1
|
Guo J, He C, Song H, Gao H, Yao S, Dong SS, Yang TL. Unveiling Promising Neuroimaging Biomarkers for Schizophrenia Through Clinical and Genetic Perspectives. Neurosci Bull 2024; 40:1333-1352. [PMID: 38703276 PMCID: PMC11365900 DOI: 10.1007/s12264-024-01214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 05/06/2024] Open
Abstract
Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changyi He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huimiao Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiwu Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2024:sbae110. [PMID: 38982882 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
3
|
Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14:804-811. [PMID: 38984327 PMCID: PMC11230103 DOI: 10.5498/wjp.v14.i6.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disease, and its prevalence is higher. However, diagnosis of early-stage schizophrenia is still considered a challenging task. AIM To employ brain morphological features and machine learning method to differentiate male individuals with schizophrenia from healthy controls. METHODS The least absolute shrinkage and selection operator and t tests were applied to select important features from structural magnetic resonance images as input features for classification. Four commonly used machine learning algorithms, the general linear model, random forest (RF), k-nearest neighbors, and support vector machine algorithms, were used to develop the classification models. The performance of the classification models was evaluated according to the area under the receiver operating characteristic curve (AUC). RESULTS A total of 8 important features with significant differences between groups were considered as input features for the establishment of classification models based on the four machine learning algorithms. Compared to other machine learning algorithms, RF yielded better performance in the discrimination of male schizophrenic individuals from healthy controls, with an AUC of 0.886. CONCLUSION Our research suggests that brain morphological features can be used to improve the early diagnosis of schizophrenia in male patients.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Wen-Zhi Pei
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chun-Yuan Xu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chen-Chen Deng
- Department of Gynaecology, Anhui Maternal and Child Health Hospital, Hefei 230032, Anhui Province, China
| | - Xu-Lai Zhang
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| |
Collapse
|
4
|
Sunil G, Gowtham S, Bose A, Harish S, Srinivasa G. Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia. BMC Neurosci 2024; 25:2. [PMID: 38166747 PMCID: PMC10759601 DOI: 10.1186/s12868-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Graph representational learning can detect topological patterns by leveraging both the network structure as well as nodal features. The basis of our exploration involves the application of graph neural network architectures and machine learning to resting-state functional Magnetic Resonance Imaging (rs-fMRI) data for the purpose of detecting schizophrenia. Our study uses single-site data to avoid the shortcomings in generalizability of neuroimaging data obtained from multiple sites. RESULTS The performance of our graph neural network models is on par with that of our machine learning models, each of which is trained using 69 graph-theoretical measures computed from functional correlations between various regions of interest (ROI) in a brain graph. Our deep graph convolutional neural network (DGCNN) demonstrates a promising average accuracy score of 0.82 and a sensitivity score of 0.84. CONCLUSIONS This study provides insights into the role of advanced graph theoretical methods and machine learning on fMRI data to detect schizophrenia by harnessing changes in brain functional connectivity. The results of this study demonstrate the capabilities of using both traditional ML techniques as well as graph neural network-based methods to detect schizophrenia using features extracted from fMRI data. The study also proposes two methods to obtain potential biomarkers for the disease, many of which are corroborated by research in this area and can further help in the understanding of schizophrenia as a mental disorder.
Collapse
Affiliation(s)
- Gayathri Sunil
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, III Stage BSK, Dwaraka Nagar, Bengaluru, Karnataka, 560085, India
| | - Smruthi Gowtham
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, III Stage BSK, Dwaraka Nagar, Bengaluru, Karnataka, 560085, India
| | - Anurita Bose
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, III Stage BSK, Dwaraka Nagar, Bengaluru, Karnataka, 560085, India
| | - Samhitha Harish
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, III Stage BSK, Dwaraka Nagar, Bengaluru, Karnataka, 560085, India
| | - Gowri Srinivasa
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, 100 Feet Ring Road, III Stage BSK, Dwaraka Nagar, Bengaluru, Karnataka, 560085, India.
| |
Collapse
|
5
|
Saglam Y, Oz A, Yildiz G, Ermis C, Kargin OA, Arslan S, Karacetin G. Can diffusion tensor imaging have a diagnostic utility to differentiate early-onset forms of bipolar disorder and schizophrenia: A neuroimaging study with explainable machine learning algorithms. Psychiatry Res Neuroimaging 2023; 335:111696. [PMID: 37595386 DOI: 10.1016/j.pscychresns.2023.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/11/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND/AIM Accurate diagnosis of early-onset psychotic disorders is crucial to improve clinical outcomes. This study aimed to differentiate patients with early-onset schizophrenia (EOS) from early-onset bipolar disorder (EBD) with machine learning (ML) algorithms using white matter tracts (WMT). METHOD Diffusion tensor imaging was obtained from adolescents with either EOS (n = 43) or EBD (n = 32). Global probabilistic tractography using an automated tract-based TRACULA software was performed to analyze the fractional anisotropy (FA) of forty-two WMT. The nested cross-validation was performed in feature selection and model construction. EXtreme Gradient Boosting (XGBoost) was applied to select the features that can give the best performance in the ML model. The interpretability of the model was explored with the SHApley Additive exPlanations (SHAP). FINDINGS The XGBoost algorithm identified nine out of the 42 major WMTs with significant predictive power. Among ML models, Support Vector Machine-Linear showed the best performance. Higher SHAP values of left acoustic radiation, bilateral anterior thalamic radiation, and the corpus callosum were associated with a higher likelihood of EOS. CONCLUSIONS Our findings suggested that ML models based on the FA values of major WMT reconstructed by global probabilistic tractography can unveil hidden microstructural aberrations to distinguish EOS from EBD.
Collapse
Affiliation(s)
- Yesim Saglam
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey.
| | - Ahmet Oz
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gokcen Yildiz
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cagatay Ermis
- Queen Silvia Children's Hospital, Department of Child Psychiatry, Gothenburg, Sweden
| | - Osman Aykan Kargin
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serdar Arslan
- Division of Neuroradiology, Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gul Karacetin
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
6
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Wang Y, Wang J, Su W, Hu H, Xia M, Zhang T, Xu L, Zhang X, Taylor H, Osipowicz K, Young IM, Lin YH, Nicholas P, Tanglay O, Sughrue ME, Tang Y, Doyen S. Symptom-circuit mappings of the schizophrenia connectome. Psychiatry Res 2023; 323:115122. [PMID: 36889161 DOI: 10.1016/j.psychres.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
OBJECTIVE This paper aims to model the anatomical circuits underlying schizophrenia symptoms, and to explore patterns of abnormal connectivity among brain networks affected by psychopathology. METHODS T1 magnetic resonance imaging (MRI), diffusion weighted imaging (DWI), and resting-state functional MRI (rsfMRI) were obtained from a total of 126 patients with schizophrenia who were recruited for the study. The images were processed using the Omniscient software (https://www.o8t. com). We further apply the use of the Hollow-tree Super (HoTS) method to gain insights into what brain regions had abnormal connectivity that might be linked to the symptoms of schizophrenia. RESULTS The Positive and Negative Symptom Scale is characterised into 6 factors. Each symptom is mapped with specific anatomical abnormalities and circuits. Comparison between factors reveals co-occurrence in parcels in Factor 1 and Factor 2. Multiple large-scale networks are involved in SCZ symptomatology, with functional connectivity within Default Mode Network (DMN) and Central Executive Network (CEN) regions most frequently associated with measures of psychopathology. CONCLUSION We present a summary of the relevant anatomy for regions of the cortical areas as part of a larger effort to understand its contribution in schizophrenia. This unique machine learning-type approach maps symptoms to specific brain regions and circuits by bridging the diagnostic subtypes and analysing the features of the connectome.
Collapse
Affiliation(s)
- Yingchan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hao Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen 518000, China; International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an 710082, China
| | - Hugh Taylor
- Omniscient Neurotechnology, Sydney, Australia
| | | | | | - Yueh-Hsin Lin
- Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | | | | | - Michael E Sughrue
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an 710082, China; Omniscient Neurotechnology, Sydney, Australia
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | | |
Collapse
|
9
|
Sun H, Lui S, Huang X, Sweeney J, Gong Q. Effects of randomness in the development of machine learning models in neuroimaging studies of schizophrenia. Schizophr Res 2023; 252:253-261. [PMID: 36682316 DOI: 10.1016/j.schres.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/29/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
Numerous studies have used machine learning with neuroimaging data for identifying individuals with a schizophrenia diagnosis. However, inconsistent results have limited the ability of the psychiatric community to objectively judge and accept the value of this approach. One factor that has contributed to the inconsistency, but has long been ignored, is randomness in the practice of machine learning. This is manifest when executing the same machine learning pipeline multiple times on the same dataset but getting different results. In the current study, a dataset of anatomical MRI scans from 158 patients with first-episode medication-naïve schizophrenia and 166 matched controls was used to investigate the effect of randomness on classifier performance estimates under different algorithm complexity and data splitting ratios. The maximum discriminatory accuracy that could be reached was 62.6 % ± 4.7 % (43.5 %-79.3 %) obtained when using extra-trees classifiers without feature normalization. Regions contributing to discrimination were located at bilateral temporal lobes and right frontal lobe. The results show that randomness has a significant impact on the precision of model performance estimates, especially when the size of test set is small. Current neuroimaging feature engineering combined with machine learning still falls short of being able to make diagnoses in the clinical context, but has value in revealing patterns of regional brain alteration associated with the illness. The current results indicate that effects of randomness on model performance should be reported and considered in interpreting model utility and it is necessary to evaluate models on large test sets to obtain valid estimates of model performance.
Collapse
Affiliation(s)
- Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - John Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. Heliyon 2022; 8:e12276. [PMID: 36582679 PMCID: PMC9793282 DOI: 10.1016/j.heliyon.2022.e12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| |
Collapse
|
11
|
Zeng J, Zhang W, Wu G, Wang X, Shah C, Li S, Xiao Y, Yao L, Cao H, Li Z, Sweeney JA, Lui S, Gong Q. Effects of Antipsychotic Medications and Illness Duration on Brain Features That Distinguish Schizophrenia Patients. Schizophr Bull 2022; 48:1354-1362. [PMID: 35925035 PMCID: PMC9673268 DOI: 10.1093/schbul/sbac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Previous studies have reported effects of antipsychotic treatment and illness duration on brain features. This study used a machine learning approach to examine whether these factors in aggregate impacted the utility of MRI features for differentiating individual schizophrenia patients from healthy controls. STUDY DESIGN This case-control study used patients with never-treated first-episode schizophrenia (FES, n = 179) and long-term ill schizophrenia (LTSZ, n = 30), with follow-up of the FES group after treatment (n = 71), a group of patients who had received long-term antipsychotic treatment (n = 93) and age and sex-matched healthy controls (n = 373) for each patient group. A multiple kernel learning classifier combining both structural and functional brain features was used to discriminate individual patients from controls. STUDY RESULTS MRI features differentiated untreated FES (0.73) and LTSZ (0.83) patients from healthy controls with moderate accuracy, but accuracy was significantly higher in antipsychotic-treated FES (0.94) and LTSZ (0.98) patients. Treatment was associated with significantly increased accuracy of case identification in both early course and long-term ill patients (both p < .001). Effects of illness duration, examined separately in treated and untreated patients, were less robust. CONCLUSIONS Our results demonstrate that initiation of antipsychotic treatment alters brain features in ways that further distinguish individual schizophrenia patients from healthy individuals, and have a modest effect of illness duration. Intrinsic illness-related brain alterations in untreated patients, regardless of illness duration, are not sufficiently robust for accurate identification of schizophrenia patients.
Collapse
Affiliation(s)
| | | | - Guorong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaowan Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chandan Shah
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China,Center for Psychiatry Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Su Lui
- To whom correspondence should be addressed; Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China, tel/fax: +86-28-85423960; e-mail:
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China,Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
13
|
Lei D, Suo X, Qin K, Pinaya WHL, Ai Y, Li W, Kuang W, Lui S, Kemp GJ, Sweeney JA, Gong Q. Magnetization transfer imaging alterations and its diagnostic value in antipsychotic-naïve first-episode schizophrenia. Transl Psychiatry 2022; 12:189. [PMID: 35523792 PMCID: PMC9076920 DOI: 10.1038/s41398-022-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
Magnetization transfer imaging (MTI) may provide more sensitivity and mechanistic understanding of neuropathological changes associated with schizophrenia than volumetric MRI. This study aims to identify brain magnetization transfer ratio (MTR) changes in antipsychotic-naïve first-episode schizophrenia (FES), and to correlate MTR findings with clinical symptom severity. A total of 143 individuals with antipsychotic-naïve FES and 147 healthy controls (HCs) were included and underwent 3.0 T brain MTI between August 2005 and July 2014. Voxelwise analysis was performed to test for MTR differences with family-wise error corrections. Relationships of these differences to symptom severity were assessed using partial correlations. Exploratory analyses using a support vector machine (SVM) classifier were conducted to discriminate FES from HCs using MTR maps. Model performance was examined using a 10-fold stratified cross-validation. Compared with HCs, individuals with FES exhibited higher MTR values in left thalamus, precuneus, cuneus, and paracentral lobule, that were positively correlated with schizophrenia symptom severity [precuneus (r = 0.34, P = 0.0004), cuneus (r = 0.33, P = 0.0006) and paracentral lobule (r = 0.37, P = 0.001)]. Whole-brain MTR maps identified individuals with FES with overall accuracy 75.5% (219 of 290 individuals) based on SVM approach. In antipsychotic-naïve FES, clinically relevant biophysical abnormalities detected by MTI mainly in the left parieto-occipital regions are informative about local brain pathology, and have potential as diagnostic markers.
Collapse
Affiliation(s)
- Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, WC2R 2LS, UK
| | - Yuan Ai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China.
| |
Collapse
|
14
|
Zhang X, Chen H, Tao L, Zhang X, Wang H, He W, Li Q, Xiao P, Xu B, Gui H, Lv F, Luo T, Man Y, Xiao Z, Fang W. Combined multivariate pattern analysis with frequency-dependent intrinsic brain activity to identify essential tremor. Neurosci Lett 2022; 776:136566. [DOI: 10.1016/j.neulet.2022.136566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
|
15
|
A Novel Bayesian Linear Regression Model for the Analysis of Neuroimaging Data. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this paper, we propose a novel Machine Learning Model based on Bayesian Linear Regression intended to deal with the low sample-to-variable ratio typically found in neuroimaging studies and focusing on mental disorders. The proposed model combines feature selection capabilities with a formulation in the dual space which, in turn, enables efficient work with neuroimaging data. Thus, we have tested the proposed algorithm with real MRI data from an animal model of schizophrenia. The results show that our proposal efficiently predicts the diagnosis and, at the same time, detects regions which clearly match brain areas well-known to be related to schizophrenia.
Collapse
|
16
|
Chilla GS, Yeow LY, Chew QH, Sim K, Prakash KNB. Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods. Sci Rep 2022; 12:2755. [PMID: 35177708 PMCID: PMC8854385 DOI: 10.1038/s41598-022-06651-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that imposes enormous clinical burden on patients and their caregivers. Determining classification biomarkers can complement clinical measures and improve understanding of the neural basis underlying schizophrenia. Using neuroanatomical features, several machine learning based investigations have attempted to classify schizophrenia from healthy controls but the range of neuroanatomical measures employed have been limited in range to date. In this study, we sought to classify schizophrenia and healthy control cohorts using a diverse set of neuroanatomical measures (cortical and subcortical volumes, cortical areas and thickness, cortical mean curvature) and adopted Ensemble methods for better performance. Additionally, we correlated such neuroanatomical features with Quality of Life (QoL) assessment scores within the schizophrenia cohort. With Ensemble methods and diverse neuroanatomical measures, we achieved classification accuracies ranging from 83 to 87%, sensitivities and specificities varying between 90-98% and 65-70% respectively. In addition to lower QoL scores within schizophrenia cohort, significant correlations were found between specific neuroanatomical measures and psychological health, social relationship subscale domains of QoL. Our results suggest the utility of inclusion of subcortical and cortical measures and Ensemble methods to achieve better classification performance and their potential impact of parsing out neurobiological correlates of quality of life in schizophrenia.
Collapse
Affiliation(s)
- Geetha Soujanya Chilla
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667.
| | - Ling Yun Yeow
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667
| | - Qian Hui Chew
- Institute of Mental Health, Singapore, Singapore, 539747
| | - Kang Sim
- Institute of Mental Health, Singapore, Singapore, 539747
| | - K N Bhanu Prakash
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore, 138667.
| |
Collapse
|
17
|
Wang J, Ke P, Zang J, Wu F, Wu K. Discriminative Analysis of Schizophrenia Patients Using Topological Properties of Structural and Functional Brain Networks: A Multimodal Magnetic Resonance Imaging Study. Front Neurosci 2022; 15:785595. [PMID: 35087373 PMCID: PMC8787107 DOI: 10.3389/fnins.2021.785595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Interest in the application of machine learning (ML) techniques to multimodal magnetic resonance imaging (MRI) data for the diagnosis of schizophrenia (SZ) at the individual level is growing. However, a few studies have applied the features of structural and functional brain networks derived from multimodal MRI data to the discriminative analysis of SZ patients at different clinical stages. In this study, 205 normal controls (NCs), 61 first-episode drug-naive SZ (FESZ) patients, and 79 chronic SZ (CSZ) patients were recruited. We acquired their structural MRI, diffusion tensor imaging, and resting-state functional MRI data and constructed brain networks for each participant, including the gray matter network (GMN), white matter network (WMN), and functional brain network (FBN). We then calculated 3 nodal properties for each brain network, including degree centrality, nodal efficiency, and betweenness centrality. Two classifications (SZ vs. NC and FESZ vs. CSZ) were performed using five ML algorithms. We found that the SVM classifier with the input features of the combination of nodal properties of both the GMN and FBN achieved the best performance to discriminate SZ patients from NCs [accuracy, 81.2%; area under the receiver operating characteristic curve (AUC), 85.2%; p < 0.05]. Moreover, the SVM classifier with the input features of the combination of the nodal properties of both the GMN and WMN achieved the best performance to discriminate FESZ from CSZ patients (accuracy, 86.2%; AUC, 92.3%; p < 0.05). Furthermore, the brain areas in the subcortical/cerebellum network and the frontoparietal network showed significant importance in both classifications. Together, our findings provide new insights to understand the neuropathology of SZ and further highlight the potential advantages of multimodal network properties for identifying SZ patients at different clinical stages.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Engineering, Guangzhou Xinhua University, Guangzhou, China
| | - Pengfei Ke
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jinyu Zang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu,
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Kai Wu,
| |
Collapse
|
18
|
Wen Y, Zhou C, Chen L, Deng Y, Cleusix M, Jenni R, Conus P, Do KQ, Xin L. Bridging structural MRI with cognitive function for individual level classification of early psychosis via deep learning. Front Psychiatry 2022; 13:1075564. [PMID: 36704734 PMCID: PMC9871589 DOI: 10.3389/fpsyt.2022.1075564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Recent efforts have been made to apply machine learning and deep learning approaches to the automated classification of schizophrenia using structural magnetic resonance imaging (sMRI) at the individual level. However, these approaches are less accurate on early psychosis (EP) since there are mild structural brain changes at early stage. As cognitive impairments is one main feature in psychosis, in this study we apply a multi-task deep learning framework using sMRI with inclusion of cognitive assessment to facilitate the classification of patients with EP from healthy individuals. METHOD Unlike previous studies, we used sMRI as the direct input to perform EP classifications and cognitive estimations. The proposed deep learning model does not require time-consuming volumetric or surface based analysis and can provide additionally cognition predictions. Experiments were conducted on an in-house data set with 77 subjects and a public ABCD HCP-EP data set with 164 subjects. RESULTS We achieved 74.9 ± 4.3% five-fold cross-validated accuracy and an area under the curve of 71.1 ± 4.1% on EP classification with the inclusion of cognitive estimations. DISCUSSION We reveal the feasibility of automated cognitive estimation using sMRI by deep learning models, and also demonstrate the implicit adoption of cognitive measures as additional information to facilitate EP classifications from healthy controls.
Collapse
Affiliation(s)
- Yang Wen
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chuan Zhou
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Leiting Chen
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Yu Deng
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Martine Cleusix
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Schröder R, Faiola E, Fernanda Urquijo M, Bey K, Meyhöfer I, Steffens M, Kasparbauer AM, Ruef A, Högenauer H, Hurlemann R, Kambeitz J, Philipsen A, Wagner M, Koutsouleris N, Ettinger U. Neural Correlates of Smooth Pursuit Eye Movements in Schizotypy and Recent Onset Psychosis: A Multivariate Pattern Classification Approach. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac034. [PMID: 39144773 PMCID: PMC11206064 DOI: 10.1093/schizbullopen/sgac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Schizotypy refers to a set of personality traits that bear resemblance, at subclinical level, to psychosis. Despite evidence of similarity at multiple levels of analysis, direct comparisons of schizotypy and clinical psychotic disorders are rare. Therefore, we used functional magnetic resonance imaging (fMRI) to examine the neural correlates and task-based functional connectivity (psychophysiological interactions; PPI) of smooth pursuit eye movements (SPEM) in patients with recent onset psychosis (ROP; n = 34), participants with high levels of negative (HNS; n = 46) or positive (HPS; n = 41) schizotypal traits, and low-schizotypy control participants (LS; n = 61) using machine-learning. Despite strong previous evidence that SPEM is a highly reliable marker of psychosis, patients and controls could not be significantly distinguished based on SPEM performance or blood oxygen level dependent (BOLD) signal during SPEM. Classification was, however, significant for the right frontal eye field (FEF) seed region in the PPI analyses but not for seed regions in other key areas of the SPEM network. Applying the right FEF classifier to the schizotypal samples yielded decision scores between the LS and ROP groups, suggesting similarities and dissimilarities of the HNS and HPS samples with the LS and ROP groups. The very small difference between groups is inconsistent with previous studies that showed significant differences between patients with ROP and controls in both SPEM performance and underlying neural mechanisms with large effect sizes. As the current study had sufficient power to detect such differences, other reasons are discussed.
Collapse
Affiliation(s)
- Rebekka Schröder
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Eliana Faiola
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Maria Fernanda Urquijo
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | | | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Hanna Högenauer
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, University of Oldenburg Medical Campus, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
- Department of Psychiatry and Division of Medical Psychology, University HospitalBonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50931, Cologne, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| |
Collapse
|
20
|
Yang B, Zhang W, Lencer R, Tao B, Tang B, Yang J, Li S, Zeng J, Cao H, Sweeney JA, Gong Q, Lui S. Grey matter connectome abnormalities and age-related effects in antipsychotic-naive schizophrenia. EBioMedicine 2021; 74:103749. [PMID: 34906839 PMCID: PMC8671864 DOI: 10.1016/j.ebiom.2021.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background Convergent evidence is increasing to indicate progressive brain abnormalities in schizophrenia. Knowing the brain network features over the illness course in schizophrenia, independent of effects of antipsychotic medications, would extend our sight on this question. Methods We recruited 237 antipsychotic-naive patients with schizophrenia range from 16 to 73 years old, and 254 healthy controls. High-resolution T1 weighted images were obtained with a 3.0T MR scanner. Grey matter networks were constructed individually based on the similarities of regional grey matter measurements. Network metrics were compared between patient groups and healthy controls, and regression analyses with age were conducted to determine potential differential rate of age-related changes between them. Findings Nodal centrality abnormalities were observed in patients with untreated schizophrenia, particularly in the central executive, default mode and salience networks. Accelerated age-related declines and illness duration-related declines were observed in global assortativity, and in nodal metrics of left superior temporal pole in schizophrenia patients. Although no significant intergroup differences in age-related regression were observed, the pattern of network metric alternation of left thalamus indicated higher nodal properties in early course patients, which decreased in long-term ill patients. Interpretations Global and nodal alterations in the grey matter connectome related to age and duration of illness in antipsychotic-naive patients, indicating potentially progressive network organizations mainly involving temporal regions and thalamus in schizophrenia independent from medication effects. Funding The National Natural Science Foundation of China, Sichuan Science and Technology Program, the Fundamental Research Funds for the Central Universities, Post-Doctor Research Project, West China Hospital, Sichuan University , the Science and Technology Project of the Health Planning Committee of Sichuan, Postdoctoral Interdisciplinary Research Project of Sichuan University and 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University.
Collapse
Affiliation(s)
- Beisheng Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Germany
| | - Bo Tao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - John A Sweeney
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, OH, United States
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Machine Learning in Neuro-Oncology, Epilepsy, Alzheimer's Disease, and Schizophrenia. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:349-361. [PMID: 34862559 DOI: 10.1007/978-3-030-85292-4_39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Applications of machine learning (ML) in translational medicine include therapeutic drug creation, diagnostic development, surgical planning, outcome prediction, and intraoperative assistance. Opportunities in the neurosciences are rich given advancement in our understanding of the brain, expanding indications for intervention, and diagnostic challenges often characterized by multiple clinical and environmental factors. We present a review of ML in neuro-oncology, epilepsy, Alzheimer's disease, and schizophrenia to highlight recent progression in these field, optimizing machine learning capabilities in their current forms. Supervised learning models appear to be the most commonly incorporated algorithm models for machine learning across the reviewed neuroscience disciplines with primary aim of diagnosis. Accuracy ranges are high from 63% to 99% across all algorithms investigated. Machine learning contributions to neurosurgery, neurology, psychiatry, and the clinical and basic science neurosciences may enhance current medical best practices while also broadening our understanding of dynamic neural networks and the brain.
Collapse
|
22
|
Starke G, De Clercq E, Borgwardt S, Elger BS. Computing schizophrenia: ethical challenges for machine learning in psychiatry. Psychol Med 2021; 51:2515-2521. [PMID: 32536358 DOI: 10.1017/s0033291720001683] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in machine learning (ML) promise far-reaching improvements across medical care, not least within psychiatry. While to date no psychiatric application of ML constitutes standard clinical practice, it seems crucial to get ahead of these developments and address their ethical challenges early on. Following a short general introduction concerning ML in psychiatry, we do so by focusing on schizophrenia as a paradigmatic case. Based on recent research employing ML to further the diagnosis, treatment, and prediction of schizophrenia, we discuss three hypothetical case studies of ML applications with view to their ethical dimensions. Throughout this discussion, we follow the principlist framework by Tom Beauchamp and James Childress to analyse potential problems in detail. In particular, we structure our analysis around their principles of beneficence, non-maleficence, respect for autonomy, and justice. We conclude with a call for cautious optimism concerning the implementation of ML in psychiatry if close attention is paid to the particular intricacies of psychiatric disorders and its success evaluated based on tangible clinical benefit for patients.
Collapse
Affiliation(s)
- Georg Starke
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Eva De Clercq
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Bernice Simone Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- University Center of Legal Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Li Y, Tao L, Chen H, Wang H, Zhang X, Zhang X, Duan X, Fang Z, Li Q, He W, Lv F, Luo J, Xiao Z, Cao J, Fang W. Identifying Depressed Essential Tremor Using Resting-State Voxel-Wise Global Brain Connectivity: A Multivariate Pattern Analysis. Front Hum Neurosci 2021; 15:736155. [PMID: 34712127 PMCID: PMC8545862 DOI: 10.3389/fnhum.2021.736155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Objective: Although depression is one of the most common non-motor symptoms in essential tremor (ET), its pathogenesis and diagnosis biomarker are still unknown. Recently, machine learning multivariate pattern analysis (MVPA) combined with connectivity mapping of resting-state fMRI has provided a promising way to identify patients with depressed ET at the individual level and help to reveal the brain network pathogenesis of depression in patients with ET. Methods: Based on global brain connectivity (GBC) mapping from 41 depressed ET, 49 non-depressed ET, 45 primary depression, and 43 healthy controls (HCs), multiclass Gaussian process classification (GPC) and binary support vector machine (SVM) algorithms were used to identify patients with depressed ET from non-depressed ET, primary depression, and HCs, and the accuracy and permutation tests were used to assess the classification performance. Results: While the total accuracy (40.45%) of four-class GPC was poor, the four-class GPC could discriminate depressed ET from non-depressed ET, primary depression, and HCs with a sensitivity of 70.73% (P < 0.001). At the same time, the sensitivity of using binary SVM to discriminate depressed ET from non-depressed ET, primary depression, and HCs was 73.17, 80.49, and 75.61%, respectively (P < 0.001). The significant discriminative features were mainly located in cerebellar-motor-prefrontal cortex circuits (P < 0.001), and a further correlation analysis showed that the GBC values of significant discriminative features in the right middle prefrontal gyrus, bilateral cerebellum VI, and Crus 1 were correlated with clinical depression severity in patients with depressed ET. Conclusion: Our findings demonstrated that GBC mapping combined with machine learning MVPA could be used to identify patients with depressed ET, and the GBC changes in cerebellar-prefrontal cortex circuits not only posed as the significant discriminative features but also helped to understand the network pathogenesis underlying depression in patients with ET.
Collapse
Affiliation(s)
- Yufen Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyue Duan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanlin He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Hu K, Wang M, Liu Y, Yan H, Song M, Chen J, Chen Y, Wang H, Guo H, Wan P, Lv L, Yang Y, Li P, Lu L, Yan J, Wang H, Zhang H, Zhang D, Wu H, Ning Y, Jiang T, Liu B. Multisite schizophrenia classification by integrating structural magnetic resonance imaging data with polygenic risk score. Neuroimage Clin 2021; 32:102860. [PMID: 34749286 PMCID: PMC8567302 DOI: 10.1016/j.nicl.2021.102860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022]
Abstract
Previous brain structural magnetic resonance imaging studies reported that patients with schizophrenia have brain structural abnormalities, which have been used to discriminate schizophrenia patients from normal controls. However, most existing studies identified schizophrenia patients at a single site, and the genetic features closely associated with highly heritable schizophrenia were not considered. In this study, we performed standardized feature extraction on brain structural magnetic resonance images and on genetic data to separate schizophrenia patients from normal controls. A total of 1010 participants, 508 schizophrenia patients and 502 normal controls, were recruited from 8 independent sites across China. Classification experiments were carried out using different machine learning methods and input features. We tested a support vector machine, logistic regression, and an ensemble learning strategy using 3 feature sets of interest: (1) imaging features: gray matter volume, (2) genetic features: polygenic risk scores, and (3) a fusion of imaging features and genetic features. The performance was assessed by leave-one-site-out cross-validation. Finally, some important brain and genetic features were identified. We found that the models with both imaging and genetic features as input performed better than models with either alone. The average accuracy of the classification models with the best performance in the cross-validation was 71.6%. The genetic feature that measured the cumulative risk of the genetic variants most associated with schizophrenia contributed the most to the classification. Our work took the first step toward considering both structural brain alterations and genome-wide genetic factors in a large-scale multisite schizophrenia classification. Our findings may provide insight into the underlying pathophysiology and risk mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Ke Hu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ming Song
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Jun Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Huiling Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China; Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Queensland Brain Institute, University of Queensland, Brisbane, Australia.
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
25
|
Xiao Y, Liao W, Long Z, Tao B, Zhao Q, Luo C, Tamminga CA, Keshavan MS, Pearlson GD, Clementz BA, Gershon ES, Ivleva EI, Keedy SK, Biswal BB, Mechelli A, Lencer R, Sweeney JA, Lui S, Gong Q. Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations. Schizophr Bull 2021; 48:241-250. [PMID: 34508358 PMCID: PMC8781382 DOI: 10.1093/schbul/sbab110] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a complex and heterogeneous syndrome. Whether quantitative imaging biomarkers can identify discrete subgroups of patients as might be used to foster personalized medicine approaches for patient care remains unclear. Cross-sectional structural MR images of 163 never-treated first-episode schizophrenia patients (FES) and 133 chronically ill patients with midcourse schizophrenia from the Bipolar and Schizophrenia Network for Intermediate Phenotypes (B-SNIP) consortium and a total of 403 healthy controls were recruited. Morphometric measures (cortical thickness, surface area, and subcortical structures) were extracted for each subject and then the optimized subtyping results were obtained with nonsupervised cluster analysis. Three subgroups of patients defined by distinct patterns of regional cortical and subcortical morphometric features were identified in FES. A similar three subgroup pattern was identified in the independent dataset of patients from the multi-site B-SNIP consortium. Similarities of classification patterns across these two patient cohorts suggest that the 3-group typology is relatively stable over the course of illness. Cognitive functions were worse in subgroup 1 with midcourse schizophrenia than those in subgroup 3. These findings provide novel insight into distinct subgroups of patients with schizophrenia based on structural brain features. Findings of different cognitive functions among the subgroups support clinical differences in the MRI-defined illness subtypes. Regardless of clinical presentation and stage of illness, anatomic MR subgrouping biomarkers can separate neurobiologically distinct subgroups of schizophrenia patients, which represent an important and meaningful step forward in differentiating subtypes of patients for studies of illness neurobiology and potentially for clinical trials.
Collapse
Affiliation(s)
- Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Department of Psychiatry, University of Münster, Münster, Germany
| | - Wei Liao
- Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Zhiliang Long
- Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiannan Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University and Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Elliot S Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah K Keedy
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Rebekka Lencer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,To whom correspondence should be addressed; #37 GuoXue Xiang, Chengdu 610041, China; Tel: 86-28-85423960, Fax: 86-28-85423503; e-mail:
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Quantitative EEG improves prediction of Sturge-Weber syndrome in infants with port-wine birthmark. Clin Neurophysiol 2021; 132:2440-2446. [PMID: 34454271 DOI: 10.1016/j.clinph.2021.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/05/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Port-wine birthmark (PWB) is a common occurrence in the newborn, and general pediatricians, dermatologists, and ophthalmologists are often called on to make an assessment of risk for Sturge-Weber syndrome (SWS) due to workforce shortages in pediatric neurologists and MRI's low sensitivity for SWS brain involvement in infants. We therefore aimed to develop a quantitative EEG (qEEG) approach to safely screen young infants with PWB for SWS risk and optimal timing of diagnostic MRI. METHODS Forty-eight infants (prior to first birthday) underwent EEG recording. Signal processing methods compared voltage between left and right sides using a previously defined pipeline and diagnostic threshold. In this test sample, we compared sensitivity/specificity of the qEEG metric against MRI performed after the first birthday. We also used likelihood ratio testing to determine whether qEEG adds incremental information beyond topographical extent of PWB, another risk marker of brain involvement. RESULTS qEEG helped predict SWS risk in the first year of life (p = 0.031), with a sensitivity of 50% and a specificity of 81%. It added about 40% incremental information beyond PWB extent alone (p = 0.042). CONCLUSION qEEG adds information to risk prediction in infants with facial PWB. SIGNIFICANCE qEEG can be used to help determine whether to obtain an MRI in the first year of life. The data collected can assist in developing a predictive model risk calculator that incorporates both PWB extent and qEEG results, which can be validated and then employed in the community.
Collapse
|
27
|
Zang J, Huang Y, Kong L, Lei B, Ke P, Li H, Zhou J, Xiong D, Li G, Chen J, Li X, Xiang Z, Ning Y, Wu F, Wu K. Effects of Brain Atlases and Machine Learning Methods on the Discrimination of Schizophrenia Patients: A Multimodal MRI Study. Front Neurosci 2021; 15:697168. [PMID: 34385901 PMCID: PMC8353157 DOI: 10.3389/fnins.2021.697168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Recently, machine learning techniques have been widely applied in discriminative studies of schizophrenia (SZ) patients with multimodal magnetic resonance imaging (MRI); however, the effects of brain atlases and machine learning methods remain largely unknown. In this study, we collected MRI data for 61 first-episode SZ patients (FESZ), 79 chronic SZ patients (CSZ) and 205 normal controls (NC) and calculated 4 MRI measurements, including regional gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low-frequency fluctuation and degree centrality. We systematically analyzed the performance of two classifications (SZ vs NC; FESZ vs CSZ) based on the combinations of three brain atlases, five classifiers, two cross validation methods and 3 dimensionality reduction algorithms. Our results showed that the groupwise whole-brain atlas with 268 ROIs outperformed the other two brain atlases. In addition, the leave-one-out cross validation was the best cross validation method to select the best hyperparameter set, but the classification performances by different classifiers and dimensionality reduction algorithms were quite similar. Importantly, the contributions of input features to both classifications were higher with the GMV and ReHo features of brain regions in the prefrontal and temporal gyri. Furthermore, an ensemble learning method was performed to establish an integrated model, in which classification performance was improved. Taken together, these findings indicated the effects of these factors in constructing effective classifiers for psychiatric diseases and showed that the integrated model has the potential to improve the clinical diagnosis and treatment evaluation of SZ.
Collapse
Affiliation(s)
- Jinyu Zang
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yuanyuan Huang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Bingye Lei
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Pengfei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Guixiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Zhiming Xiang
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- Department of Radiology, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - Yuping Ning
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine Learning of Schizophrenia Detection with Structural and Functional Neuroimaging. DISEASE MARKERS 2021; 2021:9963824. [PMID: 34211615 PMCID: PMC8208855 DOI: 10.1155/2021/9963824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Schizophrenia (SZ) is a severe psychiatric illness, and it affects around 1% of the general population; however, its reliable diagnosis is challenging. Functional MRI (fMRI) and structural MRI (sMRI) are useful techniques for investigating the functional and structural abnormalities of the human brain, and a growing number of studies have reported that multimodal brain data can improve diagnostic accuracy. Machine learning (ML) is widely used in the diagnosis of neuroscience and neuropsychiatry diseases, and it can obtain high accuracy. However, the conventional ML which concatenated the features into a longer feature vector could not be sufficiently effective to combine different features from different modalities. There are considerable controversies over the use of global signal regression (GSR), and few studies have explored the role of GSR in ML in diagnosing neurological diseases. The current study utilized fMRI and sMRI data to implement a new method named multimodal imaging and multilevel characterization with multiclassifier (M3) to classify SZs and healthy controls (HCs) and investigate the influence of GSR in SZ classification. We found that when we used Brainnetome 246 atlas and without performed GSR, our method obtained a classification accuracy of 83.49%, with a sensitivity of 68.69%, a specificity of 93.75%, and an AUC of 0.8491, respectively. We also got great classification performances with different processing methods (with/without GSR and different brain parcellation schemes). We found that the accuracy and specificity of the models without GSR were higher than that of the models with GSR. Our findings indicate that the M3 method is an effective tool to distinguish SZs from HCs, and it can identify discriminative regions to detect SZ to explore the neural mechanisms underlying SZ. The global signal may contain important neuronal information; it can improve the accuracy and specificity of SZ detection.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| |
Collapse
|
29
|
Abstract
Our current diagnostic methods for treatment planning in Psychiatry and Neurodevelopmental Disabilities leave room for improvement, and null results in clinical trials in these fields may be a result of insufficient tools for patient stratification. Great hope has been placed in novel technologies to improve clinical and trial outcomes, but we have yet to see a substantial change in clinical practice. As we examine attempts at biomarker validation within these fields, we find that it may be the diagnoses themselves that fall short. We now need to improve neuropsychiatric nosologies with a focus on validity based not solely on behavioral features, but on a synthesis that includes genetic and biological data as well. The eventual goal is diagnostic biomarkers and diagnoses themselves based on distinct mechanisms, but such an understanding of the causal relationship across levels of analysis is likely to be elusive for some time. Rather, we propose an approach in the near-term that deconstructs diagnosis into a series of independent, empiric and clinically relevant associations among a single, defined patient group, a single biomarker, a single intervention and a single clinical outcome. Incremental study across patient groups, interventions, outcomes and modalities will lead to a more interdigitated network of knowledge, and correlations in metrics across levels of analysis will eventually give way to the causal understanding that will allow for mechanistically based diagnoses.
Collapse
|
30
|
Xu Y, Lin Y, Bell RP, Towe SL, Pearson JM, Nadeem T, Chan C, Meade CS. Machine learning prediction of neurocognitive impairment among people with HIV using clinical and multimodal magnetic resonance imaging data. J Neurovirol 2021; 27:1-11. [PMID: 33464541 PMCID: PMC8001877 DOI: 10.1007/s13365-020-00930-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 01/24/2023]
Abstract
Diagnosis of HIV-associated neurocognitive impairment (NCI) continues to be a clinical challenge. The purpose of this study was to develop a prediction model for NCI among people with HIV using clinical- and magnetic resonance imaging (MRI)-derived features. The sample included 101 adults with chronic HIV disease. NCI was determined using a standardized neuropsychological testing battery comprised of seven domains. MRI features included gray matter volume from high-resolution anatomical scans and white matter integrity from diffusion-weighted imaging. Clinical features included demographics, substance use, and routine laboratory tests. Least Absolute Shrinkage and Selection Operator Logistic regression was used to perform variable selection on MRI features. These features were subsequently used to train a support vector machine (SVM) to predict NCI. Three different classification tasks were performed: one used only clinical features; a second used only selected MRI features; a third used both clinical and selected MRI features. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity with a tenfold cross-validation. The SVM classifier that combined selected MRI with clinical features outperformed the model using clinical features or MRI features alone (AUC: 0.83 vs. 0.62 vs. 0.79; accuracy: 0.80 vs. 0.65 vs. 0.72; sensitivity: 0.86 vs. 0.85 vs. 0.86; specificity: 0.71 vs. 0.37 vs. 0.52). Our results provide preliminary evidence that combining clinical and MRI features can increase accuracy in predicting NCI and could be developed as a potential tool for NCI diagnosis in HIV clinical practice.
Collapse
Affiliation(s)
- Yunan Xu
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Yizi Lin
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Ryan P Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sheri L Towe
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - John M Pearson
- Center for Cognitive Neuroscience and Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Tauseef Nadeem
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
31
|
Yamamoto M, Bagarinao E, Kushima I, Takahashi T, Sasabayashi D, Inada T, Suzuki M, Iidaka T, Ozaki N. Support vector machine-based classification of schizophrenia patients and healthy controls using structural magnetic resonance imaging from two independent sites. PLoS One 2020; 15:e0239615. [PMID: 33232334 PMCID: PMC7685428 DOI: 10.1371/journal.pone.0239615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Structural brain alterations have been repeatedly reported in schizophrenia; however, the pathophysiology of its alterations remains unclear. Multivariate pattern recognition analysis such as support vector machines can classify patients and healthy controls by detecting subtle and spatially distributed patterns of structural alterations. We aimed to use a support vector machine to distinguish patients with schizophrenia from control participants on the basis of structural magnetic resonance imaging data and delineate the patterns of structural alterations that significantly contributed to the classification performance. We used independent datasets from different sites with different magnetic resonance imaging scanners, protocols and clinical characteristics of the patient group to achieve a more accurate estimate of the classification performance of support vector machines. We developed a support vector machine classifier using the dataset from one site (101 participants) and evaluated the performance of the trained support vector machine using a dataset from the other site (97 participants) and vice versa. We assessed the performance of the trained support vector machines in each support vector machine classifier. Both support vector machine classifiers attained a classification accuracy of >70% with two independent datasets indicating a consistently high performance of support vector machines even when used to classify data from different sites, scanners and different acquisition protocols. The regions contributing to the classification accuracy included the bilateral medial frontal cortex, superior temporal cortex, insula, occipital cortex, cerebellum, and thalamus, which have been reported to be related to the pathogenesis of schizophrenia. These results indicated that the support vector machine could detect subtle structural brain alterations and might aid our understanding of the pathophysiology of these changes in schizophrenia, which could be one of the diagnostic findings of schizophrenia.
Collapse
Affiliation(s)
- Maeri Yamamoto
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | - Itaru Kushima
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Toyama, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Toyama, Japan
| | - Tetsuya Iidaka
- Brain & Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
32
|
Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry 2020; 20:488. [PMID: 33023515 PMCID: PMC7542439 DOI: 10.1186/s12888-020-02886-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bipolar disorder (BPD) is a common mood disorder that is often goes misdiagnosed or undiagnosed. Recently, machine learning techniques have been combined with neuroimaging methods to aid in the diagnosis of BPD. However, most studies have focused on the construction of classifiers based on single-modality MRI. Hence, in this study, we aimed to construct a support vector machine (SVM) model using a combination of structural and functional MRI, which could be used to accurately identify patients with BPD. METHODS In total, 44 patients with BPD and 36 healthy controls were enrolled in the study. Clinical evaluation and MRI scans were performed for each subject. Next, image pre-processing, VBM and ReHo analyses were performed. The ReHo values of each subject in the clusters showing significant differences were extracted. Further, LASSO approach was recruited to screen features. Based on selected features, the SVM model was established, and discriminant analysis was performed. RESULTS After using the two-sample t-test with multiple comparisons, a total of 8 clusters were extracted from the data (VBM = 6; ReHo = 2). Next, we used both VBM and ReHo data to construct the new SVM classifier, which could effectively identify patients with BPD at an accuracy of 87.5% (95%CI: 72.5-95.3%), sensitivity of 86.4% (95%CI: 64.0-96.4%), and specificity of 88.9% (95%CI: 63.9-98.0%) in the test data (p = 0.0022). CONCLUSIONS A combination of structural and functional MRI can be of added value in the construction of SVM classifiers to aid in the accurate identification of BPD in the clinic.
Collapse
Affiliation(s)
- Hao Li
- grid.412615.5Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China.
| | - Yizhi Zhang
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Yueheng Liu
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,Chinese National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan China
| | - Wenhao Deng
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Wenjin Zhou
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| |
Collapse
|
33
|
Support Vector Machine-Based Schizophrenia Classification Using Morphological Information from Amygdaloid and Hippocampal Subregions. Brain Sci 2020; 10:brainsci10080562. [PMID: 32824267 PMCID: PMC7465509 DOI: 10.3390/brainsci10080562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Structural changes in the hippocampus and amygdala have been demonstrated in schizophrenia patients. However, whether morphological information from these subcortical regions could be used by machine learning algorithms for schizophrenia classification were unknown. The aim of this study was to use volume of the amygdaloid and hippocampal subregions for schizophrenia classification. The dataset consisted of 57 patients with schizophrenia and 69 healthy controls. The volume of 26 hippocampal and 20 amygdaloid subregions were extracted from T1 structural MRI images. Sequential backward elimination (SBE) algorithm was used for feature selection, and a linear support vector machine (SVM) classifier was configured to explore the feasibility of hippocampal and amygdaloid subregions in the classification of schizophrenia. The proposed SBE-SVM model achieved a classification accuracy of 81.75% on 57 patients and 69 healthy controls, with a sensitivity of 84.21% and a specificity of 81.16%. AUC was 0.8241 (p < 0.001 tested with 1000-times permutation). The results demonstrated evidence of hippocampal and amygdaloid structural changes in schizophrenia patients, and also suggested that morphological features from the amygdaloid and hippocampal subregions could be used by machine learning algorithms for the classification of schizophrenia.
Collapse
|
34
|
Detecting Abnormal Brain Regions in Schizophrenia Using Structural MRI via Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2020; 2020:6405930. [PMID: 32300361 PMCID: PMC7142389 DOI: 10.1155/2020/6405930] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Utilizing neuroimaging and machine learning (ML) to differentiate schizophrenia (SZ) patients from normal controls (NCs) and for detecting abnormal brain regions in schizophrenia has several benefits and can provide a reference for the clinical diagnosis of schizophrenia. In this study, structural magnetic resonance images (sMRIs) from SZ patients and NCs were used for discriminative analysis. This study proposed an ML framework based on coarse-to-fine feature selection. The proposed framework used two-sample t-tests to extract the differences between groups first, then further eliminated the nonrelevant and redundant features with recursive feature elimination (RFE), and finally utilized the support vector machine (SVM) to learn the decision models with selected gray matter (GM) and white matter (WM) features. Previous studies have tended to report differences at the group level instead of at the individual level and cannot be widely applied. The method proposed in this study extends the diagnosis to the individual level and has a higher recognition rate than previous methods. The experimental results of this study demonstrate that the proposed framework distinguishes SZ patients from NCs, with the highest classification accuracy reaching over 85%. The identified biomarkers are also consistent with previous literature findings. As a universal method, the proposed framework can be extended to diagnose other diseases.
Collapse
|
35
|
Jo YT, Joo SW, Shon SH, Kim H, Kim Y, Lee J. Diagnosing schizophrenia with network analysis and a machine learning method. Int J Methods Psychiatr Res 2020; 29:e1818. [PMID: 32022360 PMCID: PMC7051840 DOI: 10.1002/mpr.1818] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Schizophrenia is a chronic and debilitating neuropsychiatric disorder. It has been suggested that impaired brain connectivity underlies the pathophysiology of schizophrenia. Network analysis has thus recently emerged in the field of schizophrenia research. METHODS We investigated 48 schizophrenia patients and 24 healthy controls using network analysis and a machine learning method. A number of global and nodal network properties were estimated from graphs that were reconstructed using probabilistic brain tractography. These network properties were then compared between groups and used for machine learning to classify schizophrenia patients and healthy controls. RESULTS In classifying schizophrenia patients and healthy controls via network properties, the support vector machine, random forest, naïve Bayes, and gradient boosting machine learning models showed an encouraging level of performance. The overall connectivity was revealed as the most significant contributing feature to this classification among the global network properties. Among the nodal network properties, although the relative importance of each region of interest was not identical, there were still some patterns. CONCLUSION In conclusion, the possibility exists to classify schizophrenia patients and healthy controls using network properties, and we have found that there is a provisional pattern of involved brain regions among patients with schizophrenia.
Collapse
Affiliation(s)
- Young Tak Jo
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Woo Joo
- Medical Corps, 1st fleet, Republic of Korea Navy, Donghae, Korea
| | - Seung-Hyun Shon
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Harin Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yangsik Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungsun Lee
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Perera IR, Hettiarachchige L, Liyanage S. Machine Learning Applications for optimized mental health outcomes in Asia: Translating Hype to Hope. Asian J Psychiatr 2020; 49:101977. [PMID: 32120297 DOI: 10.1016/j.ajp.2020.101977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/26/2020] [Accepted: 02/21/2020] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Sidath Liyanage
- Department of Software Engineering, Faculty of Computing & Technology, University of Kelaniya, Sri Lanka
| |
Collapse
|
37
|
Vieira S, Gong QY, Pinaya WHL, Scarpazza C, Tognin S, Crespo-Facorro B, Tordesillas-Gutierrez D, Ortiz-García V, Setien-Suero E, Scheepers FE, Van Haren NEM, Marques TR, Murray RM, David A, Dazzan P, McGuire P, Mechelli A. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull 2020; 46:17-26. [PMID: 30809667 PMCID: PMC6942152 DOI: 10.1093/schbul/sby189] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the high level of interest in the use of machine learning (ML) and neuroimaging to detect psychosis at the individual level, the reliability of the findings is unclear due to potential methodological issues that may have inflated the existing literature. This study aimed to elucidate the extent to which the application of ML to neuroanatomical data allows detection of first episode psychosis (FEP), while putting in place methodological precautions to avoid overoptimistic results. We tested both traditional ML and an emerging approach known as deep learning (DL) using 3 feature sets of interest: (1) surface-based regional volumes and cortical thickness, (2) voxel-based gray matter volume (GMV) and (3) voxel-based cortical thickness (VBCT). To assess the reliability of the findings, we repeated all analyses in 5 independent datasets, totaling 956 participants (514 FEP and 444 within-site matched controls). The performance was assessed via nested cross-validation (CV) and cross-site CV. Accuracies ranged from 50% to 70% for surfaced-based features; from 50% to 63% for GMV; and from 51% to 68% for VBCT. The best accuracies (70%) were achieved when DL was applied to surface-based features; however, these models generalized poorly to other sites. Findings from this study suggest that, when methodological precautions are adopted to avoid overoptimistic results, detection of individuals in the early stages of psychosis is more challenging than originally thought. In light of this, we argue that the current evidence for the diagnostic value of ML and structural neuroimaging should be reconsidered toward a more cautious interpretation.
Collapse
Affiliation(s)
- Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Qi-yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Walter H L Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Centre of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Paulo, Brazil
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Department of General Psychology, University of Padova, Padova, Italy
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Benedicto Crespo-Facorro
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Diana Tordesillas-Gutierrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Victor Ortiz-García
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Esther Setien-Suero
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Neeltje E M Van Haren
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tiago R Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Anthony David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| |
Collapse
|
38
|
Chang YW, Tsai SJ, Wu YF, Yang AC. Development of an Al-Based Web Diagnostic System for Phenotyping Psychiatric Disorders. Front Psychiatry 2020; 11:542394. [PMID: 33250789 PMCID: PMC7674487 DOI: 10.3389/fpsyt.2020.542394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Artificial intelligence (AI)-based medical diagnostic applications are on the rise. Our recent study has suggested an explainable deep neural network (EDNN) framework for identifying key structural deficits related to the pathology of schizophrenia. Here, we presented an AI-based web diagnostic system for schizophrenia under the EDNN framework with three-dimensional (3D) visualization of subjects' neuroimaging dataset. Methods: This AI-based web diagnostic system consisted of a web server and a neuroimaging diagnostic database. The web server deployed the EDNN algorithm under the Node.js environment. Feature selection and network model building were performed on the dataset obtained from two hundred schizophrenic patients and healthy controls in the Taiwan Aging and Mental Illness (TAMI) cohort. We included an independent cohort with 88 schizophrenic patients and 44 healthy controls recruited at Tri-Service General Hospital Beitou Branch for validation purposes. Results: Our AI-based web diagnostic system achieved 84.00% accuracy (89.47% sensitivity, 80.62% specificity) for gray matter (GM) and 90.22% accuracy (89.21% sensitivity, 91.23% specificity) for white matter (WM) on the TAMI cohort. For the Beitou cohort as an unseen test set, the model achieved 77.27 and 70.45% accuracy for GM and WM. Furthermore, it achieved 85.50 and 88.20% accuracy after model retraining to mitigate the effects of drift on the predictive capability. Moreover, our system visualized the identified voxels in brain atrophy in a 3D manner with patients' structural image, optimizing the evaluation process of the diagnostic results. Discussion: Together, our approach under the EDNN framework demonstrated the potential future direction of making a schizophrenia diagnosis based on structural brain imaging data. Our deep learning model is explainable, arguing for the accuracy of the key information related to the pathology of schizophrenia when using the AI-based web assessment platform. The rationale of this approach is in accordance with the Research Domain Criteria suggested by the National Institute of Mental Health.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Institute of Brain Science and Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science and Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Fu Wu
- Department of Psychiatry, Beitou Branch, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science and Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan.,Brain Medicine Center, Tao-Yuan Psychiatric Center, Tao-Yuan, Taiwan
| |
Collapse
|
39
|
Oh J, Oh BL, Lee KU, Chae JH, Yun K. Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm. Front Psychiatry 2020; 11:16. [PMID: 32116837 PMCID: PMC7008229 DOI: 10.3389/fpsyt.2020.00016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm. METHOD Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network. RESULTS The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images. CONCLUSIONS The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.
Collapse
Affiliation(s)
- Jihoon Oh
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Baek-Lok Oh
- Department of Ophthalmology, Seoul National University Hospital, Seoul, South Korea
| | - Kyong-Uk Lee
- Department of Psychiatry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Ho Chae
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyongsik Yun
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States.,Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
40
|
Ebdrup BH, Axelsen MC, Bak N, Fagerlund B, Oranje B, Raghava JM, Nielsen MØ, Rostrup E, Hansen LK, Glenthøj BY. Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients. Psychol Med 2019; 49:2754-2763. [PMID: 30560750 PMCID: PMC6877469 DOI: 10.1017/s0033291718003781] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND A wealth of clinical studies have identified objective biomarkers, which separate schizophrenia patients from healthy controls on a group level, but current diagnostic systems solely include clinical symptoms. In this study, we investigate if machine learning algorithms on multimodal data can serve as a framework for clinical translation. METHODS Forty-six antipsychotic-naïve, first-episode schizophrenia patients and 58 controls underwent neurocognitive tests, electrophysiology, and magnetic resonance imaging (MRI). Patients underwent clinical assessments before and after 6 weeks of antipsychotic monotherapy with amisulpride. Nine configurations of different supervised machine learning algorithms were applied to first estimate the unimodal diagnostic accuracy, and next to estimate the multimodal diagnostic accuracy. Finally, we explored the predictability of symptom remission. RESULTS Cognitive data significantly classified patients from controls (accuracies = 60-69%; p values = 0.0001-0.009). Accuracies of electrophysiology, structural MRI, and diffusion tensor imaging did not exceed chance level. Multimodal analyses with cognition plus any combination of one or more of the remaining three modalities did not outperform cognition alone. None of the modalities predicted symptom remission. CONCLUSIONS In this multivariate and multimodal study in antipsychotic-naïve patients, only cognition significantly discriminated patients from controls, and no modality appeared to predict short-term symptom remission. Overall, these findings add to the increasing call for cognition to be included in the definition of schizophrenia. To bring about the full potential of machine learning algorithms in first-episode, antipsychotic-naïve schizophrenia patients, careful a priori variable selection based on independent data as well as inclusion of other modalities may be required.
Collapse
Affiliation(s)
- Bjørn H. Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin C. Axelsen
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nikolaj Bak
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jayachandra M. Raghava
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Mette Ø. Nielsen
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Lars K. Hansen
- Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Tandon N, Tandon R. Using machine learning to explain the heterogeneity of schizophrenia. Realizing the promise and avoiding the hype. Schizophr Res 2019; 214:70-75. [PMID: 31500998 DOI: 10.1016/j.schres.2019.08.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Despite extensive research and prodigious advances in neuroscience, our comprehension of the nature of schizophrenia remains rudimentary. Our failure to make progress is attributed to the extreme heterogeneity of this condition, enormous complexity of the human brain, limitations of extant research paradigms, and inadequacy of traditional statistical methods to integrate or interpret increasingly large amounts of multidimensional information relevant to unravelling brain function. Fortunately, the rapidly developing science of machine learning appears to provide tools capable of addressing each of these impediments. Enthusiasm about the potential of machine learning methods to break the current impasse is reflected in the steep increase in the number of scientific publication about the application of machine learning to the study of schizophrenia. Machine learning approaches are, however, poorly understood by schizophrenia researchers and clinicians alike. In this paper, we provide a simple description of the nature and techniques of machine learning and their application to the study of schizophrenia. We then summarize its potential and constraints with illustrations from six studies of machine learning in schizophrenia and address some common misconceptions about machine learning. We suggest some guidelines for researchers, readers, science editors and reviewers of the burgeoning machine learning literature in schizophrenia. In order to realize its enormous promise, we suggest the need for the disciplined application of machine learning methods to the study of schizophrenia with a clear recognition of its capability and challenges accompanied by a concurrent effort to improve machine learning literacy among neuroscientists and mental health professionals.
Collapse
Affiliation(s)
- Neeraj Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America
| | - Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI, United States of America.
| |
Collapse
|
42
|
de Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, Segura-Garcia C, De Fazio P. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat 2019; 15:1605-1627. [PMID: 31354276 PMCID: PMC6590624 DOI: 10.2147/ndt.s202418] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diagnosis of schizophrenia (SCZ) is made exclusively clinically, since specific biomarkers that can predict the disease accurately remain unknown. Machine learning (ML) represents a promising approach that could support clinicians in the diagnosis of mental disorders. OBJECTIVES A systematic review, according to the PRISMA statement, was conducted to evaluate its accuracy to distinguish SCZ patients from healthy controls. METHODS We systematically searched PubMed, Embase, MEDLINE, PsychINFO and the Cochrane Library through December 2018 using generic terms for ML techniques and SCZ without language or time restriction. Thirty-five studies were included in this review: eight of them used structural neuroimaging, twenty-six used functional neuroimaging and one both, with a minimum accuracy >60% (most of them 75-90%). Sensitivity, Specificity and accuracy were extracted from each publication or obtained directly from authors. RESULTS Support vector machine, the most frequent technique, if associated with other ML techniques achieved accuracy close to 100%. The prefrontal and temporal cortices appeared to be the most useful brain regions for the diagnosis of SCZ. ML analysis can efficiently detect significantly altered brain connectivity in patients with SCZ (eg, default mode network, visual network, sensorimotor network, frontoparietal network and salience network). CONCLUSION The greater accuracy demonstrated by these predictive models and the new models resulting from the integration of multiple ML techniques will be increasingly decisive for early diagnosis and evaluation of the treatment response and to establish the prognosis of patients with SCZ. To achieve a real benefit for patients, the future challenge is to reach an accurate diagnosis not only through clinical evaluation but also with the aid of ML algorithms.
Collapse
Affiliation(s)
- Renato de Filippis
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Elvira Anna Carbone
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Raffaele Gaetano
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonella Bruni
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Valentina Pugliese
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
43
|
Kuai H, Yang Y, Chen J, Zhang X, Yan J, Zhong N. Specificity Analysis of Picture-Induced Emotional EEG for Discrimination Between Schizophrenic and Control Participants. Brain Inform 2019. [DOI: 10.1007/978-3-030-37078-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
de Pierrefeu A, Löfstedt T, Laidi C, Hadj-Selem F, Bourgin J, Hajek T, Spaniel F, Kolenic M, Ciuciu P, Hamdani N, Leboyer M, Fovet T, Jardri R, Houenou J, Duchesnay E. Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatr Scand 2018; 138:571-580. [PMID: 30242828 DOI: 10.1111/acps.12964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross-sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings' reproducibility. METHOD We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross-site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first-episode patients. RESULTS Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first-episode psychosis patients (73% accuracy). CONCLUSION These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
Collapse
Affiliation(s)
| | - T Löfstedt
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - C Laidi
- NeuroSpin, CEA, Gif-sur-Yvette, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,Fondation Fondamental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France
| | - F Hadj-Selem
- Energy Transition Institute: VeDeCoM, Versailles, France
| | - J Bourgin
- Department of Psychiatry, Louis-Mourier Hospital, AP-HP, Colombes, France.,INSERM U894, Centre for Psychiatry and Neurosciences, Paris, France
| | - T Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,National Institute of Mental Health, Klecany, Czech Republic
| | - F Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - M Kolenic
- National Institute of Mental Health, Klecany, Czech Republic
| | - P Ciuciu
- NeuroSpin, CEA, Gif-sur-Yvette, France.,INRIA, CEA, Parietal team, University of Paris-Saclay, Lille, France
| | - N Hamdani
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,Fondation Fondamental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France
| | - M Leboyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,Fondation Fondamental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France
| | - T Fovet
- Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab-PsyCHIC), CNRS UMR 9193, University of Lille, Lille, France.,Pôle de Psychiatrie, Unité CURE, CHU Lille, Lille, France
| | - R Jardri
- INRIA, CEA, Parietal team, University of Paris-Saclay, Lille, France.,Laboratoire de Sciences Cognitives et Sciences Affectives (SCALab-PsyCHIC), CNRS UMR 9193, University of Lille, Lille, France.,Pôle de Psychiatrie, Unité CURE, CHU Lille, Lille, France
| | - J Houenou
- NeuroSpin, CEA, Gif-sur-Yvette, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,Fondation Fondamental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France
| | | |
Collapse
|