreated by antibiotics showed a significantly stronger MA-induced CPP than did the controls. Our study demonstrates that the gut dysbiosis was associated with the MA-induced CPP, indicating that the gut microbiota might be important modulators for MA-induced behavior and vulnerability to MA use disorder.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Psychiatry, The Second Xiangya Hospital Central South University Changsha China
- National Clinical Research Center on Mental Disorders (Xiangya) Changsha China
- National Technology Institute on Mental Disorders Changsha China
- Hunan Key Laboratory of Psychiatry and Mental Health Changsha China
- Mental Health Institute of Central South University Changsha China
| | - Xiaoya Fu
- Department of Psychiatry, The Second Xiangya Hospital Central South University Changsha China
- National Clinical Research Center on Mental Disorders (Xiangya) Changsha China
- National Technology Institute on Mental Disorders Changsha China
- Hunan Key Laboratory of Psychiatry and Mental Health Changsha China
- Mental Health Institute of Central South University Changsha China
| | - Wei Hao
- Department of Psychiatry, The Second Xiangya Hospital Central South University Changsha China
- National Clinical Research Center on Mental Disorders (Xiangya) Changsha China
- National Technology Institute on Mental Disorders Changsha China
- Hunan Key Laboratory of Psychiatry and Mental Health Changsha China
- Mental Health Institute of Central South University Changsha China
| | - Xiaojun Xiang
- Department of Psychiatry, The Second Xiangya Hospital Central South University Changsha China
- National Clinical Research Center on Mental Disorders (Xiangya) Changsha China
- National Technology Institute on Mental Disorders Changsha China
- Hunan Key Laboratory of Psychiatry and Mental Health Changsha China
- Mental Health Institute of Central South University Changsha China
| | - Tieqiao Liu
- Department of Psychiatry, The Second Xiangya Hospital Central South University Changsha China
- National Clinical Research Center on Mental Disorders (Xiangya) Changsha China
- National Technology Institute on Mental Disorders Changsha China
- Hunan Key Laboratory of Psychiatry and Mental Health Changsha China
- Mental Health Institute of Central South University Changsha China
| | - Bao‐Zhu Yang
- Department of Psychiatry Yale University School of Medicine New Haven CT USA
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital Central South University Changsha China
- National Clinical Research Center on Mental Disorders (Xiangya) Changsha China
- National Technology Institute on Mental Disorders Changsha China
- Hunan Key Laboratory of Psychiatry and Mental Health Changsha China
- Mental Health Institute of Central South University Changsha China
| |
Collapse
|
11
|
Peng S, Su H, Chen T, Li X, Du J, Jiang H, Zhao M. The Potential Regulatory Network of Glutamate Metabolic Pathway Disturbance in Chinese Han Withdrawal Methamphetamine Abusers. Front Genet 2021; 12:653443. [PMID: 33833781 PMCID: PMC8021790 DOI: 10.3389/fgene.2021.653443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Objects To explore the long-term influence of methamphetamine abuse on metabolomics character, with gas chromatography-mass spectrometry (GS-MS) technology, and the potential regulatory network using the bioinformatics method. Methods Forty withdrawal methamphetamine abusers (WMA) were recruited from Shanghai Gaojing Forced Isolation Detoxification Institute. Forty healthy controls (HC) were recruited from society. GS-MS technology was used to detect metabolic products in serum. A bioinformatics method was used to build a regulatory network. Q-PCR was used to detect the candidate gene expressions, and ELISA was used to detect the regulatory enzyme expressions. Results Four pathways were significantly changed in the MA compared to the HC: (1) the arginine synthesis pathway, (2) alanine, aspartic acid and glutamate metabolic pathway, (3) cysteine and methionine metabolic pathway, and (4) the ascorbate and aldarate pathway (enrichment analysis p < 0.05, Impactor factor > 0.2). When focusing on the ‘Alanine, aspartate, and glutamate metabolism’ pathway, a regulatory network was established, and the expression of candidate regulatory genes and enzymes was verified. It was found that the expression of DLG2 (Discs large MAGUK scaffold protein 2), PLA2G4 (Phospholipase A2 group IVE), PDE4D (Phosphodiesterase 4D), PDE4B (Phosphodiesterase 4B), and EPHB2 (Ephrin type-B receptor 2) were significantly different between the two groups (p < 0.05), However, after adjusting for age and BMI, only DLG2, PLA2G4, and EPHB2 remained significant (p < 0.05). The expression of enzymes was not significantly different (p > 0.05). Conclusion Methamphetamine abuse influences the metabolic process in the long term, and DLG2, PLA2G4, and EPHB2 may regulate the glutamate metabolism pathway.
Collapse
Affiliation(s)
- Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Abstract
Methamphetamine abuse leads to devastating consequences, including addiction, crime, and death. Despite decades of research, no medication has been approved by the U.S. Food and Drug Administration for the treatment of Methamphetamine Use Disorder. Thus, there is a need for new therapeutic approaches. Animal studies demonstrate that methamphetamine exposure dysregulates forebrain function involving the Group-I metabotropic glutamate receptor subtype 5 (mGlu5), which is predominantly localized to postsynaptic sites. Allosteric modulators of mGlu5 offer a unique opportunity to modulate glutamatergic neurotransmission selectively, thereby potentially ameliorating methamphetamine-induced disruptions. Negative allosteric modulators of mGlu5 attenuate the effects of methamphetamine, including rewarding/reinforcing properties of the drug across animal models, and have shown promising effects in clinical trials for Anxiety Disorder and Major Depressive Disorder. Preclinical studies have also sparked great interest in mGlu5 positive allosteric modulators, which exhibit antipsychotic and anxiolytic properties, and facilitate extinction learning when access to methamphetamine is removed, possibly via the amelioration of methamphetamine-induced cognitive deficits. Clinical research is now needed to elucidate the mechanisms underlying the mGlu5 receptor-related effects of methamphetamine and the contributions of these effects to addictive behaviors. The growing array of mGlu5 allosteric modulators provides excellent tools for this purpose and may offer the prospect of developing tailored and effective medications for Methamphetamine Use Disorder.
Collapse
|
13
|
Fultz EK, Quadir SG, Martin D, Flaherty DM, Worley PF, Kippin TE, Szumlinski KK. ERK-Directed Phosphorylation of mGlu5 Gates Methamphetamine Reward and Reinforcement in Mouse. Int J Mol Sci 2021; 22:ijms22031473. [PMID: 33540617 PMCID: PMC7867251 DOI: 10.3390/ijms22031473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
Methamphetamine (MA) is a highly addictive psychomotor stimulant drug. In recent years, MA use has increased exponentially on a global scale, with the number of MA-involved deaths reaching epidemic proportions. There is no approved pharmacotherapy for treating MA use disorder, and we know relatively little regarding the neurobiological determinants of vulnerability to this disease. Extracellular signal-regulated kinase (ERK) is an important signaling molecule implicated in the long-lasting neuroadaptations purported to underlie the development of substance use disorders, but the role for this kinase in the propensity to develop addiction, particularly MA use disorder, is uncharacterized. In a previous MA-induced place-conditioning study of C57BL/6J mice, we characterized mice as MA-preferring, -neutral, or -avoiding and collected tissue from the medial prefrontal cortex (mPFC). Using immunoblotting, we determined that elevated phosphorylated ERK expression within the medial prefrontal cortex (mPFC) is a biochemical correlate of the affective valence of MA in a population of C57BL/6J mice. We confirmed the functional relevance for mPFC ERK activation for MA-induced place-preference via site-directed infusion of the MEK inhibitor U0126. By contrast, ERK inhibition did not have any effect upon MA-induced locomotion or its sensitization upon repeated MA treatment. Through studies of transgenic mice with alanine point mutations on T1123/S1126 of mGlu5 that disrupt ERK-dependent phosphorylation of the receptor, we discovered that ERK-dependent mGlu5 phosphorylation normally suppresses MA-induced conditioned place-preference (MA-CPP), but is necessary for this drug’s reinforcing properties. If relevant to humans, the present results implicate individual differences in the capacity of MA-associated cues/contexts to hyper-activate ERK signaling within mPFC in MA Use Disorder vulnerability and pose mGlu5 as one ERK-directed target contributing to the propensity to seek out and take MA.
Collapse
Affiliation(s)
- Elissa K. Fultz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Sema G. Quadir
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Douglas Martin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Daniel M. Flaherty
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Correspondence: ; Tel.: +1-805-893-2987; Fax: +1-805-893-4303
| |
Collapse
|
14
|
Su H, Chen T, Zhong N, Jiang H, Du J, Xiao K, Xu D, Wang Z, Zhao M. γ-aminobutyric acid and glutamate/glutamine alterations of the left prefrontal cortex in individuals with methamphetamine use disorder: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:347. [PMID: 32355791 PMCID: PMC7186735 DOI: 10.21037/atm.2020.02.95] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background GABAergic and glutamatergic neurotransmitter systems are critical in the pathophysiology of addiction and represent potential targets for repetitive transcranial magnetic stimulation (rTMS). This study aims to investigate changes in γ-aminobutyric acid (GABA) levels, the combined resonance of glutamate and glutamine (Glx) in the left dorsolateral prefrontal cortex (DLPFC), and cognitive function of patients with methamphetamine dependence following rTMS intervention, using proton magnetic resonance spectroscopy (1H MRS). Methods Fifty methamphetamine-dependent patients were randomized to a 4-week course of active or sham rTMS, with 1H MRS measurement of DLPFC GABA and Glx levels relative to n-acetyl-aspartate (NAA) and craving and cognitive function measured at baseline and post-intervention. Results We observed significant reductions of GABA/NAA concentration in the active group and Glx/NAA concentration in the group receiving sham rTMS. There was a significant association between changes in GABA concentration and problem solving/error monitoring. Conclusions The effect of rTMS on cognitive function in individuals with methamphetamine dependence may be related to changes in GABA levels in the prefrontal cortex, and warrants further investigation.
Collapse
Affiliation(s)
- Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ke Xiao
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai 200080, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai 200080, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.,Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
15
|
Su H, Chen T, Zhong N, Jiang H, Du J, Xiao K, Xu D, Song W, Zhao M. Decreased GABA concentrations in left prefrontal cortex of methamphetamine dependent patients: A proton magnetic resonance spectroscopy study. J Clin Neurosci 2020; 71:15-20. [DOI: 10.1016/j.jocn.2019.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
|
16
|
Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. Neuroimage 2019; 200:313-331. [DOI: 10.1016/j.neuroimage.2019.06.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
|
17
|
Das TK, Javadzadeh A, Dey A, Sabesan P, Théberge J, Radua J, Palaniyappan L. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:94-102. [PMID: 30125624 DOI: 10.1016/j.pnpbp.2018.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Glutathione [GSH] is a major intracellular antioxidant that disposes peroxides and protects neurons and glial cells from oxidative stress. In both schizophrenia and bipolar disorder, atypical levels of GSH have been demonstrated, particularly in the anterior cingulate cortex (ACC), though no consistent results have emerged due to limitations in sample size. Our objective was to evaluate if GSH levels in the ACC are abnormal in these 2 disorder, when compared to healthy controls. METHODS We reviewed all 1H-MRS studies reporting GSH values for patients satisfying DSM or ICD based criteria for (1) the psychotic disorders - schizophrenia or schizoaffective disorder or (2) bipolar disorder in comparison to a healthy controls (HC) group in the Anterior Cingulate Cortex (ACC) published until June 2018. A random-effects model was used to calculate the pooled effect size. A meta-regression analysis of moderator variables was also undertaken. RESULTS The literature search identified 18 studies with a total sample size of 581 controls, 578 patients with schizophrenia or bipolar disorder. There is a small but significant reduction in ACC GSH in patients with schizophrenia compared to HC (N = 13; RFX SMD =0.26; 95% CI [0.07 to 0.44]; p = 0.008; heterogeneity p = 0.11). There is a significant increase in the ACC GSH concentration in bipolar disorder compared to HC (N = 6; RFX SMD = -0.28, 95% CI [-0.09 to -0.47]; p = 0.003; heterogeneity p = 0.95). CONCLUSIONS We report a small, but significant reduction in GSH concentration in the ACC in schizophrenia, and a similar sized increase in bipolar disorder. A notable limitation is the lack of sufficient data to examine the moderating effect of the symptom profile. Schizophrenia and bipolar disorder have notably different patterns of redox abnormalities in the ACC. Reduced ACC GSH may confer a schizophrenia-like clinical phenotype, while an excess favouring a bipolar disorder-like profile.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada; Lawson Health Research Institute, London, ON. Canada
| | - Alborz Javadzadeh
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Avyarthana Dey
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada
| | | | - Jean Théberge
- Lawson Health Research Institute, London, ON. Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Department of Diagnostic Imaging, St. Joseph's Health Care London, ON, Canada
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Spain; Institute of Psychiatry, King's College London, De Crespigny Park, London,UK; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada; Lawson Health Research Institute, London, ON. Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
18
|
Tang J, O’Neill J, Alger JR, Shen Z, Johnson MC, London ED. N-Acetyl and Glutamatergic Neurometabolites in Perisylvian Brain Regions of Methamphetamine Users. Int J Neuropsychopharmacol 2019; 22:1-9. [PMID: 29788422 PMCID: PMC6313110 DOI: 10.1093/ijnp/pyy042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/21/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Background Methamphetamine induces neuronal N-acetyl-aspartate synthesis in preclinical studies. In a preliminary human proton magnetic resonance spectroscopic imaging investigation, we also observed that N-acetyl-aspartate+N-acetyl-aspartyl-glutamate in right inferior frontal cortex correlated with years of heavy methamphetamine abuse. In the same brain region, glutamate+glutamine is lower in methamphetamine users than in controls and is negatively correlated with depression. N-acetyl and glutamatergic neurochemistries therefore merit further investigation in methamphetamine abuse and the associated mood symptoms. Methods Magnetic resonance spectroscopic imaging was used to measure N-acetyl-aspartate+N-acetyl-aspartyl-glutamate and glutamate+glutamine in bilateral inferior frontal cortex and insula, a neighboring perisylvian region affected by methamphetamine, of 45 abstinent methamphetamine-dependent and 45 healthy control participants. Regional neurometabolite levels were tested for group differences and associations with duration of heavy methamphetamine use, depressive symptoms, and state anxiety. Results In right inferior frontal cortex, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate correlated with years of heavy methamphetamine use (r = +0.45); glutamate+glutamine was lower in methamphetamine users than in controls (9.3%) and correlated negatively with depressive symptoms (r = -0.44). In left insula, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate was 9.1% higher in methamphetamine users than controls. In right insula, glutamate+glutamine was 12.3% lower in methamphetamine users than controls and correlated negatively with depressive symptoms (r = -0.51) and state anxiety (r = -0.47). Conclusions The inferior frontal cortex and insula show methamphetamine-related abnormalities, consistent with prior observations of increased cortical N-acetyl-aspartate in methamphetamine-exposed animal models and associations between cortical glutamate and mood in human methamphetamine users.
Collapse
Affiliation(s)
- Jinsong Tang
- Laboratory of Molecular Neuroimaging, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Joseph O’Neill
- Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | | | - Zhiwei Shen
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maritza C Johnson
- Laboratory of Molecular Neuroimaging, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | - Edythe D London
- Laboratory of Molecular Neuroimaging, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
19
|
Wu Q, Qi C, Long J, Liao Y, Wang X, Xie A, Liu J, Hao W, Tang Y, Yang B, Liu T, Tang J. Metabolites Alterations in the Medial Prefrontal Cortex of Methamphetamine Users in Abstinence: A 1H MRS Study. Front Psychiatry 2018; 9:478. [PMID: 30420814 PMCID: PMC6215956 DOI: 10.3389/fpsyt.2018.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The medial prefrontal cortex (mPFC) contains various neurotransmitter systems and plays an important role in drug use. Broad body of literature on how methamphetamine (MA) affects the structure and metabolism in the animal's mPFC is emerging, while the effects on metabolites of mPFC among human is still unclear. In this study, proton magnetic resonance spectroscopy (1H MRS) was used to measure metabolites of mPFC in methamphetamine dependent subjects. Methods: Sixty-one subjects with a history of MA dependence (fulfiled the Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria) and 65 drug-naïve control subjects (age19-45) completed 1H MRS scans using 3.0T Siemens MRI scanner. Single voxel spectra were acquired from the mPFC bilaterally using a point resolved spectroscopy sequence (PRESS). The 1H MRS data were automatically fit with linear combination model for quantification of metabolite levels of n-acetyl-aspartate (NAA), myo-inositol (mI), glycerophosphocholine plus phosphocholine(GPC+PC), phosphocreatine plus creatine (PCr+Cr), and glutamate (Glu). Metabolite levels were reported as ratios to PCr+Cr. Results: The MA group showed a significant reduction in NAA/PCr+Cr ratio and elevation in Glu/PCr+Cr ratio and mI/PCr+Cr ratio, compared with healthy control. No significant correlation was found between metabolite ratios and MA use variables. Conclusions: MA use is associated with a significant increased Glu/PCr+Cr ratio, mI/PCr+Cr ratio and reduced NAA/PCr+Cr ratio in the mPFC of MA dependence subjects. These findings suggest that Glu may play a key role in MA induced neurotoxicity.
Collapse
Affiliation(s)
- Qiuxia Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Chang Qi
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jiang Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yanhui Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xuyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - An Xie
- Department of Radiology, Hunan Provincial People's Hospital, Changsha, China
| | - Jianbin Liu
- Department of Radiology, Hunan Provincial People's Hospital, Changsha, China
| | - Wei Hao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yiyuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Baozhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Tieqiao Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Chinese National Clinical Research Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
- National Technology Institute on Mental Disorders, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
20
|
Iwata Y, Nakajima S, Plitman E, Mihashi Y, Caravaggio F, Chung JK, Kim J, Gerretsen P, Mimura M, Remington G, Graff-Guerrero A. Neurometabolite levels in antipsychotic-naïve/free patients with schizophrenia: A systematic review and meta-analysis of 1H-MRS studies. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:340-352. [PMID: 29580804 DOI: 10.1016/j.pnpbp.2018.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Studies using proton magnetic resonance spectroscopy (1H-MRS) have reported altered neurometabolite levels in patients with schizophrenia. However, results are possibly confounded by the influence of antipsychotic (AP). Thus, this meta-analysis aimed to examine neurometabolite levels in AP-naïve/free patients with schizophrenia. METHODS A literature search was conducted using Embase, Medline, and PsycINFO to identify studies that compared neurometabolite levels in AP-naïve/free patients with schizophrenia to healthy controls (HCs). Eight neurometabolites (glutamate, glutamine, glutamate + glutamine, N-acetylaspartate [NAA], choline, creatine, myo-inositol, and γ-Aminobutyric acid [GABA]) and seven regions of interest (ROI; medial prefrontal cortex, dorsolateral prefrontal cortex, frontal white matter, occipital lobe, basal ganglia, hippocampus/medial temporal lobe, and thalamus) were examined. RESULTS Twenty-one studies (N = 1281) were included in the analysis. The results showed lower thalamic NAA levels (3 studies, n = 174, effect size = -0.56, P = 0.0005) in the patient group. No group differences were identified for other neurometabolites. CONCLUSIONS Our findings suggest that impaired neuronal integrity in the thalamus may be a potential trait maker in the early stages of schizophrenia.
Collapse
Affiliation(s)
- Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Yukiko Mihashi
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8 Toronto, Ontario, Canada.; Department of Psychiatry, University of Toronto, 250 College Street, M5T 1R8 Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, M6J 1H4 Toronto, Canada; Campbell Research Institute, Centre for Addiction and Mental Health, 1001 Queen St. W, M6J 1H4 Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Yang W, Yang R, Luo J, He L, Liu J, Zhang J. Increased Absolute Glutamate Concentrations and Glutamate-to-Creatine Ratios in Patients With Methamphetamine Use Disorders. Front Psychiatry 2018; 9:368. [PMID: 30233420 PMCID: PMC6128240 DOI: 10.3389/fpsyt.2018.00368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/24/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Previous studies have indicated that changes in the concentration of glutamate and related metabolites may mediate the progression of addiction in patients with methamphetamine (MA) use disorders. In the present study, we utilized magnetic resonance spectroscopy (MRS) to investigate absolute glutamate concentrations and metabolite ratios in patients with MA addiction. We further analyzed the association between glutamate concentration and various clinical indicators. Methods: The present study included 31 unmedicated patients with clinically diagnosed MA dependence (mean age: 30.5 ± 8.0 years) and 32 age-matched healthy controls (mean age: 32.9 ± 8.2 years). Patients were evaluated using the Barratt Impulsiveness Scale (BIS-11). We also collected general information regarding the duration and dosage of drug use. Point-resolved spectroscopy was used to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, and creatine), as well as the ratio of metabolites to total creatine, using LCModel software. We then compared differences in glutamate levels and psychometric scores between the two groups. Results: Glutamate-to-creatine ratios in the brainstem were significantly higher in the MA group than in the control group (t = 2.764, p = 0.008). Glutamate concentrations in the brainstem were also significantly higher in the MA group than in the control group (t = 2.390, p = 0.020). However, no significant differences in the concentrations or ratios of other metabolites were observed between the two groups (all p > 0.05). Glutamate concentration was positively correlated with the duration of drug use (r = 0.401, p = 0.035) and the total dose of regular addiction (duration of addiction × regular addiction dose; r = 0.207, p = .040), but not with BIS-11 scores. Conclusions: Our findings indicated that glutamate levels in the brainstem are significantly elevated in patients with MA use disorders, and that these levels are significantly associated with the duration and dose of drug use.Such findings suggest that glutamate concentration can be used as an objective biological marker for evaluating/monitoring disease status and treatment efficacy in patients with MA dependence.
Collapse
Affiliation(s)
- Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ru Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei He
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Vocational College, Changsha, China
| |
Collapse
|
22
|
Bernier D, Bartha R, McAllindon D, Hanstock CC, Marchand Y, Dillen KNH, Gallant M, Good KP, Tibbo PG. Illness versus substance use effects on the frontal white matter in early phase schizophrenia: A 4Tesla (1)H-MRS study. Schizophr Res 2016; 175:4-11. [PMID: 27161760 DOI: 10.1016/j.schres.2016.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Young adults with early phase schizophrenia often report a past or current pattern of illicit substance use and/or alcohol misuse. Still, little is known about the cumulative and separate effects of each stressor on white matter tissue, at this vulnerable period of brain development. METHODS Participants involved 24 healthy controls with a past or current history of sustained illicit drug use and/or alcohol misuse (users), 23 healthy controls without such history (normative data), and 27 users with early phase schizophrenia. (1)H-MRS data were acquired from a large frontal volume encompassing 95% of white matter, using a 4Tesla scanner (LASER sequence, TR/TE 3200/46ms). RESULTS Reduced levels of choline-containing compounds (Cho) were specific to the effect of illness (Cohen's d=0.68), with 22% of the variance in Cho levels accounted for by duration of illness. Reduced levels of myoInositol (d=1.10) and creatine plus phosphocreatine (d=1.07) were specific to the effects of illness plus substance use. Effect of substance use on its own was revealed by reductions in levels of glutamate plus glutamine (d=0.83) in control users relative to normative data. CONCLUSIONS The specific effect of illness on white matter might indicate a decreased synthesis of membrane phospholipids or alternatively, reduced membrane cellular density. In terms of limitations, this study did not include patients without a lifetime history of substance use (non-users), and the specific effect of each substance used could not be studied separately.
Collapse
Affiliation(s)
- Denise Bernier
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, Ontario, Canada
| | - David McAllindon
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada; Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada
| | | | - Yannick Marchand
- Faculty of Computer Science, Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada
| | - Kim N H Dillen
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Michelle Gallant
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Kimberly P Good
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
23
|
Moeller SJ, London ED, Northoff G. Neuroimaging markers of glutamatergic and GABAergic systems in drug addiction: Relationships to resting-state functional connectivity. Neurosci Biobehav Rev 2016; 61:35-52. [PMID: 26657968 PMCID: PMC4731270 DOI: 10.1016/j.neubiorev.2015.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/21/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is characterized by widespread abnormalities in brain function and neurochemistry, including drug-associated effects on concentrations of the excitatory and inhibitory neurotransmitters glutamate and gamma-aminobutyric acid (GABA), respectively. In healthy individuals, these neurotransmitters drive the resting state, a default condition of brain function also disrupted in addiction. Here, our primary goal was to review in vivo magnetic resonance spectroscopy and positron emission tomography studies that examined markers of glutamate and GABA abnormalities in human drug addiction. Addicted individuals tended to show decreases in these markers compared with healthy controls, but findings also varied by individual characteristics (e.g., abstinence length). Interestingly, select corticolimbic brain regions showing glutamatergic and/or GABAergic abnormalities have been similarly implicated in resting-state functional connectivity deficits in drug addiction. Thus, our secondary goals were to provide a brief review of this resting-state literature, and an initial rationale for the hypothesis that abnormalities in glutamatergic and/or GABAergic neurotransmission may underlie resting-state functional deficits in drug addiction. In doing so, we suggest future research directions and possible treatment implications.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Edythe D London
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Departments of Psychiatry and Biobehavioral Sciences, and Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Georg Northoff
- Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Ottawa, Canada.
| |
Collapse
|
24
|
Hellem T, Shi X, Latendresse G, Renshaw PF. The Utility of Magnetic Resonance Spectroscopy for Understanding Substance Use Disorders: A Systematic Review of the Literature. J Am Psychiatr Nurses Assoc 2015; 21:244-75. [PMID: 26282670 PMCID: PMC5495546 DOI: 10.1177/1078390315598606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this article is to present a systematic review of magnetic resonance spectroscopy (MRS) studies of substance use disorders. As a noninvasive and nonionizing imaging technique, MRS is being widely used in substance abuse research to evaluate the effects substances of abuse have on brain chemistry. Nearly 40 peer-reviewed research articles that focused on the utility of MRS in alcohol, methamphetamine, 3,4-methylenedioxymethamphetamine, cocaine, opiates, opioids, marijuana, and nicotine use disorders were reviewed. Findings indicate inconsistencies with respect to alterations in brain chemistry within each substance of abuse, and the most consistent finding across substances was decreased N-acetylaspartate and choline levels with chronic alcohol, methamphetamine, and nicotine use. Variation in the brain regions studied, imaging technique, as well as small sample sizes might explain the discrepancies in findings within each substance. Future well-designed MRS studies offer promise in examining novel treatment approaches in substance use disorders.
Collapse
Affiliation(s)
- Tracy Hellem
- Tracy Hellem, PhD, RN, Diagnostic Neuroimaging and College of Nursing, University of Utah, Salt Lake City, UT, USA
| | - Xianfeng Shi
- Xianfeng Shi, PhD, Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
| | - Gwen Latendresse
- Gwen Latendresse, PhD, CNM, FACNM, College of Nursing, University of Utah, Salt Lake City, UT, USA
| | - Perry F Renshaw
- Perry F. Renshaw, MD, PhD, MBA, Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA and VISN 19 MIRECC, Salt Lake City, UT, USA
| |
Collapse
|