1
|
Sun X, Xia M. Schizophrenia and Neurodevelopment: Insights From Connectome Perspective. Schizophr Bull 2024:sbae148. [PMID: 39209793 DOI: 10.1093/schbul/sbae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Schizophrenia is conceptualized as a brain connectome disorder that can emerge as early as late childhood and adolescence. However, the underlying neurodevelopmental basis remains unclear. Recent interest has grown in children and adolescent patients who experience symptom onset during critical brain development periods. Inspired by advanced methodological theories and large patient cohorts, Chinese researchers have made significant original contributions to understanding altered brain connectome development in early-onset schizophrenia (EOS). STUDY DESIGN We conducted a search of PubMed and Web of Science for studies on brain connectomes in schizophrenia and neurodevelopment. In this selective review, we first address the latest theories of brain structural and functional development. Subsequently, we synthesize Chinese findings regarding mechanisms of brain structural and functional abnormalities in EOS. Finally, we highlight several pivotal challenges and issues in this field. STUDY RESULTS Typical neurodevelopment follows a trajectory characterized by gray matter volume pruning, enhanced structural and functional connectivity, improved structural connectome efficiency, and differentiated modules in the functional connectome during late childhood and adolescence. Conversely, EOS deviates with excessive gray matter volume decline, cortical thinning, reduced information processing efficiency in the structural brain network, and dysregulated maturation of the functional brain network. Additionally, common functional connectome disruptions of default mode regions were found in early- and adult-onset patients. CONCLUSIONS Chinese research on brain connectomes of EOS provides crucial evidence for understanding pathological mechanisms. Further studies, utilizing standardized analyses based on large-sample multicenter datasets, have the potential to offer objective markers for early intervention and disease treatment.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Wang L, Liu R, Liao J, Xiong X, Xia L, Wang W, Liu J, Zhao F, Zhuo L, Li H. Meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia. Front Psychiatry 2024; 15:1465758. [PMID: 39247615 PMCID: PMC11377232 DOI: 10.3389/fpsyt.2024.1465758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Previous studies based on resting-state functional magnetic resonance imaging(rs-fMRI) and voxel-based morphometry (VBM) have demonstrated significant abnormalities in brain structure and resting-state functional brain activity in patients with early-onset schizophrenia (EOS), compared with healthy controls (HCs), and these alterations were closely related to the pathogenesis of EOS. However, previous studies suffer from the limitations of small sample sizes and high heterogeneity of results. Therefore, the present study aimed to effectively integrate previous studies to identify common and specific brain functional and structural abnormalities in patients with EOS. Methods The PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), and WanFang databases were systematically searched to identify publications on abnormalities in resting-state regional functional brain activity and gray matter volume (GMV) in patients with EOS. Then, we utilized the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software to conduct a whole-brain voxel meta-analysis of VBM and rs-fMRI studies, respectively, and followed by multimodal overlapping on this basis to comprehensively identify brain structural and functional abnormalities in patients with EOS. Results A total of 27 original studies (28 datasets) were included in the present meta-analysis, including 12 studies (13 datasets) related to resting-state functional brain activity (496 EOS patients, 395 HCs) and 15 studies (15 datasets) related to GMV (458 EOS patients, 531 HCs). Overall, in the functional meta-analysis, patients with EOS showed significantly increased resting-state functional brain activity in the left middle frontal gyrus (extending to the triangular part of the left inferior frontal gyrus) and the right caudate nucleus. On the other hand, in the structural meta-analysis, patients with EOS showed significantly decreased GMV in the right superior temporal gyrus (extending to the right rolandic operculum), the right middle temporal gyrus, and the temporal pole (superior temporal gyrus). Conclusion This meta-analysis revealed that some regions in the EOS exhibited significant structural or functional abnormalities, such as the temporal gyri, prefrontal cortex, and striatum. These findings may help deepen our understanding of the underlying pathophysiological mechanisms of EOS and provide potential biomarkers for the diagnosis or treatment of EOS.
Collapse
Affiliation(s)
- Lu Wang
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Juan Liao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xin Xiong
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Linfeng Xia
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Weiwei Wang
- Department of Psychiatry, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junqi Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Fulin Zhao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
| | - Lihua Zhuo
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
3
|
Hu W, Ran X, Wu Z, Zhu H, Kou Y, Zhang S, Yang G, Li W, Yang Y, Lv L, Zhang Y. Short-term antipsychotic treatment reduces functional connectivity of the striatum in first-episode drug-naïve early-onset schizophrenia. Schizophr Res 2024; 270:281-288. [PMID: 38944974 DOI: 10.1016/j.schres.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The striatum is thought to play a critical role in the pathophysiology and antipsychotic treatment of schizophrenia. Previous studies have revealed abnormal functional connectivity (FC) of the striatum in early-onset schizophrenia (EOS) patients. However, no prior studies have examined post-treatment changes of striatal FC in EOS patients. METHODS We recruited 49 first-episode drug-naïve EOS patients to have resting-state functional magnetic resonance imaging scans at baseline and after 8 weeks of treatment with antipsychotics, along with baseline scanning of 34 healthy controls (HCs) for comparison purposes. We examined the FC values between each seed in striatal subregion and the rest of the brain. The Positive and Negative Syndrome Scale (PANSS) was applied to measure psychiatric symptoms in patients. RESULTS Compared with HCs at baseline, EOS patients exhibited weaker FC of striatal subregions with several brain regions of the salience network and default mode network. Meanwhile, FC between the dorsal caudal putamen (DCP) and left supplementary motor area, as well as between the DCP and right postcentral gyrus, was negatively correlated with PANSS negative scores. Furthermore, after 8 weeks of treatment, EOS patients showed decreased FC between subregions of the putamen and the triangular part of inferior frontal gyrus, middle frontal gyrus, supramarginal gyrus and inferior parietal lobule. CONCLUSIONS Decreased striatal FC is evident, even in the early stages of schizophrenia, and enhance our understanding of the neurodevelopmental abnormalities in schizophrenia. The findings also demonstrate that reduced striatal FC occurs after antipsychotic therapy, indicating that antipsychotic effects need to be accounted for when considering striatal FC abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Wenyan Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoyang Wu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Hanyu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yanna Kou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| |
Collapse
|
4
|
Jensen KM, Calhoun VD, Fu Z, Yang K, Faria AV, Ishizuka K, Sawa A, Andrés-Camazón P, Coffman BA, Seebold D, Turner JA, Salisbury DF, Iraji A. A whole-brain neuromark resting-state fMRI analysis of first-episode and early psychosis: Evidence of aberrant cortical-subcortical-cerebellar functional circuitry. Neuroimage Clin 2024; 41:103584. [PMID: 38422833 PMCID: PMC10944191 DOI: 10.1016/j.nicl.2024.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Psychosis (including symptoms of delusions, hallucinations, and disorganized conduct/speech) is a main feature of schizophrenia and is frequently present in other major psychiatric illnesses. Studies in individuals with first-episode (FEP) and early psychosis (EP) have the potential to interpret aberrant connectivity associated with psychosis during a period with minimal influence from medication and other confounds. The current study uses a data-driven whole-brain approach to examine patterns of aberrant functional network connectivity (FNC) in a multi-site dataset comprising resting-state functional magnetic resonance images (rs-fMRI) from 117 individuals with FEP or EP and 130 individuals without a psychiatric disorder, as controls. Accounting for age, sex, race, head motion, and multiple imaging sites, differences in FNC were identified between psychosis and control participants in cortical (namely the inferior frontal gyrus, superior medial frontal gyrus, postcentral gyrus, supplementary motor area, posterior cingulate cortex, and superior and middle temporal gyri), subcortical (the caudate, thalamus, subthalamus, and hippocampus), and cerebellar regions. The prominent pattern of reduced cerebellar connectivity in psychosis is especially noteworthy, as most studies focus on cortical and subcortical regions, neglecting the cerebellum. The dysconnectivity reported here may indicate disruptions in cortical-subcortical-cerebellar circuitry involved in rudimentary cognitive functions which may serve as reliable correlates of psychosis.
Collapse
Affiliation(s)
- Kyle M Jensen
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA.
| | - Vince D Calhoun
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Zening Fu
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| | - Kun Yang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreia V Faria
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo Andrés-Camazón
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA; Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Brian A Coffman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dylan Seebold
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica A Turner
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dean F Salisbury
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Armin Iraji
- Georgia State University, Atlanta, GA, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
| |
Collapse
|
5
|
Ma X, Yang WFZ, Zheng W, Li Z, Tang J, Yuan L, Ouyang L, Wang Y, Li C, Jin K, Wang L, Bearden CE, He Y, Chen X. Neuronal dysfunction in individuals at early stage of schizophrenia, A resting-state fMRI study. Psychiatry Res 2023; 322:115123. [PMID: 36827856 DOI: 10.1016/j.psychres.2023.115123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Schizophrenia has been associated with abnormal intrinsic brain activity, involving various cognitive impairments. Qualitatively similar abnormalities are seen in individuals at ultra-high risk (UHR) for psychosis. In this study, resting-state fMRI (rs-fMRI) data were collected from 44 drug-naïve first-episode schizophrenia (Dn-FES) patients, 48 UHR individuals, and 40 healthy controls (HCs). The fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and functional connectivity (FC), were performed to evaluate resting brain function. A support vector machine (SVM) was applied for classification analysis. Compared to HCs, both clinical groups showed increased fALFF in the central executive network (CEN), decreased ReHo in the ventral visual pathway (VVP) and decreased FC in temporal-sensorimotor regions. Excellent performance was achieved by using fALFF value in distinguishing both FES (sensitivity=83.21%, specificity=80.58%, accuracy=81.37%, p=0.009) and UHR (sensitivity=75.88%, specificity=85.72%, accuracy=80.72%, p<0.001) from HC group. Moreover, the study highlighted the importance of frontal and temporal alteration in the pathogenesis of schizophrenia. However, no fMRI features were observed that could well distinguish Dn-FES from UHR group. To conclude, fALFF in the CEN may provide potential power for identifying individuals at the early stage of schizophrenia and the alteration in the frontal and temporal lobe may be important to these individuals.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, United States
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, Texas Tech University, Lubbock, United States
| | - Wenxiao Zheng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Department of Clinical Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Yujue Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Lingyan Wang
- Department of Deratology&Traditional Chinese Medicine, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital)
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, United States
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; National Technology Institute of Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; National Technology Institute of Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| |
Collapse
|
6
|
Efficacy of Serotonin and Dopamine Activity Modulators in the Treatment of Negative Symptoms in Schizophrenia: A Rapid Review. Biomedicines 2023; 11:biomedicines11030921. [PMID: 36979900 PMCID: PMC10046337 DOI: 10.3390/biomedicines11030921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Schizophrenia is among the fifteen most disabling diseases worldwide. Negative symptoms (NS) are highly prevalent in schizophrenia, negatively affect the functional outcome of the disorder, and their treatment is difficult and rarely specifically investigated. Serotonin-dopamine activity modulators (SDAMs), of which aripiprazole, cariprazine, brexpiprazole, and lumateperone were approved for schizophrenia treatment, represent a possible therapy to reduce NS. The aim of this rapid review is to summarize the evidence on this topic to make it readily available for psychiatrists treating NS and for further research. We searched the PubMed database for original studies using SDAM, aripiprazole, cariprazine, brexpiprazole, lumateperone, schizophrenia, and NS as keywords. We included four mega-analyses, eight meta-analyses, two post hoc analyses, and 20 clinical trials. Aripiprazole, cariprazine, and brexpiprazole were more effective than placebo in reducing NS. Only six studies compared SDAMs with other classes of antipsychotics, demonstrating a superiority in the treatment of NS mainly for cariprazine. The lack of specific research and various methodological issues, related to the study population and the assessment of NS, may have led to these partial results. Here, we highlight the need to conduct new methodologically robust investigations with head-to-head treatment comparisons and long-term observational studies on homogeneous groups of patients evaluating persistent NS with first- and second-generation scales, namely the Brief Negative Symptom Scale and the Clinical Assessment Interview for Negative Symptoms. This rapid review can expand research on NS therapeutic strategies in schizophrenia, which is fundamental for the long-term improvement of patients’ quality of life.
Collapse
|
7
|
Xu X, Li Q, Qian Y, Cai H, Zhang C, Zhao W, Zhu J, Yu Y. Genetic mechanisms underlying gray matter volume changes in patients with drug-naive first-episode schizophrenia. Cereb Cortex 2023; 33:2328-2341. [PMID: 35640648 DOI: 10.1093/cercor/bhac211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Brain structural damage is a typical feature of schizophrenia. Investigating such disease phenotype in patients with drug-naive first-episode schizophrenia (DFSZ) may exclude the confounds of antipsychotics and illness chronicity. However, small sample sizes and marked clinical heterogeneity have precluded definitive identification of gray matter volume (GMV) changes in DFSZ as well as their underlying genetic mechanisms. Here, GMV changes in DFSZ were assessed using a neuroimaging meta-analysis of 19 original studies, including 605 patients and 637 controls. Gene expression data were derived from the Allen Human Brain Atlas and processed with a newly proposed standardized pipeline. Then, we used transcriptome-neuroimaging spatial correlations to identify genes associated with GMV changes in DFSZ, followed by a set of gene functional feature analyses. Meta-analysis revealed consistent GMV reduction in the right superior temporal gyrus, right insula and left inferior temporal gyrus in DFSZ. Moreover, we found that these GMV changes were spatially correlated with expression levels of 1,201 genes, which exhibited a wide range of functional features. Our findings may provide important insights into the genetic mechanisms underlying brain morphological abnormality in schizophrenia.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China.,Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei 238000, China.,Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.,Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei 238000, China.,Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| |
Collapse
|
8
|
Abnormal global-brain functional connectivity and its relationship with cognitive deficits in drug-naive first-episode adolescent-onset schizophrenia. Brain Imaging Behav 2022; 16:1303-1313. [PMID: 34997425 DOI: 10.1007/s11682-021-00597-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/17/2023]
Abstract
Abnormal functional connectivity (FC) has been reported in drug-naive first-episode adolescent-onset schizophrenia (AOS) with inconsistent results due to differently selected regions of interest. The voxel-wise global-brain functional connectivity (GFC) analysis can help explore abnormal FC in an unbiased way in AOS. A total of 48 drug-naive first-episode AOS as well as 31 sex-, age- and education-matched healthy controls were collected. Data were subjected to GFC, correlation analysis and support vector machine analyses. Compared with healthy controls, the AOS group exhibited increased GFC in the right middle frontal gyrus (MFG), and decreased GFC in the right inferior temporal gyrus, left superior temporal gyrus (STG)/precentral gyrus/postcentral gyrus, right posterior cingulate cortex /precuneus and bilateral cuneus. After the Benjamini-Hochberg correction, significantly negative correlations between GFC in the bilateral cuneus and Trail-Making Test: Part A (TMT-A) scores (r=-0.285, p=0.049), between GFC in the left STG/precentral gyrus/postcentral gyrus and TMT-A scores (r=-0.384, p=0.007), and between GFC in the right MFG and the fluency scores (r=-0.335, p=0.020) in the patients. GFC in the left STG/precentral gyrus/postcentral gyrus has a satisfactory accuracy (up to 86.08%) in classifying patients from controls. AOS shows abnormal GFC in the brain areas of multiple networks, which bears cognitive significance. These findings suggest potential abnormalities in processing self-monitoring and sensory prediction, which further elucidate the pathophysiology of AOS.
Collapse
|
9
|
Liu J, Wen F, Yan J, Yu L, Wang F, Wang D, Zhang J, Yan C, Chu J, Li Y, Li Y, Cui Y. Gray Matter Alterations in Pediatric Schizophrenia and Obsessive-Compulsive Disorder: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Front Psychiatry 2022; 13:785547. [PMID: 35308883 PMCID: PMC8924120 DOI: 10.3389/fpsyt.2022.785547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The aim of this study is comparing gray matter alterations in SCZ pediatric patients with those suffering from obsessive-compulsive disorder (OCD) based on a systematic review and an activation likelihood estimation (ALE) meta-analysis. METHODS A systematic literature search was performed in PubMed, Elsevier, and China National Knowledge Infrastructure (CNKI). A systematic review and an ALE meta-analysis were performed to quantitatively examine brain gray matter alterations. RESULTS Children and adolescents with schizophrenia had decreased gray matter volume (GMV) mainly in the prefrontal cortex (PFC), temporal cortex (such as the middle temporal gyrus and transverse temporal gyrus), and insula, while children and adolescents with OCD mainly had increased GMV in the PFC and the striatum (including the lentiform nucleus and caudate nucleus), and decreased GMV in the parietal cortex. CONCLUSIONS Our results suggest that gray matter abnormalities in the PFC may indicate homogeneity between the two diseases. In children and adolescents, structural alterations in schizophrenia mainly involve the fronto-temporal and cortico-insula circuits, whereas those in OCD mainly involve the prefrontal-parietal and the prefrontal-striatal circuits.
Collapse
Affiliation(s)
- Jingran Liu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Fang Wen
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Junjuan Yan
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Liping Yu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Fang Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Duo Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jishui Zhang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Chunmei Yan
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jiahui Chu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yanlin Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| |
Collapse
|
10
|
Uscătescu LC, Kronbichler L, Stelzig-Schöler R, Pearce BG, Said-Yürekli S, Reich LA, Weber S, Aichhorn W, Kronbichler M. Effective Connectivity of the Hippocampus Can Differentiate Patients with Schizophrenia from Healthy Controls: A Spectral DCM Approach. Brain Topogr 2021; 34:762-778. [PMID: 34482503 PMCID: PMC8556208 DOI: 10.1007/s10548-021-00868-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/22/2021] [Indexed: 12/01/2022]
Abstract
We applied spectral dynamic causal modelling (Friston et al. in Neuroimage 94:396–407. 10.1016/j.neuroimage.2013.12.009, 2014) to analyze the effective connectivity differences between the nodes of three resting state networks (i.e. default mode network, salience network and dorsal attention network) in a dataset of 31 male healthy controls (HC) and 25 male patients with a diagnosis of schizophrenia (SZ). Patients showed increased directed connectivity from the left hippocampus (LHC) to the: dorsal anterior cingulate cortex (DACC), right anterior insula (RAI), left frontal eye fields and the bilateral inferior parietal sulcus (LIPS & RIPS), as well as increased connectivity from the right hippocampus (RHC) to the: bilateral anterior insula (LAI & RAI), right frontal eye fields and RIPS. In SZ, negative symptoms predicted the connectivity strengths from the LHC to: the DACC, the left inferior parietal sulcus (LIPAR) and the RHC, while positive symptoms predicted the connectivity strengths from the LHC to the LIPAR and from the RHC to the LHC. These results reinforce the crucial role of hippocampus dysconnectivity in SZ pathology and its potential as a biomarker of disease severity.
Collapse
Affiliation(s)
- Lavinia Carmen Uscătescu
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Renate Stelzig-Schöler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Brandy-Gale Pearce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Said-Yürekli
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | | | - Stefanie Weber
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Aichhorn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Liloia D, Brasso C, Cauda F, Mancuso L, Nani A, Manuello J, Costa T, Duca S, Rocca P. Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: A revised coordinate-based meta-analysis. Neurosci Biobehav Rev 2021; 123:83-103. [PMID: 33497790 DOI: 10.1016/j.neubiorev.2021.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Characterizing neuroanatomical markers of different stages of schizophrenia (SZ) to assess pathophysiological models of how the disorder develops is an important target for the clinical practice. We performed a meta-analysis of voxel-based morphometry studies of genetic and clinical high-risk subjects (g-/c-HR), recently diagnosed (RDSZ) and chronic SZ patients (ChSZ). We quantified gray matter (GM) changes associated with these four conditions and compared them with contrast and conjunctional data. We performed the behavioral analysis and networks decomposition of alterations to obtain their functional characterization. Results reveal a cortical-subcortical, left-to-right homotopic progression of GM loss. The right anterior cingulate is the only altered region found altered among c-HR, RDSZ and ChSZ. Contrast analyses show left-lateralized insular, amygdalar and parahippocampal GM reduction in RDSZ, which appears bilateral in ChSZ. Functional decomposition shows involvement of the salience network, with an enlargement of the sensorimotor network in RDSZ and the thalamus-basal nuclei network in ChSZ. These findings support the current neuroprogressive models of SZ and integrate this deterioration with the clinical evolution of the disease.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Claudio Brasso
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Paola Rocca
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| |
Collapse
|
12
|
Xie D, Qin H, Dong F, Wang X, Liu C, Xue T, Hao Y, Liu B, Yuan K, Yu D. Functional Connectivity Abnormalities of Brain Regions With Structural Deficits in Primary Insomnia Patients. Front Neurosci 2020; 14:566. [PMID: 32670005 PMCID: PMC7332723 DOI: 10.3389/fnins.2020.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The present study examined the abnormal resting state functional connections (RSFCs) in structural deficit brain regions of primary insomnia (PI) patients. METHODS Thirty-three PI patients and 38 well-matched healthy controls participated in our study. We used voxel-based morphometry and RSFC to study functional connectivity abnormalities of brain regions with structural deficits in PI patients. RESULTS PI patients showed decreased gray matter (GM) volume in the left dorsolateral prefrontal cortex, left orbitofrontal cortex (OFC), bilateral middle frontal gyrus (MFC), right inferior frontal gyrus (IFG), and left inferior temporal gyrus. Gray matter volume in the right MFC negatively correlated with Self-Rating Scale of Sleep (SRSS) scores, and GM volume in the right IFG negatively correlated with SRSS and Insomnia Severity Index (ISI) scores. Therefore, the right MFC and right IFG were selected as regions of interest for RSFC analysis. PI patients had weakened RSFC between the right inferior parietal gyrus (IPC) and the right MFC compared to the healthy controls and between the left OFC and right IFG. The RSFC between the right MFC and right IPC negatively correlated with SRSS scores. The RSFC between the right IFG and left OFC negatively correlated with SRSS, ISI, SAS, and SDS scores. CONCLUSIONS The present study found structural changes in the right MFC and right IFG accompanied by RSFC changes. This finding may provide novel insights into the neural mechanisms of PI via combining structural and functional modality information.
Collapse
Affiliation(s)
- Dongdong Xie
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - He Qin
- Department of Neurology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Fang Dong
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - XianFu Wang
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Chang Liu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ting Xue
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yifu Hao
- School of Life Science and Medicine Bioinformatics, Dalian University of Technology, Dalian, China
| | - Bo Liu
- Department of Neurology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Kai Yuan
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
13
|
Ioakeimidis V, Haenschel C, Yarrow K, Kyriakopoulos M, Dima D. A Meta-analysis of Structural and Functional Brain Abnormalities in Early-Onset Schizophrenia. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Early-onset schizophrenia (EOS) patients demonstrate brain changes that are similar to severe cases of adult-onset schizophrenia. Neuroimaging research in EOS is limited due to the rarity of the disorder. The present meta-analysis aims to consolidate MRI and functional MRI findings in EOS. Seven voxel-based morphometry (VBM) and 8 functional MRI studies met the inclusion criteria, reporting whole-brain analyses of EOS vs healthy controls. Activation likelihood estimation (ALE) was conducted to identify aberrant anatomical or functional clusters across the included studies. Separate ALE analyses were performed, first for all task-dependent studies (Cognition ALE) and then only for working memory ones (WM ALE). The VBM ALE revealed no significant clusters for gray matter volume reductions in EOS. Significant hypoactivations peaking in the right anterior cingulate cortex (rACC) and the right temporoparietal junction (rTPJ) were detected in the Cognition ALE. In the WM ALE, consistent hypoactivations were found in the left precuneus (lPreC), the right inferior parietal lobule (rIPL) and the rTPJ. These hypoactivated areas show strong associations with language, memory, attention, spatial, and social cognition. The functional co-activated networks of each suprathreshold ALE cluster, identified using the BrainMap database, revealed a core co-activation network with similar topography to the salience network. Our results add support to posterior parietal, ACC and rTPJ dysfunction in EOS, areas implicated in the cognitive impairments characterizing EOS. The salience network lies at the core of these cognitive processes, co-activating with the hypoactivating regions, and thus highlighting the importance of salience dysfunction in EOS.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Corinna Haenschel
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Kielan Yarrow
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London & Maudsley NHS Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
14
|
Sun F, Zhao Z, Lan M, Xu Y, Huang M, Xu D. Abnormal dynamic functional network connectivity of the mirror neuron system network and the mentalizing network in patients with adolescent-onset, first-episode, drug-naïve schizophrenia. Neurosci Res 2020; 162:63-70. [PMID: 31931027 DOI: 10.1016/j.neures.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
Previous studies based on an assumption of connectivity stationarity reported disconnections in mirror neuron system (MNS) and mentalizing networks of schizophrenic brains with social cognitive disruptions. However, recent studies demonstrated that functional brain connections are dynamic, and static connectivity metrics fail to capture time-varying properties of functional connections. The present study used a dynamic functional connectivity (dFC) method to test whether alterations of functional connectivity in the two networks are time-varying in adolescent-onset schizophrenia (AOS) patients. We collected resting-state fMRI data from 28 patients with AOS and 22 matched healthy controls. Static functional connectivity and dFC were used to explore the connectivity difference in the MNS and mentalizing networks between the two groups, respectively. Then a Pearson's correlation analysis between the connectivity showing intergroup differences and clinical scores was conducted in the AOS group. Compared with static functional connectivity analyses, dFC revealed state-specific connectivity decreases within the MNS network in the AOS group. Additionally, the dFC between the left middle temporal gyrus and left V5 was negatively correlated with the item2 of PANSS negative scores across all the AOS patients. Our findings suggest that social dysfunctions in AOS patients may be associated with the altered integrity and interaction of the MNS and mentalizing networks, and the functional impairments in the MNS are dynamic over time.
Collapse
Affiliation(s)
- Fenfen Sun
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; National Demonstration Center for Experimental Psychology Education, East China Normal University, Shanghai 200062, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; Shanghai Key Laboratory of Magnetic Resonance, Institute of Cognitive Neuroscience, East China Normal University, Shanghai 200062, China; Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Martin Lan
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| | - Dongrong Xu
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
15
|
Nair A, Jolliffe M, Lograsso YSS, Bearden CE. A Review of Default Mode Network Connectivity and Its Association With Social Cognition in Adolescents With Autism Spectrum Disorder and Early-Onset Psychosis. Front Psychiatry 2020; 11:614. [PMID: 32670121 PMCID: PMC7330632 DOI: 10.3389/fpsyt.2020.00614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated substantial phenotypic overlap, notably social impairment, between autism spectrum disorder (ASD) and schizophrenia. However, the neural mechanisms underlying the pathogenesis of social impairments across these distinct neuropsychiatric disorders has not yet been fully examined. Most neuroimaging studies to date have focused on adults with these disorders, with little known about the neural underpinnings of social impairments in younger populations. Here, we present a narrative review of the literature available through April 2020 on imaging studies of adolescents with either ASD or early-onset psychosis (EOP), to better understand the shared and unique neural mechanisms of social difficulties across diagnosis from a developmental framework. We specifically focus on functional connectivity studies of the default mode network (DMN), as the most extensively studied brain network relevant to social cognition across both groups. Our review included 29 studies of DMN connectivity in adolescents with ASD (Mean age range = 11.2-21.6 years), and 14 studies in adolescents with EOP (Mean age range = 14.2-24.3 years). Of these, 15 of 29 studies in ASD adolescents found predominant underconnectivity when examining DMN connectivity. In contrast, findings were mixed in adolescents with EOP, with five of 14 studies reporting DMN underconnectivity, and an additional six of 14 studies reporting both under- and over-connectivity of the DMN. Specifically, intra-DMN networks were more frequently underconnected in ASD, but overconnected in EOP. On the other hand, inter-DMN connectivity patterns were mixed (both under- and over-connected) for each group, especially DMN connectivity with frontal, sensorimotor, and temporoparietal regions in ASD, and with frontal, temporal, subcortical, and cerebellar regions in EOP. Finally, disrupted DMN connectivity appeared to be associated with social impairments in both groups, less so with other features distinct to each condition, such as repetitive behaviors/restricted interests in ASD and hallucinations/delusions in EOP. Further studies on demographically well-matched groups of adolescents with each of these conditions are needed to systematically explore additional contributing factors in DMN connectivity patterns such as clinical heterogeneity, pubertal development, and medication effects that would better inform treatment targets and facilitate prediction of outcomes in the context of these developmental neuropsychiatric conditions.
Collapse
Affiliation(s)
- Aarti Nair
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, California
| | - Morgan Jolliffe
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Yong Seuk S Lograsso
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, California.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, California.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Zhang S, Yang G, Ou Y, Guo W, Peng Y, Hao K, Zhao J, Yang Y, Li W, Zhang Y, Lv L. Abnormal default-mode network homogeneity and its correlations with neurocognitive deficits in drug-naive first-episode adolescent-onset schizophrenia. Schizophr Res 2020; 215:140-147. [PMID: 31784338 DOI: 10.1016/j.schres.2019.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/24/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The default mode network (DMN), is one of the most popularly employed resting-state networks applied in schizophrenia (SCZ) research. However, the homogeneity of this network in adolescent-onset SCZ (AOS) remains unknown. This study aims to use network homogeneity (NH) to explore the functional connectivity in the DMN of AOS patients. Resting-state functional magnetic resonance imaging scans were used to study 48 drug-naïve, first-episode AOS patients and 31 healthy age, gender, and education matched control. An automatic NH approach was employed to analyze the imaging dataset. Our results revealed that the patients had significantly higher NH values in the left medial prefrontal cortex (MPFC), and significantly lower values in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) than those in healthy controls. We performed the receiver operating characteristic curve analysis to show that NH values of the left superior MPFC might be regarded as a potential marker in helping to identify patients. In addition, negative associations were found regarding abnormal values of NH in the left PCC/PCu as well as in the Maze and Stroop color-word tests in patients. The outcomes showed abnormal NH values in the DMN of drug-naïve, first-episode AOS suggesting specific functions of the DMN in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Sen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Ge Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
| | - Yangpan Ou
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Wenbin Guo
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yue Peng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China
| | - Keke Hao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China.
| |
Collapse
|
17
|
Hong W, Zhao Z, Shen Z, Sun B, Li S, Mekbib DB, Xu Y, Huang M, Xu D. Uncoupled relationship in the brain between regional homogeneity and attention function in first-episode, drug-naïve schizophrenia. Psychiatry Res Neuroimaging 2019; 294:110990. [PMID: 31706152 DOI: 10.1016/j.pscychresns.2019.110990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023]
Abstract
The relationship between the cognitive impairment and the structural and functional abnormalities in the brains of patients with schizophrenia (SZ) is not yet clear. This study aims to investigate the relationship, thereby exploring the neuromechanism underlying SZ. We collected multimodal MRI data from 68 first-episode, drug-naïve patients with SZ, and 64 well-matched healthy controls, and used regional homogeneity (ReHo) and gray matter volume (GMV) to assess the functional and structural integrity of the brains, respectively. We then evaluated in the entire brain the correlations between ReHo/GMV and the participants' neuropsychological assessment scores for each group using a partial correlation analysis controlling for age and sex. We found significant uncoupling between attention performance and mean ReHo in the left middle frontal gyrus, right superior/inferior parietal lobe (IPL), right angular gyrus (AG) and right middle/inferior temporal lobe (ITG) in SZ compared with healthy controls. Moreover, we found that the SZ group showed decreased GMV in the right IPL and AG, and a significant coupling between ReHo and GMV in the right ITG. Our findings suggest that the attention dysfunction found in SZ may be associated with the structural and functional abnormalities as well as the structure-function interrelation in several SZ-related brain regions.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiyong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; Columbia University & New York State Psychiatric Institute, New York 10032, USA
| | - Zhe Shen
- College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Bin Sun
- College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shangda Li
- College of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Destaw B Mekbib
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China.
| | - Dongrong Xu
- Columbia University & New York State Psychiatric Institute, New York 10032, USA.
| |
Collapse
|
18
|
Li S, Hu N, Zhang W, Tao B, Dai J, Gong Y, Tan Y, Cai D, Lui S. Dysconnectivity of Multiple Brain Networks in Schizophrenia: A Meta-Analysis of Resting-State Functional Connectivity. Front Psychiatry 2019; 10:482. [PMID: 31354545 PMCID: PMC6639431 DOI: 10.3389/fpsyt.2019.00482] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Seed-based studies on resting-state functional connectivity (rsFC) in schizophrenia have shown disrupted connectivity involving a number of brain networks; however, the results have been controversial. Methods: We conducted a meta-analysis based on independent component analysis (ICA) brain templates to evaluate dysconnectivity within resting-state brain networks in patients with schizophrenia. Seventy-six rsFC studies from 70 publications with 2,588 schizophrenia patients and 2,567 healthy controls (HCs) were included in the present meta-analysis. The locations and activation effects of significant intergroup comparisons were extracted and classified based on the ICA templates. Then, multilevel kernel density analysis was used to integrate the results and control bias. Results: Compared with HCs, significant hypoconnectivities were observed between the seed regions and the areas in the auditory network (left insula), core network (right superior temporal cortex), default mode network (right medial prefrontal cortex, and left precuneus and anterior cingulate cortices), self-referential network (right superior temporal cortex), and somatomotor network (right precentral gyrus) in schizophrenia patients. No hyperconnectivity between the seed regions and any other areas within the networks was detected in patients, compared with the connectivity in HCs. Conclusions: Decreased rsFC within the self-referential network and default mode network might play fundamental roles in the malfunction of information processing, while the core network might act as a dysfunctional hub of regulation. Our meta-analysis is consistent with diffuse hypoconnectivities as a dysregulated brain network model of schizophrenia.
Collapse
Affiliation(s)
- Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Dai
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Yao Gong
- Department of Geriatric Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, China
| | - Duanfang Cai
- Department of Psychiatry, Zigong Mental Health Center, Zigong, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Dynamic thresholding networks for schizophrenia diagnosis. Artif Intell Med 2019; 96:25-32. [DOI: 10.1016/j.artmed.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022]
|
20
|
O’Neill A, Mechelli A, Bhattacharyya S. Dysconnectivity of Large-Scale Functional Networks in Early Psychosis: A Meta-analysis. Schizophr Bull 2019; 45:579-590. [PMID: 29982729 PMCID: PMC6483589 DOI: 10.1093/schbul/sby094] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Increasingly, studies have identified abnormalities in the functional connectivity (FC) of large-scale neural networks in early psychosis, but the findings thus far have been inconclusive. Therefore, the aim of this study was to identify robust alterations in FC of the default mode (DMN), salience (SN), and central executive networks (CEN), in patients with first-episode psychosis (FEP) using a meta-analytic approach. METHODS Included studies were required to be resting-state, seed-to-whole brain, FC neuroimaging studies, comparing FEP patients to healthy controls (HC), with seeds within the boundaries of the region-of-interest networks. Peak effect coordinates and peak t, z, or p values were meta-analyzed using Seed-based d Mapping software. RESULTS The DMN seeds primarily displayed within-network hypoconnectivity (largest clusters including the middle orbital gyrus; and ventral anterior cingulate gyrus). The SN seeds displayed hypoconnectivity with regions in the DMN and CEN (largest clusters located in the bilateral middle temporal gyri). Review of the limited CEN data revealed hypo- and hyperconnectivity across the networks. Negative symptoms were positively correlated with all DMN FC abnormalities in the FEP group. Antipsychotic-treated patients displayed greater hypoconnectivity than antipsychotic-naïve patients between both the DMN/SN seeds and prefrontal regions. CONCLUSIONS These findings provide substantial evidence of widespread resting-state FC abnormalities of the DMN, SN, and CEN in early psychosis; particularly implicating DMN and SN dysconnectivity as a core deficit underlying the psychopathology of psychosis. Additionally, we highlight the importance of disentangling connectivity abnormalities resulting from disease processes, from those that result from antipsychotic treatment.
Collapse
Affiliation(s)
- Aisling O’Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,To whom correspondence should be addressed; tel: +44-20-7848-0955, fax: +44-20-7848-0976, e-mail:
| |
Collapse
|
21
|
Liu J, Yao L, Zhang W, Deng W, Xiao Y, Li F, Sweeney JA, Gong Q, Lui S. Dissociation of fractional anisotropy and resting-state functional connectivity alterations in antipsychotic-naive first-episode schizophrenia. Schizophr Res 2019; 204:230-237. [PMID: 30121186 DOI: 10.1016/j.schres.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
Altered resting-state functional connectivity (rsFC) has been demonstrated between multiple brain regions in schizophrenia. However, whether these alterations are related to fractional anisotropy (FA) alterations in pathways that connect regions with altered rsFC remains unknown. In this study, diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed with 181 antipsychotic-naïve first-episode schizophrenia patients and 173 matched healthy controls. FA was measured using tensor-guided tractography in identifiable pathways between selected pairs of brain regions with altered rsFC as determined by prior meta-analysis. Compared with controls, patients showed significantly decreased FA between right caudate nucleus and right pallidum, right caudate nucleus and right putamen, and right hippocampus and right thalamus. Decreased rsFC was observed between right pallidum and right thalamus, and right insula and right superior temporal gyrus. No significant correlation was observed between FA and rsFC. FA between right caudate nucleus and right putamen was inversely correlated with negative symptoms while rsFC between right pallidum and right thalamus was inversely correlated with positive symptoms. The lack of robust correlations between FA and rsFC and no overlap of these abnormalities indicate that regional rsFC alterations in the early course of schizophrenia are not primarily associated with FA alterations. The observation that positive and negative symptoms are related to different functional and structural disturbances is consistent with this dissociation, and with prior work suggests that different pathophysiological mechanism may underlie positive and negative symptoms in the early course of schizophrenia.
Collapse
Affiliation(s)
- Jieke Liu
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Psychiatry, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Li
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
He H, Luo C, Luo Y, Duan M, Yi Q, Biswal BB, Yao D. Reduction in gray matter of cerebellum in schizophrenia and its influence on static and dynamic connectivity. Hum Brain Mapp 2019; 40:517-528. [PMID: 30240503 PMCID: PMC6865738 DOI: 10.1002/hbm.24391] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pathophysiological and atrophic changes in the cerebellum have been well-documented in schizophrenia. Reduction of gray matter (GM) in the cerebellum was confirmed across cognitive and motor cerebellar modules in schizophrenia. Such abnormalities in the cerebellum could potentially have widespread effects on both sensorimotor and cognitive symptoms. In this study, we investigated how reduction change in the cerebellum affects the static and the dynamic functional connectivity (FC) between the cerebellum and cortical/subcortical networks in schizophrenia. Reduction of GM in the cerebellum was confirmed across the cognitive and motor cerebellar modules in schizophrenic subjects. Results from this study demonstrates that the extent of reduction of GM within cerebellum correlated with increased static FCs between the cerebellum and the cortical/subcortical networks, including frontoparietal network (FPN), and thalamus in patients with schizophrenia. Decreased GM in the cerebellum was also associated with a declined dynamic FC between the cerebellum and the FPN in schizophrenic subjects. The severity of patients' positive symptom was related to these structural-functional coupling score of cerebellum. These findings identified potential cerebellar driven functional changes associated with positive symptom deficits. A post hoc analysis exploring the effect of changed FC within cerebellum, confirmed that a significant positive relationship, between dynamic FCs of cerebellum-thalamus and intracerebellum existed in patients, but not in controls. The reduction of GM within the cerebellum might be associated with modulation of cerebellum-thalamus, and contributes to the dysfunctional cerebellar-cortical communication in schizophrenia. Our results provide a new insight into the role of cerebellum in understanding the pathophysiological of schizophrenia.
Collapse
Affiliation(s)
- Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yuling Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Qizhong Yi
- Psychological Medicine CenterThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
23
|
Chen L, Wang Y, Niu C, Zhong S, Hu H, Chen P, Zhang S, Chen G, Deng F, Lai S, Wang J, Huang L, Huang R. Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. NEUROIMAGE-CLINICAL 2018; 20:42-50. [PMID: 30069426 PMCID: PMC6067086 DOI: 10.1016/j.nicl.2018.07.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/02/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are common severe affective diseases. Although previous neuroimaging studies have investigated brain abnormalities in MDD or BD, the structural and functional differences between these two disorders remain unclear. In this study, we adopted a multimodal approach, combining voxel-based morphometry (VBM) and functional connectivity (FC), to study the common and distinct structural and functional alterations in unmedicated MDD and BD patients. The VBM analysis revealed that both the MDD and BD patients showed decreased gray matter volume (GMV) in the left anterior cingulate cortex (ACC_L) and right hippocampus (HIP_R) compared with the healthy controls, and the MDD patients showed decreased GMV in the left superior frontal gyrus (SFG_L) and ACC_L compared with the BD patients. Furthermore, we took these clusters as seed regions to analyze the abnormal resting-state functional connectivity (RSFC) in the patients. We found that both the MDD and BD groups had decreased RSFC between the ACC_L and the left orbitofrontal cortex (OFC_L) and that the MDD group had decreased RSFC between the SFG_L and the HIP_L, compared with the healthy controls. Our results revealed that the MDD and BD patients were more similar than different in GMV and RSFC. These findings indicate that investigating the frontal-limbic system could be useful for understanding the underlying mechanisms of these two disorders. Both MDD and BD patients had reduced GMV in the ACC_L and HIP_R compared with HC. MDD patients had decreased GMV in the ACC_L and SFG_L compared with BD patients. Both BD and MDD patients had decreased ACC-OFC RSFC compared with HC. The MDD and BD patients were more similar than different in GMV and RSFC.
Collapse
Key Words
- ACC, anterior cingulate cortex
- Affective disorder
- CSF, cerebrospinal fluid
- DLPFC, dorsolateral prefrontal cortex
- Functional connectivity
- GM, gray matter
- GMV, gray matter volume
- HDRS, Hamilton Depression Rating Scale
- HIP, hippocampus
- Multimodal
- OFC, orbitofrontal cortex
- ORBmid, orbital part middle frontal gyrus
- ORBsup, orbital part superior frontal gyrus
- R-fMRI, Resting-state fMRI
- RSFC, resting-state functional connectivity
- SFG, superior frontal gyrus
- THA, thalamus
- VBM, voxel-based morphometry
- VLPFC, ventrolateral prefrontal cortex
- Voxel-based morphometry
- WM, white matter
- YMRS, Young Mania Rating Scale
- dmPFC, dorsomedial prefrontal cortex
Collapse
Affiliation(s)
- Lixiang Chen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| | - Chen Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiqing Hu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ping Chen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shufei Zhang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Deng
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Sunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
24
|
Wang S, Zhan Y, Zhang Y, Lyu L, Lyu H, Wang G, Wu R, Zhao J, Guo W. Abnormal long- and short-range functional connectivity in adolescent-onset schizophrenia patients: A resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:445-451. [PMID: 28823850 DOI: 10.1016/j.pnpbp.2017.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Human brain is a topologically complex network embedded in anatomical space, and anatomical distance may affect functional connectivity (FC) in schizophrenia. However, little is known if and how this effect occurs in adolescent-onset schizophrenia (AOS). METHODS We explored long- and short-range FC through resting-state functional magnetic resonance imaging in 48 first-episode, drug-naive AOS patients and 31 healthy controls, and we examined if these abnormalities could be utilized to separate patients from controls using receiver operating characteristic curves and support vector machines (SVM). RESULTS Patients had increased long-range positive FC (lpFC) and short-range positive FC (spFC) in the right middle frontal gyrus and right superior medial prefrontal cortex within the anterior default mode network (DMN), decreased lpFC and spFC in several regions of the posterior DMN, and decreased lpFC within the important hubs of salience network (SN). The decreased lpFC in the left superior temporal gyrus was positively correlated with cognitive impairment. We found that SVM has high accuracy (up to 92.4%) in classifying patients and control. CONCLUSION Disrupted anatomical distance would underlie network-level dysconnectivity, highlighting the importance of the DMN and SN in the neurodevelopment of schizophrenia. Abnormalities of long- and short-range FC in brain regions could discriminate patients from controls with high accuracy.
Collapse
Affiliation(s)
- Shuai Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yajing Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lyu
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hailong Lyu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Guodong Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Renrong Wu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Wenbin Guo
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.
| |
Collapse
|
25
|
Wang S, Zhang Y, Lv L, Wu R, Fan X, Zhao J, Guo W. Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophr Res 2018; 192:179-184. [PMID: 28587813 DOI: 10.1016/j.schres.2017.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Structural and functional abnormalities have been reported in the brain of patients with adolescent-onset schizophrenia (AOS). The brain regional functional synchronization in patients with AOS remains unclear. METHODS We analyzed resting-state functional magnetic resonance scans in 48 drug-naive patients with AOS and 31 healthy controls by using regional homogeneity (ReHo), a measurement that reflects brain local functional connectivity or synchronization and indicates regional integration of information processing. Then, receiver operating characteristic curves and support vector machines were used to evaluate the effect of abnormal regional homogeneity in differentiating patients from controls. RESULTS Patients with AOS showed significantly increased ReHo values in the bilateral superior medial prefrontal cortex (MPFC) and significantly decreased ReHo values in the left superior temporal gyrus (STG), right precentral lobule, right inferior parietal lobule (IPL), and left paracentral lobule when compared with controls. A combination of the ReHo values in bilateral superior MPFC, left STG, and right IPL was able to discriminate patients from controls with the sensitivity of 88.24%, specificity of 91.89%, and accuracy of 90.14%. CONCLUSION The brain regional functional synchronization abnormalities exist in drug-naive patients with AOS. A combination of ReHo values in these abnormal regions might serve as potential imaging biomarker to identify patients with AOS.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Zhang
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoduo Fan
- UMass Memorial Medical Center, UMass Medical School, Worcester, USA
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Wenbin Guo
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.
| |
Collapse
|
26
|
Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr Bull 2018; 44:168-181. [PMID: 28338943 PMCID: PMC5767956 DOI: 10.1093/schbul/sbx034] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenia is a complex mental disorder with disorganized communication among large-scale brain networks, as demonstrated by impaired resting-state functional connectivity (rsFC). Individual rsFC studies, however, vary greatly in their methods and findings. We searched for consistent patterns of network dysfunction in schizophrenia by using a coordinate-based meta-analysis. Fifty-six seed-based voxel-wise rsFC datasets from 52 publications (2115 patients and 2297 healthy controls) were included in this meta-analysis. Then, coordinates of seed regions of interest (ROI) and between-group effects were extracted and coded. Seed ROIs were categorized into seed networks by their location within an a priori template. Multilevel kernel density analysis was used to identify brain networks in which schizophrenia was linked to hyper-connectivity or hypo-connectivity with each a priori network. Our results showed that schizophrenia was characterized by hypo-connectivity within the default network (DN, self-related thought), affective network (AN, emotion processing), ventral attention network (VAN, processing of salience), thalamus network (TN, gating information) and somatosensory network (SS, involved in sensory and auditory perception). Additionally, hypo-connectivity between the VAN and TN, VAN and DN, VAN and frontoparietal network (FN, external goal-directed regulation), FN and TN, and FN and DN were found in schizophrenia. Finally, the only instance of hyper-connectivity in schizophrenia was observed between the AN and VAN. Our meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation (inner world) and environmental salience processing (outside world).
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
O’Neill A, Bhattacharyya S. Investigating the Role of the Endocannabinoid System in Early Psychosis. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:85-92. [DOI: 10.14218/jerp.2017.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Abnormal functional connectivity strength in patients with adolescent-onset schizophrenia: a resting-state fMRI study. Eur Child Adolesc Psychiatry 2017; 26:839-845. [PMID: 28185094 DOI: 10.1007/s00787-017-0958-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
Abstract
Structural and functional abnormalities were reported in the brain of patients with adolescent-onset schizophrenia (AOS). However, evidence of abnormal functional connectivity of the brain in AOS patients is limited. Thus, we analyzed the resting-state functional magnetic resonance scans of 48 drug-naive AOS patients and 31 healthy controls to determine their functional connectivity strength (FCS) and examined if FCS abnormalities were correlated with clinical characteristics. Compared with healthy controls, AOS patients showed significantly increased FCS in the left cerebellum VI and right inferior frontal gyrus/insula. A positive correlation was observed between FCS values in the right inferior frontal gyrus/insula and general psychopathology scores of positive and negative syndrome scale. Results suggest that functional connectivity pattern is disrupted in drug-naive AOS patients. The FCS values in this abnormal region have potential for evaluating the disease severity.
Collapse
|
29
|
Aberrant Temporal Connectivity in Persons at Clinical High Risk for Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:696-705. [PMID: 29202110 DOI: 10.1016/j.bpsc.2016.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Schizophrenia, a neurodevelopmental disorder, involves abnormalities in functional connectivity (FC) across distributed neural networks, which are thought to antedate the emergence of psychosis. In a cohort of adolescents and young adults at clinical high risk (CHR) for psychosis, we applied data-driven approaches to resting-state fMRI data so as to systematically characterize FC abnormalities during this period and determine whether these abnormalities are associated with psychosis risk and severity of psychotic symptoms. Methods Fifty-one CHR participants and 47 matched healthy controls (HCs) were included in our analyses. Twelve of these CHR participants developed psychosis within 3.9 years. We estimated one multivariate measure of FC and studied its relationship to CHR status, conversion to psychosis and positive symptom severity. Results Multivariate analyses revealed between-group differences in whole-brain connectivity patterns of bilateral temporal areas, mostly affecting their functional connections to the thalamus. Further, more severe positive symptoms were associated with greater connectivity abnormalities in the anterior cingulate and frontal cortex. Conclusions Our study demonstrates that the well-established FC abnormalities of the thalamus and temporal areas observed in schizophrenia are also present in the CHR period, with aberrant connectivity of the temporal cortex most associated with psychosis risk.
Collapse
|
30
|
Xiao B, Wang S, Liu J, Meng T, He Y, Luo X. Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: a meta-analysis of resting-state functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2017; 13:467-475. [PMID: 28243099 PMCID: PMC5317331 DOI: 10.2147/ndt.s126678] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The localized dysfunction of specialized brain regions in schizophrenia patients and their unaffected relatives has been identified in a large-scale brain network; however, evidence is inconsistent. We aimed to identify abnormalities in the localized connectivity in schizophrenia patients and their relatives by conducting a meta-analysis of regional homogeneity (ReHo) studies. METHODS Fourteen studies on resting-state functional magnetic resonance imaging, with 316 schizophrenia patients, 342 healthy controls, and 66 unaffected relatives, were included in the meta-analysis. This analysis was performed using anisotropic effect-size-based signed differential mapping software. RESULTS Schizophrenia patients showed increased ReHo in right superior frontal gyrus and right superior temporal gyrus, as well as decreased ReHo in left fusiform gyrus, left superior temporal gyrus, left postcentral gyrus, and right precentral gyrus. Unaffected relatives showed decreased ReHo in right insula and right superior temporal gyrus. These results remained widely unchanged in both sensitivity and subgroup analyses. CONCLUSION Schizophrenia patients and their unaffected relatives had extensive abnormal localized connectivity in cerebrum, especially in superior temporal gyrus, which were the potential diagnostic markers and expounded the pathophysiological hypothesis for the disorder.
Collapse
Affiliation(s)
- Bo Xiao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Shuai Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Jianbo Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Tiantian Meng
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Yuqiong He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Xuerong Luo
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| |
Collapse
|