1
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Latrèche C, Mancini V, Rochas V, Maeder J, Cantonas LM, Férat V, Schneider M, Michel CM, Eliez S. Using transcranial alternating current stimulation to enhance working memory skills in youths with 22q11.2 deletion syndrome: A randomized double-blind sham-controlled study. Psychiatry Res 2024; 335:115835. [PMID: 38460352 DOI: 10.1016/j.psychres.2024.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Abnormal cognitive development, particularly working memory (WM) deficits, is among the first apparent manifestations of psychosis. Yet, cognitive impairment only shows limited response to current pharmacological treatment. Alternative interventions to target cognition are highly needed in individuals at high risk for psychosis, like carriers of 22q11.2 deletion syndrome (22q11.2DS). Here we applied theta-tuned transcranial alternating current stimulation (tACS) between frontal and temporal regions during a visual WM task in 34 deletion carriers. We conducted a double-blind sham-controlled study over three consecutive days. The stimulation parameters were derived from individual structural MRI scan and HD-EEG data acquired at baseline (Day 1) to model current intensity and individual preferential theta peak. Participants were randomized to either sham or tACS (Days 2 and 3) and then completed a visual WM task and a control task. Our findings reveal that tACS was safe and well-tolerated among participants. We found a significantly increased accuracy in the visual WM but not the control task following tACS. Moreover, this enhancement in WM accuracy was greater after tACS than during tACS, indicating stronger offline effects than online effects. Our study therefore supports the application of repeated sessions of brain stimulation in 22q11.2DS.
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland.
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland; Human Neuroscience Platform, Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland
| | - Lucia M Cantonas
- Autism Brain and Behavior Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Maude Schneider
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva School of Medicine, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Switzerland
| |
Collapse
|
3
|
Díez Á, Gomez-Pilar J, Poza J, Beño-Ruiz-de-la-Sierra R, Fernández-Linsenbarth I, Recio-Barbero M, Núñez P, Holgado-Madera P, Molina V. Functional network properties in schizophrenia and bipolar disorder assessed with high-density electroencephalography. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110902. [PMID: 38036032 DOI: 10.1016/j.pnpbp.2023.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The study of the cortical functional network properties in schizophrenia (SZ) may benefit from the use of graph theory parameters applied to high-density electroencephalography (EEG). Connectivity Strength (CS) assesses global synchrony of the network, and Shannon Graph Complexity (SGC) summarizes the network distribution of link weights and allows distinguishing between primary and secondary pathways. Their joint use may help in understanding the underpinnings of the functional network hyperactivation and task-related hypomodulation previously described in psychoses. METHODS We used 64-sensor EEG recordings during a P300 oddball task in 128 SZ patients (96 chronic, CR, and 32 first episodes, FE), as well as 46 bipolar disorder (BD) patients, and 92 healthy controls (HC). Pre-stimulus and modulation (task-response minus pre-stimulus windows values) of CS and SGC were assessed in the theta band (4-8 Hz) and the broadband (4-70 Hz). RESULTS Compared to HC, SZ patients (CR and FE) showed significantly higher pre-stimulus CS values in the broadband, and both SZ and BD patients showed lower theta-band CS modulation. SGC modulation values, both theta-band and broadband, were also abnormally reduced in CR patients. Statistically significant relationships were found in the theta band between SGC modulation and both CS pre-stimulus and modulation values in patients. CS altered measures in patients were additionally related to their cognitive outcome and negative symptoms. A primary role of antipsychotics in these results was ruled out. CONCLUSIONS Our results linking SGC and CS alterations in psychotic patients supported a hyperactive and hypomodulatory network mainly involving connections in secondary pathways.
Collapse
Affiliation(s)
- Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | | | | | | | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain.; Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | | | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain.; Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain..
| |
Collapse
|
4
|
An SJ, Choi S, Hwang JS, Park S, Jang M, Kim M, Kwon JS. Aberrant hyperfocusing in schizophrenia indicated by elevated theta phase-gamma amplitude coupling. Clin Neurophysiol 2024; 157:88-95. [PMID: 38064931 DOI: 10.1016/j.clinph.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE We aimed to investigate electroencephalographic (EEG) markers of aberrant hyperfocusing, a novel framework of impaired selective attention, in schizophrenia patients by using theta phase-gamma amplitude coupling (TGC). METHODS Fifty-four schizophrenia patients and 73 healthy controls (HCs) underwent EEG recording during an auditory oddball paradigm. For the standard and target conditions, TGC was calculated using the source signals from 25 brain regions of interest (ROIs) related to attention networks and sensory processing; TGC values were then compared across groups and conditions using two-way analysis of covariance. Correlations of altered TGC with performance on the Trail Making Test Parts A and B (TMT-A/B), were explored. RESULTS Compared to HCs, schizophrenia patients showed elevated TGC in the left inferior frontal gyrus (IFG) and superior temporal gyrus in the standard condition but not in the target condition. Correlation analyses revealed that the TGC in the left IFG was positively correlated with the TMT-A/B completion times. CONCLUSIONS Aberrant hyperfocusing, as reflected by elevated TGC in attention-related brain regions, was related to behavioral performance on the TMT-A/B in schizophrenia patients. SIGNIFICANCE This study suggests that TGC is a electrophysiological marker for aberrant hyperfocusing of attentional processes that may result in cognitive impairments in schizophrenia patients.
Collapse
Affiliation(s)
- Su-Jin An
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jun Seo Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Moonyoung Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
5
|
Perellón-Alfonso R, Oblak A, Kuclar M, Škrlj B, Pileckyte I, Škodlar B, Pregelj P, Abellaneda-Pérez K, Bartrés-Faz D, Repovš G, Bon J. Dense attention network identifies EEG abnormalities during working memory performance of patients with schizophrenia. Front Psychiatry 2023; 14:1205119. [PMID: 37817830 PMCID: PMC10560761 DOI: 10.3389/fpsyt.2023.1205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Patients with schizophrenia typically exhibit deficits in working memory (WM) associated with abnormalities in brain activity. Alterations in the encoding, maintenance and retrieval phases of sequential WM tasks are well established. However, due to the heterogeneity of symptoms and complexity of its neurophysiological underpinnings, differential diagnosis remains a challenge. We conducted an electroencephalographic (EEG) study during a visual WM task in fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that EEG abnormalities during the task could be identified, and patients successfully classified by an interpretable machine learning algorithm. Methods We tested a custom dense attention network (DAN) machine learning model to discriminate patients from control subjects and compared its performance with simpler and more commonly used machine learning models. Additionally, we analyzed behavioral performance, event-related EEG potentials, and time-frequency representations of the evoked responses to further characterize abnormalities in patients during WM. Results The DAN model was significantly accurate in discriminating patients from healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences between groups, conditions, or their interaction in behavioral performance or event-related potentials. However, patients showed significantly lower alpha suppression in the task preparation, memory encoding, maintenance, and retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that the two highest peaks in the attention value vector of the DAN model overlapped in time with the preparation and memory retrieval phases, as well as with two of the four significant time-frequency ROIs. Discussion These results highlight the potential utility of interpretable machine learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric disorders presenting oscillatory abnormalities.
Collapse
Affiliation(s)
- Ruben Perellón-Alfonso
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aleš Oblak
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Matija Kuclar
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Škrlj
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Indre Pileckyte
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Borut Škodlar
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Pregelj
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kilian Abellaneda-Pérez
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, Barcelona, Spain
| | - David Bartrés-Faz
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Booth SJ, Garg S, Brown LJE, Green J, Pobric G, Taylor JR. Aberrant oscillatory activity in neurofibromatosis type 1: an EEG study of resting state and working memory. J Neurodev Disord 2023; 15:27. [PMID: 37608248 PMCID: PMC10463416 DOI: 10.1186/s11689-023-09492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic neurodevelopmental disorder commonly associated with impaired cognitive function. Despite the well-explored functional roles of neural oscillations in neurotypical populations, only a limited number of studies have investigated oscillatory activity in the NF1 population. METHODS We compared oscillatory spectral power and theta phase coherence in a paediatric sample with NF1 (N = 16; mean age: 13.03 years; female: n = 7) to an age/sex-matched typically developing control group (N = 16; mean age: 13.34 years; female: n = 7) using electroencephalography measured during rest and during working memory task performance. RESULTS Relative to typically developing children, the NF1 group displayed higher resting state slow wave power and a lower peak alpha frequency. Moreover, higher theta power and frontoparietal theta phase coherence were observed in the NF1 group during working memory task performance, but these differences disappeared when controlling for baseline (resting state) activity. CONCLUSIONS Overall, results suggest that NF1 is characterised by aberrant resting state oscillatory activity that may contribute towards the cognitive impairments experienced in this population. TRIAL REGISTRATION ClinicalTrials.gov, NCT03310996 (first posted: October 16, 2017).
Collapse
Affiliation(s)
- Samantha J Booth
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shruti Garg
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura J E Brown
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan Green
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Gorana Pobric
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jason R Taylor
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
7
|
Lee EE, Adamowicz DH, Frangou S. An NIMH Workshop on Non-Affective Psychosis in Midlife and Beyond: Research Agenda on Phenomenology, Clinical Trajectories, Underlying Mechanisms, and Intervention Targets. Am J Geriatr Psychiatry 2023; 31:353-365. [PMID: 36858928 PMCID: PMC10990076 DOI: 10.1016/j.jagp.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
We present a review of the state of the research in the phenomenology, clinical trajectories, biological mechanisms, aging biomarkers, and treatments for middle-aged and older people with schizophrenia (PwS) discussed at the NIMH sponsored workshop "Non-affective Psychosis in Midlife and Beyond." The growing population of PwS has specific clinical needs that require tailored and mechanistically derived interventions. Differentiating between the effects of aging and disease progression is a key challenge of studying older PwS. This review of the workshop highlights the recent findings in this understudied clinical population and the critical gaps in knowledge and consensus for research priorities. This review showcases the major challenges and opportunities for research to advance clinical care for this growing and understudied population.
Collapse
Affiliation(s)
- Ellen E Lee
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA; Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System (EEL), San Diego, CA.
| | - David H Adamowicz
- Department of Psychiatry (EEL, DA), University of California San Diego, La Jolla, CA; Sam and Rose Stein Institute for Research on Aging (EEL, DA), University of California San Diego, La Jolla, CA
| | - Sophia Frangou
- Department of Psychiatry (SF), University of British Columbia, Vancouver, British Columbia, Canada; Icahn School of Medicine at Mount Sinai (SF), New York, NY
| |
Collapse
|
8
|
Atiwiwat D, Aquilino M, Devinsky O, Bardakjian BL, Carlen PL. Interregional phase-amplitude coupling between theta rhythm in the nucleus tractus solitarius and high-frequency oscillations in the hippocampus during REM sleep in rats. Sleep 2023; 46:zsad027. [PMID: 36782374 PMCID: PMC10091087 DOI: 10.1093/sleep/zsad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/30/2022] [Indexed: 02/15/2023] Open
Abstract
Cross-frequency coupling (CFC) between theta and high-frequency oscillations (HFOs) is predominant during active wakefulness, REM sleep and behavioral and learning tasks in rodent hippocampus. Evidence suggests that these state-dependent CFCs are linked to spatial navigation and memory consolidation processes. CFC studies currently include only the cortical and subcortical structures. To our knowledge, the study of nucleus tractus solitarius (NTS)-cortical structure CFC is still lacking. Here we investigate CFC in simultaneous local field potential recordings from hippocampal CA1 and the NTS during behavioral states in freely moving rats. We found a significant increase in theta (6-8 Hz)-HFO (120-160 Hz) coupling both within the hippocampus and between NTS theta and hippocampal HFOs during REM sleep. Also, the hippocampal HFOs were modulated by different but consistent phases of hippocampal and NTS theta oscillations. These findings support the idea that phase-amplitude coupling is both state- and frequency-specific and CFC analysis may serve as a tool to help understand the selective functions of neuronal network interactions in state-dependent information processing. Importantly, the increased NTS theta-hippocampal HFO coupling during REM sleep may represent the functional connectivity between these two structures which reflects the function of the hippocampus in visceral learning with the sensory information provided by the NTS. This gives a possible insight into an association between the sensory activity and REM-sleep dependent memory consolidation.
Collapse
Affiliation(s)
- Danita Atiwiwat
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mark Aquilino
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Orrin Devinsky
- New York University Langone Medical Center, Neurology, New York, NY, United States
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Peter L Carlen
- Krembil Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Szymanski HV. Hippocampal dysfunction underlies delusions of control in schizophrenia. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Early adolescent psychological distress and cognition, correlates of resting-state EEG, interregional phase-amplitude coupling. Int J Psychophysiol 2023; 183:130-137. [PMID: 36436723 DOI: 10.1016/j.ijpsycho.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Delineating neurobiological markers of youth mental health is crucial for early identification and treatment. One promising marker is phase-amplitude coupling (PAC), cross-frequency coupling between the phase of slower oscillatory activity and the amplitude of faster oscillatory activity in the brain. Prior research has demonstrated that PAC is associated with both cognition and mental health and can be modulated using neurostimulation. However, to date research investigating PAC has focused primarily on adults, and only within-region theta-gamma coupling in the context of mental health. We investigated associations between interregional resting-state PAC (posterior-anterior cortex), and cognition and psychological distress in N = 77 (Mage = 12.58 years, SD = 0.31; 51 % female) 12-year-olds. Firstly, while left theta-beta PAC showed a moderate positive correlation (r = 0.529, p < .01), right theta-gamma PAC showed a weak positive correlation, with psychological distress (r = 0.283, p < .05). In terms of cognition, moderate correlations were observed between: (i) increased left theta-beta PAC and increased psychomotor speed (r = -0.367, p < .05); (ii) increased left alpha-beta PAC and decreased attention (r = 0.355, p ≤0.01); and (iii) increased left alpha-beta PAC and decreased verbal learning and memory (r = -0.352, p < .01). Whereas weak associations were observed for: (i) increased left alpha-beta PAC and decreased executive functioning scores (r = 0.284, p < .05); and (ii) increased left alpha-gamma PAC and increased attention (r = -0.272, p < .05). The overall findings of this exploratory study are encouraging, although all the correlations were in the weak-to-moderate range and require replication. Further research may confirm interregional resting-state PAC as a biomarker that can help us better understand the link between mental health and cognition in adolescents and improve treatment of cognitive related deficits in mental illness.
Collapse
|
11
|
Sato Y, Schmitt O, Ip Z, Rabiller G, Omodaka S, Tominaga T, Yazdan-Shahmorad A, Liu J. Pathological changes of brain oscillations following ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1753-1776. [PMID: 35754347 PMCID: PMC9536122 DOI: 10.1177/0271678x221105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Brain oscillations recorded in the extracellular space are among the most important aspects of neurophysiology data reflecting the activity and function of neurons in a population or a network. The signal strength and patterns of brain oscillations can be powerful biomarkers used for disease detection and prediction of the recovery of function. Electrophysiological signals can also serve as an index for many cutting-edge technologies aiming to interface between the nervous system and neuroprosthetic devices and to monitor the efficacy of boosting neural activity. In this review, we provided an overview of the basic knowledge regarding local field potential, electro- or magneto- encephalography signals, and their biological relevance, followed by a summary of the findings reported in various clinical and experimental stroke studies. We reviewed evidence of stroke-induced changes in hippocampal oscillations and disruption of communication between brain networks as potential mechanisms underlying post-stroke cognitive dysfunction. We also discussed the promise of brain stimulation in promoting post stroke functional recovery via restoring neural activity and enhancing brain plasticity.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver Schmitt
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Zachary Ip
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
12
|
Is Cortical Theta-Gamma Phase-Amplitude Coupling Memory-Specific? Brain Sci 2022; 12:brainsci12091131. [PMID: 36138867 PMCID: PMC9496728 DOI: 10.3390/brainsci12091131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
One of the proposed neural mechanisms involved in working memory is coupling between the theta phase and gamma amplitude. For example, evidence from intracranial recordings shows that coupling between hippocampal theta and cortical gamma oscillations increases selectively during working memory tasks. Theta-gamma phase-amplitude coupling can also be measured non-invasively through scalp EEG; however, EEG can only assess coupling within cortical areas, and it is not yet clear if this cortical-only coupling is truly memory-specific, or a more general phenomenon. We tested this directly by measuring cortical coupling during three different conditions: a working memory task, an attention task, and a passive perception condition. We find similar levels of theta-gamma coupling in all three conditions, suggesting that cortical theta-gamma phase-amplitude coupling is not a memory-specific signal, but instead reflects some other attentional or perceptual processes. Implications for understanding the brain dynamics of visual working memory are discussed.
Collapse
|
13
|
Ursino M, Cesaretti N, Pirazzini G. A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code. Cogn Neurodyn 2022; 17:489-521. [PMID: 37007198 PMCID: PMC10050512 DOI: 10.1007/s11571-022-09836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractRecent experimental evidence suggests that oscillatory activity plays a pivotal role in the maintenance of information in working memory, both in rodents and humans. In particular, cross-frequency coupling between theta and gamma oscillations has been suggested as a core mechanism for multi-item memory. The aim of this work is to present an original neural network model, based on oscillating neural masses, to investigate mechanisms at the basis of working memory in different conditions. We show that this model, with different synapse values, can be used to address different problems, such as the reconstruction of an item from partial information, the maintenance of multiple items simultaneously in memory, without any sequential order, and the reconstruction of an ordered sequence starting from an initial cue. The model consists of four interconnected layers; synapses are trained using Hebbian and anti-Hebbian mechanisms, in order to synchronize features in the same items, and desynchronize features in different items. Simulations show that the trained network is able to desynchronize up to nine items without a fixed order using the gamma rhythm. Moreover, the network can replicate a sequence of items using a gamma rhythm nested inside a theta rhythm. The reduction in some parameters, mainly concerning the strength of GABAergic synapses, induce memory alterations which mimic neurological deficits. Finally, the network, isolated from the external environment (“imagination phase”) and stimulated with high uniform noise, can randomly recover sequences previously learned, and link them together by exploiting the similarity among items.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Nicole Cesaretti
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Gabriele Pirazzini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| |
Collapse
|
14
|
Vrontou S, Bédécarrats A, Wei X, Ayodeji M, Brassai A, Molnár L, Mody I. Altered brain rhythms and behaviour in the accelerated ovarian failure mouse model of human menopause. Brain Commun 2022; 4:fcac166. [PMID: 35794872 PMCID: PMC9253886 DOI: 10.1093/braincomms/fcac166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
To date, potential mechanisms of menopause-related memory and cognitive deficits have not been elucidated. Therefore, we studied brain oscillations, their phase–amplitude coupling, sleep and vigilance state patterns, running wheel use and other behavioural measures in a translationally valid mouse model of menopause, the 4-vinylcyclohexene-diepoxide-induced accelerated ovarian failure. After accelerated ovarian failure, female mice show significant alterations in brain rhythms, including changes in the frequencies of θ (5–12 Hz) and γ (30–120 Hz) oscillations, a reversed phase–amplitude coupling, altered coupling of hippocampal sharp-wave ripples to medial prefrontal cortical sleep spindles and reduced δ oscillation (0.5–4 Hz) synchrony between the two regions during non-rapid eye movement sleep. In addition, we report on significant circadian variations in the frequencies of θ and γ oscillations, and massive synchronous δ oscillations during wheel running. Our results reveal novel and specific network alterations and feasible signs for diminished brain connectivity in the accelerated ovarian failure mouse model of menopause. Taken together, our results may have identified changes possibly responsible for some of the memory and cognitive deficits previously described in this model. Corresponding future studies in menopausal women could shed light on fundamental mechanisms underlying the neurological and psychiatric comorbidities present during this important transitional phase in women’s lives.
Collapse
Affiliation(s)
- Sophia Vrontou
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Alexis Bédécarrats
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | | | - Attila Brassai
- Department of Pharmacology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology , Târgu Mureş 540139 , Romania
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania , Târgu Mureş 540485 , Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
- Department of Physiology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| |
Collapse
|
15
|
Cross-frequency coupling in psychiatric disorders: A systematic review. Neurosci Biobehav Rev 2022; 138:104690. [PMID: 35569580 DOI: 10.1016/j.neubiorev.2022.104690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
Abstract
Cross-frequency coupling (CFC), an electrophysiologically derived measure of oscillatory coupling in the brain, is believed to play a critical role in neuronal computation, learning and communication. It has received much recent attention in the study of both health and disease. We searched for literature that studied CFC during resting state and task-related activities during electroencephalography and magnetoencephalography in psychiatric disorders. Thirty-eight studies were identified, which included attention-deficit hyperactivity disorder, Alzheimer's dementia, autism spectrum disorder, bipolar disorder, depression, obsessive compulsive disorder, social anxiety disorder and schizophrenia. The systematic review was registered with PROSPERO (ID#CRD42021224188). The current review indicates measurable differences exist between CFC in disease states vs. healthy controls. There was variance in CFC at different regions of the brain within the same psychiatric disorders, perhaps this could be explained by the mechanisms and functionality of CFC. There was heterogeneity in methodologies used, which may lead to spurious CFC analyses. Going forward, standardized methodologies need to be established and utilized in further research to understand the neuropathophysiology associated with psychiatric disorders.
Collapse
|
16
|
Koshiyama D, Miyakoshi M, Tanaka-Koshiyama K, Sprock J, Light GA. High-power gamma-related delta phase alteration in schizophrenia patients at rest. Psychiatry Clin Neurosci 2022; 76:179-186. [PMID: 35037330 DOI: 10.1111/pcn.13331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
AIM Information processing is supported by the cortico-cortical transmission of neural oscillations across brain regions. Recent studies have demonstrated that the rhythmic firing of neural populations is not random but is governed by interactions with other frequency bands. Specifically, the amplitude of gamma-band oscillations is associated with the phase of lower frequency oscillations in support of short and long-range communications among networks. This cross-frequency relation is thought to reflect the temporal coordination of neural communication. While schizophrenia patients show abnormal oscillatory responses across multiple frequencies at rest, it is unclear whether the functional relationships among frequency bands are intact. This study aimed to characterize the lower frequency (delta/theta, 1-8 Hz) phase and the amplitude of gamma oscillations in healthy subjects and schizophrenia patients at rest. METHODS Low frequency-phase (delta- and theta- band) angles and gamma-band amplitude relationships were assessed in 142 schizophrenia patients and 128 healthy subjects. RESULTS Significant low-frequency phase alteration related to high-power gamma was detected across broadly distributed scalp regions in both healthy subjects and patients. In patients, delta phase synchronization related to high-power gamma was significantly decreased at the frontocentral, right middle temporal, and left temporoparietal electrodes but significantly increased at the left parietal electrode. CONCLUSIONS High-power gamma-related delta phase alteration may reflect a core pathophysiologic abnormality in schizophrenia. Data-driven measures of functional relationships among frequency bands may prove useful in the development of novel therapeutics. Future studies are needed to determine whether these alterations are specific to schizophrenia or appear in other neuropsychiatric patient populations.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, USA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California, USA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
17
|
Brooks H, Mirjalili M, Wang W, Kumar S, Goodman MS, Zomorrodi R, Blumberger DM, Bowie CR, Daskalakis ZJ, Fischer CE, Flint AJ, Herrmann N, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Rajji TK. Assessing the Longitudinal Relationship between Theta-Gamma Coupling and Working Memory Performance in Older Adults. Cereb Cortex 2022; 32:1653-1667. [PMID: 34519333 PMCID: PMC9016289 DOI: 10.1093/cercor/bhab295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiologic mechanism that supports working memory (WM). TGC is associated with N-back performance, a WM task. Similar to TGC, theta and alpha event-related synchronization (ERS) and desynchronization (ERD) are also associated with WM. Few studies have examined the longitudinal relationship between WM performance and TGC, ERS, or ERD. This study aimed to determine if changes in WM performance are associated with changes in TGC (primary aim), as well as theta and alpha ERS or ERD over 6 to 12 weeks. Participants included 62 individuals aged 60 and older with no neuropsychiatric conditions or with remitted Major Depressive Disorder (MDD) and no cognitive disorders. TGC, ERS, and ERD were assessed using electroencephalography (EEG) during the N-back task (3-back condition). There was an association between changes in 3-back performance and changes in TGC, alpha ERD and ERS, and theta ERS in the control group. In contrast, there was only a significant association between changes in 3-back performance and changes in TGC in the subgroup with remitted MDD. Our results suggest that the relationship between WM performance and TGC is stable over time, while this is not the case for changes in theta and alpha ERS and ERD.
Collapse
Affiliation(s)
- Heather Brooks
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Mina Mirjalili
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| | - Michelle S Goodman
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Reza Zomorrodi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
| | - Christopher R Bowie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychology, Queen’s University, Kingston K7L 3N6, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
| | - Corinne E Fischer
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto M5B 1W8, Canada
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Centre for Mental Health, University Health Network, Toronto, M5G 2C4, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Sunnybrook Health Sciences Centre, Toronto M4N 3M5, Canada
| | - Krista L Lanctôt
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Sunnybrook Health Sciences Centre, Toronto M4N 3M5, Canada
| | - Linda Mah
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto M6A 2X8, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto M6J 1H4, Canada
| |
Collapse
|
18
|
Hatun Ş, Dalgıç B, Gökşen D, Aydoğdu S, Savaş Erdeve Ş, Kuloğu Z, Doğan Y, Aycan Z, Yeşiltepe Mutlu G, Uslu Kızılkan N, Keser A, Beşer ÖF, Özbek MN, Bideci A, Ertem D, Evliyaoğlu O, Eliuz Tipici B, Gökçe T, Muradoğlu S, Taşkın OÇ, Koca T, Tütüncüler F, Baş F, Darendeliler F, Selimoğlu MA. Recommendations for Clinical Decision-making in Children with Type 1 Diabetes and Celiac Disease: Type 1 Diabetes and Celiac Disease Joint Working Group Report. J Clin Res Pediatr Endocrinol 2022; 14:1-9. [PMID: 34538045 PMCID: PMC8900077 DOI: 10.4274/jcrpe.galenos.2021.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
It is well-known that in children with type 1 diabetes (T1D), the frequency of Celiac disease (CD) is increased due to mechanisms which are not fully elucidated but include autoimmune injury as well as shared genetic predisposition. Although histopathologic examination is the gold standard for diagnosis, avoiding unnecessary endoscopy is crucial. Therefore, for both clinicians and patients’ families, the diagnosis of CD remains challenging. In light of this, a joint working group, the Type 1 Diabetes and Celiac Disease Joint Working Group, was convened, with the aim of reporting institutional data and reviewing current international guidelines, in order to provide a framework for clinicians. Several controversial issues were discussed: For CD screening in children with T1D, regardless of age, it is recommended to measure tissue transglutaminase-immunoglobulin A (tTG-IgA) and/or endomysial-IgA antibody due to their high sensitivity and specificity. However, the decision-making process based on tTG-IgA titer in children with T1D is still debated, since tTG-IgA titers may fluctuate in children with T1D. Moreover, seronegativity may occur spontaneously. The authors’ own data showed that most of the cases who have biopsy-proven CD had tTG-IgA levels 7-10 times above the upper limit. The decision for endoscopy based solely on tTG-IgA levels should be avoided, except in cases where tTG-IgA levels are seven times and above the upper limit. A closer collaboration should be built between divisions of pediatric endocrinology and gastroenterology in terms of screening, diagnosis and follow-up of children with T1D and suspicious CD.
Collapse
Affiliation(s)
- Şükrü Hatun
- Koç University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey,* Address for Correspondence: Koç University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey Phone: +90 532 346 80 06 E-mail:
| | - Buket Dalgıç
- Gazi University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Gastroenterology, Ankara, Turkey
| | - Damla Gökşen
- Ege University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Sema Aydoğdu
- Ege University Faculty of Medicine, Department of Pediatric Gastroenterology, İzmir, Turkey
| | - Şenay Savaş Erdeve
- University of Health Sciences Turkey, Ankara Dr. Sami Ulus Obstetrics and Gynecology and Pediatrics Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey
| | - Zarife Kuloğu
- Ankara University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Gastroenterology, Ankara, Turkey
| | - Yaşar Doğan
- Fırat University Faculty of Medicine, Department of Pediatric Gastroenterology, Elazığ, Turkey
| | - Zehra Aycan
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Gül Yeşiltepe Mutlu
- Koç University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Nuray Uslu Kızılkan
- Koç University Hospital, Department of Pediatric Gastroenterology, İstanbul, Turkey
| | - Alev Keser
- Ankara University Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Ömer Faruk Beşer
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Pediatric Gastroenterology, Hepatology, and Nutrition, İstanbul, Turkey
| | - Mehmet Nuri Özbek
- University of Health Sciences Turkey, Gazi Yaşargil Training and Research Hospital, Clinic of Pediatric Endocrinology, Diyarbakır, Turkey
| | - Aysun Bideci
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Deniz Ertem
- Marmara University Faculty of Medicine, Department of Pediatric Gastroenterology, Hepatology and Nutrition, İstanbul, Turkey
| | - Olcay Evliyaoğlu
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, İstanbul, Turkey
| | - Beyza Eliuz Tipici
- İstanbul University, İstanbul Faculty of Medicine, Department of Nutrition and Dietetics, İstanbul, Turkey
| | - Tuğba Gökçe
- Koç University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Serra Muradoğlu
- Koç University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Orhun Çığ Taşkın
- Koç University Faculty of Medicine, Department of Pathology, İstanbul, Turkey
| | - Tuğba Koca
- Süleyman Demirel University Faculty of Medicine, Department of Pediatric Gastroenterology, Hepatology and Nutrition, Isparta, Turkey
| | - Filiz Tütüncüler
- Trakya University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Edirne, Turkey
| | - Firdevs Baş
- İstanbul University, İstanbul Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Feyza Darendeliler
- İstanbul University, İstanbul Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Mukadder Ayşe Selimoğlu
- Memorial Ataşehir/Bahçelievler Hospitals, Clinic of Pediatric Gastroenterology, Hepatology and Nutrition, İstanbul, Turkey
| |
Collapse
|
19
|
The Functional Interactions between Cortical Regions through Theta-Gamma Coupling during Resting-State and a Visual Working Memory Task. Brain Sci 2022; 12:brainsci12020274. [PMID: 35204038 PMCID: PMC8869925 DOI: 10.3390/brainsci12020274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Theta phase-gamma amplitude coupling (TGC) plays an important role in several different cognitive processes. Although spontaneous brain activity at the resting state is crucial in preparing for cognitive performance, the functional role of resting-state TGC remains unclear. To investigate the role of resting-state TGC, electroencephalogram recordings were obtained for 56 healthy volunteers while they were in the resting state, with their eyes closed, and then when they were engaged in a retention interval period in the visual memory task. The TGCs of the two different conditions were calculated and compared. The results indicated that the modulation index of TGC during the retention interval of the visual working memory (VWM) task was not higher than that during the resting state; however, the topographical distribution of TGC during the resting state was negatively correlated with TGC during VWM task at the local level. The topographical distribution of TGC during the resting state was negatively correlated with TGC coordinates’ engagement of brain areas in local and large-scale networks and during task performance at the local level. These findings support the view that TGC reflects information-processing and signal interaction across distant brain areas. These results demonstrate that TGC could explain the efficiency of competing brain networks.
Collapse
|
20
|
Lack of neural load modulation explains attention and working memory deficits in first-episode schizophrenia. Clin Neurophysiol 2022; 136:206-218. [DOI: 10.1016/j.clinph.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
21
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
22
|
Jenkins BW, Buckhalter S, Perreault ML, Khokhar JY. Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab052. [PMID: 35036917 PMCID: PMC8752653 DOI: 10.1093/schizbullopen/sgab052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand how exposure to cannabis changes schizophrenia-related oscillatory disruptions, we investigated the impact of administering cannabis vapor containing either Δ9-tetrahydrocannabinol (THC) or balanced THC/cannabidiol (CBD) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent lesion or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prelimbic cortex (PrLC), the hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained after rats were administered either the "THC-only" cannabis vapor (8-18% THC/0% CBD) or the "Balanced THC:CBD" cannabis vapor (4-11% THC/8.5-15.5% CBD) in a cross-over design with a 2-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, HIP, and NAc, and reduced HIP-Cg high-gamma coherence. THC-only vapor exposure broadly suppressed oscillatory power and coherence, even beyond the baseline reductions observed in NHVL rats. Balanced THC:CBD vapor, however, did not suppress oscillatory power and coherence, and in some instances enhanced power. For NVHL rats, THC-only vapor normalized the baseline HIP-Cg high-gamma coherence deficits. NHVL rats demonstrated a 20 ms delay in HIP theta to high-gamma phase coupling, which was not apparent in the PrLC and NAc after both exposures. In conclusion, cannabis vapor exposure has varying impacts on oscillatory activity in NVHL rats, and the relative composition of naturally occurring cannabinoids may contribute to this variability.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
23
|
Kirschner H, Klein TA. Beyond a blunted ERN - Biobehavioral correlates of performance monitoring in schizophrenia. Neurosci Biobehav Rev 2021; 133:104504. [PMID: 34922988 DOI: 10.1016/j.neubiorev.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Cognitive deficits are well documented in schizophrenia. Here, we reviewed alterations in performance monitoring as potential marker of cognitive deficits in schizophrenia. We found that performance monitoring alterations in schizophrenia are specific to early (indexed by blunted error-related negativity (ERN)) and late (reflected in blunted error positivity (Pe)) internal error processing, while external performance feedback processing in simple response feedback tasks is relatively preserved. We propose, that these performance monitoring deficits may best be interpret as one aspect of disrupted theta band (4-8 Hz) oscillations over medial frontal recordings sites. Midfrontal theta dynamics are an increasingly established direct neural index of the recruitment of cognitive control and are impaired in several clinical populations. While theta-related ERPs (the ERN) may be an easy to assess marker of cognitive deficits in schizophrenia, further work investigating the trial-by-trial dynamics of theta in both the time and time-frequency domain is needed to parse cognitive deficits in schizophrenia into finer levels of detail and evaluate theta modulation as a therapeutic tool.
Collapse
Affiliation(s)
- H Kirschner
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany.
| | - T A Klein
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany; Center for Behavioral Brain Sciences, D-39106, Magdeburg, Germany.
| |
Collapse
|
24
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
25
|
Is short-term memory capacity (7±2) really predicted by theta to gamma cycle length ratio? Behav Brain Res 2021; 414:113465. [PMID: 34265319 DOI: 10.1016/j.bbr.2021.113465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022]
Abstract
Several studies suggest that EEG parameters, reflecting top-down processes in the brain, may predict cognitive performance, e.g. short-term memory (STM) capacity. According to Lisman and Idiart's model, STM capacity is predicted by theta and gamma EEG waves and their ratio. This model suggests that the more periods of gamma band waves fit into one period of theta band waves, the more information can be stored. We replicated the study by Kaminski et al. (2011), which recorded spontaneous EEG activity and measured verbal STM capacity with a modified digit span task from the Wechsler battery. Our study included more subjects and two EEG recording sessions. We discuss the possible limits of EEG correlates of STM capacity as EEG parameters were not stable across the two measurements and no correlation was found between the theta/gamma ratio and performance in the digit span task.
Collapse
|
26
|
Grover S, Keshavan MS, Lizano PL, Reinhart RMG. Proximate markers of cognitive dysfunction in schizophrenia. Schizophr Res 2021; 233:114-115. [PMID: 34325964 PMCID: PMC8380687 DOI: 10.1016/j.schres.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Shrey Grover
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, United States
| | - Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Paulo L Lizano
- Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, United States; Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communications and Neural Technology, Boston University, Boston, MA, United States.
| |
Collapse
|
27
|
Soutschek A, Moisa M, Ruff CC, Tobler PN. Frontopolar theta oscillations link metacognition with prospective decision making. Nat Commun 2021; 12:3943. [PMID: 34168135 PMCID: PMC8225860 DOI: 10.1038/s41467-021-24197-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prospective decision making considers the future consequences of actions and therefore requires agents to represent their present subjective preferences reliably across time. Here, we test the link of frontopolar theta oscillations to both metacognitive ability and prospective choice behavior. We target these oscillations with transcranial alternating current stimulation while participants make decisions between smaller-sooner and larger-later monetary rewards and rate their choice confidence after each decision. Stimulation designed to enhance frontopolar theta oscillations increases metacognitive accuracy in reports of subjective uncertainty in intertemporal decisions. Moreover, the stimulation also enhances the willingness of participants to restrict their future access to short-term gratification by strengthening the awareness of potential preference reversals. Our results suggest a mechanistic link between frontopolar theta oscillations and metacognitive knowledge about the stability of subjective value representations, providing a potential explanation for why frontopolar cortex also shields prospective decision making against future temptation.
Collapse
Affiliation(s)
| | - Marius Moisa
- Zurich Center for Neuroeconomics, University of Zurich, Zurich, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, University of Zurich, Zurich, Switzerland
- Zurich Center for Neuroscience, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, University of Zurich, Zurich, Switzerland
- Zurich Center for Neuroscience, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Mofleh R, Kocsis B. Delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb in freely behaving rats. Sci Rep 2021; 11:8100. [PMID: 33854115 PMCID: PMC8046996 DOI: 10.1038/s41598-021-87562-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory rhythm (RR) during sniffing is known to couple with hippocampal theta rhythm. However, outside of the short sniffing bouts, a more stable ~ 2 Hz RR was recently shown to rhythmically modulate non-olfactory cognitive processes, as well. The underlying RR coupling with wide-spread forebrain activity was confirmed using advanced techniques, creating solid premise for investigating how higher networks use this mechanism in their communication. Here we show essential differences in the way prefrontal cortex (PFC) and hippocampus (HC) process the RR signal from the olfactory bulb (OB) that may support dynamic, flexible PFC-HC coupling utilizing this input. We used inter-regional coherences and their correlations in rats, breathing at low rate (~ 2 Hz), outside of the short sniffing bouts. We found strong and stable OB-PFC coherence in wake states, contrasting OB-HC coherence which was low but highly variable. Importantly, this variability was essential for establishing PFC-HC synchrony at RR, whereas variations of RRO in OB and PFC had no significant effect. The findings help to understand the mechanism of rhythmic modulation of non-olfactory cognitive processes by the on-going regular respiration, reported in rodents as well as humans. These mechanisms may be impaired when nasal breathing is limited or in OB-pathology, including malfunctions of the olfactory epithelium due to infections, such as in Covid-19.
Collapse
Affiliation(s)
- Rola Mofleh
- Department Psychiatry at BIDMC, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Bernat Kocsis
- Department Psychiatry at BIDMC, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02215, USA.
| |
Collapse
|
29
|
Kavanaugh BC, Fryc A, Temereanca S, Tirrell E, Oberman L, Carpenter LL, Spirito A. A preliminary investigation of childhood anxiety/depressive symptomatology and working memory across multiple units of analysis. Psychiatry Res 2021; 298:113786. [PMID: 33636515 PMCID: PMC10626623 DOI: 10.1016/j.psychres.2021.113786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
This exploratory study examined multiple units of working memory (WM) analysis in a transdiagnostic, treatment-seeking, pediatric sample. This included a) an electroencephalography marker of WM (coupling of theta and gamma oscillations [i.e., theta-gamma coupling] in frontal brain regions), b) WM test performance, and c) parent-reported WM symptoms. A composite score combining each of these units of analysis correlated with self-reported depressive and anxiety symptoms, with only theta-gamma coupling independently predicted anxiety/depressive symptoms. Results confirm prior findings on the association between WM and anxiety/depression, although the majority of this variance was explained by frontal theta-gamma coupling during WM demands.
Collapse
Affiliation(s)
- Brian C Kavanaugh
- Emma Pendleton Bradley Hospital, Department of Psychiatry & Human Behavior, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry & Human Behavior, Providence, RI, USA
| | - Alexa Fryc
- University of Rhode Island, Department of Psychology, South Kingstown, RI, USA
| | - Simona Temereanca
- Brown University, Department of Neuroscience, Providence, RI, USA; Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States
| | - Eric Tirrell
- Butler Hospital, Department of Psychiatry & Human Behavior, Providence, RI, USA
| | - Lindsay Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Linda L Carpenter
- Alpert Medical School of Brown University, Department of Psychiatry & Human Behavior, Providence, RI, USA; Butler Hospital, Department of Psychiatry & Human Behavior, Providence, RI, USA
| | - Anthony Spirito
- Alpert Medical School of Brown University, Department of Psychiatry & Human Behavior, Providence, RI, USA
| |
Collapse
|
30
|
Sacks DD, Schwenn PE, McLoughlin LT, Lagopoulos J, Hermens DF. Phase-Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence. Front Hum Neurosci 2021; 15:622313. [PMID: 33841115 PMCID: PMC8032979 DOI: 10.3389/fnhum.2021.622313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Identifying biomarkers of developing mental disorder is crucial to improving early identification and treatment-a key strategy for reducing the burden of mental disorders. Cross-frequency coupling between two different frequencies of neural oscillations is one such promising measure, believed to reflect synchronization between local and global networks in the brain. Specifically, in adults phase-amplitude coupling (PAC) has been shown to be involved in a range of cognitive processes, including working and long-term memory, attention, language, and fluid intelligence. Evidence suggests that increased PAC mediates both temporary and lasting improvements in working memory elicited by transcranial direct-current stimulation and reductions in depressive symptoms after transcranial magnetic stimulation. Moreover, research has shown that abnormal patterns of PAC are associated with depression and schizophrenia in adults. PAC is believed to be closely related to cortico-cortico white matter (WM) microstructure, which is well established in the literature as a structural mechanism underlying mental health. Some cognitive findings have been replicated in adolescents and abnormal patterns of PAC have also been linked to ADHD in young people. However, currently most research has focused on cross-sectional adult samples. Whereas initial hypotheses suggested that PAC was a state-based measure due to an early focus on cognitive, task-based research, current evidence suggests that PAC has both state-based and stable components. Future longitudinal research focusing on PAC throughout adolescent development could further our understanding of the relationship between mental health and cognition and facilitate the development of new methods for the identification and treatment of youth mental health.
Collapse
Affiliation(s)
- Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Paul E Schwenn
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Larisa T McLoughlin
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
31
|
Chen C, Wang Z, Chen C, Xue G, Lu S, Liu H, Dong Q, Zhang M. CPNE3 moderates the association between anxiety and working memory. Sci Rep 2021; 11:6891. [PMID: 33767297 PMCID: PMC7994849 DOI: 10.1038/s41598-021-86263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/09/2022] Open
Abstract
Mutual influences between anxiety and working memory (WM) have been extensively studied, and their curvilinear relationship resembles the classic Yerkes-Dodson law of arousal and performance. Given the genetic bases of both anxiety and WM, it is likely that the individual differences in the Yerkes-Dodson law of anxiety and WM may have genetic correlates. The current genome wide association study (GWAS) enrolled 1115 healthy subjects to search for genes that are potential moderators of the association between anxiety and WM. Results showed that CPNE3 rs10102229 had the strongest effect, p = 3.38E−6 at SNP level and p = 2.68E−06 at gene level. Anxiety and WM had a significant negative correlation (i.e., more anxious individuals performed worse on the WM tasks) for the TT genotype of rs10102229 (resulting in lower expression of CPNE3), whereas the correlation was positive (i.e., more anxious individuals performed better on the WM tasks) for the CC carriers. The same pattern of results was found at the gene level using gene score analysis. These effects were replicated in an independent sample (N = 330). The current study is the first to report a gene that moderates the relation between anxiety and WM and potentially provides a genetic explanation for the classic Yerkes-Dodson law.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Ziyi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shuzhen Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hejun Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
| |
Collapse
|
32
|
Jones ZB, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Alters Neural Oscillations in Mice. Front Neural Circuits 2021; 15:647856. [PMID: 33776658 PMCID: PMC7994333 DOI: 10.3389/fncir.2021.647856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence suggests that schizophrenia is a disorder of the brain’s communication, a result of functional and structural dysconnectivities. Patients with schizophrenia exhibit irregular neuronal circuit and network activity, but the causes and consequences of such activity remain largely unknown. Inhibition of 14-3-3 proteins in the mouse brain leads to the expression of multiple schizophrenia endophenotypes. Here we investigated how 14-3-3 inhibition alters neuronal network activity in the mouse hippocampus (HPC) and prefrontal cortex (PFC), key brain regions implicated in schizophrenia pathophysiology. We implanted monopolar recording electrodes in these two regions to record local field potentials both at rest and during a cognitive task. Through our assessment of band power, coherence, and phase-amplitude coupling, we found that neural oscillations in the theta and gamma frequency ranges were altered as a result of 14-3-3 dysfunction. Utilizing transgenic and viral mouse models to assess the effects of chronic and acute 14-3-3 inhibition on oscillatory activities, respectively, we observed several fundamental similarities and differences between the two models. We localized viral mediated 14-3-3 protein inhibition to either the HPC or PFC, allowing us to assess the individual contributions of each region to the observed changes in neural oscillations. These findings identify a novel role of 14-3-3 proteins in neural oscillations that may have implications for our understanding of schizophrenia neurobiology.
Collapse
Affiliation(s)
- Zachary B Jones
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
33
|
Mofleh R, Kocsis B. Delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb in freely behaving rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.05.04.077461. [PMID: 33564765 PMCID: PMC7872353 DOI: 10.1101/2020.05.04.077461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An explosion of recent findings firmly demonstrated that brain activity and cognitive function in rodents and humans are modulated synchronously with nasal respiration. Rhythmic respiratory (RR) coupling of wide-spread forebrain activity was confirmed using advanced techniques, including current source density analysis, single unit firing, and phase modulation of local gamma activity, creating solid premise for investigating how higher networks use this mechanism in their communication. Here we show essential differences in the way prefrontal cortex (PFC) and hippocampus (HC) process the RR signal from the olfactory bulb (OB) allowing dynamic PFC-HC coupling utilizing this input. We used inter-regional coherences and their correlations in rats, breathing at low rate (∼2 Hz) at rest, outside of the short sniffing bouts. We found strong and stable OB-PFC coherence, contrasting OB-HC coherence which was low but highly variable. PFC-HC coupling, however, primarily correlated with the latter, indicating that HC access to the PFC output is dynamically regulated by the responsiveness of HC to the common rhythmic drive. This pattern was present in both theta and non-theta states of waking, whereas PFC-HC communication appeared protected from RR synchronization in sleep states. The findings help to understand the mechanism of rhythmic modulation of non-olfactory cognitive processes by the on-going regular respiration, reported in rodents as well as humans. These mechanisms may be impaired when nasal breathing is limited or in OB-pathology, including malfunctions of the OB epithelium due to infections, such as in COVID-19.
Collapse
Affiliation(s)
- Rola Mofleh
- Dept Psychiatry at BIDMC, Harvard Medical School
| | | |
Collapse
|
34
|
Nath M, Wong TP, Srivastava LK. Neurodevelopmental insights into circuit dysconnectivity in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110047. [PMID: 32721441 DOI: 10.1016/j.pnpbp.2020.110047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Schizophrenia is increasingly being recognized as a disorder of brain circuits of developmental origin. Animal models, however, have been technically limited in exploring the effects of early developmental circuit abnormalities on the maturation of the brain and associated behavioural outputs. This review discusses evidence of the developmental emergence of circuit abnormalities in schizophrenia, followed by a critical assessment on how animal models need to be adapted through optimized tools in order to spatially and temporally manipulate early developmental events, thereby providing insight into the causal contribution of developmental perturbations to schizophrenia.
Collapse
Affiliation(s)
- Moushumi Nath
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada.
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| |
Collapse
|
35
|
Abstract
Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuromodulation technology called transcranial alternating current stimulation that has shown remarkable early results in rapidly improving various domains of human cognition by modulating properties of rhythmic network synchronization. Future noninvasive neuromodulation research holds promise for potentially rescuing network activity patterns and improving cognition, setting groundwork for the development of drug-free, circuit-based therapeutics for people with cognitive brain disorders.
Collapse
Affiliation(s)
- Shrey Grover
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , , .,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts 02215, USA.,Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
36
|
He JW, Rabiller G, Nishijima Y, Akamatsu Y, Khateeb K, Yazdan-Shahmorad A, Liu J. Experimental cortical stroke induces aberrant increase of sharp-wave-associated ripples in the hippocampus and disrupts cortico-hippocampal communication. J Cereb Blood Flow Metab 2020; 40:1778-1796. [PMID: 31558106 PMCID: PMC7446570 DOI: 10.1177/0271678x19877889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
The functional consequences of ischemic stroke in the remote brain regions are not well characterized. The current study sought to determine changes in hippocampal oscillatory activity that may underlie the cognitive impairment observed following distal middle cerebral artery occlusion (dMCAO) without causing hippocampal structural damage. Local field potentials were recorded from the dorsal hippocampus and cortex in urethane-anesthetized rats with multichannel silicon probes during dMCAO and reperfusion, or mild ischemia induced by bilateral common carotid artery occlusion (CCAO). Bilateral change of brain state was evidenced by reduced theta/delta amplitude ratio and shortened high theta duration following acute dMCAO but not CCAO. An aberrant increase in the occurrence of sharp-wave-associated ripples (150-250 Hz), crucial for memory consolidation, was only detected after dMCAO reperfusion, coinciding with an increased occurrence of high-frequency discharges (250-450 Hz). dMCAO also significantly affected the modulation of gamma amplitude in the cortex coupled to hippocampal theta phase, although both hippocampal theta and gamma power were temporarily decreased during dMCAO. Our results suggest that MCAO may disrupt the balance between excitatory and inhibitory circuits in the hippocampus and alter the function of cortico-hippocampal network, providing a novel insight in how cortical stroke affects function in remote brain regions.
Collapse
Affiliation(s)
- Ji-Wei He
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Yasuo Nishijima
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Akamatsu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Karam Khateeb
- Departments of Bioengineering and Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Azadeh Yazdan-Shahmorad
- Departments of Bioengineering and Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, CA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
37
|
Coffman BA, Haas G, Olson C, Cho R, Ghuman AS, Salisbury DF. Reduced Dorsal Visual Oscillatory Activity During Working Memory Maintenance in the First-Episode Schizophrenia Spectrum. Front Psychiatry 2020; 11:743. [PMID: 32848922 PMCID: PMC7417606 DOI: 10.3389/fpsyt.2020.00743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Cognitive deficits in people with schizophrenia are among the hardest to treat and strongly predict functional outcome. The ability to maintain sensory precepts in memory over a short delay is impacted early in the progression of schizophrenia and has been linked to reliable neurophysiological markers. Yet, little is known about the mechanisms of these deficits. Here, we investigated possible neurophysiological mechanisms of impaired visual short-term memory (vSTM, aka working memory maintenance) in the first-episode schizophrenia spectrum (FESz) using magnetoencephalography (MEG). Twenty-eight FESz and 25 matched controls performed a lateralized change detection task where they were cued to selectively attend and remember colors of circles presented in either the left or right peripheral visual field over a 1 s delay. Contralateral alpha suppression (CAS) during the delay period was used to assess selective attention to cued visual hemifields held in vSTM. Delay-period CAS was compared between FESz and controls and between trials presenting one vs three items per visual hemifield. CAS in dorsal visual cortex was reduced in FESz compared to controls in high-load trials, but not low-load trials. Group differences in CAS were found beginning 100 ms after the disappearance of the memory set, suggesting deficits were not due to the initial deployment of attention to the cued visual hemifield prior to stimulus presentation. CAS was not greater for high-load vs low-load trials in FESz subjects, although this effect was prominent in controls. Further, lateralized gamma (34-40 Hz) power emerged in dorsal visual cortex prior to the onset of CAS in controls but not FESz. Gamma power in this cluster differed between groups at both high and low load. CAS deficits observed in FESz were correlated with change detection accuracy, working memory function, estimated IQ, and negative symptoms. Our results implicate deficits in CAS in trials requiring broad, but not narrow, focus of attention to spatially distributed objects maintained in vSTM in FESz, possibly due to reduced ability to broadly distribute visuospatial attention (alpha) or disruption of object-location binding (gamma) during encoding/consolidation. This early pathophysiology may shed light upon mechanisms of emerging working memory deficits that are intrinsic to schizophrenia.
Collapse
Affiliation(s)
- Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital of UPMC, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gretchen Haas
- Western Psychiatric Hospital of UPMC, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Carl Olson
- Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Raymond Cho
- Western Psychiatric Hospital of UPMC, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Avniel Singh Ghuman
- Laboratory of Cognitive Neurodynamics, Department of Neurosurgery, Presbyterian Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital of UPMC, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Vittala A, Murphy N, Maheshwari A, Krishnan V. Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Front Neurosci 2020; 14:554. [PMID: 32547362 PMCID: PMC7270174 DOI: 10.3389/fnins.2020.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
In schizophrenia and related disorders, a deeper mechanistic understanding of neocortical dysfunction will be essential to developing new diagnostic and therapeutic techniques. To this end, combined transcranial magnetic stimulation and electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously perturb and measure neurophysiological correlates of cortical function, including oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review, we summarize the findings from a variety of studies that apply TMS/EEG to understand the fundamental features of cortical dysfunction in schizophrenia. These results lend to future applications of TMS/EEG in understanding the pathophysiological mechanisms underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Aadith Vittala
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Nicholas Murphy
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
39
|
Aberrant mPFC GABAergic synaptic transmission and fear behavior in neuroligin-2 R215H knock-in mice. Brain Res 2020; 1730:146671. [DOI: 10.1016/j.brainres.2020.146671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 11/19/2022]
|
40
|
Opendak M, Theisen E, Blomkvist A, Hollis K, Lind T, Sarro E, Lundström JN, Tottenham N, Dozier M, Wilson DA, Sullivan RM. Adverse caregiving in infancy blunts neural processing of the mother. Nat Commun 2020; 11:1119. [PMID: 32111822 PMCID: PMC7048726 DOI: 10.1038/s41467-020-14801-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The roots of psychopathology frequently take shape during infancy in the context of parent-infant interactions and adversity. Yet, neurobiological mechanisms linking these processes during infancy remain elusive. Here, using responses to attachment figures among infants who experienced adversity as a benchmark, we assessed rat pup cortical local field potentials (LFPs) and behaviors exposed to adversity in response to maternal rough and nurturing handling by examining its impact on pup separation-reunion with the mother. We show that during adversity, pup cortical LFP dynamic range decreased during nurturing maternal behaviors, but was minimally impacted by rough handling. During reunion, adversity-experiencing pups showed aberrant interactions with mother and blunted cortical LFP. Blocking pup stress hormone during either adversity or reunion restored typical behavior, LFP power, and cross-frequency coupling. This translational approach suggests adversity-rearing produces a stress-induced aberrant neurobehavioral processing of the mother, which can be used as an early biomarker of later-life pathology.
Collapse
Affiliation(s)
- Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA. .,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
| | - Emma Theisen
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Anna Blomkvist
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Kaitlin Hollis
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA
| | - Teresa Lind
- Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Psychiatry, UCSD, San Diego, CA, USA.,Child and Adolescent Services Research Center (CASRC), San Diego, CA, USA
| | - Emma Sarro
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Dominican College, Orangeburg, NY, 10962, USA
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - Mary Dozier
- Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Regina M Sullivan
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA. .,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA. .,Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
41
|
Relationship between resting-state theta phase-gamma amplitude coupling and neurocognitive functioning in patients with first-episode psychosis. Schizophr Res 2020; 216:154-160. [PMID: 31883931 DOI: 10.1016/j.schres.2019.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although cognitive dysfunction is a core element of schizophrenia, the neurobiological underpinnings of the pathophysiology are not yet sufficiently understood. Because the resting state is crucial for cognitive functioning and electroencephalography (EEG) can reflect instantaneous neural activity, we investigated theta phase-gamma amplitude coupling (TGC) of resting-state EEG and its relationship with cognitive function in patients with first-episode psychosis (FEP) to reveal the neural correlates of cognitive dysfunction. METHODS A total of 59 FEP patients and 50 healthy controls (HCs) underwent resting-state, eyes-closed EEG recordings and performed the Trail Making Test Part A (TMT-A) and Part B (TMT-B) and California Verbal Learning Test (CVLT). TGC from the source signal of the resting-state EEG in default mode network (DMN)-related brain regions was compared between groups. Correlation analyses were performed between TGC and cognitive function test performance in FEP patients. RESULTS Mean resting-state TGC was larger for the FEP patients than for the HCs. Patients with FEP showed increased TGC in the left posterior cingulate cortex, which was correlated with better performance on the TMT-A and TMT-B and on immediate and delayed recall in the CVLT. CONCLUSIONS These results suggest that patients with FEP show compensatory hyperactivation of resting-state TGC in DMN-related brain regions, which may be related to the reallocation of cognitive resources to prepare for successful cognitive execution. This study not only highlights the neural underpinnings of cognitive dysfunction in FEP patients but also provides useful background to support the development of treatments for cognitive dysfunction in schizophrenia.
Collapse
|
42
|
Disruption of gamma-delta relationship related to working memory deficits in first-episode psychosis. J Neural Transm (Vienna) 2019; 127:103-115. [PMID: 31858267 DOI: 10.1007/s00702-019-02126-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
Working memory (WM) deficits constitute a core symptom of schizophrenia. Inadequacy of WM maintenance in schizophrenia has been reported to reflect abnormalities in the excitation/inhibition (E/I) balance between pyramidal neurons and parvalbumin basket cells, which may explain alterations of the dynamics of gamma and delta oscillations. To address this issue, we assessed event-related gamma (35-45 Hz) and delta (0.5-4 Hz) oscillatory responses in a visual n-back WM task in patients with first-episode psychosis (FEP) and healthy controls (HC). Periodicity analyses of oscillations were computed to explore the relationship between the psychiatric status and the WM load-related processes reflected by each frequency range. The correspondence between nested delta-gamma oscillations was estimated to assess the strength of the frontal E/I balance. In HC, gamma oscillations were synchronized by the stimulus in a 50-150 ms time range for all tasks, and periodicity of the delta cycle was comparable between the tasks. In addition, synchronization of gamma oscillations in HC occurred at the maximal descending phase of the delta cycle half-period, supporting the coexistence of delta-nested gamma oscillations. Compared with controls, FEP patients showed a lack of gamma synchronization independently of the nature of the task, and the period of delta oscillation increased significantly with the difficulty of the WM task. We thus demonstrated in FEP an inability to encode multiple items in short-term memory associated with abnormalities in the relationship between oscillations related to the difficulty of the WM task. These results argue in favor of a dysfunction of the E/I balance in psychosis.
Collapse
|
43
|
Measurement and Modulation of Working Memory-Related Oscillatory Abnormalities. J Int Neuropsychol Soc 2019; 25:1076-1081. [PMID: 31358081 DOI: 10.1017/s1355617719000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the critical role of working memory (WM) in neuropsychiatric conditions, there remains a dearth of available WM-targeted interventions. Gamma and theta oscillations as measured with electroencephalography (EEG) or magnetoencephalography (MEG) reflect the neural underpinnings of WM. The WM processes that fluctuate in conjunction with WM demands are closely correlated with WM test performance, and their EEG signatures are abnormal in several clinical populations. Novel interventions such as transcranial magnetic stimulation (TMS) have been shown to modulate these oscillations and subsequently improve WM performance and clinical symptoms. Systematically identifying pathological WM-related gamma/theta oscillatory patterns with EEG/MEG and developing ways to target them with interventions such as TMS is an active area of clinical research. Results hold promise for enhancing the outcomes of our patients with WM deficits and for moving the field of clinical neuropsychology towards a mechanism-based approach.
Collapse
|
44
|
Dynamic modulation of theta–gamma coupling during rapid eye movement sleep. Sleep 2019; 42:5549700. [DOI: 10.1093/sleep/zsz182] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/17/2019] [Indexed: 11/15/2022] Open
Abstract
Abstract
Theta phase modulates gamma amplitude in hippocampal networks during spatial navigation and rapid eye movement (REM) sleep. This cross-frequency coupling has been linked to working memory and spatial memory consolidation; however, its spatial and temporal dynamics remains unclear. Here, we first investigate the dynamics of theta–gamma interactions using multiple frequency and temporal scales in simultaneous recordings from hippocampal CA3, CA1, subiculum, and parietal cortex in freely moving mice. We found that theta phase dynamically modulates distinct gamma bands during REM sleep. Interestingly, we further show that theta–gamma coupling switches between recorded brain structures during REM sleep and progressively increases over a single REM sleep episode. Finally, we show that optogenetic silencing of septohippocampal GABAergic projections significantly impedes both theta–gamma coupling and theta phase coherence. Collectively, our study shows that phase-space (i.e. cross-frequency coupling) coding of information during REM sleep is orchestrated across time and space consistent with region-specific processing of information during REM sleep including learning and memory.
Collapse
|
45
|
Ichinose M, Park S. Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia. Curr Top Behav Neurosci 2019; 41:345-367. [PMID: 31407240 DOI: 10.1007/7854_2019_99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Working memory deficits are observed in the vast majority of individuals diagnosed with schizophrenia and those at risk for the disorder. Working memory impairments are present during the prodromal stage and persist throughout the course of schizophrenia. Given the importance of cognition in functional outcome, working memory deficits are an important therapeutic target for schizophrenia. This chapter examines mechanisms underlying working memory deficits in schizophrenia, focusing on the roles of perception and attention in the encoding process. Lastly, we present a comprehensive discussion of neural oscillation and internal noise in the context of the etiology of working memory deficits in schizophrenia and introduce noninvasive treatment strategies that could improve encoding processes.
Collapse
Affiliation(s)
- Megan Ichinose
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Ryman SG, Cavanagh JF, Wertz CJ, Shaff NA, Dodd AB, Stevens B, Ling J, Yeo RA, Hanlon FM, Bustillo J, Stromberg SF, Lin DS, Abrams S, Mayer AR. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia. Biol Psychiatry 2018; 84:675-683. [PMID: 29921417 PMCID: PMC7654098 DOI: 10.1016/j.biopsych.2018.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. METHODS Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. RESULTS SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. CONCLUSIONS This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes.
Collapse
|
47
|
Bazzigaluppi P, Adams C, Koletar MM, Dorr A, Pikula A, Carlen PL, Stefanovic B. Oophorectomy Reduces Estradiol Levels and Long-Term Spontaneous Neurovascular Recovery in a Female Rat Model of Focal Ischemic Stroke. Front Mol Neurosci 2018; 11:338. [PMID: 30271324 PMCID: PMC6146137 DOI: 10.3389/fnmol.2018.00338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Although epidemiological evidence suggests significant sex and gender-based differences in stroke risk and recovery, females have been widely under-represented in preclinical stroke research. The neurovascular sequelae of brain ischemia in females, in particular, are largely uncertain. We set out to address this gap by a multimodal in vivo study of neurovascular recovery from endothelin-1 model of cortical focal-stroke in sham vs. ovariectomized female rats. Three weeks post ischemic insult, sham operated females recapitulated the phenotype previously reported in male rats in this model, of normalized resting perfusion but sustained peri-lesional cerebrovascular hyperreactivity. In contrast, ovariectomized (Ovx) females showed reduced peri-lesional resting blood flow, and elevated cerebrovascular responsivity to hypercapnia in the peri-lesional and contra-lateral cortices. Electrophysiological recordings showed an attenuation of theta to low-gamma phase-amplitude coupling in the peri-lesional tissue of Ovx animals, despite relative preservation of neuronal power. Further, this chronic stage neuronal network dysfunction was inversely correlated with serum estradiol concentration. Our pioneering data demonstrate dramatic differences in spontaneous recovery in the neurovascular unit between Ovx and Sham females in the chronic stage of stroke, underscoring the importance of considering hormonal-dependent aspects of the ischemic sequelae in the development of novel therapeutic approaches and patient recruitment in clinical trials.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Conner Adams
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Margaret M Koletar
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Adrienne Dorr
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Aleksandra Pikula
- Adult Vascular Neurology, Toronto Western Hospital, Toronto, ON, Canada
| | - Peter L Carlen
- Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Won GH, Kim JW, Choi TY, Lee YS, Min KJ, Seol KH. Theta-phase gamma-amplitude coupling as a neurophysiological marker in neuroleptic-naïve schizophrenia. Psychiatry Res 2018; 260:406-411. [PMID: 29253805 DOI: 10.1016/j.psychres.2017.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/25/2017] [Accepted: 12/09/2017] [Indexed: 02/03/2023]
Abstract
Theta-phase gamma-amplitude coupling (TGC) was used as an evidence-based tool to reflect the dysfunctional cortico-thalamic interaction in patients with schizophrenia. The aim of the present study was to evaluate the diagnostic utility of TGC. The subjects included 90 patients with schizophrenia and 90 healthy controls. We compared the TGC results between the groups using an analysis of covariance (ANCOVA) to adjust for age and sex and receiver operator characteristic (ROC) curve analyses to examine the discrimination ability of delta to gamma frequency bands and TGC. Patients with schizophrenia showed a significant increase in the resting-state TGC at all 19 electrodes. The analysis of the ROC curves for each frequency band exhibited relatively low classification accuracies for the delta, theta, slow alpha, fast alpha, and beta power. The TGC generated the most accurate results among the electroencephalography (EEG) measures, with an overall classification accuracy of 92.5%. The resting-state TGC value was increased in patients with schizophrenia compared to that in healthy controls and had a higher discriminating ability than the other parameters. These findings may be related to the compensatory hyper-arousal patterns of the dysfunctional default-mode network (DMN) in schizophrenia. Therefore, resting-state TGC is a promising neurophysiological marker of schizophrenia.
Collapse
Affiliation(s)
- Geun Hui Won
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Jun Won Kim
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.
| | - Tae Young Choi
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Young Sik Lee
- Department of Psychiatry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kyung Joon Min
- Department of Psychiatry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Ki Ho Seol
- Department of Radiation Oncology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
50
|
Sherif MA, Cortes-Briones JA, Ranganathan M, Skosnik PD. Cannabinoid-glutamate interactions and neural oscillations: implications for psychosis. Eur J Neurosci 2018; 48:2890-2902. [PMID: 29247465 DOI: 10.1111/ejn.13800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed A. Sherif
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Jose A. Cortes-Briones
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Mohini Ranganathan
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Patrick D. Skosnik
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| |
Collapse
|