1
|
Qela B, Damiani S, De Santis S, Groppi F, Pichiecchio A, Asteggiano C, Brondino N, Monteleone AM, Grassi L, Politi P, Fusar-Poli P, Fusar-Poli L. Predictive coding in neuropsychiatric disorders: A systematic transdiagnostic review. Neurosci Biobehav Rev 2025; 169:106020. [PMID: 39828236 DOI: 10.1016/j.neubiorev.2025.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The predictive coding framework postulates that the human brain continuously generates predictions about the environment, maximizing successes and minimizing failures based on prior experiences and beliefs. This PRISMA-compliant systematic review aims to comprehensively and transdiagnostically examine the differences in predictive coding between individuals with neuropsychiatric disorders and healthy controls. We included 72 articles including case-control studies investigating predictive coding as the primary outcome and reporting behavioral, neuroimaging, or electrophysiological findings. Thirty-three studies investigated predictive coding in the schizophrenia spectrum, 33 in neurodevelopmental disorders, 5 in mood disorders, 4 in neurocognitive disorders, 1 in post-traumatic stress disorder, and 1 in substance use disorders. Oddball and oddball-like paradigms were most frequently used to quantify predictive coding performance. Evidence showed heterogeneous impairments in the predictive coding abilities of the brain across neuropsychiatric disorders, particularly in schizophrenia and autism. Patients within the schizophrenia spectrum showed a consistent pattern of impaired non-social predictive coding. Conversely, predictive coding deficits were more selective for social cues in the autism spectrum. Predictive coding impairments were correlated with clinical symptom severity. These findings underscore the potential utility of predictive coding as a framework for understanding cognitive dysfunctions in the neuropsychiatric population, even though more evidence is needed on underexplored conditions, also considering potential confounders such as medication use and sex/gender. The potential role of predictive coding as a determinant of treatment response may also be considered to tailor personalized interventions.
Collapse
Affiliation(s)
- Brendon Qela
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Samanta De Santis
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Carlo Asteggiano
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, United Kingdom; Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| |
Collapse
|
2
|
Erickson MA, Bansal S, Li C, Waltz J, Corlett P, Gold J. Differing Pattern of Mismatch Negativity Responses in Clinical and Nonclinical Voice Hearers Challenge Predictive Coding Accounts of Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100394. [PMID: 39526022 PMCID: PMC11550737 DOI: 10.1016/j.bpsgos.2024.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Among people with schizophrenia (PSZ), reduced mismatch negativity (MMN) is conceptualized as evidence of disrupted prediction error signaling that underlies positive symptoms. However, this conceptualization has been challenged by observations that MMN and positive symptoms are often uncorrelated. In the current study, we tested the hypothesis that reduced MMN is associated with the presence of hallucinations and delusions specifically rather than the presence of a psychiatric illness. A second aim was to determine whether the strength of the association with positive symptoms increases for indices that reflect predictions at higher levels of abstraction. Methods Fifty-six PSZ, 34 nonclinical voice hearers, and 48 healthy comparison subjects (HCs) completed 2 MMN paradigms: one with a simple duration deviant type, and one with a higher-level, pattern-violation deviant type. We also measured the repetition positivity, which reflects the formation of auditory memory traces. Results We observed that although PSZ exhibited the expected pattern of significantly reduced duration MMN and reduced pattern-violation MMN at the trend level compared with HCs, nonclinical voice hearers exhibited a pattern of duration MMN and pattern-violation MMN amplitude that was statistically similar to that of HCs (ps > .64). Similarly, PSZ exhibited a significantly reduced repetition positivity slope compared with HCs in the duration condition and a trend-level reduction compared with HCs in the pattern-violation condition. Nonclinical voice hearers did not differ from either group in repetition positivity slope in either condition. Conclusions These results indicate that the MMN as a prediction error signal does not reflect processes relevant for the manifestation of hallucinations and delusions.
Collapse
Affiliation(s)
- Molly A. Erickson
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, Illinois
| | - Sonia Bansal
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charlotte Li
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, Illinois
| | - James Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Philip Corlett
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - James Gold
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Mazer P, Carneiro F, Domingo J, Pasion R, Silveira C, Ferreira-Santos F. Systematic review and meta-analysis of the visual mismatch negativity in schizophrenia. Eur J Neurosci 2024; 59:2863-2874. [PMID: 38739367 DOI: 10.1111/ejn.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Mismatch negativity (MMN) is an event-related potential component automatically elicited by events that violate predictions based on prior events. To elicit this component, researchers use stimulus repetition to induce predictions, and the MMN is obtained by subtracting the brain response to rare or unpredicted stimuli from that of frequent stimuli. Under the Predictive Processing framework, one increasingly popular interpretation of the mismatch response postulates that MMN represents a prediction error. In this context, the reduced MMN amplitude to auditory stimuli has been considered a potential biomarker of Schizophrenia, representing a reduced prediction error and the inability to update the mental model of the world based on the sensory signals. It is unclear, however, whether this amplitude reduction is specific for auditory events or if the visual MMN reveals a similar pattern in schizophrenia spectrum disorder. This review and meta-analysis aimed to summarise the available literature on the vMMN in schizophrenia. A systematic literature search resulted in 10 eligible studies that resulted in a combined effect size of g = -.63, CI [-.86, -.41], reflecting lower vMMN amplitudes in patients. These results are in line with the findings in the auditory domain. This component offers certain advantages, such as less susceptibility to overlap with components generated by attentional demands. Future studies should use vMMN to explore abnormalities in the Predictive Processing framework in different stages and groups of the SSD and increase the knowledge in the search for biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Prune Mazer
- ESS, Polytechnic Institute of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fábio Carneiro
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Neurology, ULS do Alto Ave, Guimarães, Portugal
| | - Juan Domingo
- Faculty of Health Sciences, Universidad Rey Juan Carlos, Madrid, Spain
| | - Rita Pasion
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
- HEI-LAB, Lusófona University, Porto, Portugal
| | - Celeste Silveira
- Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry Department, Hospital S. João, Porto, Portugal
| | - Fernando Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Molnár H, Marosi C, Becske M, Békési E, Farkas K, Stefanics G, Czigler I, Csukly G. A comparison of visual and acoustic mismatch negativity as potential biomarkers in schizophrenia. Sci Rep 2024; 14:992. [PMID: 38200103 PMCID: PMC10782025 DOI: 10.1038/s41598-023-49983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Mismatch negativity (MMN) is an event-related potential (ERP) component generated when an unexpected deviant stimulus occurs in a pattern of standard stimuli. Several studies showed that the MMN response to both auditory and visual stimuli is attenuated in schizophrenia. While previous studies investigated auditory and visual MMN in different cohorts, here we examined the potential clinical utility of MMN responses to auditory and visual stimuli within the same group of patients. Altogether 39 patients with schizophrenia and 39 healthy controls matched in age, gender, and education were enrolled. We recorded EEG using 64 channels in eight experimental blocks where we presented auditory and visual stimulus sequences. Mismatch responses were obtained by subtracting responses to standard from the physically identical deviant stimuli. We found a significant MMN response to the acoustic stimuli in the control group, whereas no significant mismatch response was observed in the patient group. The group difference was significant for the acoustic stimuli. The 12 vane windmill pattern evoked a significant MMN response in the early time window in the control group but not in the patient group. The 6 vane windmill pattern evoked MMN only in the patient group. However, we found no significant difference between the groups. Furthermore, we found no correlation between the clinical variables and the MMN amplitudes. Our results suggest that predictive processes underlying mismatch generation in patients with schizophrenia may be more affected in the acoustic compared to the visual domain. Acoustic MMN tends to be a more promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Emese Békési
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Stefanics
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, RCNS, HU-RES, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Gallimore CG, Ricci DA, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. Cereb Cortex 2023; 33:9417-9428. [PMID: 37310190 PMCID: PMC10393498 DOI: 10.1093/cercor/bhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
Affiliation(s)
- Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - David A Ricci
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| |
Collapse
|
6
|
Haigh SM, Berryhill ME, Kilgore-Gomez A, Dodd M. Working memory and sensory memory in subclinical high schizotypy: An avenue for understanding schizophrenia? Eur J Neurosci 2023; 57:1577-1596. [PMID: 36895099 PMCID: PMC10178355 DOI: 10.1111/ejn.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The search for robust, reliable biomarkers of schizophrenia remains a high priority in psychiatry. Biomarkers are valuable because they can reveal the underlying mechanisms of symptoms and monitor treatment progress and may predict future risk of developing schizophrenia. Despite the existence of various promising biomarkers that relate to symptoms across the schizophrenia spectrum, and despite published recommendations encouraging multivariate metrics, they are rarely investigated simultaneously within the same individuals. In those with schizophrenia, the magnitude of purported biomarkers is complicated by comorbid diagnoses, medications and other treatments. Here, we argue three points. First, we reiterate the importance of assessing multiple biomarkers simultaneously. Second, we argue that investigating biomarkers in those with schizophrenia-related traits (schizotypy) in the general population can accelerate progress in understanding the mechanisms of schizophrenia. We focus on biomarkers of sensory and working memory in schizophrenia and their smaller effects in individuals with nonclinical schizotypy. Third, we note irregularities across research domains leading to the current situation in which there is a preponderance of data on auditory sensory memory and visual working memory, but markedly less in visual (iconic) memory and auditory working memory, particularly when focusing on schizotypy where data are either scarce or inconsistent. Together, this review highlights opportunities for researchers without access to clinical populations to address gaps in knowledge. We conclude by highlighting the theory that early sensory memory deficits contribute negatively to working memory and vice versa. This presents a mechanistic perspective where biomarkers may interact with one another and impact schizophrenia-related symptoms.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Marian E. Berryhill
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Michael Dodd
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
7
|
Gallimore CG, Ricci D, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537173. [PMID: 37131642 PMCID: PMC10153128 DOI: 10.1101/2023.04.17.537173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
|
8
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
9
|
Torrens WA, Pablo JN, Shires J, Haigh SM, Berryhill ME. People with high schizotypy experience more illusions in the Pattern Glare Test: Consistent with the hyperexcitability hypothesis. Eur J Neurosci 2023; 57:388-399. [PMID: 36484768 PMCID: PMC9847329 DOI: 10.1111/ejn.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Individuals diagnosed with schizophrenia spectrum disorders (SSD) exhibit a constellation of sensory and perceptual impairments, including hyporeactivity to external input. However, individuals with SSD also report subjective experiences of sensory flooding, suggesting sensory hyperexcitability. To identify the extent to which behavioural indices of hyperexcitability are related to non-psychotic symptoms of schizophrenia, we tested a non-clinical population measured for schizophrenia-like traits (schizotypy), and a behavioural measure of sensory hyperexcitability, specifically the number of illusions seen in the Pattern Glare Test. Two samples totaling 913 individuals completed an online version of the Schizotypal Personality Questionnaire - Brief Revised (SPQ-BR) and the Pattern Glare Test. Individuals with higher schizotypy traits reported more illusions in the Pattern Glare Test. Additionally, one of the three SPQ-BR factors, the disorganized factor, significantly predicted the number of illusions reported. These data illustrate the potential for research in non-clinical samples to inform clinically relevant research.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jenna N Pablo
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Jorja Shires
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | - Sarah M Haigh
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| | | |
Collapse
|
10
|
Ford TC, Hugrass LE, Jack BN. The Relationship Between Affective Visual Mismatch Negativity and Interpersonal Difficulties Across Autism and Schizotypal Traits. Front Hum Neurosci 2022; 16:846961. [PMID: 35399350 PMCID: PMC8983815 DOI: 10.3389/fnhum.2022.846961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory deficits are a feature of autism and schizophrenia, as well as the upper end of their non-clinical spectra. The mismatch negativity (MMN), an index of pre-attentive auditory processing, is particularly sensitive in detecting such deficits; however, little is known about the relationship between the visual MMN (vMMN) to facial emotions and autism and schizophrenia spectrum symptom domains. We probed the vMMN to happy, sad, and neutral faces in 61 healthy adults (18-40 years, 32 female), and evaluated their degree of autism and schizophrenia spectrum traits using the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ). The vMMN to happy faces was significantly larger than the vMMNs to sad and neutral faces. The vMMN to happy faces was associated with interpersonal difficulties as indexed by AQ Communication and Attention to Detail subscales, and SPQ associated with more interpersonal difficulties. These data suggest that pre-attentive processing of positive affect might be more specific to the interpersonal features associated with autism and schizophrenia. These findings add valuable insights into the growing body of literature investigating symptom-specific neurobiological markers of autism and schizophrenia spectrum conditions.
Collapse
Affiliation(s)
- Talitha C. Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Laila E. Hugrass
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Bradley N. Jack
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
11
|
Shiramatsu TI, Mori K, Ishizu K, Takahashi H. Auditory, Visual, and Cross-Modal Mismatch Negativities in the Rat Auditory and Visual Cortices. Front Hum Neurosci 2021; 15:721476. [PMID: 34602996 PMCID: PMC8484534 DOI: 10.3389/fnhum.2021.721476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/04/2022] Open
Abstract
When the brain tries to acquire an elaborate model of the world, multisensory integration should contribute to building predictions based on the various pieces of information, and deviance detection should repeatedly update these predictions by detecting “errors” from the actual sensory inputs. Accumulating evidence such as a hierarchical organization of the deviance-detection system indicates that the deviance-detection system can be interpreted in the predictive coding framework. Herein, we targeted mismatch negativity (MMN) as a type of prediction-error signal and investigated the relationship between multisensory integration and MMN. In particular, we studied whether and how cross-modal information processing affected MMN in rodents. We designed a new surface microelectrode array and simultaneously recorded visual and auditory evoked potentials from the visual and auditory cortices of rats under anesthesia. Then, we mapped MMNs for five types of deviant stimuli: single-modal deviants in (i) the visual oddball and (ii) auditory oddball paradigms, eliciting single-modal MMN; (iii) congruent audio-visual deviants, (iv) incongruent visual deviants, and (v) incongruent auditory deviants in the audio-visual oddball paradigm, eliciting cross-modal MMN. First, we demonstrated that visual MMN exhibited deviance detection properties and that the first-generation focus of visual MMN was localized in the visual cortex, as previously reported in human studies. Second, a comparison of MMN amplitudes revealed a non-linear relationship between single-modal and cross-modal MMNs. Moreover, congruent audio-visual MMN exhibited characteristics of both visual and auditory MMNs—its latency was similar to that of auditory MMN, whereas local blockage of N-methyl-D-aspartic acid receptors in the visual cortex diminished it as well as visual MMN. These results indicate that cross-modal information processing affects MMN without involving strong top-down effects, such as those of prior knowledge and attention. The present study is the first electrophysiological evidence of cross-modal MMN in animal models, and future studies on the neural mechanisms combining multisensory integration and deviance detection are expected to provide electrophysiological evidence to confirm the links between MMN and predictive coding theory.
Collapse
Affiliation(s)
| | - Kanato Mori
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kotaro Ishizu
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Abstract
Neural processing of sensory information is strongly influenced by context. For instance, cortical responses are reduced to predictable stimuli, while responses are increased to novel stimuli that deviate from contextual regularities. Such bidirectional modulation based on preceding sensory context is likely a critical component or manifestation of attention, learning, and behavior, yet how it arises in cortical circuits remains unclear. Using volumetric two-photon calcium imaging and local field potentials in primary visual cortex (V1) from awake mice presented with visual "oddball" paradigms, we identify both reductions and augmentations of stimulus-evoked responses depending, on whether the stimulus was redundant or deviant, respectively. Interestingly, deviance-augmented responses were limited to a specific subset of neurons mostly in supragranular layers. These deviance-detecting cells were spatially intermixed with other visually responsive neurons and were functionally correlated, forming a neuronal ensemble. Optogenetic suppression of prefrontal inputs to V1 reduced the contextual selectivity of deviance-detecting ensembles, demonstrating a causal role for top-down inputs. The presence of specialized context-selective ensembles in primary sensory cortex, modulated by higher cortical areas, provides a circuit substrate for the brain's construction and selection of prediction errors, computations which are key for survival and deficient in many psychiatric disorders.
Collapse
|
13
|
Na E, Lee K, Kim EJ, Bae JB, Suh SW, Byun S, Han JW, Kim KW. Pre-attentive Visual Processing in Alzheimer's Disease: An Event-related Potential Study. Curr Alzheimer Res 2021; 17:1195-1207. [PMID: 33593259 DOI: 10.2174/1567205018666210216084534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/16/2020] [Accepted: 12/27/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION While identifying Alzheimer's Disease (AD) in its early stages is crucial, traditional neuropsychological tests tend to lack sensitivity and specificity for its diagnosis. Neuropsychological studies have reported visual processing deficits of AD, and event-related potentials (ERPs) are suitable to investigate pre-attentive processing with superior temporal resolution. OBJECTIVE This study aimed to investigate visual attentional characteristics of adults with AD, from pre-attentive to attentive processing, using a visual oddball task and ERPs. METHODS Cognitively normal elderly controls (CN) and patients with probable AD (AD) were recruited. Participants performed a three-stimulus visual oddball task and were asked to press a designated button in response to the target stimuli. The amplitudes of 4 ERPs were analyzed. Mismatchnegativity (vMMN) was analyzed around the parieto-occipital and temporo-occipital regions. P3a was analyzed around the fronto-central regions, whereas P3b was analyzed around the centro-parietal regions. RESULTS Late vMMN amplitudes of the AD group were significantly smaller than those of the CN group, while early vMMN amplitudes were comparable. Compared to the CN group, P3a amplitudes of the AD group were significantly smaller for the infrequent deviant stimuli, but the amplitudes for the standard stimuli were comparable. Lastly, the AD group had significantly smaller P3b amplitudes for the target stimuli compared to the CN group. CONCLUSION Our findings imply that AD patients exhibit pre-attentive visual processing deficits, known to affect later higher-order brain functions. In a clinical setting, the visual oddball paradigm could be used to provide helpful diagnostic information since pre-attentive ERPs can be induced by passive exposure to infrequent stimuli.
Collapse
Affiliation(s)
- Eunchan Na
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kanghee Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun J Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong B Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung W Suh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seonjeong Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji W Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ki W Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
14
|
Stefanics G, Heinzle J, Czigler I, Valentini E, Stephan KE. Timing of repetition suppression of event-related potentials to unattended objects. Eur J Neurosci 2020; 52:4432-4441. [PMID: 29802671 PMCID: PMC7818225 DOI: 10.1111/ejn.13972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/03/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
Current theories of object perception emphasize the automatic nature of perceptual inference. Repetition suppression (RS), the successive decrease of brain responses to repeated stimuli, is thought to reflect the optimization of perceptual inference through neural plasticity. While functional imaging studies revealed brain regions that show suppressed responses to the repeated presentation of an object, little is known about the intra-trial time course of repetition effects to everyday objects. Here, we used event-related potentials (ERPs) to task-irrelevant line-drawn objects, while participants engaged in a distractor task. We quantified changes in ERPs over repetitions using three general linear models that modeled RS by an exponential, linear, or categorical "change detection" function in each subject. Our aim was to select the model with highest evidence and determine the within-trial time-course and scalp distribution of repetition effects using that model. Model comparison revealed the superiority of the exponential model indicating that repetition effects are observable for trials beyond the first repetition. Model parameter estimates revealed a sequence of RS effects in three time windows (86-140, 322-360, and 400-446 ms) and with occipital, temporoparietal, and frontotemporal distribution, respectively. An interval of repetition enhancement (RE) was also observed (320-340 ms) over occipitotemporal sensors. Our results show that automatic processing of task-irrelevant objects involves multiple intervals of RS with distinct scalp topographies. These sequential intervals of RS and RE might reflect the short-term plasticity required for optimization of perceptual inference and the associated changes in prediction errors and predictions, respectively, over stimulus repetitions during automatic object processing.
Collapse
Affiliation(s)
- Gabor Stefanics
- Translational Neuromodeling Unit (TNU)Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
- Laboratory for Social and Neural Systems ResearchDepartment of EconomicsUniversity of ZurichZurichSwitzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU)Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - István Czigler
- Institute of Cognitive Neuroscience and PsychologyResearch Center for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | | | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU)Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
- Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUK
| |
Collapse
|
15
|
Male AG, O’Shea RP, Schröger E, Müller D, Roeber U, Widmann A. The quest for the genuine visual mismatch negativity (vMMN): Event‐related potential indications of deviance detection for low‐level visual features. Psychophysiology 2020; 57:e13576. [DOI: 10.1111/psyp.13576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Alie G. Male
- Discipline of Psychology, College of Science, Health, Engineering and Education Murdoch University Perth WA Australia
| | - Robert P. O’Shea
- Discipline of Psychology, College of Science, Health, Engineering and Education Murdoch University Perth WA Australia
- Institute of Psychology Leipzig University Leipzig Germany
- Discipline of Psychology, School of Health and Human Sciences Southern Cross University Coffs Harbour NSW Australia
| | - Erich Schröger
- Institute of Psychology Leipzig University Leipzig Germany
| | - Dagmar Müller
- Institute of Psychology Leipzig University Leipzig Germany
| | - Urte Roeber
- Discipline of Psychology, College of Science, Health, Engineering and Education Murdoch University Perth WA Australia
- Institute of Psychology Leipzig University Leipzig Germany
| | - Andreas Widmann
- Institute of Psychology Leipzig University Leipzig Germany
- CBBS Research Group Neurocognitive Development Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
16
|
Rosburg T, Weigl M, Deuring G. Enhanced processing of facial emotion for target stimuli. Int J Psychophysiol 2019; 146:190-200. [DOI: 10.1016/j.ijpsycho.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023]
|
17
|
From basic perception deficits to facial affect recognition impairments in schizophrenia. Sci Rep 2019; 9:8958. [PMID: 31222063 PMCID: PMC6586813 DOI: 10.1038/s41598-019-45231-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
While impaired facial emotion recognition and magnocellular deficits in visual perception are core features of schizophrenia, their relationship is still unclear. Our aim was to analyze the oscillatory background of these processes and to investigate the connection between the magnocellular pathway deficit and the abnormal facial affect processing. Thirty-nine subjects with schizophrenia and forty socially matched healthy controls subjects were enrolled. A 128 channel EEG was recorded in three experimental tasks: first, participants viewed magnocellular biased low-spatial frequency (LSF) and parvocellular biased high-spatial frequency (HSF) Gabor-patches, then faces and houses were presented and in the third task a facial affect recognition task was presented with happy, sad and neutral faces. Event-related theta (4–7 Hz) synchronization (ERS) (i.e. an increase in theta power) by magnocellular biased stimuli was decreased in patients relative to controls, while no similar differences were found between groups in the parvocellular biased condition. ERS was significantly lower in patients compared to healthy controls both in the face and in the emotion recognition task. Theta ERS to magnocellular biased stimuli, but not to parvocellular biased stimuli, were correlated with emotion recognition performance. These findings indicate a bottom up disruption of face perception and emotion recognition in schizophrenia.
Collapse
|
18
|
Stefanics G, Stephan KE, Heinzle J. Feature-specific prediction errors for visual mismatch. Neuroimage 2019; 196:142-151. [PMID: 30978499 DOI: 10.1016/j.neuroimage.2019.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
Predictive coding (PC) theory posits that our brain employs a predictive model of the environment to infer the causes of its sensory inputs. A fundamental but untested prediction of this theory is that the same stimulus should elicit distinct precision weighted prediction errors (pwPEs) when different (feature-specific) predictions are violated, even in the absence of attention. Here, we tested this hypothesis using functional magnetic resonance imaging (fMRI) and a multi-feature roving visual mismatch paradigm where rare changes in either color (red, green), or emotional expression (happy, fearful) of faces elicited pwPE responses in human participants. Using a computational model of learning and inference, we simulated pwPE and prediction trajectories of a Bayes-optimal observer and used these to analyze changes in blood oxygen level dependent (BOLD) responses to changes in color and emotional expression of faces while participants engaged in a distractor task. Controlling for visual attention by eye-tracking, we found pwPE responses to unexpected color changes in the fusiform gyrus. Conversely, unexpected changes of facial emotions elicited pwPE responses in cortico-thalamo-cerebellar structures associated with emotion and theory of mind processing. Predictions pertaining to emotions activated fusiform, occipital and temporal areas. Our results are consistent with a general role of PC across perception, from low-level to complex and socially relevant object features, and suggest that monitoring of the social environment occurs continuously and automatically, even in the absence of attention.
Collapse
Affiliation(s)
- Gabor Stefanics
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032, Zurich, Switzerland; Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Blümlisalpstrasse 10, 8006, Zurich, Switzerland.
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032, Zurich, Switzerland; Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Blümlisalpstrasse 10, 8006, Zurich, Switzerland; Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032, Zurich, Switzerland
| |
Collapse
|
19
|
Amado C, Stoyanova P, Kovács G. Visual mismatch response and fMRI signal adaptation correlate in the occipital-temporal cortex. Behav Brain Res 2018. [PMID: 29524450 DOI: 10.1016/j.bbr.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Several electrophysiological studies found response differences to a given stimulus when it is repeated frequently as compared to when it occurs rarely in oddball sequences. Initially defined in acoustic perception, such difference also exists in the visual modality and is referred to as visual mismatch negativity (vMMN). However, the repetition of a stimulus also leads to the reduction of the blood oxygen-level dependent (BOLD) signal (fMRI adaptation, fMRIa) when compared to alternating stimuli in fMRI experiments. So far no study compared the vMMN to fMRIa within the same paradigm and participants. Here we tested the possible connection between fMRIa and vMMN in a visual oddball paradigm in two separate sessions, acquiring electrophysiological and neuroimaging data for real and false characters from the same participants. We found significant visual mismatch response (vMM) as well as fMRIa for both character types. Importantly, the magnitude of the vMM over the CP1 electrode cluster showed a significant correlation with the fMRIa within the letter form area, for real characters. This finding suggests that similar neural mechanisms are responsible for the two phenomena.
Collapse
Affiliation(s)
- Catarina Amado
- Institute of Psychology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Polina Stoyanova
- Institute of Psychology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, 07743 Jena, Germany; Person Perception Research Unit, Friedrich Schiller University Jena, 07743 Jena, Germany; Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
20
|
Vogel BO, Stasch J, Walter H, Neuhaus AH. Emotional context restores cortical prediction error responses in schizophrenia. Schizophr Res 2018; 197:434-440. [PMID: 29501387 DOI: 10.1016/j.schres.2018.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 11/19/2022]
Abstract
The mismatch negativity (MMN) deficit in schizophrenia is a consistently replicated finding and is considered a potential biomarker. From the cognitive neuroscience perspective, MMN represents a cortical correlate of the prediction error, a fundamental computational operator that may be at the core of various cognitive and clinical deficits observed in schizophrenia. The impact of emotion on cognitive processes in schizophrenia is insufficiently understood, and its impact on basic operators of cortical computation is largely unknown. In the visual domain, the facial expression mismatch negativity (EMMN) offers an opportunity to investigate basic computational operators in purely cognitive and in emotional contexts. In this study, we asked whether emotional context enhances cortical prediction error responses in patients with schizophrenia, as is the case in normal subjects. Therefore, seventeen patients with schizophrenia and eighteen controls completed a visual sequence oddball task, which allows for directly comparing MMN components evoked by deviants with high, intermediate and low emotional engagement. Interestingly, patients with schizophrenia showed pronounced deficits in response to neutral stimuli, but almost normal responses to emotional stimuli. The dissociation between impaired MMN and normal EMMN suggests that emotional context not only enhances, but restores cortical prediction error responses in patients with schizophrenia to near-normal levels. Our results show that emotional processing in schizophrenia is not necessarily defect; more likely, emotional processing heterogeneously impacts on cognition in schizophrenia. In fact, this study suggests that emotional context may even compensate for cognitive deficits in schizophrenia that are, in a different sensory domain, discussed as biomarkers.
Collapse
Affiliation(s)
- Bob O Vogel
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Joanna Stasch
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; Department of Forensic Psychiatry, Charité Universitätsmedizin Berlin, Oranienburger Straße 285, 13437 Berlin, Germany.
| | - Henrik Walter
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Andres H Neuhaus
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany; Department of Psychiatry, District Hospital Prignitz, Dobberziner Straße 112, 19348 Perleberg, Germany; Medical School Brandenburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany.
| |
Collapse
|
21
|
He J, Zheng Y, Nie Y, Zhou Z. Automatic detection advantage of network information among Internet addicts: behavioral and ERP evidence. Sci Rep 2018; 8:8937. [PMID: 29895830 PMCID: PMC5997741 DOI: 10.1038/s41598-018-25442-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Converging evidence has proved the attentional bias of Internet addicts (IAs) on network information. However, previous studies have neither explained how characteristics of network information are detected by IAs with priority nor proved whether this advantage is in line with the unconscious and automatic process. To answer the two questions, this study aims to investigate whether IAs prioritize automatic detection of network information from the behavior and cognitive neuroscience aspects. 15 severe IAs and 15 matching healthy controls were selected using Internet Addiction Test (IAT). Dot-probe task with mask was used in the behavioral experiment, while deviant-standard reverse oddball paradigm was used in the event-related potential (ERP) experiment to induce mismatch negativity (MMN). In the dot-probe task, when the probe location appeared on the Internet-related picture's position, the IAs had significantly shorter reaction time than do the controls; in the ERP experiment, when Internet-related picture appeared, MMN was significantly induced in the IAs relative to the controls. Both experiments show that IAs can automatically detect network information.
Collapse
Affiliation(s)
- Jinbo He
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education; Key Laboratory of Human Development and Mental Health of Hubei Province; School of Psychology, Central China Normal University, Wuhan, China
| | - Yang Zheng
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education; Key Laboratory of Human Development and Mental Health of Hubei Province; School of Psychology, Central China Normal University, Wuhan, China
| | - Yufeng Nie
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education; Key Laboratory of Human Development and Mental Health of Hubei Province; School of Psychology, Central China Normal University, Wuhan, China
| | - Zongkui Zhou
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education; Key Laboratory of Human Development and Mental Health of Hubei Province; School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
22
|
Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, Krystal JH, Murray JD, Anticevic A. Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders. Biol Psychiatry 2017; 81:848-861. [PMID: 28434615 PMCID: PMC5436134 DOI: 10.1016/j.biopsych.2017.03.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023]
Abstract
Recent theoretical accounts have proposed excitation and inhibition (E/I) imbalance as a possible mechanistic, network-level hypothesis underlying neural and behavioral dysfunction across neurodevelopmental disorders, particularly autism spectrum disorder (ASD) and schizophrenia (SCZ). These two disorders share some overlap in their clinical presentation as well as convergence in their underlying genes and neurobiology. However, there are also clear points of dissociation in terms of phenotypes and putatively affected neural circuitry. We highlight emerging work from the clinical neuroscience literature examining neural correlates of E/I imbalance across children and adults with ASD and adults with both chronic and early-course SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted with electroencephalography, magnetoencephalography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging, including effects observed both during task and at rest. Throughout this review, we discuss points of convergence and divergence in the ASD and SCZ literature, with a focus on disruptions in neural E/I balance. We also consider these findings in relation to predictions generated by theoretical neuroscience, particularly computational models predicting E/I imbalance across disorders. Finally, we discuss how human noninvasive neuroimaging can benefit from pharmacological challenge studies to reveal mechanisms in ASD and SCZ. Collectively, we attempt to shed light on shared and divergent neuroimaging effects across disorders with the goal of informing future research examining the mechanisms underlying the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such translational efforts are vital to facilitate development of neurobiologically informed treatment strategies across neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Brendan D Adkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - James C McPartland
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
23
|
Kremláček J, Kreegipuu K, Tales A, Astikainen P, Põldver N, Näätänen R, Stefanics G. Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex 2016; 80:76-112. [DOI: 10.1016/j.cortex.2016.03.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/31/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
|
24
|
Langdon R, Seymour K, Williams T, Ward PB. Automatic attentional orienting to other people's gaze in schizophrenia. Q J Exp Psychol (Hove) 2016; 70:1549-1558. [PMID: 27207190 DOI: 10.1080/17470218.2016.1192658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Explicit tests of social cognition have revealed pervasive deficits in schizophrenia. Less is known of automatic social cognition in schizophrenia. We used a spatial orienting task to investigate automatic shifts of attention cued by another person's eye gaze in 29 patients and 28 controls. Central photographic images of a face with eyes shifted left or right, or looking straight ahead, preceded targets that appeared left or right of the cue. To examine automatic effects, cue direction was non-predictive of target location. Cue-target intervals were 100, 300, and 800 ms. In non-social control trials, arrows replaced eye-gaze cues. Both groups showed automatic attentional orienting indexed by faster reaction times (RTs) when arrows were congruent with target location across all cue-target intervals. Similar congruency effects were seen for eye-shift cues at 300 and 800 ms intervals, but patients showed significantly larger congruency effects at 800 ms, which were driven by delayed responses to incongruent target locations. At short 100-ms cue-target intervals, neither group showed faster RTs for congruent than for incongruent eye-shift cues, but patients were significantly slower to detect targets after direct-gaze cues. These findings conflict with previous studies using schematic line drawings of eye-shifts that have found automatic attentional orienting to be reduced in schizophrenia. Instead, our data indicate that patients display abnormalities in responding to gaze direction at various stages of gaze processing-reflected by a stronger preferential capture of attention by another person's direct eye contact at initial stages of gaze processing and difficulties disengaging from a gazed-at location once shared attention is established.
Collapse
Affiliation(s)
- Robyn Langdon
- a Australian Research Council (ARC) Centre of Excellence in Cognition and Its Disorders and Department of Cognitive Science , Macquarie University , Sydney , NSW , Australia
| | - Kiley Seymour
- a Australian Research Council (ARC) Centre of Excellence in Cognition and Its Disorders and Department of Cognitive Science , Macquarie University , Sydney , NSW , Australia.,b School of Psychology, University of New South Wales , Sydney , NSW , Australia
| | - Tracey Williams
- a Australian Research Council (ARC) Centre of Excellence in Cognition and Its Disorders and Department of Cognitive Science , Macquarie University , Sydney , NSW , Australia
| | - Philip B Ward
- c School of Psychiatry, University of New South Wales , Sydney , NSW , Australia.,d Schizophrenia Research Unit, Liverpool Hospital, South Western Sydney Local Health District , Sydney , NSW , Australia
| |
Collapse
|