1
|
Wang Y. Thalamus and its functional connections with cortical regions contribute to complexity-dependent cognitive reasoning. Neuroscience 2024; 562:125-134. [PMID: 39454717 DOI: 10.1016/j.neuroscience.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
The thalamus is crucial for supporting various cognitive behaviors due to its extensive connectivity with multiple cortical regions. However, the role of the thalamus and its functional connections with cortical regions in cognitive reasoning remains unclear, since previous research has mainly focused on cortical regions when studying the neural mechanisms underlying cognitive reasoning. To fill this knowledge gap, we utilized 7 T functional magnetic resonance imaging (fMRI) to study the activation patterns of the thalamus and its functional connections with cortical regions during cognitive reasoning task, while also examining how the complexity of reasoning tasks affects thalamic activation and functional connections with cortical regions. Our findings showed that cognitive reasoning processes are related to increased activation of the thalamus and its functional connections with a specific set of cortical regions, consisting of dorsolateral prefrontal cortex, inferior frontal sulcus, intraparietal sulcus, anterior cingulate cortex/presupplementary motor area, precuneus, and ventral medial prefrontal cortex. Moreover, the increase in relational complexity of the reasoning tasks led to a corresponding increase in thalamic activation and functional connectivity with cortical regions. Given the complex thalamus structure, including multiple distinct nuclei exhibiting specific functional connections with particular cortical regions, we used an atlas defined thalamic subdivisions based on its structural connectivity with different cortical regions. Our findings indicated that these different thalamic subregions not only exhibited distinct connectivity patterns with specific cortical regions during performance of cognitive reasoning, but also showed distinct connectivity patterns varied with task complexity. Overall, our study presents evidence of the thalamus's role and its connections with cortical regions in supporting increasingly complex cognitive reasoning behavior, illuminating its contribution to higher-order cognitive functions, such as reasoning.
Collapse
Affiliation(s)
- Yanqing Wang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Kim JI, Miura Y, Li MY, Revah O, Selvaraj S, Birey F, Meng X, Thete MV, Pavlov SD, Andersen J, Pașca AM, Porteus MH, Huguenard JR, Pașca SP. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 2024:S0896-6273(24)00692-5. [PMID: 39419023 DOI: 10.1016/j.neuron.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level.
Collapse
Affiliation(s)
- Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Xiangling Meng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Sergey D Pavlov
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Anca M Pașca
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Forrer S, Delavari F, Sandini C, Rafi H, Preti MG, Van De Ville D, Eliez S. Longitudinal Analysis of Brain Function-Structure Dependencies in 22q11.2 Deletion Syndrome and Psychotic Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:882-895. [PMID: 38849032 DOI: 10.1016/j.bpsc.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Compared with conventional unimodal analysis, understanding how brain function and structure relate to one another opens a new biologically relevant assessment of neural mechanisms. However, how function-structure dependencies (FSDs) evolve throughout typical and abnormal neurodevelopment remains elusive. The 22q11.2 deletion syndrome (22q11.2DS) offers an important opportunity to study the development of FSDs and their specific association with the pathophysiology of psychosis. METHODS Previously, we used graph signal processing to combine brain activity and structural connectivity measures in adults, quantifying FSD. Here, we combined FSD with longitudinal multivariate partial least squares correlation to evaluate FSD alterations across groups and among patients with and without mild to moderate positive psychotic symptoms. We assessed 391 longitudinally repeated resting-state functional and diffusion-weighted magnetic resonance images from 194 healthy control participants and 197 deletion carriers (ages 7-34 years, data collected over a span of 12 years). RESULTS Compared with control participants, patients with 22q11.2DS showed a persistent developmental offset from childhood, with regions of hyper- and hypocoupling across the brain. Additionally, a second deviating developmental pattern showed an exacerbation during adolescence, presenting hypocoupling in the frontal and cingulate cortices and hypercoupling in temporal regions for patients with 22q11.2DS. Interestingly, the observed aggravation during adolescence was strongly driven by the group with positive psychotic symptoms. CONCLUSIONS These results confirm a central role of altered FSD maturation in the emergence of psychotic symptoms in 22q11.2DS during adolescence. The FSD deviations precede the onset of psychotic episodes and thus offer a potential early indication for behavioral interventions in individuals at risk.
Collapse
Affiliation(s)
- Silas Forrer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Developmental Clinical Psychology Research Unit, University of Geneva Faculty of Psychology and Educational Sciences, Geneva, Switzerland
| | - Maria Giulia Preti
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
4
|
Huang AS, Kang K, Vandekar S, Rogers BP, Heckers S, Woodward ND. Lifespan development of thalamic nuclei and characterizing thalamic nuclei abnormalities in schizophrenia using normative modeling. Neuropsychopharmacology 2024; 49:1518-1527. [PMID: 38480909 PMCID: PMC11319674 DOI: 10.1038/s41386-024-01837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Thalamic abnormalities have been repeatedly implicated in the pathophysiology of schizophrenia and other neurodevelopmental disorders. Uncovering the etiology of thalamic abnormalities and how they may contribute to illness phenotypes faces at least two obstacles. First, the typical developmental trajectories of thalamic nuclei and their association with cognition across the lifespan are largely unknown. Second, modest effect sizes indicate marked individual differences and pose a significant challenge to personalized medicine. To address these knowledge gaps, we characterized the development of thalamic nuclei volumes using normative models generated from the Human Connectome Project Lifespan datasets (5-100+ years), then applied them to an independent clinical cohort to determine the frequency of thalamic volume deviations in people with schizophrenia (17-61 years). Normative models revealed diverse non-linear age effects across the lifespan. Association nuclei exhibited negative age effects during youth but stabilized in adulthood until turning negative again with older age. Sensorimotor nuclei volumes remained relatively stable through youth and adulthood until also turning negative with older age. Up to 18% of individuals with schizophrenia exhibited abnormally small (i.e., below the 5th centile) mediodorsal and pulvinar volumes, and the degree of deviation, but not raw volumes, correlated with the severity of cognitive impairment. While case-control differences are robust, only a minority of patients demonstrate unusually small thalamic nuclei volumes. Normative modeling enables the identification of these individuals, which is a necessary step toward precision medicine.
Collapse
Affiliation(s)
- Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Kaidi Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Zhang L, Wang W, Ruan Y, Li Z, Yanjun, Ji GJ, Tian Y, Wang K. Hyperactivity and altered functional connectivity of the ventral striatum in schizophrenia compared with bipolar disorder: A resting state fMRI study. Psychiatry Res Neuroimaging 2024; 345:111881. [PMID: 39278197 DOI: 10.1016/j.pscychresns.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Schizophrenia patients frequently present with structural and functional abnormalities of the ventral striatum (VS). METHODS we examined basal activation state and functional connectivity (FC) in four subregions of the bilateral ventral striatum: left inferior ventral striatum (VSi_L), left superior ventral striatum(VSs_L), right inferior ventral striatum(VSi_R), and right superior ventral striatum(VSs_R). Resting-state functional magnetic resonance images were obtained from 62 schizophrenia patients (SCH), 57 bipolar disorder (BD) patients, and 26 healthy controls (HCs). RESULTS The schizophrenia group exhibited greater fALFF in bilateral VS subregions compared to BD and HC groups as well as greater FC between the bilateral VSi and multiple brain regions, including the thalamus, putamen, posterior cingulate gyrus (PCC), frontal cortex and caudate. Moreover, the fALFF values of the bilateral ventral striatum were positively correlated with the severity of positive symptoms. We also found the functional connectivity between the bilateral inferior ventral striatum and some brain regions aforementioned were positively correlated with the severity of negative symptoms. CONCLUSION These findings confirm a crucial contribution of ventral striatum dysfunction, especially of the bilateral VSi in schizophrenia. Functionally dissociated regions of the ventral striatum are differentially disturbed in schizophrenia.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| | - Wenli Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuan Ruan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiyong Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanjun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| |
Collapse
|
6
|
Thalhammer M, Schulz J, Scheulen F, Oubaggi MEM, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Avram M, Brandl F, Sorg C. Distinct Volume Alterations of Thalamic Nuclei Across the Schizophrenia Spectrum. Schizophr Bull 2024; 50:1208-1222. [PMID: 38577901 PMCID: PMC11349018 DOI: 10.1093/schbul/sbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormal thalamic nuclei volumes and their link to cognitive impairments have been observed in schizophrenia. However, whether and how this finding extends to the schizophrenia spectrum is unknown. We hypothesized a distinct pattern of aberrant thalamic nuclei volume across the spectrum and examined its potential associations with cognitive symptoms. STUDY DESIGN We performed a FreeSurfer-based volumetry of T1-weighted brain MRIs from 137 healthy controls, 66 at-risk mental state (ARMS) subjects, 89 first-episode psychosis (FEP) individuals, and 126 patients with schizophrenia to estimate thalamic nuclei volumes of six nuclei groups (anterior, lateral, ventral, intralaminar, medial, and pulvinar). We used linear regression models, controlling for sex, age, and estimated total intracranial volume, both to compare thalamic nuclei volumes across groups and to investigate their associations with positive, negative, and cognitive symptoms. STUDY RESULTS We observed significant volume alterations in medial and lateral thalamic nuclei. Medial nuclei displayed consistently reduced volumes across the spectrum compared to controls, while lower lateral nuclei volumes were only observed in schizophrenia. Whereas positive and negative symptoms were not associated with reduced nuclei volumes across all groups, higher cognitive scores were linked to lower volumes of medial nuclei in ARMS. In FEP, cognition was not linked to nuclei volumes. In schizophrenia, lower cognitive performance was associated with lower medial volumes. CONCLUSIONS Results demonstrate distinct thalamic nuclei volume reductions across the schizophrenia spectrum, with lower medial nuclei volumes linked to cognitive deficits in ARMS and schizophrenia. Data suggest a distinctive trajectory of thalamic nuclei abnormalities along the course of schizophrenia.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Scheulen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed El Mehdi Oubaggi
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Kirschner
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Felix Brandl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Segal A, Smith RE, Chopra S, Oldham S, Parkes L, Aquino K, Kia SM, Wolfers T, Franke B, Hoogman M, Beckmann CF, Westlye LT, Andreassen OA, Zalesky A, Harrison BJ, Davey CG, Soriano-Mas C, Cardoner N, Tiego J, Yücel M, Braganza L, Suo C, Berk M, Cotton S, Bellgrove MA, Marquand AF, Fornito A. Multiscale heterogeneity of white matter morphometry in psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.606523. [PMID: 39149253 PMCID: PMC11326206 DOI: 10.1101/2024.08.04.606523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Inter-individual variability in neurobiological and clinical characteristics in mental illness is often overlooked by classical group-mean case-control studies. Studies using normative modelling to infer person-specific deviations of grey matter volume have indicated that group means are not representative of most individuals. The extent to which this variability is present in white matter morphometry, which is integral to brain function, remains unclear. Methods We applied Warped Bayesian Linear Regression normative models to T1-weighted magnetic resonance imaging data and mapped inter-individual variability in person-specific white matter volume deviations in 1,294 cases (58% male) diagnosed with one of six disorders (attention-deficit/hyperactivity, autism, bipolar, major depressive, obsessive-compulsive and schizophrenia) and 1,465 matched controls (54% male) recruited across 25 scan sites. We developed a framework to characterize deviation heterogeneity at multiple spatial scales, from individual voxels, through inter-regional connections, specific brain regions, and spatially extended brain networks. Results The specific locations of white matter volume deviations were highly heterogeneous across participants, affecting the same voxel in fewer than 8% of individuals with the same diagnosis. For autism and schizophrenia, negative deviations (i.e., areas where volume is lower than normative expectations) aggregated into common tracts, regions and large-scale networks in up to 35% of individuals. Conclusions The prevalence of white matter volume deviations was lower than previously observed in grey matter, and the specific location of these deviations was highly heterogeneous when considering voxel-wise spatial resolution. Evidence of aggregation within common pathways and networks was apparent in schizophrenia and autism but not other disorders.
Collapse
Affiliation(s)
- Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Wu Tsai Institute, Department of Neuroscience, Yale University, New Haven, United States
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Stuart Oldham
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Seyed Mostafa Kia
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, the Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo & Oslo University Hospital, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TÜCMH), University of Tübingen, Tübingen, Germany
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, University of Oslo & Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A. Andreassen
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Ben J. Harrison
- Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | | | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Narcís Cardoner
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Sant Pau Mental Health Research Group, Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leah Braganza
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Australian Characterisation Commons at Scale (ACCS) Project, Monash eResearch Centre, Melbourne, Australia
| | - Michael Berk
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Sue Cotton
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Andre F. Marquand
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Neuroimaging, Centre of Neuroimaging Sciences, Institute of Psychiatry, King’s College London, London, The United Kingdom
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Keller GB, Sterzer P. Predictive Processing: A Circuit Approach to Psychosis. Annu Rev Neurosci 2024; 47:85-101. [PMID: 38424472 DOI: 10.1146/annurev-neuro-100223-121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.
Collapse
Affiliation(s)
- Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- Faculty of Natural Science, University of Basel, Basel, Switzerland
| | - Philipp Sterzer
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Cai J, Xie M, Liang S, Gong J, Deng W, Guo W, Ma X, Sham PC, Wang Q, Li T. Dysfunction of thalamocortical circuits in early-onset schizophrenia. Cereb Cortex 2024; 34:bhae313. [PMID: 39106176 DOI: 10.1093/cercor/bhae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024] Open
Abstract
Previous studies have demonstrated that the thalamus is involved in multiple functional circuits in participants with schizophrenia. However, less is known about the thalamocortical circuit in the rare subtype of early-onset schizophrenia. A total of 110 participants with early-onset schizophrenia (47 antipsychotic-naive patients) and 70 matched healthy controls were recruited and underwent resting-state functional and diffusion-weighted magnetic resonance imaging scans. A data-driven parcellation method that combined the high spatial resolution of diffusion magnetic resonance imaging and the high sensitivity of functional magnetic resonance imaging was used to divide the thalamus. Next, the functional connectivity between each thalamic subdivision and the cortex/cerebellum was investigated. Compared to healthy controls, individuals with early-onset schizophrenia exhibited hypoconnectivity between subdivisions of the thalamus and the frontoparietal network, visual network, ventral attention network, somatomotor network and cerebellum, and hyperconnectivity between subdivisions of thalamus and the parahippocampal and temporal gyrus, which were included in limbic network. The functional connectivity between the right posterior cingulate cortex and 1 subdivision of the thalamus (region of interest 1) was positively correlated with the general psychopathology scale score. This study showed that the specific thalamocortical dysconnection in individuals with early-onset schizophrenia involves the prefrontal, auditory and visual cortices, and cerebellum. This study identified thalamocortical connectivity as a potential biomarker and treatment target for early-onset schizophrenia.
Collapse
Affiliation(s)
- Jia Cai
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Sugai Liang
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| | - Jinnan Gong
- School of Computer Science, Chengdu University of Information Technology, No. 2006th, Xiyuan Road, Pidu District, Chengdu, Sichuan 611700, China
| | - Wei Deng
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| | - Wanjun Guo
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Central and Western District, Hong Kong, Special Administrative Region, 999077, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Central and Western District, Hong Kong, Special Administrative Region, 999077, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Central and Western District, Hong Kong, Special Administrative Region, 999077, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, No. 28th Dianxin Nan Str. Chengdu, Sichuan, 610041, China
| | - Tao Li
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305th Tianmushan Road, Xihu District, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
10
|
Ding Q, Li L, Tong Q, He H, Gao B, Xia L. White matter microstructure alterations of the posterior limb of internal capsule in first-episode drug naive schizophrenia patients. Brain Res 2024; 1841:149114. [PMID: 38977237 DOI: 10.1016/j.brainres.2024.149114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES Previous studies have shown that microstructural alterations in white matter (WM) could contribute to the symptom manifestation and support the dysconnectivity hypothesis in schizophrenia patients. These alterations were pervasive, non-specific, and reported inconsistently across the literature. This study aimed to specifically investigate the microstructure alterations of the posterior limb of the internal capsule (PLIC) in first-episode, drug-naive schizophrenia patients. Utilizing a multicompartmental biophysical model, we further explored the correlation between these alterations and syndrome scale scores. METHODS Thirty-two individuals with first-episode, drug-naive schizophrenia (FES) and thirty demographically matched healthy controls were enrolled. High-resolution multi-shell diffusion MRI data were collected, followed by the application of a three-compartment Neurite Orientation Dispersion and Density Imaging (NODDI) model to scrutinize the alterations in white matter microstructure. Changes in sensory and motor fibers within the PLIC were specifically focused on. Additionally, the correlation between these pathological changes and scores on the Positive and Negative Syndrome Scale (PANSS) was investigated. RESULTS The Neurite density index (NDI) in the left PLIC was significantly lower in FES patients compared to healthy individuals, and positively correlated with PANSS positive syndrome scores (r = 0.0379, p = 0.046). In the sensory component (left superior thalamic radiation within PLIC, STR_P), the NDI was significantly elevated (p < 0.0001). Conversely, the NDI in the motor component (left corticospinal tract within PLIC, CST_P) was reduced (p = 0.007) in FES patients compared to healthy individuals, and strongly correlated with PANSS positive syndrome scores (p < 0.020) and PANSS total scores (p < 0.045). Moreover, the NDI deviation of STR from total PLIC (fSTR_P) and NDI deviation in STR_P and CST_P compared to PLIC region (fPLIC) were significantly higher in FES patients than in healthy controls (p < 0.00001), with an area under the curve (AUC) of fPLIC reaching 0.872. CONCLUSION The study's findings provided new insights into the discrepancy of white matter microstructure changes associated with the sensory and motor fibers in the PLIC region in FES patients. These results contribute to the growing body of evidence suggesting that WM microstructural alterations play a critical role in schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Qiuping Ding
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Lingyu Li
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Qiqi Tong
- Research Center for Data Hub and Security, Zhejiang Lab, Hangzhou, China
| | - Hongjian He
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Bin Gao
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Ling Xia
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kamath RS, Weldon KB, Moser HR, Montoya S, Abdullahi KS, Burton PC, Sponheim SR, Olman CA, Schallmo MP. Impaired contour object perception in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.02.24309795. [PMID: 39006442 PMCID: PMC11245054 DOI: 10.1101/2024.07.02.24309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Contour integration, the process of joining spatially separated elements into a single unified line, has consistently been found to be impaired in schizophrenia. Recent work suggests that this deficit could be associated with psychotic symptomatology, rather than a specific diagnosis such as schizophrenia. Examining a transdiagnostic sample of participants with psychotic psychopathology, we obtained quantitative indices of contour perception in a psychophysical behavioral task. We found impaired contour discrimination performance among people with psychotic psychopathology (PwPP, n = 62) compared to healthy controls (n = 34) and biological relatives of PwPP (n = 44). Participants with schizophrenia (n = 31) showed impaired task performance compared to participants with bipolar disorder (n = 18). We also measured responses during an analogous task using ultra-high field (7T) functional MRI and found higher responses in the lateral occipital cortex of PwPP compared to controls. Using task-based functional connectivity analyses, we observed abnormal connectivity between visual brain areas during contour perception among PwPP. These connectivity differences only emerged when participants had to distinguish the contour object from background distractors, suggesting that a failure to suppress noise elements relative to contour elements may underlie impaired contour processing in PwPP. Our results are consistent with impaired contour integration in psychotic psychopathology, and especially schizophrenia, that is related to cognitive dysfunction, and may be linked to impaired functional connectivity across visual regions.
Collapse
Affiliation(s)
- Rohit S. Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly B. Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R. Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha Montoya
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kamar S. Abdullahi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Philip C. Burton
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Office of the Associate Dean for Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R. Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Cheryl A. Olman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Pei H, Jiang S, Liu M, Ye G, Qin Y, Liu Y, Duan M, Yao D, Luo C. Simultaneous EEG-fMRI Investigation of Rhythm-Dependent Thalamo-Cortical Circuits Alteration in Schizophrenia. Int J Neural Syst 2024; 34:2450031. [PMID: 38623649 DOI: 10.1142/s012906572450031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Schizophrenia is accompanied by aberrant interactions of intrinsic brain networks. However, the modulatory effect of electroencephalography (EEG) rhythms on the functional connectivity (FC) in schizophrenia remains unclear. This study aims to provide new insight into network communication in schizophrenia by integrating FC and EEG rhythm information. After collecting simultaneous resting-state EEG-functional magnetic resonance imaging data, the effect of rhythm modulations on FC was explored using what we term "dynamic rhythm information." We also investigated the synergistic relationships among three networks under rhythm modulation conditions, where this relationship presents the coupling between two brain networks with other networks as the center by the rhythm modulation. This study found FC between the thalamus and cortical network regions was rhythm-specific. Further, the effects of the thalamus on the default mode network (DMN) and salience network (SN) were less similar under alpha rhythm modulation in schizophrenia patients than in controls ([Formula: see text]). However, the similarity between the effects of the central executive network (CEN) on the DMN and SN under gamma modulation was greater ([Formula: see text]), and the degree of coupling was negatively correlated with the duration of disease ([Formula: see text], [Formula: see text]). Moreover, schizophrenia patients exhibited less coupling with the thalamus as the center and greater coupling with the CEN as the center. These results indicate that modulations in dynamic rhythms might contribute to the disordered functional interactions seen in schizophrenia.
Collapse
Affiliation(s)
- Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mei Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Guofeng Ye
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yayun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation Chinese, Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation Chinese, Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
13
|
Deng L, Wei W, Qiao C, Yin Y, Li X, Yu H, Jian L, Ma X, Zhao L, Wang Q, Deng W, Guo W, Li T. Dynamic aberrances of substantia nigra-relevant coactivation patterns in first-episode treatment-naïve patients with schizophrenia. Psychol Med 2024; 54:2527-2537. [PMID: 38523252 DOI: 10.1017/s0033291724000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES). METHODS Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored. RESULTS Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034). CONCLUSION Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.
Collapse
Affiliation(s)
- Lihong Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunxia Qiao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yubing Yin
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingqi Jian
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Li H, Zhang W, Song H, Zhuo L, Yao H, Sun H, Liu R, Feng R, Tang C, Lui S. Altered temporal lobe connectivity is associated with psychotic symptoms in drug-naïve adolescent patients with first-episode schizophrenia. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02485-9. [PMID: 38832962 DOI: 10.1007/s00787-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Research on individuals with a younger onset age of schizophrenia is important for identifying neurobiological processes derived from the interaction of genes and the environment that lead to the manifestation of schizophrenia. Schizophrenia has long been recognized as a disorder of dysconnectivity, but it is largely unknown how brain connectivity changes are associated with psychotic symptoms. Twenty-one adolescent-onset schizophrenia (AOS) patients and 21 matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) was used to investigate local brain connectivity alterations in AOS. Regions with significant ReHo changes in patients were selected as "seeds" for further functional connectivity (FC) analysis and Granger causality analysis (GCA), and associations of the obtained functional brain measures with psychotic symptoms in patients with AOS were examined. Compared with HCs, AOS patients showed significantly increased ReHo in the right middle temporal gyrus (MTG), which was positively correlated with PANSS-positive scores, PSYRATS-delusion scores and auditory hallucination scores. With the MTG as the seed, lower connectivity with the bilateral postcentral gyrus (PCG) and higher connectivity with the right precuneus were observed in patients. The reduced FC between the right MTG and bilateral PCG was significantly and positively correlated with hallucination scores. GCA indicated decreased Granger causality from the right MTG to the left middle frontal gyrus (MFG) and from the right MFG to the right MTG in AOS patients, but such effects did not significantly associate with psychotic symptoms. Abnormalities in the connectivity within the MTG and its connectivity with other networks were identified and were significantly correlated with hallucination and delusion ratings. This region may be a key neural substrate of psychotic symptoms in AOS.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hui Song
- Department of Psychiatry, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Hongchao Yao
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Ruohan Feng
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Chungen Tang
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China.
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
15
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2024:sbae059. [PMID: 38713085 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
16
|
Kotov R, Carpenter WT, Cicero DC, Correll CU, Martin EA, Young JW, Zald DH, Jonas KG. Psychosis superspectrum II: neurobiology, treatment, and implications. Mol Psychiatry 2024; 29:1293-1309. [PMID: 38351173 DOI: 10.1038/s41380-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Alternatives to traditional categorical diagnoses have been proposed to improve the validity and utility of psychiatric nosology. This paper continues the companion review of an alternative model, the psychosis superspectrum of the Hierarchical Taxonomy of Psychopathology (HiTOP). The superspectrum model aims to describe psychosis-related psychopathology according to data on distributions and associations among signs and symptoms. The superspectrum includes psychoticism and detachment spectra as well as narrow subdimensions within them. Auxiliary domains of cognitive deficit and functional impairment complete the psychopathology profile. The current paper reviews evidence on this model from neurobiology, treatment response, clinical utility, and measure development. Neurobiology research suggests that psychopathology included in the superspectrum shows similar patterns of neural alterations. Treatment response often mirrors the hierarchy of the superspectrum with some treatments being efficacious for psychoticism, others for detachment, and others for a specific subdimension. Compared to traditional diagnostic systems, the quantitative nosology shows an approximately 2-fold increase in reliability, explanatory power, and prognostic accuracy. Clinicians consistently report that the quantitative nosology has more utility than traditional diagnoses, but studies of patients with frank psychosis are currently lacking. Validated measures are available to implement the superspectrum model in practice. The dimensional conceptualization of psychosis-related psychopathology has implications for research, clinical practice, and public health programs. For example, it encourages use of the cohort study design (rather than case-control), transdiagnostic treatment strategies, and selective prevention based on subclinical symptoms. These approaches are already used in the field, and the superspectrum provides further impetus and guidance for their implementation. Existing knowledge on this model is substantial, but significant gaps remain. We identify outstanding questions and propose testable hypotheses to guide further research. Overall, we predict that the more informative, reliable, and valid characterization of psychopathology offered by the superspectrum model will facilitate progress in research and clinical care.
Collapse
Affiliation(s)
- Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | | | - David C Cicero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David H Zald
- Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katherine G Jonas
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
17
|
Perez-Rando M, García-Martí G, Escarti MJ, Salgado-Pineda P, McKenna PJ, Pomarol-Clotet E, Grasa E, Postiguillo A, Corripio I, Nacher J. Alterations in the volume and shape of the basal ganglia and thalamus in schizophrenia with auditory hallucinations. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110960. [PMID: 38325744 DOI: 10.1016/j.pnpbp.2024.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Different lines of evidence indicate that the structure and physiology of the basal ganglia and the thalamus is disturbed in schizophrenia. However, it is unknown whether the volume and shape of these subcortical structures are affected in schizophrenia with auditory hallucinations (AH), a core positive symptom of the disorder. We took structural MRI from 63 patients with schizophrenia, including 36 patients with AH and 27 patients who had never experienced AH (NAH), and 51 matched healthy controls. We extracted volumes for the left and right thalamus, globus pallidus, putamen, caudate and nucleus accumbens. Shape analysis was also carried out. When comparing to controls, the volume of the right globus pallidus, thalamus, and putamen, was only affected in AH patients. The volume of the left putamen was also increased in individuals with AH, whereas the left globus pallidus was affected in both groups of patients. The shapes of right and left putamen and thalamus were also affected in both groups. The shape of the left globus pallidus was only altered in patients lacking AH, both in comparison to controls and to cases with AH. Lastly, the general PANSS subscale was correlated with the volume of the right thalamus, and the right and left putamen, in patients with AH. We have found volume and shape alterations of many basal ganglia and thalamus in patients with and without AH, suggesting in some cases a possible relationship between this positive symptom and these morphometric alterations.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Research Institute of Valencia (INCLIVA), Valencia, Spain.
| | - Gracián García-Martí
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Maria J Escarti
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Research Institute of Valencia (INCLIVA), Valencia, Spain; Servicio de Psiquiatría, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Salgado-Pineda
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Spain
| | - Peter J McKenna
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Spain
| | - Edith Pomarol-Clotet
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Spain
| | - Eva Grasa
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; Mental Health, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
| | - Alba Postiguillo
- Biomedical Research Institute of Valencia (INCLIVA), Valencia, Spain
| | - Iluminada Corripio
- CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; Mental Health and Psychiatry Department, Vic Hospital Consortium, Francesc Pla, Vic, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; CIBERSAM, ISCIII Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Research Institute of Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
18
|
Grot S, Smine S, Potvin S, Darcey M, Pavlov V, Genon S, Nguyen H, Orban P. Label-based meta-analysis of functional brain dysconnectivity across mood and psychotic disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110950. [PMID: 38266867 DOI: 10.1016/j.pnpbp.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (rsfMRI) studies have revealed patterns of functional brain dysconnectivity in psychiatric disorders such as major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). Although these disorders have been mostly studied in isolation, there is mounting evidence of shared neurobiological alterations across them. METHODS To uncover the nature of the relatedness between these psychiatric disorders, we conducted an innovative meta-analysis of dysconnectivity findings reported separately in MDD, BD and SZ. Rather than relying on a classical voxel level coordinate-based approach, our procedure extracted relevant neuroanatomical labels from text data and examined findings at the whole brain network level. Data were drawn from 428 rsfMRI studies investigating MDD (158 studies, 7429 patients/7414 controls), BD (81 studies, 3330 patients/4096 patients) and/or SZ (223 studies, 11,168 patients/11,754 controls). Permutation testing revealed commonalities and differences in hypoconnectivity and hyperconnectivity patterns across disorders. RESULTS Hypoconnectivity and hyperconnectivity patterns of higher-order cognitive (default-mode, fronto-parietal, cingulo-opercular) networks were similarly observed across the three disorders. By contrast, dysconnectivity of lower-order (somatomotor, visual, auditory) networks in some cases differed between disorders, notably dissociating SZ from BD and MDD. CONCLUSIONS Findings suggest that functional brain dysconnectivity of higher-order cognitive networks is largely transdiagnostic in nature while that of lower-order networks may best discriminate between mood and psychotic disorders, thus emphasizing the relevance of motor and sensory networks to psychiatric neuroscience.
Collapse
Affiliation(s)
- Stéphanie Grot
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada
| | - Salima Smine
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Stéphane Potvin
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada
| | - Maëliss Darcey
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Vilena Pavlov
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hien Nguyen
- School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland, Australia; Department of Mathematics and Statistics, Latrobe University, Melbourne, Victoria, Australia
| | - Pierre Orban
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Bulut T, Hagoort P. Contributions of the left and right thalami to language: A meta-analytic approach. Brain Struct Funct 2024:10.1007/s00429-024-02795-3. [PMID: 38625556 DOI: 10.1007/s00429-024-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. METHODS The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. RESULTS The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). CONCLUSION The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.
Collapse
Affiliation(s)
- Talat Bulut
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Department of Speech and Language Therapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Kammerer MK, Bott A, Strakeljahn F, Lincoln TM. Sleep spindle activity and psychotic experiences: Examining the mediating roles of attentional performance and perceptual distortions in a daytime nap study. Sleep Med 2024; 116:43-50. [PMID: 38422784 DOI: 10.1016/j.sleep.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Decreased sleep spindle activity in individuals with psychotic disorders is well studied, but its contribution to psychotic symptom formation is not well understood. This study explored potential underlying mechanisms explaining the association between decreased sleep spindle activity and psychotic symptoms. To this end, we analysed the links between sleep spindle activity and psychotic experiences and probed for the mediating roles of attentional performance and perceptual distortions in a community sample of young adults (N = 70; 26.33 ± 4.84 years). Polysomnography was recorded during a 90-min daytime nap and duration, amplitude, and density from slow (10-13 Hz) and fast (13-16 Hz) spindles were extracted. Attentional performance was assessed via a test battery and with an antisaccadic eye movement task. Psychotic experiences (i.e., paranoid thoughts; hallucinatory experiences) and perceptual distortions (i.e., anomalous perceptions; sensory gating deficits) were assessed via self-report questionnaires. We conducted sequential mediation analyses with spindle activity as predictor, psychotic experiences as dependent variable, and attentional performance and perceptual distortions as mediators. We found reduced right central spindle amplitude to be associated with paranoid thoughts. Increased antisaccadic error rate was associated with anomalous perceptions and perceptual distortions were associated with psychotic experiences. We did not find significant mediation effects. The findings support the notion that reduced sleep spindle activity is involved in the formation of paranoid thoughts and that decreased antisaccadic performance is indicative of perceptual distortions as potential precursors for psychotic experiences. However, further research is needed to corroborate the proposed mediation hypothesis.
Collapse
Affiliation(s)
- Mathias K Kammerer
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany.
| | - Antonia Bott
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Felix Strakeljahn
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Tania M Lincoln
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| |
Collapse
|
21
|
Takai Y, Tamura S, Hoaki N, Kitajima K, Nakamura I, Hirano S, Ueno T, Nakao T, Onitsuka T, Hirano Y. Aberrant thalamocortical connectivity and shifts between the resting state and task state in patients with schizophrenia. Eur J Neurosci 2024; 59:1961-1976. [PMID: 38440952 DOI: 10.1111/ejn.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Prominent pathological hypotheses for schizophrenia include auditory processing deficits and dysconnectivity within cerebral networks. However, most neuroimaging studies have focused on impairments in either resting-state or task-related functional connectivity in patients with schizophrenia. The aims of our study were to examine (1) blood oxygen level-dependent (BOLD) signals during auditory steady-state response (ASSR) tasks, (2) functional connectivity during the resting-state and ASSR tasks and (3) state shifts between the resting-state and ASSR tasks in patients with schizophrenia. To reduce the functional consequences of scanner noise, we employed resting-state and sparse sampling auditory fMRI paradigms in 25 schizophrenia patients and 25 healthy controls. Auditory stimuli were binaural click trains at frequencies of 20, 30, 40 and 80 Hz. Based on the detected ASSR-evoked BOLD signals, we examined the functional connectivity between the thalamus and bilateral auditory cortex during both the resting state and ASSR task state, as well as their alterations. The schizophrenia group exhibited significantly diminished BOLD signals in the bilateral auditory cortex and thalamus during the 80 Hz ASSR task (corrected p < 0.05). We observed a significant inverse relationship between the resting state and ASSR task state in altered functional connectivity within the thalamo-auditory network in schizophrenia patients. Specifically, our findings demonstrated stronger functional connectivity in the resting state (p < 0.004) and reduced functional connectivity during the ASSR task (p = 0.048), which was mediated by abnormal state shifts, within the schizophrenia group. These results highlight the presence of abnormal thalamocortical connectivity associated with deficits in the shift between resting and task states in patients with schizophrenia.
Collapse
Affiliation(s)
- Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nobuhiko Hoaki
- Psychiatry Neuroimaging Center, Hoaki Hospital, Oita, Japan
| | - Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Center, Saga, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- National Hospital Organization Sakakibara Hospital, Tsu, Mie, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
23
|
Chan YLE, Tsai SJ, Chern Y, Yang AC. Exploring the role of hub and network dysfunction in brain connectomes of schizophrenia using functional magnetic resonance imaging. Front Psychiatry 2024; 14:1305359. [PMID: 38260783 PMCID: PMC10800602 DOI: 10.3389/fpsyt.2023.1305359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pathophysiological etiology of schizophrenia remains unclear due to the heterogeneous nature of its biological and clinical manifestations. Dysfunctional communication among large-scale brain networks and hub nodes have been reported. In this study, an exploratory approach was adopted to evaluate the dysfunctional connectome of brain in schizophrenia. Methods Two hundred adult individuals with schizophrenia and 200 healthy controls were recruited from Taipei Veterans General Hospital. All subjects received functional magnetic resonance imaging (fMRI) scanning. Functional connectivity (FC) between parcellated brain regions were obtained. Pair-wise brain regions with significantly different functional connectivity among the two groups were identified and further analyzed for their concurrent ratio of connectomic differences with another solitary brain region (single-FC dysfunction) or dynamically interconnected brain network (network-FC dysfunction). Results The right thalamus had the highest number of significantly different pair-wise functional connectivity between schizophrenia and control groups, followed by the left thalamus and the right middle frontal gyrus. For individual brain regions, dysfunctional single-FCs and network-FCs could be found concurrently. Dysfunctional single-FCs distributed extensively in the whole brain of schizophrenia patients, but overlapped in similar groups of brain nodes. A dysfunctional module could be formed, with thalamus being the key dysfunctional hub. Discussion The thalamus can be a critical hub in the brain that its dysfunctional connectome with other brain regions is significant in schizophrenia patients. Interconnections between dysfunctional FCs for individual brain regions may provide future guide to identify critical brain pathology associated with schizophrenia.
Collapse
Affiliation(s)
- Yee-Lam E. Chan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C. Yang
- Institute of Brain Science/Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Stoyanov D, Paunova R, Dichev J, Kandilarova S, Khorev V, Kurkin S. Functional magnetic resonance imaging study of group independent components underpinning item responses to paranoid-depressive scale. World J Clin Cases 2023; 11:8458-8474. [PMID: 38188204 PMCID: PMC10768520 DOI: 10.12998/wjcc.v11.i36.8458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our study expand upon a large body of evidence in the field of neuropsychiatric imaging with cognitive, affective and behavioral tasks, adapted for the functional magnetic resonance imaging (MRI) (fMRI) experimental environment. There is sufficient evidence that common networks underpin activations in task-based fMRI across different mental disorders. AIM To investigate whether there exist specific neural circuits which underpin differential item responses to depressive, paranoid and neutral items (DN) in patients respectively with schizophrenia (SCZ) and major depressive disorder (MDD). METHODS 60 patients were recruited with SCZ and MDD. All patients have been scanned on 3T magnetic resonance tomography platform with functional MRI paradigm, comprised of block design, including blocks with items from diagnostic paranoid (DP), depression specific (DS) and DN from general interest scale. We performed a two-sample t-test between the two groups-SCZ patients and depressive patients. Our purpose was to observe different brain networks which were activated during a specific condition of the task, respectively DS, DP, DN. RESULTS Several significant results are demonstrated in the comparison between SCZ and depressive groups while performing this task. We identified one component that is task-related and independent of condition (shared between all three conditions), composed by regions within the temporal (right superior and middle temporal gyri), frontal (left middle and inferior frontal gyri) and limbic/salience system (right anterior insula). Another component is related to both diagnostic specific conditions (DS and DP) e.g. It is shared between DEP and SCZ, and includes frontal motor/language and parietal areas. One specific component is modulated preferentially by to the DP condition, and is related mainly to prefrontal regions, whereas other two components are significantly modulated with the DS condition and include clusters within the default mode network such as posterior cingulate and precuneus, several occipital areas, including lingual and fusiform gyrus, as well as parahippocampal gyrus. Finally, component 12 appeared to be unique for the neutral condition. In addition, there have been determined circuits across components, which are either common, or distinct in the preferential processing of the sub-scales of the task. CONCLUSION This study has delivers further evidence in support of the model of trans-disciplinary cross-validation in psychiatry.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Julian Dichev
- Faculty of Medicine, Medical University, Plovdiv 4002, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
25
|
Harikumar A, Solovyeva KP, Misiura M, Iraji A, Plis SM, Pearlson GD, Turner JA, Calhoun VD. Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia. Curr Neurol Neurosci Rep 2023; 23:937-946. [PMID: 37999830 PMCID: PMC11126894 DOI: 10.1007/s11910-023-01325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.
Collapse
Affiliation(s)
- Amritha Harikumar
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Kseniya P Solovyeva
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Maria Misiura
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Armin Iraji
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Sergey M Plis
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jessica A Turner
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vince D Calhoun
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA.
| |
Collapse
|
26
|
Cattarinussi G, Grimaldi DA, Sambataro F. Spontaneous Brain Activity Alterations in First-Episode Psychosis: A Meta-analysis of Functional Magnetic Resonance Imaging Studies. Schizophr Bull 2023; 49:1494-1507. [PMID: 38029279 PMCID: PMC10686347 DOI: 10.1093/schbul/sbad044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND HYPOTHESIS Several studies have shown that spontaneous brain activity, including the total and fractional amplitude of low-frequency fluctuations (LFF) and regional homogeneity (ReHo), is altered in psychosis. Nonetheless, neuroimaging results show a high heterogeneity. For this reason, we gathered the extant literature on spontaneous brain activity in first-episode psychosis (FEP), where the effects of long-term treatment and chronic disease are minimal. STUDY DESIGN A systematic research was conducted on PubMed, Scopus, and Web of Science to identify studies exploring spontaneous brain activity and local connectivity in FEP estimated using functional magnetic resonance imaging. 20 LFF and 15 ReHo studies were included. Coordinate-Based Activation Likelihood Estimation Meta-Analyses stratified by brain measures, age (adolescent vs adult), and drug-naïve status were performed to identify spatially-convergent alterations in spontaneous brain activity in FEP. STUDY RESULTS We found a significant increase in LFF in FEP compared to healthy controls (HC) in the right striatum and in ReHo in the left striatum. When pooling together all studies on LFF and ReHo, spontaneous brain activity was increased in the bilateral striatum and superior and middle frontal gyri and decreased in the right precentral gyrus and the right inferior frontal gyrus compared to HC. These results were also replicated in the adult and drug-naïve samples. CONCLUSIONS Abnormalities in the frontostriatal circuit are present in early psychosis independently of treatment status. Our findings support the view that altered frontostriatal can represent a core neural alteration of the disorder and could be a target of treatment.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| | | | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
27
|
Denis D, Baran B, Mylonas D, Spitzer C, Raymond N, Talbot C, Kohnke E, Stickgold R, Keshavan M, Manoach DS. NREM sleep oscillations and their relations with sleep-dependent memory consolidation in early course psychosis and first-degree relatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564703. [PMID: 37961668 PMCID: PMC10634996 DOI: 10.1101/2023.10.30.564703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep spindles are believed to mediate sleep-dependent memory consolidation, particularly when coupled to neocortical slow oscillations. Schizophrenia is characterized by a deficit in sleep spindles that correlates with reduced overnight memory consolidation. Here, we examined sleep spindle activity, slow oscillation-spindle coupling, and both motor procedural and verbal declarative memory consolidation in early course, minimally medicated psychosis patients and non-psychotic first-degree relatives. Using a four-night experimental procedure, we observed significant deficits in spindle density and amplitude in patients relative to controls that were driven by individuals with schizophrenia. Schizophrenia patients also showed reduced sleep-dependent consolidation of motor procedural memory, which correlated with spindle density. Contrary to expectations, there were no group differences in the consolidation of declarative memory on a word pairs task. Nor did the relatives of patients differ in spindle activity or memory consolidation compared with controls, however increased consistency in the timing of SO-spindle coupling were seen in both patient and relatives. Our results extend prior work by demonstrating correlated deficits in sleep spindles and sleep-dependent motor procedural memory consolidation in early course, minimally medicated patients with schizophrenia, but not in first-degree relatives. This is consistent with other work in suggesting that impaired sleep-dependent memory consolidation has some specificity for schizophrenia and is a core feature rather than reflecting the effects of medication or chronicity.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York, UK
| | - Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | | | - Christine Talbot
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Erin Kohnke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
28
|
Dickie EW, Shahab S, Hawco C, Miranda D, Herman G, Argyelan M, Ji JL, Jeyachandra J, Anticevic A, Malhotra AK, Voineskos AN. Robust hierarchically organized whole-brain patterns of dysconnectivity in schizophrenia spectrum disorders observed after personalized intrinsic network topography. Hum Brain Mapp 2023; 44:5153-5166. [PMID: 37605827 PMCID: PMC10502662 DOI: 10.1002/hbm.26453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles. METHODS We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT). RESULTS The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10-6 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10-4 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected). CONCLUSION Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.
Collapse
Affiliation(s)
- Erin W. Dickie
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioUSA
| | - Saba Shahab
- Department of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Colin Hawco
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioUSA
| | - Dayton Miranda
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
| | - Gabrielle Herman
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
| | - Miklos Argyelan
- Psychiatry Research, The Zucker Hillside HospitalGlen CoveNew YorkUSA
- Institute of Behavioral Science, Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Jie Lisa Ji
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jerrold Jeyachandra
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
| | - Alan Anticevic
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Anil K. Malhotra
- Psychiatry Research, The Zucker Hillside HospitalGlen CoveNew YorkUSA
- Institute of Behavioral Science, Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Aristotle N. Voineskos
- Center for Addiction and Mental HealthCampbell Family Mental Health ResearchTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioUSA
| |
Collapse
|
29
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
30
|
Liu Y, Huang H, Qin X, Zheng F, Wang H. Altered functional connectivity in anterior cingulate cortex subregions in treatment-resistant schizophrenia patients. Neurosci Lett 2023; 814:137445. [PMID: 37597741 DOI: 10.1016/j.neulet.2023.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The anterior cingulate cortex (ACC) plays a key role in motor control, attention, and cognitive control. It is well established that schizophrenia is associated with impaired functional connectivity (FC) of the ACC pathway. So far, however, there has been little discussion about the ACC subregions function in patients with treatment-resistant schizophrenia (TRS). AIM This study aims to characterize resting-state functional connectivity (rs-FC) profiles of ACC subregions in patients with TRS. The association between these FC and clinical symptoms, neurocognitive function, and grey matter volume (GMV) was studied as well. METHODS A total of 81 patients with schizophrenia (40 patients with TRS = 40, 41 patients with non-treatment-resistant schizophrenia (NTRS)) and 39 age- and gender-matched healthy controls (HC) were enrolled, and underwent structural magnetic resonance imaging (MRI), resting-state functional MRI (rs-fMRI), clinical evaluation. The ACC subregions, including subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC), were selected as seed regions from the automated anatomical labelling atlas 3 (AAL3). The GMV of the ACC subregions were calculated and seed-based FC maps for all ACC subregions were generated and compared between the TRS and NTRS, HC group. Additionally, correlations between altered FC and clinical symptoms, GMV, and neurocognitive functions in the TRS patients were explored. RESULT Compared with HC, increased FC was observed in TRS and NTRS groups between bilateral sgACC and left cuneus, right cuneus, and left lingual gyrus, while decreased FC was found between bilateral dACC and thalamic. Additionally, compared with NTRS, the TRS group showed increased FC between bilateral dACC and right cuneus and decreased FC between bilateral dACC and thalamic. The TRS group showed decreased GMV in all ACC subregions than the HC group, and there is no significant difference between the TRS group and the NTRS group. CONCLUSION The findings in this study suggest that disrupted FC of subregional ACC has the potential as a marker for TRS. The dysconnectivity of bilateral dACC- right cuneus and bilateral dACC-thalamus, are likely to be the unique FC profiles of TRS. These findings further our understanding of the neurobiological impairments in TRS.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fanfan Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
31
|
Ramsay IS, Mueller B, Ma Y, Shen C, Sponheim SR. Thalamocortical connectivity and its relationship with symptoms and cognition across the psychosis continuum. Psychol Med 2023; 53:5582-5591. [PMID: 36047043 DOI: 10.1017/s0033291722002793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Coordination between the thalamus and cortex is necessary for efficient processing of sensory information and appears disrupted in schizophrenia. The significance of this disrupted coordination (i.e. thalamocortical dysconnectivity) to the symptoms and cognitive deficits of schizophrenia is unclear. It is also unknown whether similar dysconnectivity is observed in other forms of psychotic psychopathology and associated with familial risk for psychosis. Here we examine the relevance of thalamocortical connectivity to the clinical symptoms and cognition of patients with psychotic psychopathology, their first-degree biological relatives, and a group of healthy controls. METHOD Patients with a schizophrenia-spectrum diagnosis (N = 100) or bipolar disorder with a history of psychosis (N = 33), their first-degree relatives (N = 73), and a group of healthy controls (N = 43) underwent resting functional MRI in addition to clinical and cognitive assessments as part of the Psychosis Human Connectome Project. A bilateral mediodorsal thalamus seed-based analysis was used to measure thalamocortical connectivity and test for group differences, as well as associations with symptomatology and cognition. RESULTS Reduced connectivity from mediodorsal thalamus to insular, orbitofrontal, and cerebellar regions was seen in schizophrenia. Across groups, greater symptomatology was related to less thalamocortical connectivity to the left middle frontal gyrus, anterior cingulate, right insula, and cerebellum. Poorer cognition was related to less thalamocortical connectivity to bilateral insula. Analyses revealed similar patterns of dysconnectivity across patient groups and their relatives. CONCLUSIONS Reduced thalamo-prefrontal-cerebellar and thalamo-insular connectivity may contribute to clinical symptomatology and cognitive deficits in patients with psychosis as well as individuals with familial risk for psychotic psychopathology.
Collapse
Affiliation(s)
- Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Yizhou Ma
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Catonsville, MD, USA
| | - Chen Shen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Healthcare System, Minneapolis, MN, USA
| |
Collapse
|
32
|
Yang M, Liu L, Cui H, Deng C, Xiong W, Zhao G, Du S, Kosten TR, Chen H, Li Z, Zhang X. Dynamic functional thalamocortical dysconnectivity in schizophrenia correlates to antipsychotics response. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:40. [PMID: 37402747 DOI: 10.1038/s41537-023-00371-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Although many studies have showed abnormal thalamocortical networks in patients with schizophrenia (SCZ), the dynamic functional thalamocortical connectivity of individuals with SCZ and the effect of antipsychotics on this connectivity have not been investigated. Drug-naïve first-episode individuals with SCZ and healthy controls were recruited. Patients were treated with risperidone for 12 weeks. Resting-state functional magnetic resonance imaging was acquired at baseline and week 12. We identified six functional thalamic subdivisions. The sliding window strategy was used to determine the dynamic functional connectivity (dFC) of each functional thalamic subdivision. Individuals with SCZ displayed decreased or increased dFC variance in different thalamic subdivisions. The baseline dFC between ventral posterior-lateral (VPL) portions and right dorsolateral superior frontal gyrus (rdSFG) correlated with psychotic symptoms. The dFC variance between VPL and right medial orbital superior frontal gyrus (rmoSFG) or rdSFG decreased after 12-week risperidone treatment. The decreased dFC variance between VPL and rmoSFG correlated with the reduction of PANSS scores. Interestingly, the dFC between VPL and rmoSFG or rdSFG decreased in responders. The dFC variance change of VPL and the averaged whole brain signal correlated with the risperidone efficacy. Our study demonstrates abnormal variability in thalamocortical dFC may be implicated in psychopathological symptoms and risperidone response in individuals with schizophrenia, suggesting that thalamocortical dFC variance may be correlated to the efficacy of antipsychotic treatment.Registration: ClinicalTrials.gov Identifier: NCT00435370. https://www.clinicaltrials.gov/ct2/show/NCT00435370?term=NCT00435370&draw=2&rank=1.
Collapse
Affiliation(s)
- Mi Yang
- The fourth people's hospital of Chengdu, Chengdu, China
| | - Liju Liu
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongmei Cui
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Chijun Deng
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Weisen Xiong
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Guocheng Zhao
- The fourth people's hospital of Chengdu, Chengdu, China
| | - Shulin Du
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA.
- Epidemiology and Behavioral Science, MD Anderson Cancer Center, Houston, TX, USA.
| | - Huafu Chen
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Brems BM, Sullivan EE, Connolly JG, Zhang J, Chang A, Ortiz R, Cantwell L, Kulkarni P, Thakur GA, Ferris CF. Dose-dependent effects of GAT107, a novel allosteric agonist-positive allosteric modulator (ago-PAM) for the α7 nicotinic cholinergic receptor: a BOLD phMRI and connectivity study on awake rats. Front Neurosci 2023; 17:1196786. [PMID: 37424993 PMCID: PMC10326388 DOI: 10.3389/fnins.2023.1196786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.
Collapse
Affiliation(s)
- Brittany M. Brems
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Erin E. Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jingchun Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
34
|
Sulu C, Koca O, Icli TB, Oz A, Kargin OA, Durcan E, Sahin S, Arslan S, Turan S, Kadioglu P, Ozkaya HM. Altered thalamic volume in patients with mild autonomous cortisol secretion: a structural brain MRI study. Neuroradiology 2023; 65:1037-1051. [PMID: 37121916 DOI: 10.1007/s00234-023-03156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE To compare thalamic volume and cognitive functions of patients with mild autonomous cortisol secretion (MACS) with control subjects and patients with overt Cushing's syndrome (CS). METHODS In this cross-sectional study, volumes of regions of interest were assessed using 3 T magnetic resonance imaging and a voxel-based morphometry approach in 23 patients with MACS, 21 patients with active CS, 27 patients with CS in remission, and 21 control subjects. Cognitive functions were assessed using validated questionnaires. RESULTS Patients with MACS had smaller left thalamic (F = 3.8, p = 0.023), left posterior thalamic (F = 4.9, p = 0.01), left medial thalamic (F = 4.7, p = 0.028), and right lateral thalamic (F = 4.1, p = 0.025) volumes than control subjects. Patients with active CS also had smaller left thalamic (F = 3.8, p = 0.044), left posterior thalamic (F = 4.9, p = 0.007), left medial thalamic (F = 4.7, p = 0.006), and right lateral thalamic (F = 4.1, p = 0.042) volumes compared to controls. Patients with CS in remission had smaller left medial (F = 4.7, p = 0.030) and right lateral thalamic (F = 4.1, p = 0.028) volumes than controls. Neuropsychological tests showed no difference between the groups. CONCLUSION MACS may decrease thalamic volume.
Collapse
Affiliation(s)
- Cem Sulu
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Oguzhan Koca
- Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Tevhide Betul Icli
- Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Ahmet Oz
- Department of Radiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Osman Aykan Kargin
- Department of Radiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | | | - Serdar Sahin
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Serdar Arslan
- Department of Radiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Senol Turan
- Department of Psychiatry, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Pinar Kadioglu
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Pituitary Center, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Hande Mefkure Ozkaya
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
- Pituitary Center, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
| |
Collapse
|
35
|
Tranfa M, Iasevoli F, Cocozza S, Ciccarelli M, Barone A, Brunetti A, de Bartolomeis A, Pontillo G. Neural substrates of verbal memory impairment in schizophrenia: A multimodal connectomics study. Hum Brain Mapp 2023; 44:2829-2840. [PMID: 36852587 PMCID: PMC10089087 DOI: 10.1002/hbm.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
While verbal memory is among the most compromised cognitive domains in schizophrenia (SZ), its neural substrates remain elusive. Here, we explored the structural and functional brain network correlates of verbal memory impairment in SZ. We acquired diffusion and resting-state functional MRI data of 49 SZ patients, classified as having preserved (VMP, n = 22) or impaired (VMI, n = 26) verbal memory based on the List Learning task, and 55 healthy controls (HC). Structural and functional connectivity matrices were obtained and analyzed to assess associations with disease status (SZ vs. HC) and verbal memory impairment (VMI vs. VMP) using two complementary data-driven approaches: threshold-free network-based statistics (TFNBS) and hybrid connectivity independent component analysis (connICA). TFNBS showed altered connectivity in SZ patients compared with HC (p < .05, FWER-corrected), with distributed structural changes and functional reorganization centered around sensorimotor areas. Specifically, functional connectivity was reduced within the visual and somatomotor networks and increased between visual areas and associative and subcortical regions. Only a tiny cluster of increased functional connectivity between visual and bilateral parietal attention-related areas correlated with verbal memory dysfunction. Hybrid connICA identified four robust traits, representing fundamental patterns of joint structural-functional connectivity. One of these, mainly capturing the functional connectivity profile of the visual network, was significantly associated with SZ (HC vs. SZ: Cohen's d = .828, p < .0001) and verbal memory impairment (VMP vs. VMI: Cohen's d = -.805, p = .01). We suggest that aberrant connectivity of sensorimotor networks may be a key connectomic signature of SZ and a putative biomarker of SZ-related verbal memory impairment, in consistency with bottom-up models of cognitive disruption.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Felice Iasevoli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Mariateresa Ciccarelli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Annarita Barone
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Andrea de Bartolomeis
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
- Staff of UNESCO Chair on Health Education and Sustainable DevelopmentUniversity “Federico II”NaplesItaly
| | - Giuseppe Pontillo
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
- Department of Electrical Engineering and Information Technology (DIETI)University “Federico II”NaplesItaly
| |
Collapse
|
36
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The Psychosis Human Connectome Project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN.
| | - Kimberly B Weldon
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN; Department of Psychology, University of Minnesota, Minneapolis, MN
| | - Andrea N Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
37
|
Kim M, Kim T, Ha M, Oh H, Moon SY, Kwon JS. Large-Scale Thalamocortical Triple Network Dysconnectivities in Patients With First-Episode Psychosis and Individuals at Risk for Psychosis. Schizophr Bull 2023; 49:375-384. [PMID: 36453986 PMCID: PMC10016393 DOI: 10.1093/schbul/sbac174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND HYPOTHESIS Aberrant thalamocortical connectivity and large-scale network interactions among the default mode network (DMN), salience network (SN), and executive control network (ECN) (ie, triple networks) have been regarded as critical in schizophrenia pathophysiology. Despite the importance of network properties and the role of the thalamus as an integrative hub, large-scale thalamocortical triple network functional connectivities (FCs) in different stages of the psychotic disorder have not yet been reported. STUDY DESIGN Thirty-nine first-episode psychosis (FEP) patients, 75 individuals at clinical high risk (CHR) for psychosis, 46 unaffected relatives (URs) of schizophrenia patients with high genetic loading, and 110 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Modular community detection was used to identify cortical and thalamic resting-state networks, and thalamocortical network interactions were compared across the groups. STUDY RESULTS Thalamic triple networks included higher-order thalamic nuclei. Thalamic SN-cortical ECN FC was greater in the FEP group than in the CHR, UR, and HC groups. Thalamic DMN-cortical DMN and thalamic SN-cortical DMN FCs were greater in FEP and CHR participants. Thalamic ECN-cortical DMN and thalamic ECN-cortical SN FCs were greater in FEP patients and URs. CONCLUSIONS These results highlight critical modulatory functions of thalamic triple networks and the shared and distinct patterns of thalamocortical triple network dysconnectivities across different stages of psychotic disorders. The current study findings suggest that large-scale thalamocortical triple network dysconnectivities may be used as an integrative biomarker for extending our understanding of the psychosis pathophysiology and for targeting network-based neuromodulation therapeutics.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Harin Oh
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Psychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
38
|
Anticevic A, Halassa MM. The thalamus in psychosis spectrum disorder. Front Neurosci 2023; 17:1163600. [PMID: 37123374 PMCID: PMC10133512 DOI: 10.3389/fnins.2023.1163600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Psychosis spectrum disorder (PSD) affects 1% of the world population and results in a lifetime of chronic disability, causing devastating personal and economic consequences. Developing new treatments for PSD remains a challenge, particularly those that target its core cognitive deficits. A key barrier to progress is the tenuous link between the basic neurobiological understanding of PSD and its clinical phenomenology. In this perspective, we focus on a key opportunity that combines innovations in non-invasive human neuroimaging with basic insights into thalamic regulation of functional cortical connectivity. The thalamus is an evolutionary conserved region that forms forebrain-wide functional loops critical for the transmission of external inputs as well as the construction and update of internal models. We discuss our perspective across four lines of evidence: First, we articulate how PSD symptomatology may arise from a faulty network organization at the macroscopic circuit level with the thalamus playing a central coordinating role. Second, we discuss how recent animal work has mechanistically clarified the properties of thalamic circuits relevant to regulating cortical dynamics and cognitive function more generally. Third, we present human neuroimaging evidence in support of thalamic alterations in PSD, and propose that a similar "thalamocortical dysconnectivity" seen in pharmacological imaging (under ketamine, LSD and THC) in healthy individuals may link this circuit phenotype to the common set of symptoms in idiopathic and drug-induced psychosis. Lastly, we synthesize animal and human work, and lay out a translational path for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Alan Anticevic
- School of Medicine, Yale University, New Haven, CT, United States
- *Correspondence: Alan Anticevic,
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Michael M. Halassa,
| |
Collapse
|
39
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Tarchi L, Damiani S, Fantoni T, Pisano T, Castellini G, Politi P, Ricca V. Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention deficit/hyperactivity disorder: a resting-state fMRI study. Brain Imaging Behav 2022; 16:2526-2542. [PMID: 35859076 PMCID: PMC9712307 DOI: 10.1007/s11682-022-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
Eigenvector-Centrality (EC) has shown promising results in the field of Psychiatry, with early results also pertaining to ADHD. Parallel efforts have focused on the description of aberrant interhemispheric coordination in ADHD, as measured by Voxel-Mirrored-Homotopic-Connectivity (VMHC), with early evidence of altered Resting-State fMRI. A sample was collected from the ADHD200-NYU initiative: 86 neurotypicals and 89 participants with ADHD between 7 and 18 years old were included after quality control for motion. After preprocessing, voxel-wise EC and VMHC values between diagnostic groups were compared, and network-level values from 15 functional networks extracted. Age, ADHD severity (Connor's Parent Rating-Scale), IQ (Wechsler-Abbreviated-Scale), and right-hand dominance were correlated with EC/VMHC values in the whole sample and within groups, both at the voxel-wise and network-level. Motion was controlled by censoring time-points with Framewise-Displacement > 0.5 mm, as well as controlling for group differences in mean Framewise-Displacement values. EC was significantly higher in ADHD compared to neurotypicals in the left inferior Frontal lobe, Lingual gyri, Peri-Calcarine cortex, superior and middle Occipital lobes, right inferior Occipital lobe, right middle Temporal gyrus, Fusiform gyri, bilateral Cuneus, right Precuneus, and Cerebellum (FDR-corrected-p = 0.05). No differences were observed between groups in voxel-wise VMHC. EC was positively correlated with ADHD severity scores at the network level (at p-value < 0.01, Inattentive: Cerebellum rho = 0.273; Hyper/Impulsive: High-Visual Network rho = 0.242, Cerebellum rho = 0.273; Global Index Severity: High-Visual Network rho = 0.241, Cerebellum rho = 0.293). No differences were observed between groups for motion (p = 0.443). While EC was more related to ADHD psychopathology, VMHC was consistently and negatively correlated with age across all networks.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Teresa Fantoni
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| |
Collapse
|
41
|
Trait related aberrant connectivity in clinically stable patients with schizophrenia: A seed based resting state fMRI study. Brain Imaging Behav 2022; 16:2705-2714. [PMID: 36241961 DOI: 10.1007/s11682-022-00731-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
Abstract
Aberrant resting-state connectivity within and between the Default Mode Network, the Executive Control Network, and the Salience Network is well-established in schizophrenia. Meta-analyses have identified that bilateral lingual gyrus is as the only region showing hyperactivity in schizophrenia and there are reports of increased connectivity between the lingual gyrus and other brain regions in schizophrenia. It is not clear whether these abnormalities represent state or trait markers of the illness, i.e., if they are only present during the acute phase of the illness (state) or if they reflect a predisposition to schizophrenia (trait). In this study, we used a seed-based functional connectivity analysis to investigate brain networks in schizophrenia patients who are in the stable phase of their illness and assess functional connectivity using seeds in the lingual gyrus, the posterior cingulate, the right dorsolateral prefrontal cortex (dlPFC), the right anterior insula (rAI) and the right orbital frontoinsula. Twenty patients with schizophrenia in a stable phase of their illness (as defined by the course of illness and Signs and Symptoms of Psychotic Illness (SSPI) scores) and 20 age and sex-matched healthy controls underwent resting-state functional Magnetic Resonance Imaging (rs-fMRI). Data was analysed using the Data Processing Assistant for Resting-State fMRI Advanced Edition (DPARSFA) V3.1 ( http://rfmri.org/DPARSF ) and the statistical parametric mapping software 8 (SPM8). Compared with healthy controls, patients with schizophrenia showed increased connectivity between the left lingual gyrus and the middle frontal gyrus, and the cingulate cortex. Lingual gyrus hyper-connectivity may be a stable trait neuroimaging marker for schizophrenia. Our findings suggest that aberrant connectivity in major resting-state networks may not be present after the acute illness has stabilised.
Collapse
|
42
|
Du X, Wei X, Ding H, Yu Y, Xie Y, Ji Y, Zhang Y, Chai C, Liang M, Li J, Zhuo C, Yu C, Qin W. Unraveling schizophrenia replicable functional connectivity disruption patterns across sites. Hum Brain Mapp 2022; 44:156-169. [PMID: 36222054 PMCID: PMC9783440 DOI: 10.1002/hbm.26108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Functional connectivity (FC) disruption is a remarkable characteristic of schizophrenia. However, heterogeneous patterns reported across sites severely hindered its clinical generalization. Based on qualified nodal-based FC of 340 schizophrenia patients (SZ) and 348 normal controls (NC) acquired from seven different scanners, this study compared four commonly used site-effect correction methods in removing the site-related heterogeneities, and then tried to cluster the abnormal FCs into several replicable and independent disrupted subnets across sites, related them to clinical symptoms, and evaluated their potentials in schizophrenia classification. Among the four site-related heterogeneity correction methods, ComBat harmonization (F1 score: 0.806 ± 0.145) achieved the overall best balance between sensitivity and false discovery rate in unraveling the aberrant FCs of schizophrenia in the local and public data sets. Hierarchical clustering analysis identified three replicable FC disruption subnets across the local and public data sets: hypo-connectivity within sensory areas (Net1), hypo-connectivity within thalamus, striatum, and ventral attention network (Net2), and hyper-connectivity between thalamus and sensory processing system (Net3). Notably, the derived composite FC within Net1 was negatively correlated with hostility and disorientation in the public validation set (p < .05). Finally, the three subnet-specific composite FCs (Best area under the receiver operating characteristic curve [AUC] = 0.728) can robustly and meaningfully discriminate the SZ from NC with comparable performance with the full identified FCs features (best AUC = 0.765) in the out-of-sample public data set (Z = -1.583, p = .114). In conclusion, ComBat harmonization was most robust in detecting aberrant connectivity for schizophrenia. Besides, the three subnet-specific composite FC measures might be replicable neuroimaging markers for schizophrenia.
Collapse
Affiliation(s)
- Xiaotong Du
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xiaotong Wei
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hao Ding
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yingying Xie
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yi Ji
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yu Zhang
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chao Chai
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Meng Liang
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Jie Li
- Department of Psychiatry Functional Neuroimaging LaboratoryTianjin Mental Health Center, Tianjin Anding HospitalTianjinChina
| | - Chuanjun Zhuo
- Department of Psychiatry Functional Neuroimaging LaboratoryTianjin Mental Health Center, Tianjin Anding HospitalTianjinChina
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Wen Qin
- Department of RadiologyTianjin Medical University General HospitalTianjinChina,Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
43
|
Bergé D, Lesh TA, Smucny J, Carter CS. Improvement in prefrontal thalamic connectivity during the early course of the illness in recent-onset psychosis: a 12-month longitudinal follow-up resting-state fMRI study. Psychol Med 2022; 52:2713-2721. [PMID: 33323140 PMCID: PMC9307321 DOI: 10.1017/s0033291720004808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous research in resting-state functional magnetic resonance imaging (rs-fMRI) has shown a mixed pattern of disrupted thalamocortical connectivity in psychosis. The clinical meaning of these findings and their stability over time remains unclear. We aimed to study thalamocortical connectivity longitudinally over a 1-year period in participants with recent-onset psychosis. METHODS To this purpose, 129 individuals with recent-onset psychosis and 87 controls were clinically evaluated and scanned using rs-fMRI. Among them, 43 patients and 40 controls were re-scanned and re-evaluated 12 months later. Functional connectivity between the thalamus and the rest of the brain was calculated using a seed to voxel approach, and then compared between groups and correlated with clinical features cross-sectionally and longitudinally. RESULTS At baseline, participants with recent-onset psychosis showed increased connectivity (compared to controls) between the thalamus and somatosensory and temporal regions (k = 653, T = 5.712), as well as decreased connectivity between the thalamus and left cerebellum and right prefrontal cortex (PFC; k = 201, T = -4.700). Longitudinal analyses revealed increased connectivity over time in recent-onset psychosis (relative to controls) in the right middle frontal gyrus. CONCLUSIONS Our results support the concept of abnormal thalamic connectivity as a core feature in psychosis. In agreement with a non-degenerative model of illness in which functional changes occur early in development and do not deteriorate over time, no evidence of progressive deterioration of connectivity during early psychosis was observed. Indeed, regionally increased connectivity between thalamus and PFC was observed.
Collapse
Affiliation(s)
- Daniel Bergé
- Neuroimaging Group, Neuroscience Department, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- CIBERSAM, Madrid, Spain
| | - Tyler A. Lesh
- Department of Psychiatry and Behavioral Sciences, University of California (UCDAVIS), Davis, CA, USA
| | - Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California (UCDAVIS), Davis, CA, USA
| | - Cameron S. Carter
- Department of Psychiatry and Behavioral Sciences, University of California (UCDAVIS), Davis, CA, USA
| |
Collapse
|
44
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
|
45
|
Fryer SL, Ferri JM, Roach BJ, Loewy RL, Stuart BK, Anticevic A, Ford JM, Mathalon DH. Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia. Psychol Med 2022; 52:2767-2775. [PMID: 33719985 DOI: 10.1017/s0033291720004882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is associated with thalamic dysconnectivity. Compared to healthy controls (HCs), individuals with SZ have hyperconnectivity with sensory regions, and hypoconnectivity with cerebellar, thalamic, and prefrontal regions. Despite replication of this pattern in chronically ill individuals, less is known about when these abnormalities emerge in the illness course and if they are present prior to illness onset. METHODS Resting-state functional magnetic resonance imaging data were collected from psychosis risk syndrome (PRS) youth (n = 45), early illness SZ (ESZ) (n = 74) patients, and HCs (n = 85). Age-adjusted functional connectivity, seeded from the thalamus, was compared among the groups. RESULTS Significant effects of group were observed in left and right middle temporal regions, left and right superior temporal regions, left cerebellum, and bilateral thalamus. Compared to HCs, ESZ demonstrated hyperconnectivity to all temporal lobe regions and reduced connectivity with cerebellar, anterior cingulate, and thalamic regions. Compared to HCs, PRS demonstrated hyperconnectivity with the left and right middle temporal regions, and hypoconnectivity with the cerebellar and other thalamic regions. Compared to PRS participants, ESZ participants were hyperconnected to temporal regions, but did not differ from PRS in hypoconnectivity with cerebellar and thalamic regions. Thalamic dysconnectivity was unrelated to positive symptom severity in ESZ or PRS groups. CONCLUSIONS PRS individuals demonstrated an intermediate level of thalamic dysconnectivity, whereas ESZ showed a pattern consistent with prior observations in chronic samples. These cross-sectional findings suggest that thalamic dysconnectivity may occur prior to illness onset and become more pronounced in early illness stages.
Collapse
Affiliation(s)
- Susanna L Fryer
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Jamie M Ferri
- San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Brian J Roach
- San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara K Stuart
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Judith M Ford
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Healthcare System, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Healthcare System, San Francisco, CA, USA
| |
Collapse
|
46
|
Benoit LJ, Canetta S, Kellendonk C. Thalamocortical Development: A Neurodevelopmental Framework for Schizophrenia. Biol Psychiatry 2022; 92:491-500. [PMID: 35550792 PMCID: PMC9999366 DOI: 10.1016/j.biopsych.2022.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Adolescence is a period of increased vulnerability for the development of psychiatric disorders, including schizophrenia. The prefrontal cortex (PFC) undergoes substantial maturation during this period, and PFC dysfunction is central to cognitive impairments in schizophrenia. As a result, impaired adolescent maturation of the PFC has been proposed as a mechanism in the etiology of the disorder and its cognitive symptoms. In adulthood, PFC function is tightly linked to its reciprocal connections with the thalamus, and acutely inhibiting thalamic inputs to the PFC produces impairments in PFC function and cognitive deficits. Here, we propose that thalamic activity is equally important during adolescence because it is required for proper PFC circuit development. Because thalamic abnormalities have been observed early in the progression of schizophrenia, we further postulate that adolescent thalamic dysfunction can have long-lasting consequences for PFC function and cognition in patients with schizophrenia.
Collapse
Affiliation(s)
- Laura J Benoit
- Graduate Program in Neurobiology and Behavior, Columbia University Medical Center, New York, New York
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Department of Pharmacology, Columbia University Medical Center, New York, New York; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
47
|
Avery SN, Huang AS, Sheffield JM, Rogers BP, Vandekar S, Anticevic A, Woodward ND. Development of Thalamocortical Structural Connectivity in Typically Developing and Psychosis Spectrum Youths. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:782-792. [PMID: 34655804 PMCID: PMC9008075 DOI: 10.1016/j.bpsc.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thalamocortical white matter connectivity is disrupted in psychosis and is hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated cognitive symptoms often begin in adolescence, during a critical phase of white matter and cognitive development. However, little is known about the development of thalamocortical white matter connectivity and its association with cognition. METHODS This study characterized effects of age, sex, psychosis symptomatology, and cognition in thalamocortical networks in a large sample of youths (N = 1144, ages 8-22 years, 46% male) from the Philadelphia Neurodevelopmental Cohort, which included 316 typically developing youths, 330 youths on the psychosis spectrum, and 498 youths with other psychopathology. Probabilistic tractography was used to quantify percent total connectivity between the thalamus and six cortical regions and assess microstructural properties (i.e., fractional anisotropy) of thalamocortical white matter tracts. RESULTS Overall, percent total connectivity of the thalamus was weakly associated with age and was not associated with psychopathology or cognition. In contrast, fractional anisotropy of all thalamocortical tracts increased significantly with age, was generally higher in males than females, and was lowest in youths on the psychosis spectrum. Fractional anisotropy of tracts linking the thalamus to prefrontal and posterior parietal cortices was related to better cognitive function across subjects. CONCLUSIONS By characterizing the pattern of typical development and alterations in those at risk for psychotic disorders, this study provides a foundation for further conceptualization of thalamocortical white matter microstructure as a marker of neurodevelopment supporting cognition and an important risk marker for psychosis.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, Tennessee
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
48
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
49
|
Horne CM, Sahni A, Pang SW, Vanes LD, Szentgyorgyi T, Averbeck B, Moran RJ, Shergill SS. The role of cognitive control in the positive symptoms of psychosis. Neuroimage Clin 2022; 34:103004. [PMID: 35468567 PMCID: PMC9059151 DOI: 10.1016/j.nicl.2022.103004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Mechanisms underlying positive symptoms in psychosis are unclear. Differential fMRI activity present in left amygdala, pallidum and thalamus in high positive symptom patients compared to low. Lower activity in SMA/pre-SMA also present in high symptom patients. We suggest poor integration of social-emotional information with reward feedback. Results may be important for guiding treatment strategies to prevent chronic illness.
Background Positive symptoms of psychosis (e.g., hallucinations) often limit everyday functioning and can persist despite adequate antipsychotic treatment. We investigated whether poor cognitive control is a mechanism underlying these symptoms. Methods 97 patients with early psychosis (30 with high positive symptoms (HS) and 67 with low positive symptoms (LS)) and 40 healthy controls (HC) underwent fMRI whilst performing a reward learning task with two conditions; low cognitive demand (choosing between neutral faces) and high cognitive demand (choosing between angry and happy faces – shown to induce an emotional bias). Decision and feedback phases were examined. Results Both patient groups showed suboptimal learning behaviour compared to HC and altered activity within a core reward network including occipital/lingual gyrus (decision), rostral Anterior Cingulate Cortex, left pre-central gyrus and Supplementary Motor Cortex (feedback). In the low cognitive demand condition, HS group showed significantly reduced activity in Supplementary Motor Area (SMA)/pre-SMA during the decision phase whilst activity was increased in LS group compared to HC. Recruitment of this region suggests a top-down compensatory mechanism important for control of positive symptoms. With additional cognitive demand (emotional vs. neutral contrast), HS patients showed further alterations within a subcortical network (increased left amygdala activity during decisions and reduced left pallidum and thalamus activity during feedback) compared to LS patients. Conclusions The findings suggest a core reward system deficit may be present in both patient groups, but persistent positive symptoms are associated with a specific dysfunction within a network needed to integrate social-emotional information with reward feedback.
Collapse
Affiliation(s)
- Charlotte M Horne
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Angad Sahni
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Sze W Pang
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Lucy D Vanes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Timea Szentgyorgyi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute for Mental Health, Bethesda, BETHESDA, MD 20814, USA
| | - Rosalyn J Moran
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Sukhwinder S Shergill
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK; Kent and Medway Medical School, Cantebury Christ Church University and University of Kent, Kent CT2 7FS, UK
| |
Collapse
|
50
|
Kim WS, Shen J, Tsogt U, Odkhuu S, Chung YC. Altered thalamic subregion functional networks in patients with treatment-resistant schizophrenia. World J Psychiatry 2022; 12:693-707. [PMID: 35663295 PMCID: PMC9150031 DOI: 10.5498/wjp.v12.i5.693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The thalamus plays a key role in filtering information and has extensive interconnectivity with other brain regions. A large body of evidence points to impaired functional connectivity (FC) of the thalamocortical pathway in schizophrenia. However, the functional network of the thalamic subregions has not been investigated in patients with treatment-resistant schizophrenia (TRS).
AIM To identify the neural mechanisms underlying TRS, we investigated FC of thalamic sub-regions with cortical networks and voxels, and the associations of this FC with clinical symptoms. We hypothesized that the FC of thalamic sub-regions with cortical networks and voxels would differ between TRS patients and HCs.
METHODS In total, 50 patients with TRS and 61 healthy controls (HCs) matched for age, sex, and education underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluation. Based on the rs-fMRI data, we conducted a FC analysis between thalamic subregions and cortical functional networks and voxels, and within thalamic subregions and cortical functional networks, in the patients with TRS. A functional parcellation atlas was used to segment the thalamus into nine subregions. Correlations between altered FC and TRS symptoms were explored.
RESULTS We found differences in FC within thalamic subregions and cortical functional networks between patients with TRS and HCs. In addition, increased FC was observed between thalamic subregions and the sensorimotor cortex, frontal medial cortex, and lingual gyrus. These abnormalities were associated with the pathophysiology of TRS.
CONCLUSION Our findings suggest that disrupted FC within thalamic subregions and cortical functional networks, and within the thalamocortical pathway, has potential as a marker for TRS. Our findings also improve our understanding of the relationship between the thalamocortical pathway and TRS symptoms.
Collapse
Affiliation(s)
- Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Jeon-ju 54907, South Korea
| |
Collapse
|