1
|
Aberizk K, Addington JM, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF, Ku BS. Relations of Lifetime Perceived Stress and Basal Cortisol With Hippocampal Volume Among Healthy Adolescents and Those at Clinical High Risk for Psychosis: A Structural Equation Modeling Approach. Biol Psychiatry 2024; 96:401-411. [PMID: 38092185 PMCID: PMC11166888 DOI: 10.1016/j.biopsych.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Hippocampal volume (HV) is sensitive to environmental influences. Under normative conditions in humans, HV increases linearly into childhood and asymptotes in early adulthood. Studies of humans and nonhuman animals have provided evidence of inverse relationships between several measures of stress and HV. METHODS Using structural equation modeling, this study aimed to characterize the relationships of age, basal cortisol, biological sex, and lifetime perceived stress with bilateral HV in a sample of healthy adolescents and adolescents at clinical high risk for psychosis (CHR-P) (N = 571, 43% female; age range = 12-19.9 years). This sample included 469 individuals at CHR-P and 102 healthy comparison participants from the combined baseline cohorts of the second and third NAPLS (North American Prodrome Longitudinal Study). RESULTS A structural model that constrained the individual effects of basal cortisol and perceived stress to single path coefficients, and freely estimated the effects of age and biological sex in group models, optimized model fit and parsimony relative to other candidate models. Significant inverse relationships between basal cortisol and bilateral HV were observed in adolescents at CHR-P and healthy comparison participants. Significant sex differences in bilateral HV were also observed, with females demonstrating smaller HV than males in both groups. CONCLUSIONS Multigroup structural equation modeling revealed heterogeneity in the relationships of age and biological sex with basal cortisol, lifetime perceived stress, and bilateral HV in individuals at CHR-P and healthy comparison participants. Moreover, the findings support previous literature indicating that elevated basal cortisol is a nonspecific risk factor for reduced HV.
Collapse
Affiliation(s)
- Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, Georgia.
| | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, California
| | | | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | | | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, California
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, California
| | - Scott W Woods
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
2
|
Aberizk K, Sefik E, Addington J, Anticevic A, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF. Hippocampal Connectivity with the Default Mode Network is Linked to Hippocampal Volume in the Clinical High Risk for Psychosis Syndrome and Healthy Individuals. Clin Psychol Sci 2023; 11:801-818. [PMID: 37981950 PMCID: PMC10656030 DOI: 10.1177/21677026221138819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Reduced hippocampal volume (HV) is an established brain morphological feature of psychiatric conditions. HV is associated with brain connectivity in humans and non-human animals and altered connectivity is associated with risk for psychiatric illness. Associations between HV and connectivity remain poorly characterized in humans, and especially in phases of psychiatric illness that precede disease onset. This study examined associations between HV and hippocampal functional connectivity (FC) during rest in 141 healthy controls and 248 individuals at-risk for psychosis. Significant inverse associations between HV and hippocampal FC with the inferior parietal lobe (IPL) and thalamus were observed. Select associations between hippocampal FC and HV were moderated by diagnostic group. Significant moderation results shifted from implicating the IPL to the temporal pole after excluding participants on antipsychotic medication. Considered together, this work implicates hippocampal FC with the temporoparietal junction, within a specialized subsystem of the default mode network, as sensitive to HV.
Collapse
Affiliation(s)
- Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Esra Sefik
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, CA, USA
| | | | | | | | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California, San Francisco, CA, USA
- San Francisco VA Medical Center, San Francisco, CA, USA
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, MA, USA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W. Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
3
|
Vucurovic K, Raucher-Chéné D, Obert A, Gobin P, Henry A, Barrière S, Traykova M, Gierski F, Portefaix C, Caillies S, Kaladjian A. Activation of the left medial temporal gyrus and adjacent brain areas during affective theory of mind processing correlates with trait schizotypy in a nonclinical population. Soc Cogn Affect Neurosci 2023; 18:6701589. [PMID: 36107738 PMCID: PMC9949503 DOI: 10.1093/scan/nsac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia, a severe psychiatric disorder, is associated with abnormal brain activation during theory of mind (ToM) processing. Researchers recently suggested that there is a continuum running from subclinical schizotypal personality traits to fully expressed schizophrenia symptoms. Nevertheless, it remains unclear whether schizotypal personality traits in a nonclinical population are associated with atypical brain activation during ToM tasks. Our aim was to investigate correlations between fMRI brain activation during affective ToM (ToMA) and cognitive ToM (ToMC) tasks and scores on the Schizotypal Personality Questionnaire (SPQ) and the Basic Empathy Scale in 39 healthy individuals. The total SPQ score positively correlated with brain activation during ToMA processing in clusters extending from the left medial temporal gyrus (MTG), lingual gyrus and fusiform gyrus to the parahippocampal gyrus (Brodmann area: 19). During ToMA processing, the right inferior occipital gyrus, right MTG, precuneus and posterior cingulate cortex negatively correlated with the emotional disconnection subscore and the total score of self-reported empathy. These posterior brain regions are known to be involved in memory and language, as well as in creative reasoning, in nonclinical individuals. Our findings highlight changes in brain processing associated with trait schizotypy in nonclinical individuals during ToMA but not ToMC processing.
Collapse
Affiliation(s)
- Ksenija Vucurovic
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Centre Rémois de Psychothérapie et Neuromodulation, 51100 Reims, France
| | - Delphine Raucher-Chéné
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,McGill University, Douglas Mental Health University Institute, 11290 Montreal, Canada
| | - Alexandre Obert
- Champollion National University Institute, Cognition Sciences, Technology & Ergonomics Laboratory, University of Toulouse, 81000 Albi, France
| | - Pamela Gobin
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Audrey Henry
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Sarah Barrière
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Martina Traykova
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Fabien Gierski
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Christophe Portefaix
- Radiology Department, Reims University Hospital, 51100 Reims, France.,University of Reims Champagne-Ardenne, CReSTIC Laboratory, 51100 Reims, France
| | - Stéphanie Caillies
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France
| | - Arthur Kaladjian
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,University of Reims Champagne-Ardenne Faculty of Medicine, 51100 Reims, France
| |
Collapse
|
4
|
Ku BS, Aberizk K, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Carrión RE, Compton MT, Cornblatt BA, Druss BG, Mathalon DH, Perkins DO, Tsuang MT, Woods SW, Walker EF. The Association Between Neighborhood Poverty and Hippocampal Volume Among Individuals at Clinical High-Risk for Psychosis: The Moderating Role of Social Engagement. Schizophr Bull 2022; 48:1032-1042. [PMID: 35689540 PMCID: PMC9434451 DOI: 10.1093/schbul/sbac055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reductions in hippocampal volume (HV) have been associated with both prolonged exposure to stress and psychotic illness. This study sought to determine whether higher levels of neighborhood poverty would be associated with reduced HV among individuals at clinical high-risk for psychosis (CHR-P), and whether social engagement would moderate this association. This cross-sectional study included a sample of participants (N = 174, age-range = 12-33 years, 35.1% female) recruited for the second phase of the North American Prodrome Longitudinal Study. Generalized linear mixed models tested the association between neighborhood poverty and bilateral HV, as well as the moderating role of social engagement on this association. Higher levels of neighborhood poverty were associated with reduced left (β = -0.180, P = .016) and right HV (β = -0.185, P = .016). Social engagement significantly moderated the relation between neighborhood poverty and bilateral HV. In participants with lower levels of social engagement (n = 77), neighborhood poverty was associated with reduced left (β = -0.266, P = .006) and right HV (β = -0.316, P = .002). Among participants with higher levels of social engagement (n = 97), neighborhood poverty was not significantly associated with left (β = -0.010, P = .932) or right HV (β = 0.087, P = .473). In this study, social engagement moderated the inverse relation between neighborhood poverty and HV. These findings demonstrate the importance of including broader environmental influences and indices of social engagement when conceptualizing adversity and potential interventions for individuals at CHR-P.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GAUSA
| | | | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, USA
| | | | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CTUSA
- Department of Psychology, Yale University, New Haven, CTUSA
| | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Michael T Compton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, NY, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GAUSA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco, CAUSA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CTUSA
| | | |
Collapse
|
5
|
Lin X, Li W, Dong G, Wang Q, Sun H, Shi J, Fan Y, Li P, Lu L. Characteristics of Multimodal Brain Connectomics in Patients With Schizophrenia and the Unaffected First-Degree Relatives. Front Cell Dev Biol 2021; 9:631864. [PMID: 33718367 PMCID: PMC7947240 DOI: 10.3389/fcell.2021.631864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Increasing pieces of evidence suggest that abnormal brain connectivity plays an important role in the pathophysiology of schizophrenia. As an essential strategy in psychiatric neuroscience, the research of brain connectivity-based neuroimaging biomarkers has gained increasing attention. Most of previous studies focused on a single modality of the brain connectomics. Multimodal evidence will not only depict the full profile of the brain abnormalities of patients but also contribute to our understanding of the neurobiological mechanisms of this disease. METHODS In the current study, 99 schizophrenia patients, 69 sex- and education-matched healthy controls, and 42 unaffected first-degree relatives of patients were recruited and scanned. The brain was parcellated into 246 regions and multimodal network analyses were used to construct brain connectivity networks for each participant. RESULTS Using the brain connectomics from three modalities as the features, the multi-kernel support vector machine method yielded high discrimination accuracies for schizophrenia patients (94.86%) and for the first-degree relatives (95.33%) from healthy controls. Using an independent sample (49 patients and 122 healthy controls), we tested the model and achieved a classification accuracy of 64.57%. The convergent pattern within the basal ganglia and thalamus-cortex circuit exhibited high discriminative power during classification. Furthermore, substantial overlaps of the brain connectivity abnormality between patients and the unaffected first-degree relatives were observed compared to healthy controls. CONCLUSION The current findings demonstrate that decreased functional communications between the basal ganglia, thalamus, and the prefrontal cortex could serve as biomarkers and endophenotypes for schizophrenia.
Collapse
Affiliation(s)
- Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - WeiKai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangheng Dong
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Qiandong Wang
- Department of Psychology, Beijing Normal University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
6
|
Soni S, Muthukrishnan SP, Sood M, Kaur S, Sharma R. Altered parahippocampal gyrus activation and its connectivity with resting-state network areas in schizophrenia: An EEG study. Schizophr Res 2020; 222:411-422. [PMID: 32534839 DOI: 10.1016/j.schres.2020.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/21/2020] [Accepted: 03/29/2020] [Indexed: 02/02/2023]
Abstract
Synchronized and coherent activity in resting-networks during normal brain functioning could be altered in disconnection syndrome like schizophrenia. Study of neural oscillations as assessed by EEG appears to be a promising proposition to understand the pathophysiology of schizophrenia in patients and their first-degree relatives, where disturbances in neural oscillations point towards genetic predisposition. Therefore, present study aims at establishing EEG based biomarkers for early detection and management strategies. Thirty-two patients with schizophrenia, 28 first-degree relatives and 31 healthy controls (HC) participated in the study. Resting brain activity was recorded using 128-channel electroencephalography. After pre-processing and independent component analysis (ICA), an equivalent current dipole was estimated for each IC. Total of 1551 independent and localizable EEG components across all groups were used in subsequent analysis. Power spectral density and source coherence between IC clusters were computed. Patients and first-degree relatives displayed significantly higher power spectral density (PSD) than HC for all frequency bands in left parahippocampal gyrus (PHG) (-7, -26, 8; BA 27). Another region within left deep PHG (-4, -28, 1), however, distinguished patients from first-degree relatives and HC in terms of significantly lower PSD in higher frequency bands. Functional connectivity (FC) was found to be lower in patients and higher in relatives compared to HC between different resting-state network areas. In patients, connectivity was lower compared to first-degree relatives. Altered activity within left PHG and FC of primarily this with other areas in resting-state network can serve as state and trait markers of schizophrenia.
Collapse
Affiliation(s)
- Sunaina Soni
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
8
|
Rodriguez M, Zaytseva Y, Cvrčková A, Dvořaček B, Dorazilová A, Jonáš J, Šustová P, Voráčková V, Hájková M, Kratochvílová Z, Španiel F, Mohr P. Cognitive Profiles and Functional Connectivity in First-Episode Schizophrenia Spectrum Disorders - Linking Behavioral and Neuronal Data. Front Psychol 2019; 10:689. [PMID: 31001171 PMCID: PMC6454196 DOI: 10.3389/fpsyg.2019.00689] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The character of cognitive deficit in schizophrenia is not clear due to the heterogeneity in research results. In heterogeneous conditions, the cluster solution allows the classification of individuals based on profiles. Our aim was to examine the cognitive profiles of first-episode schizophrenia spectrum disorder (FES) subjects based on cluster analysis, and to correlate these profiles with clinical variables and resting state brain connectivity, as measured with magnetic resonance imaging. A total of 67 FES subjects were assessed with a neuropsychological test battery and on clinical variables. The results of the cognitive domains were cluster analyzed. In addition, functional connectivity was calculated using ROI-to-ROI analysis with four groups: Three groups were defined based on the cluster analysis of cognitive performance and a control group with a normal cognitive performance. The connectivity was compared between the patient clusters and controls. We found different cognitive profiles based on three clusters: Cluster 1: decline in the attention, working memory/flexibility, and verbal memory domains. Cluster 2: decline in the verbal memory domain and above average performance in the attention domain. Cluster 3: generalized and severe deficit in all of the cognitive domains. FES diagnoses were distributed among all of the clusters. Cluster comparisons in neural connectivity also showed differences between the groups. Cluster 1 showed both hyperconnectivity between the cerebellum and precentral gyrus, the salience network (SN) (insula cortex), and fronto-parietal network (FPN) as well as between the PreCG and SN (insula cortex) and hypoconnectivity between the default mode network (DMN) and seeds of SN [insula and supramarginal gyrus (SMG)]; Cluster 2 showed hyperconnectivity between the DMN and cerebellum, SN (insula) and precentral gyrus, and FPN and IFG; Cluster 3 showed hypoconnectivity between the DMN and SN (insula) and SN (SMG) and pallidum. The cluster solution confirms the prevalence of a cognitive decline with different patterns of cognitive performance, and different levels of severity in FES. Moreover, separate behavioral cognitive subsets can be linked to patterns of brain functional connectivity.
Collapse
Affiliation(s)
- Mabel Rodriguez
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Charles University in Prague, Prague, Czechia
| | - Yuliya Zaytseva
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Aneta Cvrčková
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Social Studies, Masaryk University, Brno, Czechia
| | - Boris Dvořaček
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Aneta Dorazilová
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czechia
| | - Juraj Jonáš
- National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Charles University in Prague, Prague, Czechia
| | - Petra Šustová
- National Institute of Mental Health, Klecany, Czechia
| | - Veronika Voráčková
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Marie Hájková
- National Institute of Mental Health, Klecany, Czechia
| | | | - Filip Španiel
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Pavel Mohr
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
9
|
Ruzich E, Crespo‐García M, Dalal SS, Schneiderman JF. Characterizing hippocampal dynamics with MEG: A systematic review and evidence-based guidelines. Hum Brain Mapp 2019; 40:1353-1375. [PMID: 30378210 PMCID: PMC6456020 DOI: 10.1002/hbm.24445] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The hippocampus, a hub of activity for a variety of important cognitive processes, is a target of increasing interest for researchers and clinicians. Magnetoencephalography (MEG) is an attractive technique for imaging spectro-temporal aspects of function, for example, neural oscillations and network timing, especially in shallow cortical structures. However, the decrease in MEG signal-to-noise ratio as a function of source depth implies that the utility of MEG for investigations of deeper brain structures, including the hippocampus, is less clear. To determine whether MEG can be used to detect and localize activity from the hippocampus, we executed a systematic review of the existing literature and found successful detection of oscillatory neural activity originating in the hippocampus with MEG. Prerequisites are the use of established experimental paradigms, adequate coregistration, forward modeling, analysis methods, optimization of signal-to-noise ratios, and protocol trial designs that maximize contrast for hippocampal activity while minimizing those from other brain regions. While localizing activity to specific sub-structures within the hippocampus has not been achieved, we provide recommendations for improving the reliability of such endeavors.
Collapse
Affiliation(s)
- Emily Ruzich
- Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and PhysiologySahlgrenska Academy & the University of GothenburgGothenburgSweden
| | | | - Sarang S. Dalal
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhus CDenmark
| | - Justin F. Schneiderman
- Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and PhysiologySahlgrenska Academy & the University of GothenburgGothenburgSweden
| |
Collapse
|
10
|
Moreno-Samaniego L, Gaviria AM, Vilella E, Valero J, Labad A. Schizotypal traits and cognitive performance in siblings of patients with psychosis. Psychiatry Res 2017; 258:551-556. [PMID: 28958455 DOI: 10.1016/j.psychres.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/28/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Schizotypy has been proposed to be the expression of genetic vulnerability to schizophrenia. The available literature shows cognitive similarities between schizotypy and schizophrenia, with mildly impaired performance being associated with schizotypy. This study aims to determine the relationship between schizotypy and cognitive performance in siblings of patients with psychosis. METHODS Schizotypal features and cognitive performance on a neuropsychological battery were compared between 48 siblings of patients with psychosis and 44 healthy controls. The relationships between schizotypy and cognitive performance were analysed by controlling the condition of being a sibling. RESULTS Siblings showed poorer performance on vigilance/sustained attention (M = 37.6; SD = 7.1) and selective attention/interference control/working memory (M = 23.28; SD = 2.7) tasks. The variance in vigilance/sustained attention performance was explained, at 30%, by the interpersonal factor of schizotypy on the suspiciousness dimension and the condition of being a sibling. CONCLUSIONS Interpersonal features of schizotypy in siblings of patients with psychosis are associated with deficits in vigilance/sustained attention performance.
Collapse
Affiliation(s)
- L Moreno-Samaniego
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovira i Virgili. CIBERSAM, Ctra. de l'Institut Pere Mata, s/n., Reus, 43206 Tarragona, Spain.
| | - Ana M Gaviria
- Universidad San Buenaventura, Faculty of Psychology, Carrera 56C No. 51-110 Office: 207-B Medellín, Antioquia, Colombia.
| | - E Vilella
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovira i Virgili. CIBERSAM, Ctra. de l'Institut Pere Mata, s/n., Reus, 43206 Tarragona, Spain.
| | - J Valero
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovira i Virgili. CIBERSAM, Ctra. de l'Institut Pere Mata, s/n., Reus, 43206 Tarragona, Spain.
| | - A Labad
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovira i Virgili. CIBERSAM, Ctra. de l'Institut Pere Mata, s/n., Reus, 43206 Tarragona, Spain.
| |
Collapse
|
11
|
Abstract
We review the changing conceptions of schizophrenia over the past 50 years as it became understood as a disorder of brain function and structure in which neurocognitive dysfunction was identified at different illness phases. The centrality of neurocognition has been recognized, especially because neurocognitive deficits are strongly related to social and role functioning in the illness, and as a result neurocognitive measures are used routinely in clinical assessment of individuals with schizophrenia. From the original definitions of the syndrome of schizophrenia in the early 20th century, impaired cognition, especially attention, was considered to be important. Neurocognitive impairments are found in the vast majority of individuals with schizophrenia, and they vary from mild, relatively restricted deficits, to dementia-like syndromes, as early as the first psychotic episode. Neurocognitive deficits are found in the premorbid phase in a substantial minority of pre-teenage youth who later develop schizophrenia, and they apparently worsen by the prodromal, high-risk phase in a majority of those who develop the illness. While there is limited evidence for reversibility of impairments from pharmacological interventions in schizophrenia, promising results have emerged from cognitive remediation studies. Thus, we expect cognitive interventions to play a larger role in schizophrenia in the coming years. Moreover, because youth at risk for schizophrenia can be identified by an emergent high-risk syndrome, earlier interventions might be applied in a pre-emptive way to reduce disability and improve adaptation. The notion of schizophrenia as a developmental neurocognitive disorder with stages opens up a window of possibilities for earlier interventions. (JINS, 2017, 23, 881-892).
Collapse
|
12
|
Progressive Decline in Hippocampal CA1 Volume in Individuals at Ultra-High-Risk for Psychosis Who Do Not Remit: Findings from the Longitudinal Youth at Risk Study. Neuropsychopharmacology 2017; 42:1361-1370. [PMID: 28079061 PMCID: PMC5437892 DOI: 10.1038/npp.2017.5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
Most individuals identified as ultra-high-risk (UHR) for psychosis do not develop frank psychosis. They continue to exhibit subthreshold symptoms, or go on to fully remit. Prior work has shown that the volume of CA1, a subfield of the hippocampus, is selectively reduced in the early stages of schizophrenia. Here we aimed to determine whether patterns of volume change of CA1 are different in UHR individuals who do or do not achieve symptomatic remission. Structural MRI scans were acquired at baseline and at 1-2 follow-up time points (at 12-month intervals) from 147 UHR and healthy control subjects. An automated method (based on an ex vivo atlas of ultra-high-resolution hippocampal tissue) was used to delineate the hippocampal subfields. Over time, a greater decline in bilateral CA1 subfield volumes was found in the subgroup of UHR subjects whose subthreshold symptoms persisted (n=40) and also those who developed clinical psychosis (n=12), compared with UHR subjects who remitted (n=41) and healthy controls (n=54). No baseline differences in volumes of the overall hippocampus or its subfields were found among the groups. Moreover, the rate of volume decline of CA1, but not of other hippocampal subfields, in the non-remitters was associated with increasing symptom severity over time. Thus, these findings indicate that there is deterioration of CA1 volume in persistently symptomatic UHR individuals in proportion to symptomatic progression.
Collapse
|
13
|
Pruessner M, Bechard-Evans L, Pira S, Joober R, Collins DL, Pruessner JC, Malla AK. Interplay of hippocampal volume and hypothalamus-pituitary-adrenal axis function as markers of stress vulnerability in men at ultra-high risk for psychosis. Psychol Med 2017; 47:471-483. [PMID: 27774914 DOI: 10.1017/s0033291716002658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Altered hypothalamus-pituitary-adrenal (HPA) axis function and reduced hippocampal volume (HV) are established correlates of stress vulnerability. We have previously shown an attenuated cortisol awakening response (CAR) and associations with HV specifically in male first-episode psychosis patients. Findings in individuals at ultra-high risk (UHR) for psychosis regarding these neurobiological markers are inconsistent, and assessment of their interplay, accounting for sex differences, could explain incongruent results. METHOD Study participants were 42 antipsychotic-naive UHR subjects (24 men) and 46 healthy community controls (23 men). Saliva samples for the assessment of CAR were collected at 0, 30 and 60 min after awakening. HV was determined from high-resolution structural magnetic resonance imaging scans using a semi-automatic segmentation protocol. RESULTS Cortisol measures and HV were not significantly different between UHR subjects and controls in total, but repeated-measures multivariate regression analyses revealed reduced cortisol levels 60 min after awakening and smaller left HV in male UHR individuals. In UHR participants only, smaller left and right HV was significantly correlated with a smaller total CAR (ρ = 0.42, p = 0.036 and ρ = 0.44, p = 0.029, respectively), corresponding to 18% and 19% of shared variance (medium effect size). CONCLUSIONS Our findings suggest that HV reduction in individuals at UHR for psychosis is specific to men and linked to reduced post-awakening cortisol concentrations. Abnormalities in the neuroendocrine circuitry modulating stress vulnerability specifically in male UHR subjects might explain increased psychosis risk and disadvantageous illness outcomes in men compared to women.
Collapse
Affiliation(s)
- M Pruessner
- Department of Psychiatry,Prevention and Early Intervention Program for Psychosis, DouglasMental Health University Institute,McGill University,Montréal,Québec,Canada
| | - L Bechard-Evans
- Department of Psychiatry,Prevention and Early Intervention Program for Psychosis, DouglasMental Health University Institute,McGill University,Montréal,Québec,Canada
| | - S Pira
- Department of Psychiatry,Prevention and Early Intervention Program for Psychosis, DouglasMental Health University Institute,McGill University,Montréal,Québec,Canada
| | - R Joober
- Department of Psychiatry,Prevention and Early Intervention Program for Psychosis, DouglasMental Health University Institute,McGill University,Montréal,Québec,Canada
| | - D L Collins
- Departments of Neurology & Neurosurgery, and Biomedical Engineering,Brain Imaging Centre,Montreal Neurological Institute,McGill University,Montréal,Québec,Canada
| | - J C Pruessner
- Departments of Psychiatry, and Psychology,McGill Centre for Studies in Aging,Douglas Mental Health University Institute,McGill University,Montréal,Québec,Canada
| | - A K Malla
- Department of Psychiatry,Prevention and Early Intervention Program for Psychosis, DouglasMental Health University Institute,McGill University,Montréal,Québec,Canada
| |
Collapse
|
14
|
Galindo L, Bergé D, Murray GK, Mané A, Bulbena A, Pérez V, Vilarroya O. Default Mode Network Aberrant Connectivity Associated with Neurological Soft Signs in Schizophrenia Patients and Unaffected Relatives. Front Psychiatry 2017; 8:298. [PMID: 29375404 PMCID: PMC5767074 DOI: 10.3389/fpsyt.2017.00298] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Brain connectivity and neurological soft signs (NSS) are reportedly abnormal in schizophrenia and unaffected relatives, suggesting they might be useful neurobiological markers of the illness. NSS are discrete sensorimotor impairments thought to correspond to deviant brain development. Although NSS support the hypothesis that schizophrenia involves disruption in functional circuits involving several hetero modal association areas, little is known about the relationship between NSS and brain connectivity. We explored functional connectivity abnormalities of the default mode network (DMN) related to NSS in schizophrenia. A cross-sectional study was performed with 27 patients diagnosed with schizophrenia, 23 unaffected relatives who were unrelated to the schizophrenia subjects included in the study, and 35 healthy controls. Subjects underwent magnetic resonance imaging scans including a functional resting-state acquisition and NSS evaluation. Seed-to-voxel and independent component analyses were used to study brain connectivity. NSS scores were significantly different between groups, ranging from a higher to lower scores for patients, unaffected relatives, and healthy controls, respectively (analysis of variance effect of group F = 56.51, p < 0.001). The connectivity analysis revealed significant hyperconnectivity in the fusiform gyrus, insular and dorsolateral prefrontal cortices, inferior and middle frontal gyri, middle and superior temporal gyri, and posterior cingulate cortex [minimum p-family wise error (FWE) < 0.05 for all clusters] in patients with schizophrenia as compared with in controls. Also, unaffected relatives showed hyperconnectivity in relation to controls in the supramarginal association and dorsal posterior cingulate cortices (p-FWE < 0.05 for all clusters) in patients with schizophrenia as compared with in controls. Also, unaffected relatives showed hyperconnectivity in relation to controls in the supramarginal association and dorsal posterior cingulate cortices (p-FWE = 0.001) and in the anterior prefrontal cortex (42 voxels, p-FWE = 0.047). A negative correlation was found between left caudate connectivity and NSS [p-FWE = 0.044, cluster size (k) = 110 voxels]. These findings support the theory of widespread abnormal connectivity in schizophrenia, reinforcing DMN hyperconnectivity and NSS as neurobiological markers of schizophrenia. The results also indicate the caudate nucleus as the gateway to the motor consequences of abnormal DMN connectivity.
Collapse
Affiliation(s)
- Liliana Galindo
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Bergé
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom.,Institute of Behavioural and Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anna Mané
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Antonio Bulbena
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor Pérez
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Oscar Vilarroya
- Neuroimaging Research Group, Neuroscience, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Cognitive Neuroscience Research Group, Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Walter A, Suenderhauf C, Harrisberger F, Lenz C, Smieskova R, Chung Y, Cannon TD, Bearden CE, Rapp C, Bendfeldt K, Borgwardt S, Vogel T. Hippocampal volume in subjects at clinical high-risk for psychosis: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 71:680-690. [DOI: 10.1016/j.neubiorev.2016.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
|
16
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 661] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|
17
|
Xi YB, Li C, Cui LB, Liu J, Guo F, Li L, Liu TT, Liu K, Chen G, Xi M, Wang HN, Yin H. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study. Front Hum Neurosci 2016; 10:383. [PMID: 27512370 PMCID: PMC4961710 DOI: 10.3389/fnhum.2016.00383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ.
Collapse
Affiliation(s)
- Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Long-Biao Cui
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Jian Liu
- Network Center, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Liang Li
- School of Biomedical Engineering, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Ting-Ting Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Kang Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Gang Chen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Min Xi
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Satterthwaite TD, Wolf DH, Calkins ME, Vandekar SN, Erus G, Ruparel K, Roalf DR, Linn KA, Elliott MA, Moore TM, Hakonarson H, Shinohara RT, Davatzikos C, Gur RC, Gur RE. Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms. JAMA Psychiatry 2016; 73:515-24. [PMID: 26982085 PMCID: PMC5048443 DOI: 10.1001/jamapsychiatry.2015.3463] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Structural brain abnormalities are prominent in psychotic disorders, including schizophrenia. However, it is unclear when aberrations emerge in the disease process and if such deficits are present in association with less severe psychosis spectrum (PS) symptoms in youth. OBJECTIVE To investigate the presence of structural brain abnormalities in youth with PS symptoms. DESIGN, SETTING, AND PARTICIPANTS The Philadelphia Neurodevelopmental Cohort is a prospectively accrued, community-based sample of 9498 youth who received a structured psychiatric evaluation. A subsample of 1601 individuals underwent neuroimaging, including structural magnetic resonance imaging, at an academic and children's hospital health care network between November 1, 2009, and November 30, 2011. MAIN OUTCOMES AND MEASURES Measures of brain volume derived from T1-weighted structural neuroimaging at 3 T. Analyses were conducted at global, regional, and voxelwise levels. Regional volumes were estimated with an advanced multiatlas regional segmentation procedure, and voxelwise volumetric analyses were conducted as well. Nonlinear developmental patterns were examined using penalized splines within a general additive model. Psychosis spectrum (PS) symptom severity was summarized using factor analysis and evaluated dimensionally. RESULTS Following exclusions due to comorbidity and image quality assurance, the final sample included 791 participants aged youth 8 to 22 years. Fifty percent (n = 393) were female. After structured interviews, 391 participants were identified as having PS features (PS group) and 400 participants were identified as typically developing comparison individuals without significant psychopathology (TD group). Compared with the TD group, the PS group had diminished whole-brain gray matter volume (P = 1.8 × 10-10) and expanded white matter volume (P = 2.8 × 10-11). Voxelwise analyses revealed significantly lower gray matter volume in the medial temporal lobe (maximum z score = 5.2 and cluster size of 1225 for the right and maximum z score = 4.5 and cluster size of 310 for the left) as well as in frontal, temporal, and parietal cortex. Volumetric reduction in the medial temporal lobe was correlated with PS symptom severity. CONCLUSIONS AND RELEVANCE Structural brain abnormalities that have been commonly reported in adults with psychosis are present early in life in youth with PS symptoms and are not due to medication effects. Future longitudinal studies could use the presence of such abnormalities in conjunction with clinical presentation, cognitive profile, and genomics to predict risk and aid in stratification to guide early interventions.
Collapse
Affiliation(s)
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Simon N Vandekar
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Kristin A Linn
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Russell T Shinohara
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | | | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia3Department of Radiology, University of Pennsylvania, Philadelphia
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia3Department of Radiology, University of Pennsylvania, Philadelphia
| |
Collapse
|
19
|
Aznar S, Hervig MES. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 2016; 64:63-82. [DOI: 10.1016/j.neubiorev.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
20
|
Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A 2016; 113:4853-8. [PMID: 27071089 DOI: 10.1073/pnas.1518377113] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.
Collapse
|
21
|
Peters H, Shao J, Scherr M, Schwerthöffer D, Zimmer C, Förstl H, Bäuml J, Wohlschläger A, Riedl V, Koch K, Sorg C. More Consistently Altered Connectivity Patterns for Cerebellum and Medial Temporal Lobes than for Amygdala and Striatum in Schizophrenia. Front Hum Neurosci 2016; 10:55. [PMID: 26924973 PMCID: PMC4756145 DOI: 10.3389/fnhum.2016.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brain architecture can be divided into a cortico-thalamic system and modulatory "subcortical-cerebellar" systems containing key structures such as striatum, medial temporal lobes (MTLs), amygdala, and cerebellum. Subcortical-cerebellar systems are known to be altered in schizophrenia. In particular, intrinsic functional brain connectivity (iFC) between these systems has been consistently demonstrated in patients. While altered connectivity is known for each subcortical-cerebellar system separately, it is unknown whether subcortical-cerebellar systems' connectivity patterns with the cortico-thalamic system are comparably altered across systems, i.e., if separate subcortical-cerebellar systems' connectivity patterns are consistent across patients. METHODS To investigate this question, 18 patients with schizophrenia (3 unmedicated, 15 medicated with atypical antipsychotics) and 18 healthy controls were assessed by resting-state functional magnetic resonance imaging (fMRI). Independent component analysis of fMRI data revealed cortical intrinsic brain networks (NWs) with time courses representing proxies for cortico-thalamic system activity. Subcortical-cerebellar systems' activity was represented by fMRI-based time courses of selected regions-of-interest (ROIs; i.e., striatum, MTL, amygdala, cerebellum). Correlation analysis among ROI- and NWs-time courses yielded individual connectivity matrices [i.e., connectivity between NW and ROIs (allROIs-NW, separateROI-NW), only NWs (NWs-NWs), and only ROIs (allROIs-allROIs)] as main outcome measures, which were classified by support-vector-machine-based (SVM) leave-one-out cross-validation. Differences in classification accuracy were statistically evaluated for consistency across subjects and systems. RESULTS Correlation matrices based on allROIs-NWs yielded 91% classification accuracy, which was significantly superior to allROIs-allROIs and NWs-NWs (56 and 74%, respectively). Considering separate subcortical-cerebellar systems, cerebellum-NWs and MTL-NWs reached highest accuracy values with 91 and 85%, respectively, while those of striatum-NW and amygdala-NW were significantly lower with about 65% classification accuracy. CONCLUSION RESULTS provide initial evidence for differential consistency of altered intrinsic connectivity patterns between subcortical-cerebellar systems and the cortico-thalamic system. Data suggest that differential dysconnectivity patterns between subcortical-cerebellar and cortical systems might reflect different disease states or patient subgroups.
Collapse
Affiliation(s)
- Henning Peters
- Department of Psychiatry, Technische Universität MünchenMünchen, Germany
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität MünchenMünchen, Germany
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität MünchenMünchen, Germany
| | - Junming Shao
- School of Computer Science and Engineering, University of Electronic Science and Technology of ChinaChengdu, China
- Big Data Research Center, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Information in BioMedicine, University of Electronic Science and Technology of ChinaChengdu, China
| | - Martin Scherr
- Department of Psychiatry, Technische Universität MünchenMünchen, Germany
| | - Dirk Schwerthöffer
- Department of Psychiatry, Technische Universität MünchenMünchen, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Technische Universität MünchenMünchen, Germany
| | - Hans Förstl
- Department of Psychiatry, Technische Universität MünchenMünchen, Germany
| | - Josef Bäuml
- Department of Psychiatry, Technische Universität MünchenMünchen, Germany
| | - Afra Wohlschläger
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität MünchenMünchen, Germany
- Department of Neuroradiology, Technische Universität MünchenMünchen, Germany
| | - Valentin Riedl
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität MünchenMünchen, Germany
- Department of Neuroradiology, Technische Universität MünchenMünchen, Germany
- Department of Nuclear Medicine, Technische Universität MünchenMünchen, Germany
| | - Kathrin Koch
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität MünchenMünchen, Germany
- Department of Neuroradiology, Technische Universität MünchenMünchen, Germany
| | - Christian Sorg
- Department of Psychiatry, Technische Universität MünchenMünchen, Germany
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität MünchenMünchen, Germany
- Department of Neuroradiology, Technische Universität MünchenMünchen, Germany
| |
Collapse
|
22
|
|
23
|
Brent BK, Rosso IM, Thermenos HW, Holt DJ, Faraone SV, Makris N, Tsuang MT, Seidman LJ. Alterations of lateral temporal cortical gray matter and facial memory as vulnerability indicators for schizophrenia: An MRI study in youth at familial high-risk for schizophrenia. Schizophr Res 2016; 170:123-9. [PMID: 26621001 PMCID: PMC4707114 DOI: 10.1016/j.schres.2015.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Structural alterations of the lateral temporal cortex (LTC) in association with memory impairments have been reported in schizophrenia. This study investigated whether alterations of LTC structure were linked with impaired facial and/or verbal memory in young first-degree relatives of people with schizophrenia and, thus, may be indicators of vulnerability to the illness. METHODS Subjects included 27 non-psychotic, first-degree relatives of schizophrenia patients, and 48 healthy controls, between the ages of 13 and 28. Participants underwent high-resolution magnetic resonance imaging (MRI) at 1.5Tesla. The LTC was parcellated into superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, and temporal pole. Total cerebral and LTC volumes were measured using semi-automated morphometry. The Wechsler Memory Scale - Third Edition and the Children's Memory Scale - Third Edition assessed facial and verbal memory. General linear models tested for associations among LTC subregion volumes, familial risk and memory. RESULTS Compared with controls, relatives had significantly smaller bilateral middle temporal gyri. Moreover, right middle temporal gyral volume showed a significant positive association with delayed facial memory in relatives. CONCLUSION These results support the hypothesis that smaller middle temporal gyri are related to the genetic liability to schizophrenia and may be linked with reduced facial memory in persons at genetic risk for the illness. The findings add to the growing evidence that children at risk for schizophrenia on the basis of positive family history have cortical and subcortical structural brain abnormalities well before psychotic illness occurs.
Collapse
Affiliation(s)
- Benjamin K. Brent
- Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114,Harvard Medical School, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA 02115, United States
| | - Isabelle M. Rosso
- Harvard Medical School Department of Psychiatry at McLean Hospital, Belmont, MA 02478, United States
| | - Heidi W. Thermenos
- Harvard Medical School, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA 02115, United States,The HST-MIT Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United States
| | - Daphne J. Holt
- Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114,The HST-MIT Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United States
| | - Stephen V. Faraone
- Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; K.G. Jebsen Centre for Psychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nikos Makris
- Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114,The HST-MIT Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United States,Harvard Medical School Department of Neurology and Radiology Services, Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA 02120, United States
| | - Ming T. Tsuang
- Center for Behavioral Genomics, Department of Psychiatry; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Larry J. Seidman
- Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114,Harvard Medical School, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA 02115, United States,The HST-MIT Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United States
| |
Collapse
|
24
|
Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. Mol Psychiatry 2015; 20:1508-15. [PMID: 26033240 PMCID: PMC4651819 DOI: 10.1038/mp.2015.66] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/07/2015] [Accepted: 03/26/2015] [Indexed: 12/19/2022]
Abstract
Adults with psychotic disorders have dysconnectivity in critical brain networks, including the default mode (DM) and the cingulo-opercular (CO) networks. However, it is unknown whether such deficits are present in youth with less severe symptoms. We conducted a multivariate connectome-wide association study examining dysconnectivity with resting state functional magnetic resonance imaging in a population-based cohort of 188 youths aged 8-22 years with psychosis-spectrum (PS) symptoms and 204 typically developing (TD) comparators. We found evidence for multi-focal dysconnectivity in PS youths, implicating the bilateral anterior cingulate, frontal pole, medial temporal lobe, opercular cortex and right orbitofrontal cortex. Follow-up seed-based and network-level analyses demonstrated that these results were driven by hyper-connectivity among DM regions and diminished connectivity among CO regions, as well as diminished coupling between frontal and DM regions. Collectively, these results provide novel evidence for functional dysconnectivity in PS youths, which show marked correspondence to abnormalities reported in adults with established psychotic disorders.
Collapse
|