1
|
Hamilton HK, Mathalon DH, Ford JM. P300 in schizophrenia: Then and now. Biol Psychol 2024; 187:108757. [PMID: 38316196 DOI: 10.1016/j.biopsycho.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The 1965 discovery of the P300 component of the electroencephalography (EEG)-based event-related potential (ERP), along with the subsequent identification of its alteration in people with schizophrenia, initiated over 50 years of P300 research in schizophrenia. Here, we review what we now know about P300 in schizophrenia after nearly six decades of research. We describe recent efforts to expand our understanding of P300 beyond its sensitivity to schizophrenia itself to its potential role as a biomarker of risk for psychosis or a heritable endophenotype that bridges genetic risk and psychosis phenomenology. We also highlight efforts to move beyond a syndrome-based approach to understand P300 within the context of the clinical, cognitive, and presumed pathophysiological heterogeneity among people diagnosed with schizophrenia. Finally, we describe several recent approaches that extend beyond measuring the traditional P300 ERP component in people with schizophrenia, including time-frequency analyses and pharmacological challenge studies, that may help to clarify specific cognitive mechanisms that are disrupted in schizophrenia. Moreover, we discuss several promising areas for future research, including studies of animal models that can be used for treatment development.
Collapse
Affiliation(s)
- Holly K Hamilton
- University of Minnesota, Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Daniel H Mathalon
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Judith M Ford
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
2
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
3
|
Deng J, Chen S, Ou Y, Zhang Y, Lin Z, Shen Y, Ye Y. Auditory P300 in individuals with high schizotypy: associations of schizotypal traits with amplitude and latency under different oddball conditions. Front Hum Neurosci 2023; 17:1107858. [PMID: 37275344 PMCID: PMC10232759 DOI: 10.3389/fnhum.2023.1107858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background The aim of this study was to compare the characteristics of auditory P300 between non-clinical individuals with high and low schizotypal traits, and investigate the relationship between schizotypy and P300 under various oddball conditions. Methods An extreme-group design was adopted. After screening 1,519 young adults using the Schizotypal Personality Questionnaire (SPQ), sixty-three participants were chosen and divided into two groups (schizotypy group: 31 participants; control group: 32 participants). Basic demographic information was assessed and matched between groups. Depression and anxiety indexes were evaluated and controlled. The P300 component was evoked by an auditory oddball paradigm with different frequencies and durations. Results (1) The duration P300 amplitude at PZ site was significantly weaker in the schizotypy group than in the control group [F(1,54) = 7.455, p = 0.009, ηp2 = 0.121]. (2) In the schizotypy group, the latency of frequency P300 at PZ site under large-variant oddball condition was significantly correlated with total SPQ scores (rp = 0.451, p = 0.018) and disorganized dimension scores (rp = 0.381, p = 0.050). (3) In the control group, significantly negative correlations was found between the negative dimension score of SPQ and the frequency P300 amplitudes under small variant condition (PZ: rp = -0.393, p = 0.043; CPZ: rp = -0.406, p = 0.035). In addition, a significant negative relationship was found between disorganized dimension scores and the duration P300 latency at CPZ site under large-variant oddball condition (rp = -0.518, p = 0.006). Moreover, a significant negative association was found between the duration P300 amplitude at CPZ site under small-variant oddball condition and negative factor scores (rp = -0.410, p = 0.034). Conclusion Individuals with high schizotypal traits were likely to have deficient attention and hypoactive working memory for processing auditory information, especially the duration of sounds. P300 effects were correlated with negative and disorganized schizotypy, rather than positive schizotypy. There were diverse patterns of relationship between schizotypal traits and P300 under different oddball conditions, suggesting that characteristics and parameters of target stimuli should be considered cautiously when implementing an auditory oddball paradigm for individuals with schizophrenia spectrum.
Collapse
Affiliation(s)
- Jue Deng
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
| | - Siwei Chen
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yuanhua Ou
- Cognitive Neuroscience and Abnormal Psychology Laboratory, Department of Penalty Execution, Fujian Police College, Fuzhou, China
| | - Yuanjun Zhang
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Ziyue Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yane Shen
- School of Psychology, Fujian Normal University, Fuzhou, China
| | - Yiduo Ye
- School of Psychology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Kim M, Kim T, Hwang WJ, Lho SK, Moon SY, Lee TY, Kwon JS. Forecasting prognostic trajectories with mismatch negativity in early psychosis. Psychol Med 2023; 53:1489-1499. [PMID: 36315242 PMCID: PMC10009395 DOI: 10.1017/s0033291721003068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prognostic heterogeneity in early psychosis patients yields significant difficulties in determining the degree and duration of early intervention; this heterogeneity highlights the need for prognostic biomarkers. Although mismatch negativity (MMN) has been widely studied across early phases of psychotic disorders, its potential as a common prognostic biomarker in early periods, such as clinical high risk (CHR) for psychosis and first-episode psychosis (FEP), has not been fully studied. METHODS A total of 104 FEP patients, 102 CHR individuals, and 107 healthy controls (HCs) participated in baseline MMN recording. Clinical outcomes were assessed; 17 FEP patients were treatment resistant, 73 FEP patients were nonresistant, 56 CHR individuals were nonremitters (15 transitioned to a psychotic disorder), and 22 CHR subjects were remitters. Baseline MMN amplitudes were compared across clinical outcome groups and tested for utility prognostic biomarkers using binary logistic regression. RESULTS MMN amplitudes were greatest in HCs, intermediate in CHR subjects, and smallest in FEP patients. In the clinical outcome groups, MMN amplitudes were reduced from the baseline in both FEP and CHR patients with poor prognostic trajectories. Reduced baseline MMN amplitudes were a significant predictor of later treatment resistance in FEP patients [Exp(β) = 2.100, 95% confidence interval (CI) 1.104-3.993, p = 0.024] and nonremission in CHR individuals [Exp(β) = 1.898, 95% CI 1.065-3.374, p = 0.030]. CONCLUSIONS These findings suggest that MMN could be used as a common prognostic biomarker across early psychosis periods, which will aid clinical decisions for early intervention.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lepock JR, Mizrahi R, Gerritsen CJ, Bagby RM, Maheandiran M, Ahmed S, Korostil M, Kiang M. N400 event-related brain potential and functional outcome in persons at clinical high risk for psychosis: A longitudinal study. Psychiatry Clin Neurosci 2022; 76:114-121. [PMID: 35037344 DOI: 10.1111/pcn.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND The N400 event-related brain potential (ERP) semantic priming effect is thought to reflect activation by meaningful stimuli of related concepts in semantic memory and has been found to be deficient in schizophrenia. We tested the hypothesis that, among individuals at clinical high risk (CHR) for psychosis, N400 semantic priming deficits predict worse symptomatic and functional outcomes after one year. METHODS We measured N400 semantic priming at baseline in CHR patients (n = 47) and healthy control participants (n = 25) who viewed prime words each followed by a related or unrelated target word, at stimulus-onset asynchronies (SOAs) of 300 or 750 ms. We measured patients' psychosis-like symptoms with the Scale of Prodromal Symptoms (SOPS) Positive subscale, and academic/occupational and social functioning with the Global Functioning (GF):Role and Social scales, respectively, at baseline and one-year follow-up (n = 29). RESULTS CHR patients exhibited less N400 semantic priming than controls across SOAs; planned contrasts indicated this difference was significant at the 750-ms but not the 300-ms SOA. In patients, reduced N400 semantic priming at the 750-ms SOA was associated with lower GF:Social scores at follow-up, and greater GF:Social decrements from baseline to follow-up. Patients' N400 semantic priming was not associated with SOPS Positive or GF:Role scores at follow-up, or change in these from baseline to follow-up. CONCLUSIONS In CHR patients, reduced N400 semantic priming at baseline predicted worse social functioning after one year, and greater decline in social functioning over this period. Thus, the N400 may be a useful prognostic biomarker of real-world functional outcome in CHR patients.
Collapse
Affiliation(s)
- Jennifer R Lepock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Cory J Gerritsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - R Michael Bagby
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sarah Ahmed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michele Korostil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Wang B, Zartaloudi E, Linden JF, Bramon E. Neurophysiology in psychosis: The quest for disease biomarkers. Transl Psychiatry 2022; 12:100. [PMID: 35277479 PMCID: PMC8917164 DOI: 10.1038/s41398-022-01860-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023] Open
Abstract
Psychotic disorders affect 3% of the population at some stage in life, are a leading cause of disability, and impose a great economic burden on society. Major breakthroughs in the genetics of psychosis have not yet been matched by an understanding of its neurobiology. Biomarkers of perception and cognition obtained through non-invasive neurophysiological tools, especially EEG, offer a unique opportunity to gain mechanistic insights. Techniques for measuring neurophysiological markers are inexpensive and ubiquitous, thus having the potential as an accessible tool for patient stratification towards early treatments leading to better outcomes. In this paper, we review the literature on neurophysiological markers for psychosis and their relevant disease mechanisms, mainly covering event-related potentials including P50/N100 sensory gating, mismatch negativity, and the N100 and P300 waveforms. While several neurophysiological deficits are well established in patients with psychosis, more research is needed to study neurophysiological markers in their unaffected relatives and individuals at clinical high risk. We need to harness EEG to investigate markers of disease risk as key steps to elucidate the aetiology of psychosis and facilitate earlier detection and treatment.
Collapse
Affiliation(s)
- Baihan Wang
- Division of Psychiatry, University College London, London, UK.
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London, London, UK.
- Institute of Clinical Trials and Methodology, University College London, London, UK.
| | - Jennifer F Linden
- Ear Institute, University College London, London, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
7
|
Vargas T, Damme KSF, Ered A, Capizzi R, Frosch I, Ellman LM, Mittal VA. Neuroimaging Markers of Resiliency in Youth at Clinical High Risk for Psychosis: A Qualitative Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:166-177. [PMID: 32788085 PMCID: PMC7725930 DOI: 10.1016/j.bpsc.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Psychotic disorders are highly debilitating and constitute a major public health burden. Identifying markers of psychosis risk and resilience is a necessary step toward understanding etiology and informing prevention and treatment efforts in individuals at clinical high risk (CHR) for psychosis. In this context, it is important to consider that neural risk markers have been particularly useful in identifying mechanistic determinants along with predicting clinical outcomes. Notably, despite a growing body of supportive literature and the promise of recent findings identifying potential neural markers, the current work on CHR resilience markers has received little attention. The present review provides a brief overview of brain-based risk markers with a focus on predicting symptom course. Next, the review turns to protective markers, examining research from nonpsychiatric and schizophrenia fields to build an understanding of framing, priorities, and potential, applying these ideas to contextualizing a small but informative body of resiliency-relevant CHR research. Four domains (neurocognition, emotion regulation, allostatic load, and sensory and sensorimotor function) were identified and are discussed in terms of behavioral and neural markers. Taken together, the literature suggests significant predictive value for brain-based markers for individuals at CHR for psychosis, and the limited but compelling resiliency work highlights the critical importance of expanding this promising area of inquiry.
Collapse
Affiliation(s)
- Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois.
| | | | - Arielle Ered
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Riley Capizzi
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Isabelle Frosch
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Lauren M Ellman
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois; Department of Psychiatry, Northwestern University, Evanston, Illinois; Department of Medical Social Sciences, Northwestern University, Evanston, Illinois; Institute for Policy Research, Northwestern University, Evanston, Illinois; Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, Illinois
| |
Collapse
|
8
|
Hamilton HK, Roach BJ, Mathalon DH. Forecasting Remission From the Psychosis Risk Syndrome With Mismatch Negativity and P300: Potentials and Pitfalls. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:178-187. [PMID: 33431345 PMCID: PMC8128162 DOI: 10.1016/j.bpsc.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical outcomes vary for individuals at clinical high risk (CHR) for psychosis, ranging from conversion to a psychotic disorder to full remission from the risk syndrome. Given that most CHR individuals do not convert to psychosis, recent research efforts have turned toward identifying specific predictors of CHR remission, a task that is conceptually and empirically dissociable from the identification of predictors of conversion to psychosis, and one that may reveal specific biological characteristics that confer resilience to psychosis and provide further insights into the mechanisms associated with the pathogenesis of schizophrenia and those underlying a transient CHR syndrome. Such biomarkers may ultimately facilitate the development of novel early interventions and support the optimization of individualized care. In this review, we focus on two event-related brain potential measures, mismatch negativity and P300, that have attracted interest as predictors of future psychosis among CHR individuals. We describe several recent studies examining whether mismatch negativity and P300 predict subsequent CHR remission and suggest that intact mismatch negativity and P300 may reflect the integrity of specific neurocognitive processes that confer resilience against the persistence of the CHR syndrome and its associated risk for future transition to psychosis. We also highlight several major methodological concerns associated with these studies that apply to the broader literature examining predictors of CHR remission. Among them is the concern that studies that predict dichotomous remission versus nonremission and/or dichotomous conversion versus nonconversion outcomes potentially confound remission and conversion effects, a phenomenon we demonstrate with a data simulation.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| | - Brian J Roach
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
9
|
P300 as an index of transition to psychosis and of remission: Data from a clinical high risk for psychosis study and review of literature. Schizophr Res 2020; 226:74-83. [PMID: 30819593 PMCID: PMC6708777 DOI: 10.1016/j.schres.2019.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
Auditory P300 oddball and novel components index working memory operations and salience processing, respectively, and are regarded as biomarkers of neurocognitive changes in both chronic and first-episode schizophrenia. Much less is known about whether P300 abnormalities exist in individuals at clinical high risk for psychosis (CHR) and if they are predictors of both transition to psychosis and remission from symptoms. One hundred and four CHR and 69 healthy control individuals (HC) completed P300 oddball paradigm, and 131 CHR and 69 HC subjects completed P300 novel paradigm. All CHR subjects were followed up for one year and stratified into CHR converters (CHRC) and non-converters (CHR-NC), with CHR-NC further stratified into remitted and non-remitted subgroups. Between-group comparisons of P300 oddball and novel amplitude and latency were performed among CHRC, CHR-NC and HC, as well as among CHRC, non-remitted CHR, remitted CHR and HC. CHR converters had lower fronto-central P300 novel amplitude as well as marginally lower P300 oddball amplitude relative to HC. When CHR non-converters were stratified into remitted and non-remitted subgroups, P300 novel amplitude in remitted CHR subjects was comparable to HC, and it was higher than that in CHR subjects who converted to psychosis or who did not remit. Thus, reduced P300 novel amplitude indexing impaired salience processing marked both conversion to psychosis and remission from psychotic symptoms.
Collapse
|
10
|
Oribe N, Hirano Y, Del Re E, Mesholam-Gately RI, Woodberry KA, Ueno T, Kanba S, Onitsuka T, Shenton ME, Spencer KM, Niznikiewicz MA. Longitudinal evaluation of visual P300 amplitude in clinical high-risk subjects: An event-related potential study. Psychiatry Clin Neurosci 2020; 74:527-534. [PMID: 32519778 DOI: 10.1111/pcn.13083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
AIM We previously reported abnormal P300 and N200 in a visual oddball task, and progressive P300 amplitude reduction at 1-year follow-up in patients with first-episode schizophrenia. P300 reduction as well as intact P1/N1 were also observed in clinical high-risk subjects (CHR), but whether or not these components change over time is unknown. This study evaluates, longitudinally, the visual P300, as well as P1, N1, and N200, in CHR. METHODS Visual event-related potentials (ERP) were recorded twice, once at baseline and once at 1-year follow-up in CHR (n = 19) and healthy comparison subjects (HC; n = 28). Participants silently counted infrequent target stimuli ('x') among standard stimuli ('y') presented on the screen while the 64-channel electroencephalogram was recorded. RESULTS No CHR converted to psychosis from baseline to 1-year follow-up in this study. Visual P300 amplitude was reduced and the latency was delayed significantly in CHR at both time points compared with HC. Furthermore, CHR subjects who had more positive symptoms showed more amplitude reduction at both time points. P1, N1, and N200 did not differ between groups. CONCLUSION Visual P300 amplitude was found to be reduced in CHR individuals compared with HC. We note that this finding is in subjects who did not convert to psychosis at 1-year follow-up. The association between visual P300 amplitude and symptoms suggests that for CHR who often experience clinical symptoms and seek medical care, visual P300 may be an important index that reflects the pathophysiological impairment underlying such clinical states.
Collapse
Affiliation(s)
- Naoya Oribe
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
- Department of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Yoshinogari, Japan
| | - Yoji Hirano
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
| | - Elisabetta Del Re
- Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Cognitive Neuroscience Laboratory, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, USA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, USA
| | - Kristen A Woodberry
- Massachusetts Mental Health Center, Division of Public Psychiatry, Beth Israel Deaconess Medical Center, Boston, USA
- Center for Psychiatric Research, Maine Medical Center Research Institute, Portland, USA
| | - Takefumi Ueno
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
- Department of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Yoshinogari, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
- Japan Depression Center, Tokyo, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Kyushu, Japan
| | - Martha E Shenton
- Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Margaret A Niznikiewicz
- Cognitive Neuroscience Laboratory, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, USA
| |
Collapse
|
11
|
Le TP, Lucas HD, Schwartz EK, Mitchell KR, Cohen AS. Frontal alpha asymmetry in schizotypy: electrophysiological evidence for motivational dysfunction. Cogn Neuropsychiatry 2020; 25:371-386. [PMID: 32873177 DOI: 10.1080/13546805.2020.1813096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Schizotypy is defined as personality traits reflecting an underlying risk for schizophrenia-spectrum disorders. As yet, there is a dearth of suitable objective markers for measuring schizotypy. Frontal alpha asymmetry, characterised by reduced left versus right frontal region activity, reflects trait-like diminished approach-related systems and has been found in schizophrenia. Methods: The present study used electroencephalography (EEG) recorded on a consumer-grade mobile headset to examine asymmetric resting-state frontal alpha, beta, and gamma power within the multidimensional schizotypy (e.g. positive, negative, disorganised) during a three-minute "eyes closed" resting period in college undergraduates (n=49). Results: Findings suggest that schizotypy was exclusively related to reduced left versus right-lateralised power in the alpha frequency (8.1-12.9 Hz., R2= .16). Follow-up analysis suggested that positive schizotypy was uniquely associated with increased right alpha activity, indicating increased withdrawal motivation. Conclusions: Frontal asymmetry is a possible ecologically valid objective marker for schizotypy that may be detectable using easily accessible, consumer-grade technology.
Collapse
Affiliation(s)
- Thanh P Le
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Heather D Lucas
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Elana K Schwartz
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Kyle R Mitchell
- Desert Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), La Jolla, CA, USA
| | - Alex S Cohen
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
12
|
Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis. Biol Psychiatry 2020; 88:294-303. [PMID: 32507388 PMCID: PMC8300573 DOI: 10.1016/j.biopsych.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
Clinical outcomes vary among youths at clinical high risk for psychosis (CHR-P), with approximately 20% progressing to full-blown psychosis over 2 to 3 years and 30% achieving remission. Recent research efforts have focused on identifying biomarkers that precede psychosis onset and enhance the accuracy of clinical outcome prediction in CHR-P individuals, with the ultimate goal of developing staged treatment approaches based on the individual's level of risk. Identifying such biomarkers may also facilitate progress toward understanding pathogenic mechanisms underlying psychosis onset, which may support the development of mechanistically informed early interventions for psychosis. In recent years, electroencephalography-based event-related potential measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its clinical outcomes. In this review, we describe the evidence for event-related potential abnormalities in CHR-P and discuss how they inform our understanding of information processing deficits as vulnerability markers for emerging psychosis and as indicators of future outcomes. Among the measures studied, P300 and mismatch negativity are notable because deficits predict conversion to psychosis and/or CHR-P remission. However, the accuracy with which these and other measures predict outcomes in CHR-P has been obscured in the prior literature by the tendency to only report group-level differences, underscoring the need for inclusion of individual predictive accuracy metrics in future studies. Nevertheless, both P300 and mismatch negativity show promise as electrophysiological markers of risk for psychosis, as target engagement measures for clinical trials, and as potential translational bridges between human studies and animal models focused on novel drug development for early psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California
| | - Alison K Boos
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California.
| |
Collapse
|
13
|
Kim M, Lee TH, Hwang WJ, Lee TY, Kwon JS. Auditory P300 as a Neurophysiological Correlate of Symptomatic Improvement by Transcranial Direct Current Stimulation in Patients With Schizophrenia: A Pilot Study. Clin EEG Neurosci 2020; 51:252-258. [PMID: 30474393 DOI: 10.1177/1550059418815228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. The reduced amplitude, prolonged latency, and increased intertrial variability of auditory P300 have been consistently reported in relation to the symptomatic severity of schizophrenia. This study investigated whether auditory P300 event-related potentials can be used as an objective indicator of symptomatic improvement by transcranial direct current stimulation (tDCS) in patients with schizophrenia. Methods. Ten patients with schizophrenia received 20 minutes of 2-mA tDCS twice a day for 5 consecutive weekdays. The anode was placed over the left dorsolateral prefrontal cortex, and the cathode was placed over the left temporo-parietal cortex. The Positive and Negative Syndrome Scale (PANSS) and the auditory P300 were measured for each participant at baseline and after the completion of the tDCS applications. Results. The participants showed significant improvement in the positive and negative symptoms as indexed by change in the PANSS scores by the tDCS. The P300 amplitude, latency, and intertrial variability did not statistically significantly differ after the tDCS application. However, a significant association was observed between the reduced P300 intertrial variability and improvement in the positive symptoms by tDCS. In addition, the changes in both the P300 latency and intertrial variability were significantly correlated with reduced negative symptoms after the tDCS application. Conclusions. Although this pilot study is limited by the small sample size and lack of a sham control, the results suggest that auditory P300 may be a putative marker reflecting the effect of tDCS on the positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
14
|
Lavoie S, Polari AR, Goldstone S, Nelson B, McGorry PD. Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Interv Psychiatry 2019; 13:1319-1328. [PMID: 30688016 DOI: 10.1111/eip.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
AIM Clinical staging in psychiatry aims to classify patients according to the severity of their symptoms, from stage 0 (increased risk, asymptomatic) to stage 4 (severe illness), enabling adapted treatment at each stage of the illness. The staging model would gain specificity if one or more quantifiable biological markers could be identified. Several biomarkers reflecting possible causal mechanisms and/or consequences of the pathophysiology are candidates for integration into the clinical staging model of psychiatric illnesses. METHODS This review covers the evolution (from stage 0 to stage 4) of the most important brain functioning impairments as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. RESULTS The present review of the literature demonstrates that it is currently not possible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive disorder and bipolar disorder. As for schizophrenia, the most promising markers of the stage of the illness are the pitch mismatch negativity as well as the p300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. CONCLUSIONS Given the complexity of major psychiatric disorders, and that not a single impairment can be observed in all patients, future research should most likely consider combinations of markers in the quest for a better identification of the stages of the psychiatric illnesses.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea R Polari
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Orygen Youth Health, Melbourne Health, Melbourne, Victoria, Australia
| | - Sherilyn Goldstone
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Graber K, Bosquet Enlow M, Duffy FH, D'Angelo E, Sideridis G, Hyde DE, Morelli N, Tembulkar S, Gonzalez-Heydrich J. P300 amplitude attenuation in high risk and early onset psychosis youth. Schizophr Res 2019; 210:228-238. [PMID: 30685392 DOI: 10.1016/j.schres.2018.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/16/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
Little research has investigated the use of electrophysiological biomarkers in childhood and adolescence to distinguish early onset psychosis and the clinical high risk state. The P300 evoked potential is a robust neurophysiological marker of schizophrenia that is dampened in patients with schizophrenia and, less consistently, in those with affective psychoses and those at clinical high risk for psychosis (CHR). How it may differ between patients with psychotic disorders (PS) and CHR is less studied, especially in youth. The current study compared P300 activity among children and adolescents, aged 5-18 years, at CHR (n = 43), with PS (n = 28), and healthy controls (HC; n = 24). Participants engaged in an auditory event-related potential (ERP) task to elicit a P300 response and completed clinical interviews to verify symptoms and diagnoses. Linear regression analyses revealed a decrease in P300 amplitude with increased severity of psychotic symptoms. PS participants showed a diminished P300 response compared to those at CHR and HC, particularly among adolescents aged 13-18. This response was most evident at centroparietal and parietal locations in the right hemisphere. The findings suggest that high risk and psychotic symptomatology is linked to attenuated parietal P300 activity in youth as young as 13 years. Further exploration of the P300 as a biomarker for psychosis in very young patients could inform tailored, appropriate interventions at early stages of disease progression. Future research should evaluate whether specific phenotypic and genotypic characteristics are differentially associated with neurophysiological biomarkers and whether P300 attenuation in CHR youth can predict later symptom severity.
Collapse
Affiliation(s)
- Kelsey Graber
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Frank H Duffy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Eugene D'Angelo
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Georgios Sideridis
- Department of Developmental Medicine Research, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Damon E Hyde
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Nicholas Morelli
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Sahil Tembulkar
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Niznikiewicz MA. Neurobiological approaches to the study of clinical and genetic high risk for developing psychosis. Psychiatry Res 2019; 277:17-22. [PMID: 30926150 DOI: 10.1016/j.psychres.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Research on neurobiological impairments in clinical and genetic high risk for developing psychosis individuals (CHR) has identified several brain abnormalities that impact both brain structure and function. The current review will discuss research examining brain abnormalities in clinical and genetic high risk for psychosis using magnetic resonance imaging (MRI) focusing on structural brain abnormalities, diffusion tensor imaging (DTI) focusing on the integrity of white matter tracks, functional MRI focusing on functional brain abnormalities, and EEG and event related potential (ERP) methodologies focusing on indices of cognitive dysfunction in CHR. Studies conducted across these different methodologies sought to identify brain regions and brain processes that would distinguish between those high risk individuals who converted to psychosis versus those who did not. In addition, in some of the studies, the distinction was made between individuals who converted to psychosis, those who did not, and those individuals who remained clinically symptomatic while not converting to psychosis. The brain regions most often identified as abnormal in this subject group were the brain areas often found abnormal in schizophrenia, including frontal and temporal regions. Similarly, several cognitive processes often found to be abnormal in schizophrenia have been also found impaired in CHR.
Collapse
Affiliation(s)
- Margaret A Niznikiewicz
- Harvard Medical School and Veterans Administration Boston, Healthcare System, United States.
| |
Collapse
|
17
|
Predicting prognosis in patients with first-episode psychosis using auditory P300: A 1-year follow-up study. Clin Neurophysiol 2019; 130:46-54. [DOI: 10.1016/j.clinph.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
|
18
|
Lepock JR, Mizrahi R, Korostil M, Bagby RM, Pang EW, Kiang M. Event-Related Potentials in the Clinical High-Risk (CHR) State for Psychosis: A Systematic Review. Clin EEG Neurosci 2018; 49:215-225. [PMID: 29382210 DOI: 10.1177/1550059418755212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is emerging evidence that identification and treatment of individuals in the prodromal or clinical high-risk (CHR) state for psychosis can reduce the probability that they will develop a psychotic disorder. Event-related brain potentials (ERPs) are a noninvasive neurophysiological technique that holds promise for improving our understanding of neurocognitive processes underlying the CHR state. We aimed to systematically review the current literature on cognitive ERP studies of the CHR population, in order to summarize and synthesize the results, and their implications for our understanding of the CHR state. Across studies, amplitudes of the auditory P300 and duration mismatch negativity (MMN) ERPs appear reliably reduced in CHR individuals, suggesting that underlying impairments in detecting changes in auditory stimuli are a sensitive early marker of the psychotic disease process. There are more limited data indicating that an earlier-latency auditory ERP response, the N100, is also reduced in amplitude, and in the degree to which it is modulated by stimulus characteristics, in the CHR population. There is also evidence that a number of auditory ERP measures (including P300, MMN and N100 amplitudes, and N100 gating in response to repeated stimuli) can further refine our ability to detect which CHR individuals are most at risk for developing psychosis. Thus, further research is warranted to optimize the predictive power of algorithms incorporating these measures, which could help efforts to target psychosis prevention interventions toward those most in need.
Collapse
Affiliation(s)
- Jennifer R Lepock
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Michele Korostil
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,4 Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - R Michael Bagby
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,5 Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth W Pang
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,6 Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,7 Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Michael Kiang
- 1 Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,3 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Kim M, Kwak YB, Lee TY, Kwon JS. Modulation of Electrophysiology by Transcranial Direct Current Stimulation in Psychiatric Disorders: A Systematic Review. Psychiatry Investig 2018; 15:434-444. [PMID: 29695150 PMCID: PMC5976006 DOI: 10.30773/pi.2018.01.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique increasingly used to relieve symptoms of psychiatric disorders. Electrophysiologic markers, such as electroencephalography (EEG) and event-related potentials (ERP), have high temporal resolution sensitive to detect plastic changes of the brain associated with symptomatic improvement following tDCS application. METHODS We performed systematic review to identify electrophysiological markers that reflect tDCS effects on plastic brain changes in psychiatric disorders. A total of 638 studies were identified by searching PubMed, Embase, psychINFPO. Of these, 21 full-text articles were assessed eligible and included in the review. RESULTS Although the reviewed studies were heterogeneous in their choices of tDCS protocols, targeted electrophysiological markers, and disease entities, their results strongly support EEG/ERPs to sensitively reflect plastic brain changes and the associated symptomatic improvement following tDCS. CONCLUSION EEG/ERPs may serve a potent tool in revealing the mechanisms underlying psychiatric symptoms, as well as in localizing the brain area targeted for stimulation. Future studies in each disease entities employing consistent tDCS protocols and electrophysiological markers would be necessary in order to substantiate and further elaborate the findings of studies included in the present systematic review.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
20
|
Kim M, Lee TH, Yoon YB, Lee TY, Kwon JS. Predicting Remission in Subjects at Clinical High Risk for Psychosis Using Mismatch Negativity. Schizophr Bull 2018; 44:575-583. [PMID: 29036493 PMCID: PMC5890455 DOI: 10.1093/schbul/sbx102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The declining transition rate to psychotic disorder and the increasing rate of nonpsychotic poor outcomes among subjects at clinical high risk (CHR) for psychosis have increased the need for biomarkers to predict remission regardless of transition. This study investigated whether mismatch negativity (MMN) predicts the prognosis of CHR individuals during a 6-year follow-up period. METHODS A total of 47 healthy control (HC) subjects and 48 subjects at CHR for psychosis participated in the MMN assessment. The clinical statuses of the CHR subjects were examined at baseline and regularly for up to 6 years. The CHR subjects were divided into remitter and nonremitter groups, and the baseline MMN amplitudes and latencies were compared across the remitter, nonremitter, and HC groups. Regression analyses were performed to identify the predictive factors of remission, the improvement of attenuated positive symptoms, and functional recovery. RESULTS CHR nonremitters showed reduced MMN amplitudes at baseline compared to CHR remitters and HC subjects. A logistic regression analysis revealed that the baseline MMN amplitude at the frontal electrode site was the only significant predictor of remission. In a multiple regression analysis, the MMN amplitude, antipsychotic use, and years of education predicted an improvement in attenuated positive symptoms. The MMN amplitude at baseline predicted functional recovery. CONCLUSIONS These results suggest that MMN is a putative predictor of prognosis regardless of the transition to psychotic disorder in subjects at CHR. Early prognosis prediction and the provision of appropriate interventions based on the initial CHR status might be aided using MMN.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea,To whom correspondence should be addressed; Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, Seoul 03080, Republic of Korea; tel: +82-2-2072-2972, fax: +82-2-747-9063, e-mail:
| |
Collapse
|
21
|
Kim M, Yoon YB, Lee TH, Lee TY, Kwon JS. The effect of tDCS on auditory hallucination and P50 sensory gating in patients with schizophrenia: A pilot study. Schizophr Res 2018; 192:469-470. [PMID: 28416094 DOI: 10.1016/j.schres.2017.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngwoo Bryan Yoon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| |
Collapse
|
22
|
Mikanmaa E, Grent-'t-Jong T, Hua L, Recasens M, Thune H, Uhlhaas PJ. Towards a neurodynamical understanding of the prodrome in schizophrenia. Neuroimage 2017; 190:144-153. [PMID: 29175199 DOI: 10.1016/j.neuroimage.2017.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
The identification of biomarkers for the early diagnosis of schizophrenia that could inform novel treatment developments is an important objective of current research. This paper will summarize recent work that has investigated changes in oscillatory activity and event-related potentials with Electro/Magnetoencephalography (EEG/MEG) in participants at high-risk for the development of schizophrenia, highlighting disruptions in sensory and cognitive operations prior to the onset of the syndrome. Changes in EEG/MEG-data are consistent with evidence for alterations in Glutamatergic and GABAergic neurotransmission as disclosed by Magnetic Resonance Spectroscopy and brain stimulation, indicating changes in Excitation/Inhibition balance parameters prior to the onset of psychosis. Together these data emphasize the importance of research into neuronal dynamics as a crucial approach to establish functional relationships between impairments in neural circuits and emerging psychopathology that together could be fundamental for early intervention and the identification of novel treatments for emerging psychosis.
Collapse
Affiliation(s)
- Emmi Mikanmaa
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - Lingling Hua
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Marc Recasens
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Hanna Thune
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Yang S, Qiao Y, Wang L, Hao P. Magnetic stimulation at acupoints relieves mental fatigue: An Event Related Potential (P300) study. Technol Health Care 2017; 25:157-165. [PMID: 28582903 DOI: 10.3233/thc-171318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mental fatigue caused by continuous cognitive tasks represents one of the most worrying modern health problems. Event Related Potential (ERP) P300 is thought to be associated with cognitive function. OBJECTIVE This study aimed at characterizing the neural activity correlated with the attentional processes and exploring a novelty method which combine the magnetic stimulation and acupoint to relieve mental fatigue caused by continuous cognitive tasks. METHODS P300 (P3a and P3b) were extracted at three points: when subjects felt relaxed, at the point of mental fatigue, and after the subjects were stimulated at acupoints. The amplitudes and latencies of P3a and P3b were analyzed statistically. RESULTS Among the four features (P3a amplitude, P3a latency, P3b amplitude, and P3b latency), only P3b amplitude was found to have a significant difference between the resting state and the mental fatigue state. And P3b amplitude significantly increased after magnetic stimulation at the acupoints. CONCLUSIONS Subjects experiencing mental fatigue demonstrated a significant decrease in P3b amplitude in the parietal region, suggesting attenuation of resource allocation for selective attention. P3b amplitude significantly increased after magnetic stimulation at acupoints indicating that this strategy can be used to improve selective attention and relieve mental fatigue.
Collapse
Affiliation(s)
- Shuo Yang
- Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China
| | - Yanyun Qiao
- Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China.,Ovation Health Science and Technology Co., Ltd., ENN Group, Langfang, Hebei, China
| | - Lei Wang
- Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China
| | - Pengru Hao
- Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China
| |
Collapse
|