1
|
Zhao J, Yang Q, Cheng C, Wang Z. Cumulative genetic score of KIAA0319 affects reading ability in Chinese children: moderation by parental education and mediation by rapid automatized naming. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:10. [PMID: 37259151 DOI: 10.1186/s12993-023-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
KIAA0319, a well-studied candidate gene, has been shown to be associated with reading ability and developmental dyslexia. In the present study, we investigated whether KIAA0319 affects reading ability by interacting with the parental education level and whether rapid automatized naming (RAN), phonological awareness and morphological awareness mediate the relationship between KIAA0319 and reading ability. A total of 2284 Chinese children from primary school grades 3 and 6 participated in this study. Chinese character reading accuracy and word reading fluency were used as measures of reading abilities. The cumulative genetic risk score (CGS) of 13 SNPs in KIAA0319 was calculated. Results revealed interaction effect between CGS of KIAA0319 and parental education level on reading fluency. The interaction effect suggested that individuals with a low CGS of KIAA0319 were better at reading fluency in a positive environment (higher parental educational level) than individuals with a high CGS. Moreover, the interaction effect coincided with the differential susceptibility model. The results of the multiple mediator model revealed that RAN mediates the impact of the genetic cumulative effect of KIAA0319 on reading abilities. These findings provide evidence that KIAA0319 is a risk vulnerability gene that interacts with environmental factor to impact reading abilities and demonstrate the reliability of RAN as an endophenotype between genes and reading associations.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| | - Qing Yang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, Yanta District, 199 South Chang'an Road, Xi'an, 710062, China.
| |
Collapse
|
2
|
Alemany-Navarro M, Tubío-Fungueiriño M, Diz-de Almeida S, Cruz R, Lombroso A, Real E, Soria V, Bertolín S, Fernández-Prieto M, Alonso P, Menchón JM, Carracedo A, Segalàs C. The genomics of visuospatial neurocognition in obsessive-compulsive disorder: A preliminary GWAS. J Affect Disord 2023; 333:365-376. [PMID: 37094658 DOI: 10.1016/j.jad.2023.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The study of Obsessive-Compulsive Disorder (OCD) genomics has primarily been tackled by Genome-wide association studies (GWAS), which have encountered troubles in identifying replicable single nucleotide polymorphisms (SNPs). Endophenotypes have emerged as a promising avenue of study in trying to elucidate the genomic bases of complex traits such as OCD. METHODS We analyzed the association of SNPs across the whole genome with the construction of visuospatial information and executive performance through four neurocognitive variables assessed by the Rey-Osterrieth Complex Figure Test (ROCFT) in a sample of 133 OCD probands. Analyses were performed at SNP- and gene-level. RESULTS No SNP reached genome-wide significance, although there was one SNP almost reaching significant association with copy organization (rs60360940; P = 9.98E-08). Suggestive signals were found for the four variables at both SNP- (P < 1E-05) and gene-levels (P < 1E-04). Most of the suggestive signals pointed to genes and genomic regions previously associated with neurological function and neuropsychological traits. LIMITATIONS Our main limitations were the sample size, which was limited to identify associated signals at a genome-wide level, and the composition of the sample, more representative of rather severe OCD cases than a population-based OCD sample with a broad severity spectrum. CONCLUSIONS Our results suggest that studying neurocognitive variables in GWAS would be more informative on the genetic basis of OCD than the classical case/control GWAS, facilitating the genetic characterization of OCD and its different clinical profiles, the development of individualized treatment approaches, and the improvement of prognosis and treatment response.
Collapse
Affiliation(s)
- M Alemany-Navarro
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; IBIS (Universidad de Sevilla, HUVR, Junta de Andalucia, CSIC) Sevilla, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain.
| | - M Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - S Diz-de Almeida
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - R Cruz
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - A Lombroso
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - E Real
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - V Soria
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - S Bertolín
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - P Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - J M Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - C Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| |
Collapse
|
3
|
Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet 2023; 68:175-182. [PMID: 35821406 DOI: 10.1038/s10038-022-01059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Gurung RL, Burdon KP, McComish BJ. A Guide to Genome-Wide Association Study Design for Diabetic Retinopathy. Methods Mol Biol 2023; 2678:49-89. [PMID: 37326705 DOI: 10.1007/978-1-0716-3255-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication related to diabetes. There is evidence that genetics play an important role in DR pathogenesis, but the complexity of the disease makes genetic studies a challenge. This chapter is a practical overview of the basic steps for genome-wide association studies with respect to DR and its associated traits. Also described are approaches that can be adopted in future DR studies. This is intended to serve as a guide for beginners and to provide a framework for further in-depth analysis.
Collapse
Affiliation(s)
- Rajya L Gurung
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Bennet J McComish
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
5
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
6
|
Berendzen KM, Manoli DS. Rethinking the Architecture of Attachment: New Insights into the Role for Oxytocin Signaling. AFFECTIVE SCIENCE 2022; 3:734-748. [PMID: 36519145 PMCID: PMC9743890 DOI: 10.1007/s42761-022-00142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Social attachments, the enduring bonds between individuals and groups, are essential to health and well-being. The appropriate formation and maintenance of social relationships depend upon a number of affective processes, including stress regulation, motivation, reward, as well as reciprocal interactions necessary for evaluating the affective state of others. A genetic, molecular, and neural circuit level understanding of social attachments therefore provides a powerful substrate for probing the affective processes associated with social behaviors. Socially monogamous species form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment. Now, molecular genetic tools permit manipulations in monogamous species. Studies using these tools reveal new insights into the genetic and neuroendocrine factors that design and control the neural architecture underlying attachment behavior. We focus this discussion on the prairie vole and oxytocinergic signaling in this and related species as a model of attachment behavior that has been studied in the context of genetic and pharmacological manipulations. We consider developmental processes that impact the demonstration of bonding behavior across genetic backgrounds, the modularity of mechanisms underlying bonding behaviors, and the distributed circuitry supporting these behaviors. Incorporating such theoretical considerations when interpreting reverse genetic studies in the context of the rich ethological and pharmacological data collected in monogamous species provides an important framework for studies of attachment behavior in both animal models and studies of human relationships.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158 USA
| |
Collapse
|
7
|
Patel SP, Cole J, Lau JCY, Fragnito G, Losh M. Verbal entrainment in autism spectrum disorder and first-degree relatives. Sci Rep 2022; 12:11496. [PMID: 35798758 PMCID: PMC9262979 DOI: 10.1038/s41598-022-12945-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Entrainment, the unconscious process leading to coordination between communication partners, is an important dynamic human behavior that helps us connect with one another. Difficulty developing and sustaining social connections is a hallmark of autism spectrum disorder (ASD). Subtle differences in social behaviors have also been noted in first-degree relatives of autistic individuals and may express underlying genetic liability to ASD. In-depth examination of verbal entrainment was conducted to examine disruptions to entrainment as a contributing factor to the language phenotype in ASD. Results revealed distinct patterns of prosodic and lexical entrainment in individuals with ASD. Notably, subtler entrainment differences in prosodic and syntactic entrainment were identified in parents of autistic individuals. Findings point towards entrainment, particularly prosodic entrainment, as a key process linked to social communication difficulties in ASD and reflective of genetic liability to ASD.
Collapse
Affiliation(s)
- Shivani P Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jennifer Cole
- Department of Linguistics, Northwestern University, Evanston, IL, USA
| | - Joseph C Y Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Gabrielle Fragnito
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Guardiola-Ripoll M, Almodóvar-Payá C, Lubeiro A, Salvador R, Salgado-Pineda P, Gomar JJ, Guerrero-Pedraza A, Sarró S, Maristany T, Fernández-Linsenbarth I, Hernández-García M, Papiol S, Molina V, Pomarol-Clotet E, Fatjó-Vilas M. New insights of the role of the KCNH2 gene in schizophrenia: An fMRI case-control study. Eur Neuropsychopharmacol 2022; 60:38-47. [PMID: 35635995 DOI: 10.1016/j.euroneuro.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
The KCNH2 gene, encoding for a subunit of a voltage-gated potassium channel, has been identified as a key element of neuronal excitability and a promising novel therapeutic target for schizophrenia (SZ). Nonetheless, evidence highlighting the role of KCNH2 on cognitive and brain activity phenotypes comes mainly from studies based on healthy controls (HC). Therefore, we aimed to study the role of KCNH2 on the brain functional differences between patients with SZ and HC. The fMRI sample comprised 78 HC and 79 patients with SZ (matched for age, sex and premorbid IQ). We studied the effect of the polymorphism KCNH2-rs3800779 on attention and working memory-related brain activity, evaluated through the N-back task, in regions with detected diagnostic differences (regression model, controlled for age, sex and premorbid IQ, FEAT-FSL). We report a significant diagnosis x KCNH2 interaction on brain activity (1-back vs baseline contrast) at the medial superior prefrontal cortex (Zmax=3.55, p = 0.00861). In this region, patients with SZ carrying the risk genotype (AA) show a deactivation failure, while HC depict the opposite pattern towards deactivation. The brain region with significant diagnosis x KCNH2 interaction has been previously associated with SZ. The results of this study, in which the role of KCNH2 on fMRI response is analysed for the first time in patients, suggest that KCNH2 variability contributes to inefficient brain activity modulation during the N-back task in affected subjects. These data may pave the way to further understand how KCNH2 genetic variability is related to the pathophysiological mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; The Litwin-Zucker Alzheimer's Research Center, NY, United States
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Benito Menni-CASM, Sant Boi de Llobregat, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain
| | | | - Marta Hernández-García
- Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich Germany
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Psychiatry Service, University Hospital of Valladolid, Valladolid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona; Barcelona, Spain.
| |
Collapse
|
9
|
Combining fMRI and DISC1 gene haplotypes to understand working memory-related brain activity in schizophrenia. Sci Rep 2022; 12:7351. [PMID: 35513527 PMCID: PMC9072540 DOI: 10.1038/s41598-022-10660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ.
Collapse
|
10
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|
11
|
da Motta C, Pato MT, Barreto Carvalho C, Castilho P. The neurocognitive and functional profile of schizophrenia in a genetically homogenous European sample. Psychiatry Res 2021; 304:114140. [PMID: 34340130 DOI: 10.1016/j.psychres.2021.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a complex heritable brain disorder that entails significant social, neurocognitive, and functional deficits, and significant psychosocial challenges to affected and unaffected family members. In this cross-sectional study, we explore impairments in specific neurocognitive and social cognition processes in patients affected with schizophrenia, unaffected relatives, and in controls to provide a characterization of a genetically homogenous European sample from an endophenotypic and functional standpoint. A sample of 38 affected patients, 28 first-degree relatives, and 97 controls performed a series of computerized and skills-based assessments. Samples were compared across several neurocognitive, social, and functional domains. Significant impairments in episodic memory, executive function, social cognition, complex cognition, sensorimotor domains were found in patients and first-degree relatives. Findings also showed increased processing speed in memory and other complex cognitive processes relevant to autonomous living. A discriminant function analysis yielded 2 functions allowing 79% of correct group classifications based on social cognition and functional skills, neurocognition, and age. The study highlights the importance of resourcing to wide-ranging assessment methodologies, of developing research efforts to further understand the decline of social and neurocognitive processes, and the need for designing more targeted intervention strategies to be implemented both with affected patients and families.
Collapse
Affiliation(s)
- Carolina da Motta
- School of Psychology and Life Sciences, Lusófona University, Portugal; Digital Human-Environment Interaction Lab (HEI-Lab); Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Portugal.
| | - Michele T Pato
- SUNY Downstate Medical Center, Brooklyn, New York, United States
| | - Célia Barreto Carvalho
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Portugal; SUNY Downstate Medical Center, Brooklyn, New York, United States; Department of Psychology, Faculty of Social and Human sciences, University of Azores, Azores, Portugal
| | - Paula Castilho
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Portugal
| |
Collapse
|
12
|
Dutra-Tavares AC, Manhães AC, Semeão KA, Maia JG, Couto LA, Filgueiras CC, Ribeiro-Carvalho A, Abreu-Villaça Y. Does nicotine exposure during adolescence modify the course of schizophrenia-like symptoms? Behavioral analysis in a phencyclidine-induced mice model. PLoS One 2021; 16:e0257986. [PMID: 34587208 PMCID: PMC8480744 DOI: 10.1371/journal.pone.0257986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Keila A. Semeão
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julyana G. Maia
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luciana A. Couto
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Claudio C. Filgueiras
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
13
|
Rebouças DB, Sartori JM, Librenza-Garcia D, Rabelo-da-Ponte FD, Massuda R, Czepielewski LS, Passos IC, Gama CS. Accelerated aging signatures in subjects with schizophrenia and their unaffected siblings. J Psychiatr Res 2021; 139:30-37. [PMID: 34022473 DOI: 10.1016/j.jpsychires.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 01/19/2023]
Abstract
Schizophrenia (SZ) is a chronic debilitating disease. Subjects with SZ have significant shorter life expectancy. Growing evidence suggests that a process of pathological accelerated aging occurs in SZ, leading to early development of severe clinical diseases and worse morbimortality. Furthermore, unaffected relatives can share certain endophenotypes with subjects with SZ. We aim to characterize accelerated aging as a possible endophenotype of schizophrenia by using a machine learning (ML) model of peripheral biomarkers to accurately differentiate subjects with SZ (n = 35), their unaffected siblings (SB, n = 36) and healthy controls (HC, n = 47). We used a random forest algorithm that included biomarkers related to aging: eotaxins CCL-11 and CCL-24; the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), protein carbonyl content (PCC), glutathione peroxidase (GPx); and telomere length (TL). The ML algorithm of biomarkers was able to distinguish individuals with SZ from HC with prediction accuracy of 79.7%, SZ from SB with 62.5% accuracy and SB from HC with 75.5% accuracy. These results support the hypothesis that a pathological accelerated aging might occur in SZ, and this pathological aging could be an endophenotype of the disease, once this profile was also observed in SB, suggesting that SB might suffer from an accelerated aging in some level.
Collapse
Affiliation(s)
- Diego Barreto Rebouças
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Mastella Sartori
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Librenza-Garcia
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Francisco Diego Rabelo-da-Ponte
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raffael Massuda
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Psiquiatria, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leticia Sanguinetti Czepielewski
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós- Graduação em Psicologia, Departamento de Psicologia do Desenvolvimento e da Personalidade, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ives Cavalcante Passos
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa Severino Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
14
|
Demin KA, Smagin DA, Kovalenko IL, Strekalova T, Galstyan DS, Kolesnikova TO, De Abreu MS, Galyamina AG, Bashirzade A, Kalueff AV. CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110086. [PMID: 32889031 DOI: 10.1016/j.pnpbp.2020.110086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of 'interlinking' brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
15
|
Ruiz-Sánchez E, Jiménez-Genchi J, Alcántara-Flores YM, Castañeda-González CJ, Aviña-Cervantes CL, Yescas P, del Socorro González-Valadez M, Martínez-Rodríguez N, Ríos-Ortiz A, González-González M, López-Navarro ME, Rojas P. Working memory deficits in schizophrenia are associated with the rs34884856 variant and expression levels of the NR4A2 gene in a sample Mexican population: a case control study. BMC Psychiatry 2021; 21:86. [PMID: 33563249 PMCID: PMC7871565 DOI: 10.1186/s12888-021-03081-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cognitive functions represent useful endophenotypes to identify the association between genetic variants and schizophrenia. In this sense, the NR4A2 gene has been implicated in schizophrenia and cognition in different animal models and clinical trials. We hypothesized that the NR4A2 gene is associated with working memory performance in schizophrenia. This study aimed to analyze two variants and the expression levels of the NR4A2 gene with susceptibility to schizophrenia, as well as to evaluate whether possession of NR4A2 variants influence the possible correlation between gene expression and working memory performance in schizophrenia. METHODS The current study included 187 schizophrenia patients and 227 controls genotyped for two of the most studied NR4A2 genetic variants in neurological and neuropsychiatric diseases. Genotyping was performed using High Resolution Melt and sequencing techniques. In addition, mRNA expression of NR4A2 was performed in peripheral mononuclear cells of 112 patients and 118 controls. A group of these participants, 54 patients and 87 controls, performed the working memory index of the WAIS III test. RESULTS Both genotypic frequencies of the two variants and expression levels of the NR4A2 gene showed no significant difference when in patients versus controls. However, patients homozygous for the rs34884856 promoter variant showed a positive correlation between expression levels and auditory working memory. CONCLUSIONS Our finding suggested that changes in expression levels of the NR4A2 gene could be associated with working memory in schizophrenia depending on patients' genotype in a sample from a Mexican population.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Janet Jiménez-Genchi
- Research Unit, Hospital Psiquiátrico Fray Bernardino Álvarez, Mexico City, Mexico
| | - Yessica M. Alcántara-Flores
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | | | - Carlos L. Aviña-Cervantes
- grid.419204.a0000 0000 8637 5954Department of Psychiatry, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Petra Yescas
- grid.419204.a0000 0000 8637 5954Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | | | - Nancy Martínez-Rodríguez
- grid.414757.40000 0004 0633 3412Epidemiology, Endocrinology & Nutrition Research Unit, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Antonio Ríos-Ortiz
- Research Unit, Hospital Psiquiátrico Fray Bernardino Álvarez, Mexico City, Mexico
| | - Martha González-González
- grid.419204.a0000 0000 8637 5954Unit of Cognition and Behavior, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - María E. López-Navarro
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269, Mexico City, Mexico.
| |
Collapse
|
16
|
Kozáková E, Bakštein E, Havlíček O, Bečev O, Knytl P, Zaytseva Y, Španiel F. Disrupted Sense of Agency as a State Marker of First-Episode Schizophrenia: A Large-Scale Follow-Up Study. Front Psychiatry 2020; 11:570570. [PMID: 33391045 PMCID: PMC7775529 DOI: 10.3389/fpsyt.2020.570570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Schizophrenia is often characterized by a general disruption of self-processing and self-demarcation. Previous studies have shown that self-monitoring and sense of agency (SoA, i.e., the ability to recognize one's own actions correctly) are altered in schizophrenia patients. However, research findings are inconclusive in regards to how SoA alterations are linked to clinical symptoms and their severity, or cognitive factors. Methods: In a longitudinal study, we examined 161 first-episode schizophrenia patients and 154 controls with a continuous-report SoA task and a control task testing general cognitive/sensorimotor processes. Clinical symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Results: In comparison to controls, patients performed worse in terms of recognition of self-produced movements even when controlling for confounding factors. Patients' SoA score correlated with the severity of PANSS-derived "Disorganized" symptoms and with a priori defined symptoms related to self-disturbances. In the follow-up, the changes in the two subscales were significantly associated with the change in SoA performance. Conclusion: We corroborated previous findings of altered SoA already in the early stage of schizophrenia. Decreased ability to recognize self-produced actions was associated with the severity of symptoms in two complementary domains: self-disturbances and disorganization. While the involvement of the former might indicate impairment in self-monitoring, the latter suggests the role of higher cognitive processes such as information updating or cognitive flexibility. The SoA alterations in schizophrenia are associated, at least partially, with the intensity of respective symptoms in a state-dependent manner.
Collapse
Affiliation(s)
- Eva Kozáková
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia
| | - Eduard Bakštein
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Cybernetics, Czech Technical University in Prague, Prague, Czechia
| | - Ondřej Havlíček
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Ondřej Bečev
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Knytl
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Yuliya Zaytseva
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Human Science Center, Institute of Medical Psychology, Ludwig Maximilian University, Munich, Germany
| | - Filip Španiel
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
17
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
18
|
Rovný R, Besterciová D, Riečanský I. Genetic Determinants of Gating Functions: Do We Get Closer to Understanding Schizophrenia Etiopathogenesis? Front Psychiatry 2020; 11:550225. [PMID: 33324248 PMCID: PMC7723973 DOI: 10.3389/fpsyt.2020.550225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Deficits in the gating of sensory stimuli, i.e., the ability to suppress the processing of irrelevant sensory input, are considered to play an important role in the pathogenesis of several neuropsychiatric disorders, in particular schizophrenia. Gating is disrupted both in schizophrenia patients and their unaffected relatives, suggesting that gating deficit may represent a biomarker associated with a genetic liability to the disorder. To assess the strength of the evidence for the etiopathogenetic links between genetic variation, gating efficiency, and schizophrenia, we carried out a systematic review of human genetic association studies of sensory gating (suppression of the P50 component of the auditory event-related brain potential) and sensorimotor gating (prepulse inhibition of the acoustic startle response). Sixty-three full-text articles met the eligibility criteria for inclusion in the review. In total, 117 genetic variants were reported to be associated with gating functions: 33 variants for sensory gating, 80 variants for sensorimotor gating, and four variants for both sensory and sensorimotor gating. However, only five of these associations (four for prepulse inhibition-CHRNA3 rs1317286, COMT rs4680, HTR2A rs6311, and TCF4 rs9960767, and one for P50 suppression-CHRNA7 rs67158670) were consistently replicated in independent samples. Although these variants and genes were all implicated in schizophrenia in research studies, only two polymorphisms (HTR2A rs6311 and TCF4 rs9960767) were also reported to be associated with schizophrenia at a meta-analytic or genome-wide level of evidence. Thus, although gating is widely considered as an important endophenotype of schizophrenia, these findings demonstrate that evidence for a common genetic etiology of impaired gating functions and schizophrenia is yet unsatisfactory, warranting further studies in this field.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominika Besterciová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Mascheretti S, Perdue MV, Feng B, Andreola C, Dionne G, Jasińska KK, Pugh KR, Grigorenko EL, Landi N. From BDNF to reading: Neural activation and phonological processing as multiple mediators. Behav Brain Res 2020; 396:112859. [PMID: 32810467 DOI: 10.1016/j.bbr.2020.112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The BDNF gene is a prominent promoter of neuronal development, maturation and plasticity. Its Val66Met polymorphism affects brain morphology and function within several areas and is associated with several cognitive functions and neurodevelopmental disorder susceptibility. Recently, it has been associated with reading, reading-related traits and altered neural activation in reading-related brain regions. However, it remains unknown if the intermediate phenotypes (IPs, such as brain activation and phonological skills) mediate the pathway from gene to reading or reading disability. By conducting a serial multiple mediation model in a sample of 94 children (age 5-13), our findings revealed no direct effects of genotype on reading. Instead, we found that genotype is associated with brain activation in reading-related and more domain general regions which in turn is associated with phonological processing which is associated with reading. These findings suggest that the BDNF-Val66Met polymorphism is related to reading via phonological processing and functional activation. These results support brain imaging data and neurocognitive traits as viable IPs for complex behaviors.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Meaghan V Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Bei Feng
- School of Psychology, Université Laval, Québec, Canada
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy; Université de Paris, Laboratoire de Psychologie de Développement et de l'Éducation de l'Enfant (LaPsyDÉ), Paris, France
| | | | - Kaja K Jasińska
- Haskins Laboratories, New Haven, CT, USA; Applied Psychology and Human Development, University of Toronto, Toronto, Canada
| | - Kenneth R Pugh
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Elena L Grigorenko
- Haskins Laboratories, New Haven, CT, USA; Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; St. Petersburg State University, Russia
| | - Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
20
|
Frajo-Apor B, Kemmler G, Pardeller S, Huber M, Macina C, Welte AS, Hoertnagl C, Hofer A. Emotional intelligence in bipolar-I-disorder: A comparison between patients, unaffected siblings, and control subjects. Eur Psychiatry 2020; 63:e69. [PMID: 32594936 PMCID: PMC7443786 DOI: 10.1192/j.eurpsy.2020.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Impairments in social and nonsocial cognition have been demonstrated in both patients suffering from bipolar disorder (BD) and their unaffected relatives and might therefore represent a heritable marker of risk. This study investigated the relevance of emotional intelligence (EI) as part of the emotion processing domain of social cognition in this regard. METHODS A total of 54 outpatients suffering from BD, 54 unaffected siblings, and 80 control subjects were investigated using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) and the Brief Assessment of Cognition in Schizophrenia (BACS). Analyses of covariance (ANCOVAs) were performed with adjustment for the BACS composite score. The three groups were compared by one-way analysis of variance or chi-square test, depending on the variable type. As the three groups differed significantly in their level of education, additional ANCOVAs with adjustment for education were performed. RESULTS Patients achieved significantly lower levels of overall EI and overall nonsocial cognitive functioning compared to unaffected siblings and controls, whereas performance of the latter two groups was comparable in both domains. CONCLUSIONS Due to comparable levels of EI in unaffected siblings of patients suffering from BD and control subjects, EI assessed by means of the MSCEIT does not represent an endophenotype for BD.
Collapse
Affiliation(s)
- Beatrice Frajo-Apor
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Georg Kemmler
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Silvia Pardeller
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Markus Huber
- Department of Psychiatry, General Hospital Brunico, 39031 Brunico, Italy
| | - Christian Macina
- Department of Psychiatry, General Hospital Brunico, 39031 Brunico, Italy
| | - Anna-Sophia Welte
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Christine Hoertnagl
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Alex Hofer
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Genkel VV, Shaposhnik II. Conceptualization of Heterogeneity of Chronic Diseases and Atherosclerosis as a Pathway to Precision Medicine: Endophenotype, Endotype, and Residual Cardiovascular Risk. Int J Chronic Dis 2020; 2020:5950813. [PMID: 32099839 PMCID: PMC7038435 DOI: 10.1155/2020/5950813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The article discusses modern approaches to the conceptualization of pathogenetic heterogeneity in various branches of medical science. The concepts of endophenotype, endotype, and residual cardiovascular risk and the scope of their application in internal medicine and cardiology are considered. Based on the latest results of studies of the genetic architecture of atherosclerosis, five endotypes of atherosclerosis have been proposed. Each of the presented endotypes represents one or another pathophysiological mechanism of atherogenesis, having an established genetic substrate, a characteristic panel of biomarkers, and a number of clinical features. Clinical implications and perspectives for the study of endotypes of atherosclerosis are briefly reviewed.
Collapse
Affiliation(s)
- Vadim V. Genkel
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, Vorovskogo St. 64, 454092 Chelyabinsk, Russia
| | - Igor I. Shaposhnik
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, Vorovskogo St. 64, 454092 Chelyabinsk, Russia
| |
Collapse
|
22
|
Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, Green MF, Light GA, Nievergelt CM, Nuechterlein KH, Radant AD, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Gur RC, Gur RE, Braff DL. Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry 2019; 76:1274-1284. [PMID: 31596458 PMCID: PMC6802253 DOI: 10.1001/jamapsychiatry.2019.2850] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. OBJECTIVE To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). DESIGN, SETTING, AND PARTICIPANTS A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. MAIN OUTCOMES AND MEASURES A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. RESULTS The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. CONCLUSIONS AND RELEVANCE These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California,Sierra Pacific Mental Illness Research Education and Clinical Center, Department of Veterans Affairs (VA) Health Care System, Palo Alto, California
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | | | | | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Department of Biostatistics, UCLA School of Public Health
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla
| |
Collapse
|
23
|
Heidinger L, Reilly JL, Wang L, Goldman MB. Circuit activity underlying a distinct modulator of prepulse inhibition. Psychiatry Res Neuroimaging 2019; 288:1-11. [PMID: 31030001 DOI: 10.1016/j.pscychresns.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/01/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Prepulse inhibition (PPI), the diminished eye blink response to a startling pulse induced by a prepulse, is regulated by brainstem, and modulated by cerebral, processes. Attentional modulation by the prepulse (AMP), a potential biomarker of psychotic disorders, differs from other modulatory processes because it only occurs if the interval between the prepulse and pulse exceeds 100 ms (>PP100). Videotaped eye blinks were measured during fMRI scanning in 15 healthy subjects hearing 64 pulse alone, 64 PP60 and 64 PP120 trials in a rapid event-related design. Because attentional influences on PPI vary spontaneously, we posited AMP could be isolated by comparing eye blink and Blood Oxygen Level Dependent covariation during the two PP trial types. Behavioral regressor coefficients reflecting significant covariation covered the insula and auditory cortices during PP120 but not PP60 trials. Clusters within the right anterior insula and auditory cortex were specific to AMP. Functional connections (FCs) between cerebral ROIs implicated in PPI were stronger during PP120 trials. The four FCs that were individually stronger during PP120 trials involved the right insula or auditory cortex and three were not present during PP60 trials. Converging evidence indicates the right insula is the hub of a network underlying AMP.
Collapse
Affiliation(s)
- Linda Heidinger
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - James L Reilly
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - Lei Wang
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Morris B Goldman
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Smeets PAM, Dagher A, Hare TA, Kullmann S, van der Laan LN, Poldrack RA, Preissl H, Small D, Stice E, Veldhuizen MG. Good practice in food-related neuroimaging. Am J Clin Nutr 2019; 109:491-503. [PMID: 30834431 PMCID: PMC7945961 DOI: 10.1093/ajcn/nqy344] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/22/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The use of neuroimaging tools, especially functional magnetic resonance imaging, in nutritional research has increased substantially over the past 2 decades. Neuroimaging is a research tool with great potential impact on the field of nutrition, but to achieve that potential, appropriate use of techniques and interpretation of neuroimaging results is necessary. In this article, we present guidelines for good methodological practice in functional magnetic resonance imaging studies and flag specific limitations in the hope of helping researchers to make the most of neuroimaging tools and avoid potential pitfalls. We highlight specific considerations for food-related studies, such as how to adjust statistically for common confounders, like, for example, hunger state, menstrual phase, and BMI, as well as how to optimally match different types of food stimuli. Finally, we summarize current research needs and future directions, such as the use of prospective designs and more realistic paradigms for studying eating behavior.
Collapse
Affiliation(s)
- Paul A M Smeets
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, NL,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands,Address correspondence to PAMS (e-mail: )
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Laura N van der Laan
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Dana Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
25
|
Gene expression changes related to immune processes associate with cognitive endophenotypes of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:159-167. [PMID: 30030132 DOI: 10.1016/j.pnpbp.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/15/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous disorder characterized by a spectrum of symptoms and many different underlying causes. Thus, instead of using the broad diagnosis, intermediate phenotypes can be used to possibly decrease the underlying complexity of the disorder. Alongside the classical symptoms of delusions and hallucinations, cognitive deficits are a core feature of schizophrenia. To increase our understanding of the biological processes related to these cognitive deficits, we performed a genome-wide gene expression analysis. A battery of 14 neuropsychological tests was administered to 844 individuals from a Finnish familial schizophrenia cohort. We grouped the applied neuropsychological tests into five factors for further analysis. Cognitive endophenotypes, whole blood mRNA, genotype, and medication use data were studied from 47 individuals. Expression level of several RNA probes were significantly associated with cognitive performance. The factor representing Verbal Working Memory was associated with altered expression levels of 11 probes, of which one probe was also associated with a specific sub-measure of this factor (WMS-R Digit span backward). While, the factor Processing speed was related to one probe, which additionally associated among 55 probes with a specific sub-measure of this factor (WAIS-R Digit symbol). Two probes were associated with the measure recognition memory performance. Enrichment analysis of these differentially expressed probes highlighted immunological processes. Our findings are in line with genome-wide genetic discoveries made in schizophrenia, suggesting that immunological processes may be of biological interest for future drug design towards schizophrenia and the cognitive dysfunctions that underlie it.
Collapse
|
26
|
Rovný R, Marko M, Katina S, Murínová J, Roháriková V, Cimrová B, Repiská G, Minárik G, Riečanský I. Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide 2018; 80:32-36. [PMID: 30096361 DOI: 10.1016/j.niox.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022]
Abstract
Research increasingly suggests that nitric oxide (NO) plays a role in the pathogenesis of schizophrenia. One important line of evidence comes from genetic studies, which have repeatedly detected an association between the neuronal isoform of nitric oxide synthase (nNOS or NOS1) and schizophrenia. However, the pathogenetic pathways linking nNOS, NO, and the disorder remain poorly understood. A deficit in sensorimotor gating is considered to importantly contribute to core schizophrenia symptoms such as psychotic disorganization and thought disturbance. We selected three candidate nNOS polymorphisms (Ex1f-VNTR, rs6490121 and rs41279104), associated with schizophrenia and cognition in previous studies, and tested their association with the efficiency of sensorimotor gating in healthy human adults. We found that risk variants of Ex1f-VNTR and rs6490121 (but not rs41279104) were associated with a weaker prepulse inhibition (PPI) of the acoustic startle reflex, a standard measure of sensorimotor gating. Furthermore, the effect of presence of risk variants in Ex1f-VNTR and rs6490121 was additive: PPI linearly decreased with increasing number of risk alleles, being highest in participants with no risk allele, while lowest in individuals who carry three risk alleles. Our findings indicate that NO is involved in the regulation of sensorimotor gating, and highlight one possible pathogenetic mechanism for NO playing a role in the development of schizophrenia psychosis.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Katina
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Murínová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Roháriková
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Blakey R, Ranlund S, Zartaloudi E, Cahn W, Calafato S, Colizzi M, Crespo-Facorro B, Daniel C, Díez-Revuelta Á, Di Forti M, Iyegbe C, Jablensky A, Jones R, Hall MH, Kahn R, Kalaydjieva L, Kravariti E, Lin K, McDonald C, McIntosh AM, Picchioni M, Powell J, Presman A, Rujescu D, Schulze K, Shaikh M, Thygesen JH, Toulopoulou T, Van Haren N, Van Os J, Walshe M, Murray RM, Bramon E. Associations between psychosis endophenotypes across brain functional, structural, and cognitive domains. Psychol Med 2018; 48:1325-1340. [PMID: 29094675 PMCID: PMC6516747 DOI: 10.1017/s0033291717002860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND A range of endophenotypes characterise psychosis, however there has been limited work understanding if and how they are inter-related. METHODS This multi-centre study includes 8754 participants: 2212 people with a psychotic disorder, 1487 unaffected relatives of probands, and 5055 healthy controls. We investigated cognition [digit span (N = 3127), block design (N = 5491), and the Rey Auditory Verbal Learning Test (N = 3543)], electrophysiology [P300 amplitude and latency (N = 1102)], and neuroanatomy [lateral ventricular volume (N = 1721)]. We used linear regression to assess the interrelationships between endophenotypes. RESULTS The P300 amplitude and latency were not associated (regression coef. -0.06, 95% CI -0.12 to 0.01, p = 0.060), and P300 amplitude was positively associated with block design (coef. 0.19, 95% CI 0.10-0.28, p 0.38). All the cognitive endophenotypes were associated with each other in the expected directions (all p < 0.001). Lastly, the relationships between pairs of endophenotypes were consistent in all three participant groups, differing for some of the cognitive pairings only in the strengths of the relationships. CONCLUSIONS The P300 amplitude and latency are independent endophenotypes; the former indexing spatial visualisation and working memory, and the latter is hypothesised to index basic processing speed. Individuals with psychotic illnesses, their unaffected relatives, and healthy controls all show similar patterns of associations between endophenotypes, endorsing the theory of a continuum of psychosis liability across the population.
Collapse
Affiliation(s)
- R. Blakey
- Division of Psychiatry, University College London, London, UK
| | - S. Ranlund
- Division of Psychiatry, University College London, London, UK
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - E. Zartaloudi
- Division of Psychiatry, University College London, London, UK
| | - W. Cahn
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S. Calafato
- Division of Psychiatry, University College London, London, UK
| | - M. Colizzi
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - B. Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria–IDIVAL, Santander, Spain
| | - C. Daniel
- Division of Psychiatry, University College London, London, UK
| | - Á. Díez-Revuelta
- Division of Psychiatry, University College London, London, UK
- Laboratory of Cognitive and Computational Neuroscience – Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - M. Di Forti
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | | | - C. Iyegbe
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - A. Jablensky
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, Western Australia, Australia
| | - R. Jones
- Division of Psychiatry, University College London, London, UK
| | - M.-H. Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - R. Kahn
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L. Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - E. Kravariti
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - K. Lin
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - C. McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Ireland
| | - A. M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
| | | | - M. Picchioni
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - J. Powell
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - A. Presman
- Division of Psychiatry, University College London, London, UK
| | - D. Rujescu
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle Wittenberg, Halle, Germany
| | - K. Schulze
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - M. Shaikh
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- North East London Foundation Trust, London, UK
| | - J. H. Thygesen
- Division of Psychiatry, University College London, London, UK
| | - T. Toulopoulou
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychology, Bilkent University, Main Campus, Bilkent, Ankara, Turkey
- Department of Psychology, the University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, The Hong Kong Jockey Club Building for Interdisciplinary Research, Hong Kong SAR, China
| | - N. Van Haren
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Van Os
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychology, Maastricht University Medical Centre, EURON, Maastricht, The Netherlands
| | - M. Walshe
- Division of Psychiatry, University College London, London, UK
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | | | - R. M. Murray
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - E. Bramon
- Division of Psychiatry, University College London, London, UK
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
28
|
Mascheretti S, Gori S, Trezzi V, Ruffino M, Facoetti A, Marino C. Visual motion and rapid auditory processing are solid endophenotypes of developmental dyslexia. GENES BRAIN AND BEHAVIOR 2017; 17:70-81. [PMID: 28834383 DOI: 10.1111/gbb.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
Abstract
Although a genetic component is known to have an important role in the etiology of developmental dyslexia (DD), we are far from understanding the molecular etiopathogenetic pathways. Reduced measures of neurobiological functioning related to reading (dis)ability, i.e. endophenotypes (EPs), are promising targets for gene finding and the elucidation of the underlying mechanisms. In a sample of 100 nuclear families with DD (229 offspring) and 83 unrelated typical readers, we tested whether a set of well-established, cognitive phenotypes related to DD [i.e. rapid auditory processing (RAP), rapid automatized naming (RAN), multisensory nonspatial attention and visual motion processing] fulfilled the criteria of the EP construct. Visual motion and RAP satisfied all testable criteria (i.e. they are heritable, associate with the disorder, co-segregate with the disorder within a family and represent reproducible measures) and are therefore solid EPs of DD. Multisensory nonspatial attention satisfied three of four criteria (i.e. it associates with the disorder, co-segregates with the disorder within a family and represents a reproducible measure) and is therefore a potential EP for DD. Rapid automatized naming is heritable but does not meet other criteria of the EP construct. We provide the first evidence of a methodologically and statistically sound approach for identifying EPs for DD to be exploited as a solid alternative basis to clinical phenotypes in neuroscience.
Collapse
Affiliation(s)
- S. Mascheretti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - S. Gori
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Department of Human and Social Sciences; University of Bergamo; Bergamo Italy
| | - V. Trezzi
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - M. Ruffino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
| | - A. Facoetti
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Developmental Cognitive Neuroscience Lab, Department of General Psychology; University of Padua; Padua Italy
| | - C. Marino
- Child Psychopathology Unit; Scientific Institute, IRCCS Eugenio Medea; Bosisio Parini Italy
- Centre for Addiction and Mental Health; University of Toronto; ON Canada
| |
Collapse
|
29
|
McGue M. Irving Gottesman and the concept of endophenotype. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:341-342. [DOI: 10.1002/ajmg.c.31569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/21/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Matt McGue
- Department of Psychology; University of Minnesota; Minneapolis Minnesota
- Department of Epidemiology, Biostatistics and Biodemography; University of Southern Denmark; Odense Denmark
| |
Collapse
|
30
|
Abstract
OBJECTIVES Social cognitive deficits have been discussed to be endophenotypes for schizophrenia and other serious mental illnesses. The current study aimed to assess emotional intelligence (EI) in unaffected siblings of schizophrenia patients to investigate its potential role as endophenotype for schizophrenia. METHODS EI was measured in 56 schizophrenia patients, 57 unaffected siblings, and 127 healthy control subjects by using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). In addition, non-social cognition was assessed with the Brief Assessment of Cognition in Schizophrenia (BACS). Linear mixed models with compound symmetric correlation structure were used for of the three groups with respect to EI and non-social cognition. RESULTS Schizophrenia patients showed significantly lower overall EI and performed significantly worse in three out of four MSCEIT branches compared to unaffected siblings and control subjects, whereas the two latter groups had comparable EI levels. Similar performance patterns (patients<unaffected siblings=control subjects) were found with respect to non-social cognition. Solely in the "Tower of London" test, siblings achieved significantly lower task scores compared to control subjects. CONCLUSIONS Based on our results, EI as measured with the MSCEIT does not seem to represent a marker of risk for schizophrenia. Further investigations should concentrate on other EI measures to reassess this finding. (JINS, 2017, 23, 577-583).
Collapse
|
31
|
DiLalla LF, McCrary M, Diaz E. A review of endophenotypes in schizophrenia and autism: The next phase for understanding genetic etiologies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:354-361. [PMID: 28661580 DOI: 10.1002/ajmg.c.31566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/16/2023]
Abstract
Many psychiatric disorders are caused by multiple genes and multiple environmental factors, making the identification of specific genetic risk factors for these disorders difficult. Endophenotypes are behaviors or characteristics that are intermediate between the genotype and a phenotype of interest. Because they are more directly related to the gene action than is the endpoint disorder, they may be useful in the identification of specific genes related to psychiatric disorders and the classification of disorders or traits that share an underlying genetic etiology. We discuss genetic and endophenotype research on schizophrenia and autism spectrum disorder (ASD) in this review. Some of the psychophysiological endophenotypes that have been studied for schizophrenia include prepulse inhibition of the startle response, the antisaccadic task assessing frontal lobe function, inhibition of the P50 event-related potential (ERP), and other auditory ERP measures. Potential ASD endophenotypes include theory of mind, language skills (specifically, age at first spoken word and first spoken phrase), social skills, and certain brain functions, such as asynchronization of neural activity and brain responses to emotional faces. Because the link between genes and specific psychiatric disorders is difficult to determine, identification of endophenotypes is useful for beginning the search to identify specific genes that affect these disorders.
Collapse
Affiliation(s)
| | | | - Emma Diaz
- Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
32
|
Demkow U, Wolańczyk T. Genetic tests in major psychiatric disorders-integrating molecular medicine with clinical psychiatry-why is it so difficult? Transl Psychiatry 2017; 7:e1151. [PMID: 28608853 PMCID: PMC5537634 DOI: 10.1038/tp.2017.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
With the advent of post-genomic era, new technologies create extraordinary possibilities for diagnostics and personalized therapy, transforming todays' medicine. Rooted in both medical genetics and clinical psychiatry, the paper is designed as an integrated source of information of the current and potential future application of emerging genomic technologies as diagnostic tools in psychiatry, moving beyond the classical concept of patient approach. Selected approaches are presented, starting from currently used technologies (next-generation sequencing (NGS) and microarrays), followed by newer options (reverse phenotyping). Next, we describe an old concept in a new light (endophenotypes), subsequently coming up with a sophisticated and complex approach (gene networks) ending by a nascent field (computational psychiatry). The challenges and barriers that exist to translate genomic research to real-world patient assessment are further discussed. We emphasize the view that only a paradigm shift can bring a fundamental change in psychiatric practice, allowing to disentangle the intricacies of mental diseases. All the diagnostic methods, as described, are directed at uncovering the integrity of the system including many types of relations within a complex structure. The integrative system approach offers new opportunity to connect genetic background with specific diseases entities, or concurrently, with symptoms regardless of a diagnosis. To advance the field, we propose concerted cross-disciplinary effort to provide a diagnostic platform operating at the general level of genetic pathogenesis of complex-trait psychiatric disorders rather than at the individual level of a specific disease.
Collapse
Affiliation(s)
- U Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland,Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a, Warsaw 02-091, Poland. E-mail:
| | - T Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Abstract
First, we describe the hallmark contributions of Irv Gottesman's pioneering scholarship for schizophrenia research including concepts of polygenicity, gene × environment interactions, epigenetics and the endophenotype concept. Gottesman and colleagues' twin studies showed that genes, not social factors, mediate schizophrenia risk. He then showed that schizophrenia is highly polygenic. Next, he introduced the concept of epigenetics into schizophrenia research. Gottesman then introduced the quantitative endophenotype concept. Endophenotypes are laboratory-based measures that show deficits in schizophrenia patients and lesser deficits in their first degree "unaffected" relatives and are viewed as being more proximal to genes and having a simpler genetic architecture than are "fuzzy" qualitative diagnostic disorders. Endophenotypes offer an exciting path to gene discovery, neural circuits, genetic architecture and new treatment pathways of schizophrenia and related psychotic disorders. Second, we were asked to discuss 2 of many endophenotype Consortia and related studies, in order to illustrate the impact of Gottesman's work. We describe the Consortium on the Genetics of Schizophrenia (COGS) exploring neurocognitive and neurophysiological endophenotypes in family and case-control studies. Association, linkage, sequencing and epigenetic studies are described. The Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP) uses an array of endophenotypes including brain imaging in studies across the psychosis dimension, allowing for dimensional analyses. BSNIP results have led to the concept of biotypes, advancing the field. Irv Gottesman was imaginatively prescient in generating novel insights and predicting many major issues which challenge schizophrenia researchers who still use his concepts to guide current research approaches.
Collapse
Affiliation(s)
- David L Braff
- Department of Psychiatry, University of California, San Diego, La Jolla, CA;
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX
| |
Collapse
|
34
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
35
|
van Rooy D, Haase B, McGreevy PD, Thomson PC, Wade CM. Evaluating candidate genes oprm1, drd2, avpr1a, and oxtr in golden retrievers with separation-related behaviors. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Czepielewski LS, Massuda R, Panizzutti B, da Rosa ED, de Lucena D, Macêdo D, Grun LK, Barbé-Tuana FM, Gama CS. Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging. Schizophr Res 2016; 174:39-42. [PMID: 27131910 DOI: 10.1016/j.schres.2016.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 02/01/2023]
Abstract
Schizophrenia (SZ) is associated with broad burden. The clinical manifestations of SZ are related to pathophysiological alterations similar to what is seen in normal aging. Our aim was to evaluate the differences in telomere length (TL), a biomarker of cellular aging, in subjects with SZ (n=36), unaffected siblings (SB, n=36) and healthy controls (HC, n=47). SZ had shorter TL compared to HC, but no difference was found in SB comparing to SZ. These findings indicate that a pathological accelerated aging profile could be present in the course of SZ and further studies are needed to confirm TL as potential endophenotype, especially in at risk populations.
Collapse
Affiliation(s)
- Leticia Sanguinetti Czepielewski
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raffael Massuda
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Psiquiatria, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruna Panizzutti
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduarda Dias da Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - David de Lucena
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Danielle Macêdo
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Florencia María Barbé-Tuana
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Clarissa Severino Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
37
|
Abstract
Antipsychotic drugs have been the drugs of choice for the treatment of schizophrenia ever since the introduction of chlorpromazine in the early 1950s of the last century. Since then, about 60 different antipsychotics have been introduced. Although pharmacologically these drugs show large differences, in terms of potency, duration of action and selectivity, all antipsychotics appear to reduce the positive symptoms of schizophrenia, while having little or no effect on the negative symptoms or the cognitive deficits. The only apparent exception is clozapine, which is also effective in therapy-resistant patients. On the other hand, antipsychotics induce significant side effects as well, including neurological, behavioural and metabolic side effects. In the present paper, we will discuss the preclinical pharmacology of the current antipsychotic drugs focussing both on the therapeutic and on side effects of these drugs.
Collapse
|
38
|
Prioritizing schizophrenia endophenotypes for future genetic studies: An example using data from the COGS-1 family study. Schizophr Res 2016; 174:1-9. [PMID: 27132484 PMCID: PMC4912929 DOI: 10.1016/j.schres.2016.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022]
Abstract
Past studies describe numerous endophenotypes associated with schizophrenia (SZ), but many endophenotypes may overlap in information they provide, and few studies have investigated the utility of a multivariate index to improve discrimination between SZ and healthy community comparison subjects (CCS). We investigated 16 endophenotypes from the first phase of the Consortium on the Genetics of Schizophrenia, a large, multi-site family study, to determine whether a subset could distinguish SZ probands and CCS just as well as using all 16. Participants included 345 SZ probands and 517 CCS with a valid measure for at least one endophenotype. We used both logistic regression and random forest models to choose a subset of endophenotypes, adjusting for age, gender, smoking status, site, parent education, and the reading subtest of the Wide Range Achievement Test. As a sensitivity analysis, we re-fit models using multiple imputations to determine the effect of missing values. We identified four important endophenotypes: antisaccade, Continuous Performance Test-Identical Pairs 3-digit version, California Verbal Learning Test, and emotion identification. The logistic regression model that used just these four endophenotypes produced essentially the same results as the model that used all 16 (84% vs. 85% accuracy). While a subset of endophenotypes cannot replace clinical diagnosis nor encompass the complexity of the disease, it can aid in the design of future endophenotypic and genetic studies by reducing study cost and subject burden, simplifying sample enrichment, and improving the statistical power of locating those genetic regions associated with schizophrenia that may be the easiest to identify initially.
Collapse
|
39
|
Cariaga-Martinez A, Saiz-Ruiz J, Alelú-Paz R. From Linkage Studies to Epigenetics: What We Know and What We Need to Know in the Neurobiology of Schizophrenia. Front Neurosci 2016; 10:202. [PMID: 27242407 PMCID: PMC4862989 DOI: 10.3389/fnins.2016.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.
Collapse
Affiliation(s)
- Ariel Cariaga-Martinez
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá University Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid, Spain
| | - Raúl Alelú-Paz
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá UniversityMadrid, Spain; Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain
| |
Collapse
|
40
|
DeLisi LE. A Case for Returning to Multiplex Families for Further Understanding the Heritability of Schizophrenia: A Psychiatrist's Perspective. MOLECULAR NEUROPSYCHIATRY 2016; 2:15-9. [PMID: 27606317 PMCID: PMC4996023 DOI: 10.1159/000442820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/26/2015] [Indexed: 11/19/2022]
Abstract
The genetic mechanism for schizophrenia still remains unknown despite decades of research. A tremendous amount of investigator time and effort has gone into ascertainment of clinical samples for genetic studies over the years. Most recently, a large international effort of unprecedented collaboration has occurred to combine data worldwide in pursuit of uncovering the relevant genetic risk factors. However, in the process, the use of multiplex families to understand the genetics has waned, and it has been presumed that large resources of unrelated patients and controls are more efficient to find risk alleles than families. This commentary is a call to return to the use of this largely abandoned resource for further understanding the underlying biological mechanism of this serious mental illness.
Collapse
Affiliation(s)
- Lynn E. DeLisi
- VA Boston Healthcare System, Brockton, Mass., and Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
41
|
González-Giraldo Y, González-Reyes RE, Forero DA. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults. Psychiatry Res 2016; 236:202-205. [PMID: 26778630 DOI: 10.1016/j.psychres.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/17/2023]
Abstract
MIR137, a brain expressed miRNA, has been identified as a top novel susceptibility gene for schizophrenia (SZ). 230 healthy participants completed the Stroop test and were genotyped for a functional Variable Number Tandem Repeat (VNTR) in MIR137 gene. MIR137 VNTR genotypes were associated with differences in Stroop facilitation and accuracies in congruent trials and for the total number of errors. This is the first study of the functional VNTR in MIR137 gene and Stroop test performance in healthy subjects. Our results could have important implications for the identification of genetic candidates for endophenotypes for SZ.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
42
|
Greenwood TA, Lazzeroni LC, Calkins ME, Freedman R, Green MF, Gur RE, Gur RC, Light GA, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophr Res 2016; 170:30-40. [PMID: 26597662 PMCID: PMC4707095 DOI: 10.1016/j.schres.2015.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023]
Abstract
The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO, United States
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, United States
| | - Keith H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO, United States
| | - Allen D Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States; VA Puget Sound Health Care System, Seattle, WA, United States
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Larry J Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States; James J. Peters VA Medical Center, New York, NY, United States
| | - Jeremy M Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States; James J. Peters VA Medical Center, New York, NY, United States
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Catherine A Sugar
- Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA, United States
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Debby W Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States; VA Puget Sound Health Care System, Seattle, WA, United States
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Center for Behavioral Genomics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, United States
| | - Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, United States
| |
Collapse
|
43
|
A Dishful of a Troubled Mind: Induced Pluripotent Stem Cells in Psychiatric Research. Stem Cells Int 2015; 2016:7909176. [PMID: 26839567 PMCID: PMC4709917 DOI: 10.1155/2016/7909176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neurons in vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaiting in vitro disease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.
Collapse
|
44
|
Stewart AM, Nguyen M, Song C, Kalueff AV. Understanding the genetic architectonics of complex CNS traits: Lost by the association, but found in the interaction? J Psychopharmacol 2015; 29:872-7. [PMID: 26156859 DOI: 10.1177/0269881115593904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent evidence supports the value of endophenotypes and genome-wide association studies in psychiatric genetics, and their importance for dissecting the neural pathways and molecular mechanisms of complex neuropsychiatric disorders. Continuing this important discussion, here we outline three new mechanisms by which novel classes of genes may facilitate CNS pathogenesis without directly worsening its individual 'established' endophenotypes. These putative genetic mechanisms can apply to other human disorders in general, and may also be used for designing novel effective CNS drug treatments.
Collapse
Affiliation(s)
| | - Michael Nguyen
- ZENEREI Institute, Slidell, LA, USA Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, China Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Allan V Kalueff
- ZENEREI Institute, Slidell, LA, USA Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, China Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
45
|
Factor structure and heritability of endophenotypes in schizophrenia: findings from the Consortium on the Genetics of Schizophrenia (COGS-1). Schizophr Res 2015; 163:73-9. [PMID: 25682549 PMCID: PMC5944296 DOI: 10.1016/j.schres.2015.01.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although many endophenotypes for schizophrenia have been studied individually, few studies have examined the extent to which common neurocognitive and neurophysiological measures reflect shared versus unique endophenotypic factors. It may be possible to distill individual endophenotypes into composite measures that reflect dissociable, genetically informative elements. METHODS The first phase of the Consortium on the Genetics of Schizophrenia (COGS-1) is a multisite family study that collected neurocognitive and neurophysiological data between 2003 and 2008. For these analyses, participants included schizophrenia probands (n=83), their nonpsychotic siblings (n=151), and community comparison subjects (n=209) with complete data on a battery of 12 neurocognitive tests (assessing domains of working memory, declarative memory, vigilance, spatial ability, abstract reasoning, facial emotion processing, and motor speed) and 3 neurophysiological tasks reflecting inhibitory processing (P50 gating, prepulse inhibition and antisaccade tasks). Factor analyses were conducted on the measures for each subject group and across the entire sample. Heritability analyses of factors were performed using SOLAR. RESULTS Analyses yielded 5 distinct factors: 1) Episodic Memory, 2) Working Memory, 3) Perceptual Vigilance, 4) Visual Abstraction, and 5) Inhibitory Processing. Neurophysiological measures had low associations with these factors. The factor structure of endophenotypes was largely comparable across probands, siblings and controls. Significant heritability estimates for the factors ranged from 22% (Episodic Memory) to 39% (Visual Abstraction). CONCLUSIONS Neurocognitive measures reflect a meaningful amount of shared variance whereas the neurophysiological measures reflect largely unique contributions as endophenotypes for schizophrenia. Composite endophenotype measures may inform our neurobiological and genetic understanding of schizophrenia.
Collapse
|
46
|
Gur RC, Braff DL, Calkins ME, Dobie DJ, Freedman R, Green MF, Greenwood TA, Lazzeroni LC, Light GA, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Sprock J, Stone WS, Sugar CA, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Gur RE. Neurocognitive performance in family-based and case-control studies of schizophrenia. Schizophr Res 2015; 163:17-23. [PMID: 25432636 PMCID: PMC4441547 DOI: 10.1016/j.schres.2014.10.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neurocognitive deficits in schizophrenia (SZ) are established and the Consortium on the Genetics of Schizophrenia (COGS) investigated such measures as endophenotypes in family-based (COGS-1) and case-control (COGS-2) studies. By requiring family participation, family-based sampling may result in samples that vary demographically and perform better on neurocognitive measures. METHODS The Penn computerized neurocognitive battery (CNB) evaluates accuracy and speed of performance for several domains and was administered across sites in COGS-1 and COGS-2. Most tests were included in both studies. COGS-1 included 328 patients with SZ and 497 healthy comparison subjects (HCS) and COGS-2 included 1195 patients and 1009 HCS. RESULTS Demographically, COGS-1 participants were younger, more educated, with more educated parents and higher estimated IQ compared to COGS-2 participants. After controlling for demographics, the two samples produced very similar performance profiles compared to their respective controls. As expected, performance was better and with smaller effect sizes compared to controls in COGS-1 relative to COGS-2. Better performance was most pronounced for spatial processing while emotion identification had large effect sizes for both accuracy and speed in both samples. Performance was positively correlated with functioning and negatively with negative and positive symptoms in both samples, but correlations were attenuated in COGS-2, especially with positive symptoms. CONCLUSIONS Patients ascertained through family-based design have more favorable demographics and better performance on some neurocognitive domains. Thus, studies that use case-control ascertainment may tap into populations with more severe forms of illness that are exposed to less favorable factors compared to those ascertained with family-based designs.
Collapse
Affiliation(s)
- Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA
| | - David L. Braff
- Department of Psychiatry, University of California San
Diego, La Jolla, CA; VISN-22 Mental Illness, Research, Education and Clinical Center
(MIRECC), VA San Diego Healthcare System
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA
| | - Dorcas J. Dobie
- Department of Psychiatry and Behavioral Sciences,
University of Washington, Seattle, WA; VA Puget Sound Health Care System, Seattle,
WA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver,
Aurora, CO
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, Geffen
School of Medicine, University of California Los Angeles, Los Angeles, CA; VA
Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Tiffany A. Greenwood
- Department of Psychiatry, University of California San
Diego, La Jolla, CA; VISN-22 Mental Illness, Research, Education and Clinical Center
(MIRECC), VA San Diego Healthcare System
| | | | - Gregory A. Light
- Department of Psychiatry, University of California San
Diego, La Jolla, CA; VISN-22 Mental Illness, Research, Education and Clinical Center
(MIRECC), VA San Diego Healthcare System
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Geffen
School of Medicine, University of California Los Angeles, Los Angeles, CA; VA
Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver,
Aurora, CO
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences,
University of Washington, Seattle, WA; VA Puget Sound Health Care System, Seattle,
WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston,
MA; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel
Deaconess Medical Center, Boston, MA
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of
Medicine, New York, NY; 13James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of
Medicine, New York, NY; 13James J. Peters VA Medical Center, New York, NY
| | - Joyce Sprock
- Department of Psychiatry, University of California San
Diego, La Jolla, CA; VISN-22 Mental Illness, Research, Education and Clinical Center
(MIRECC), VA San Diego Healthcare System
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston,
MA; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel
Deaconess Medical Center, Boston, MA
| | - Catherine A. Sugar
- Department of Biostatistics, University of California Los
Angeles School of Public Health, Los Angeles, CA
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San
Diego, La Jolla, CA; VISN-22 Mental Illness, Research, Education and Clinical Center
(MIRECC), VA San Diego Healthcare System
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences,
University of Washington, Seattle, WA; VA Puget Sound Health Care System, Seattle,
WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San
Diego, La Jolla, CA; VISN-22 Mental Illness, Research, Education and Clinical Center
(MIRECC), VA San Diego Healthcare System
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA
| |
Collapse
|
47
|
Kalueff AV, Stewart AM, Song C, Gottesman II. Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neurosci Biobehav Rev 2015; 53:25-36. [PMID: 25813308 DOI: 10.1016/j.neubiorev.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains).
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS B3H 4R2, Canada
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Risbrough VB, Glenn DE, Baker DG. On the Road to Translation for PTSD Treatment: Theoretical and Practical Considerations of the Use of Human Models of Conditioned Fear for Drug Development. Curr Top Behav Neurosci 2015; 28:173-96. [PMID: 27311760 DOI: 10.1007/7854_2015_5010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of quantitative, laboratory-based measures of threat in humans for proof-of-concept studies and target development for novel drug discovery has grown tremendously in the last 2 decades. In particular, in the field of posttraumatic stress disorder (PTSD), human models of fear conditioning have been critical in shaping our theoretical understanding of fear processes and importantly, validating findings from animal models of the neural substrates and signaling pathways required for these complex processes. Here, we will review the use of laboratory-based measures of fear processes in humans including cued and contextual conditioning, generalization, extinction, reconsolidation, and reinstatement to develop novel drug treatments for PTSD. We will primarily focus on recent advances in using behavioral and physiological measures of fear, discussing their sensitivity as biobehavioral markers of PTSD symptoms, their response to known and novel PTSD treatments, and in the case of d-cycloserine, how well these findings have translated to outcomes in clinical trials. We will highlight some gaps in the literature and needs for future research, discuss benefits and limitations of these outcome measures in designing proof-of-concept trials, and offer practical guidelines on design and interpretation when using these fear models for drug discovery.
Collapse
Affiliation(s)
- Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, San Diego, VA, USA. .,Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, San Diego, CA, 92093, USA.
| | - Daniel E Glenn
- Center of Excellence for Stress and Mental Health, San Diego, VA, USA
| | - Dewleen G Baker
- Center of Excellence for Stress and Mental Health, San Diego, VA, USA.,Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, San Diego, CA, 92093, USA
| |
Collapse
|