1
|
Ye M, Zhang W, Zhao S, Zhang J, Li Y, Pan H, Jiang Z, Li J, Xie X. Coupled transformation pathways of iron minerals and natural organic matter related to iodine mobilization in alluvial-lacustrine aquifer. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135944. [PMID: 39332257 DOI: 10.1016/j.jhazmat.2024.135944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The complex of natural organic matter (NOM) and iron minerals in sediment is the main host and source of groundwater iodine. However, the transformation pathways of the complex remain unclear. The groundwater and sediment from the Hetao Basin were collected in this study to analyze multi-isotopes, NOM molecular characteristics, and iron mineral phases. The results showed that high-iodine groundwater was mainly observed in the discharge area, where biodegradation of NOM, sulfate reduction and methanogenesis occurred. Compared to the shallow clayey sediments, the confined sandy sediments had lower iodine content, a lower fraction of crystalline iron oxides, and a higher fraction of carbonate associated Fe(II) minerals, suggesting that the release of sediment iodine in the aquifer is related to the transformation of sediment Fe(III) hydroxides/oxides. Moreover, the molecular features of high-iodine groundwater NOM and sandy sediment NOM were characterized by a higher proportion of refractory compounds, suggesting that the reductive transformation of sediment Fe(III) hydroxides/oxides is fueled by degradable organic compounds. The microbial Fe-reducing and/or sulfate-reducing processes cause the enrichment of groundwater iodine in the form of iodide via the transformation of iodine species. These findings provide new insights into the genesis of high-iodine groundwater.
Collapse
Affiliation(s)
- Mingxia Ye
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Wenyi Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Shilin Zhao
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jingxian Zhang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanlong Li
- Geological Survey Academy of Inner Mongolia Autonomous Region, Huhhot 010020, China
| | - Hongjie Pan
- Geological Survey Academy of Inner Mongolia Autonomous Region, Huhhot 010020, China
| | - Zhou Jiang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Junxia Li
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
2
|
Xue J, Deng Y, Zhang Y, Du Y, Fu QL, Xu Y, Shi J, Wang Y. Hidden Role of Organic Matter in the Immobilization and Transformation of Iodine on Fe-OM Associations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9840-9849. [PMID: 38775339 DOI: 10.1021/acs.est.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.
Collapse
Affiliation(s)
- Jiangkai Xue
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxi Zhang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxiao Xu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
3
|
Xue J, Deng Y, Pi K, Fu QL, Du Y, Xu Y, Yuan X, Fan R, Xie X, Shi J, Wang Y. Enrichment of Geogenic Organoiodine Compounds in Alluvial-Lacustrine Aquifers: Molecular Constraints by Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5932-5941. [PMID: 38502530 DOI: 10.1021/acs.est.3c07314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Organoiodine compounds (OICs) are the dominant iodine species in groundwater systems. However, molecular mechanisms underlying the geochemical formation of geogenic OICs-contaminated groundwater remain unclear. Based upon multitarget field monitoring in combination with ultrahigh-resolution molecular characterization of organic components for alluvial-lacustrine aquifers, we identified a total of 939 OICs in groundwater under reducing and circumneutral pH conditions. In comparison to those in water-soluble organic matter (WSOM) in sediments, the OICs in dissolved organic matter (DOM) in groundwater typically contain fewer polycyclic aromatics and polyphenol compounds but more highly unsaturated compounds. Consequently, there were two major sources of geogenic OICs in groundwater: the migration of the OICs from aquifer sediments and abiotic reduction of iodate coupled with DOM iodination under reducing conditions. DOM iodination occurs primarily through the incorporation of reactive iodine that is generated by iodate reduction into highly unsaturated compounds, preferably containing hydrophilic functional groups as binding sites. It leads to elevation of the concentration of the OICs up to 183 μg/L in groundwater. This research provides new insights into the constraints of DOM molecular composition on the mobilization and enrichment of OICs in alluvial-lacustrine aquifers and thus improves our understanding of the genesis of geogenic iodine-contaminated groundwater systems.
Collapse
Affiliation(s)
- Jiangkai Xue
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Kunfu Pi
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxiao Xu
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xiaofang Yuan
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
| | - Ruiyu Fan
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianjun Xie
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
4
|
Teien HC, Wada T, Kashparov V, Lopez-Gutierrez JM, Garcia-Tenorio R, Hinton TG, Salbu B. Transfer of 129I to freshwater fish species within Fukushima and Chernobyl exclusion zones. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107269. [PMID: 37579697 DOI: 10.1016/j.jenvrad.2023.107269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Unique data is reported on the transfer of 129I iodine from freshwaters to fish as well as the internal distribution within fish from the Fukushima and Chernobyl exclusion zones (ChEZ). Samples of water, sediments and fish were collected in the contaminated ponds Inkyozaka and Suzuuchi, and in the less contaminated Abukuma river in Fukushima, as well as in the contaminated Glubokoye lake and in the less contaminated Starukha lake in ChEZ. In water, 129I was mainly present as low molecular mass (LMM) and negatively charged species, while a minor fraction was associated with colloidal fraction, most probably organic material in water. The sediment-water 129I apparent distribution coefficients, Kd, ranged from 225 to 329 L/kg, equal that of stable iodine, but did not correlate with 129I/127I ratio or 129I/137Cs ratio as the environmental distribution of radioactive iodine was different from that of stable iodine and radioactive cesium. Concentration ratios (CR) of 129I in muscle of freshwater fish ranged from 85 to 544 across waterbodies with limited water exchange, similar in Fukushima and Chernobyl, but varied with respect to fish species. Thus, this is the first results on the transfer of 129I to freshwater fish, showing that the CR for freshwater fish is higher than CR reported for marine fish. Concentrations of 129I in fish muscle were, however, lower than in the intestinal content, indicating the influence of more contaminated dietary ingredients probably of terrestrial origin based due to δ13C signal on as well as of biodilution. The present results highlighted also that the radiation dose in fish was highly inhomogeneously distributed. Based on the present 129I/127I atomic ratio of 10-5 in the most contaminated fish in the ponds in Fukushima and Glubokoye lake in Chernobyl, however, a radiation dose of 10 μSv/y would not pose any harm to the fish population.
Collapse
Affiliation(s)
- Hans-Christian Teien
- Center for Environmental Radioactivity (CERAD) CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway.
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, 1 Kanayagawa, Fukushima, 90-12696, Japan.
| | - Valery Kashparov
- Center for Environmental Radioactivity (CERAD) CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway; National University of Life and Environmental Sciences of Ukraine (NUBiP of Ukraine), Mashinobudivnykiv Str. 7, Chabany, Kyiv-Svjatoshin distr. Kyiv reg., 08162, Ukraine.
| | - Jose M Lopez-Gutierrez
- Centro Nacional de Aceleradores, CNA (Universidad Sevilla-J. Andalucía-CSIC), Parque Tecnológico Cartuja 93, Avenida Tomas Alva Edison 7, 41092, Sevilla, Spain.
| | - Rafael Garcia-Tenorio
- Centro Nacional de Aceleradores, CNA (Universidad Sevilla-J. Andalucía-CSIC), Parque Tecnológico Cartuja 93, Avenida Tomas Alva Edison 7, 41092, Sevilla, Spain.
| | - Thomas G Hinton
- Center for Environmental Radioactivity (CERAD) CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway; Institute of Environmental Radioactivity, Fukushima University, Fukushima, 1 Kanayagawa, Fukushima, 90-12696, Japan.
| | - Brit Salbu
- Center for Environmental Radioactivity (CERAD) CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
5
|
Pan H, Li B, Yang J, Liu W, Luo W, Chen B. Iodine revisited: If and how inorganic iodine species can be measured reliably and what cause their conversions in water? JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132423. [PMID: 37657323 DOI: 10.1016/j.jhazmat.2023.132423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
This study revisited a list of inorganic iodine species on their detections and conversions under different water conditions. Several surprising results were found, e.g., UV-vis spectrophotometry is the only reliable method for I3- and I2 determinations with coexisting I-/IO3-/IO4-, while alkaline eluent of IC and LC columns can convert them into I- completely; IO4- can be converted into IO3- completely in IC columns and partly in LC columns; a small portion of IO3- was reduced to I- in LC columns. To avoid errors, a method for detecting multiple coexisting iodine species is suggested as follows: firstly, detecting I3- and I2 via UV-vis spectrophotometry; then, analyzing IO4- (> 0.2 mg/L) through LC; and lastly, obtaining I- and IO3- concentrations by deducting I- and IO3- measured by IC from the signals derived from I3-/I2/IO4-. As for stability, I- or IO3- alone is stable, but mixing them up generates I2 or H2OI+ under acidic conditions. Although IO4- is stable within pH 4.0-8.0, it becomes H5IO6/H3IO62- in strongly acidic/alkaline solutions. Increasing pH accelerates the conversions of I3- and I2 into I- under basic conditions, whereas dissolved oxygen and dosage exert little effect. Additionally, spiking ICl into water produces I2 and IO3- rather than HIO.
Collapse
Affiliation(s)
- Huimei Pan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jie Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenzhe Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wang Luo
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
6
|
Jiang Z, Qian L, Cui M, Jiang Y, Shi L, Dong Y, Li J, Wang Y. Bacterial Sulfate Reduction Facilitates Iodine Mobilization in the Deep Confined Aquifer of the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15277-15287. [PMID: 37751521 DOI: 10.1021/acs.est.3c05513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.
Collapse
Affiliation(s)
- Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Li Qian
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Mengjie Cui
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| |
Collapse
|
7
|
Jiang Z, Huang M, Jiang Y, Dong Y, Shi L, Li J, Wang Y. Microbial Contributions to Iodide Enrichment in Deep Groundwater in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2625-2635. [PMID: 36668684 DOI: 10.1021/acs.est.2c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microorganisms play crucial roles in the global iodine cycling through iodine oxidation, reduction, volatilization, and deiodination. In contrast to iodate formation in radionuclide-contaminated groundwater by the iodine-oxidizing bacteria, microbial contribution to the formation of high level of iodide in geogenic high iodine groundwater is poorly understood. In this study, our results of comparative metagenomic analyses of deep groundwater with typical high iodide concentrations in the North China Plain revealed the existence of putative dissimilatory iodate-reducing idrABP1P2 gene clusters in groundwater. Heterologous expression and characterization of an identified idrABP1P2 gene cluster confirmed its functional role in iodate reduction. Thus, microbial dissimilatory iodate reduction could contribute to iodide formation in geogenic high iodine groundwater. In addition, the identified iron-reducing, sulfur-reducing, sulfur-oxidizing, and dehalogenating bacteria in the groundwater could contribute to the release and production of iodide through the reductive dissolution of iron minerals, abiotic iodate reduction of derived ferrous iron and sulfide, and dehalogenation of organic iodine, respectively. These microbially mediated iodate reduction and organic iodine dehalogenation processes may also result in the transformation among iodine species and iodide enrichment in other geogenic iodine-rich groundwater systems worldwide.
Collapse
Affiliation(s)
- Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Minghui Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, Hubei, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, Hubei, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan 430074, Hubei, China
| |
Collapse
|
8
|
Sasamura S, Ohnuki T, Kozai N, Amachi S. Iodate respiration by Azoarcus sp. DN11 and its potential use for removal of radioiodine from contaminated aquifers. Front Microbiol 2023; 14:1162788. [PMID: 37138623 PMCID: PMC10149662 DOI: 10.3389/fmicb.2023.1162788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Azoarcus sp. DN11 was previously isolated from gasoline-contaminated groundwater as an anaerobic benzene-degrading bacterium. Genome analysis of strain DN11 revealed that it contained a putative idr gene cluster (idrABP1P2 ), which was recently found to be involved in bacterial iodate (IO3 -) respiration. In this study, we determined if strain DN11 performed iodate respiration and assessed its potential use to remove and sequester radioactive iodine (129I) from subsurface contaminated aquifers. Strain DN11 coupled acetate oxidation to iodate reduction and grew anaerobically with iodate as the sole electron acceptor. The respiratory iodate reductase (Idr) activity of strain DN11 was visualized on non-denaturing gel electrophoresis, and liquid chromatography-tandem mass spectrometry analysis of the active band suggested the involvement of IdrA, IdrP1, and IdrP2 in iodate respiration. The transcriptomic analysis also showed that idrA, idrP1 , and idrP2 expression was upregulated under iodate-respiring conditions. After the growth of strain DN11 on iodate, silver-impregnated zeolite was added to the spent medium to remove iodide from the aqueous phase. In the presence of 200 μM iodate as the electron acceptor, more than 98% of iodine was successfully removed from the aqueous phase. These results suggest that strain DN11 is potentially helpful for bioaugmentation of 129I-contaminated subsurface aquifers.
Collapse
Affiliation(s)
- Seiya Sasamura
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Toshihiko Ohnuki
- Fukushima Reconstruction and Revitalization Unit, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan, China
| | - Naofumi Kozai
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Naka-gun, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, Chiba, Japan
- *Correspondence: Seigo Amachi,
| |
Collapse
|
9
|
Sugita T, Mori M, Kozai N. Photocatalytic Unification of Iodine Species Using Platinum-loaded Titanium Dioxide. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Guo J, Jiang J, Peng Z, Zhong Y, Jiang Y, Jiang Z, Hu Y, Dong Y, Shi L. Global occurrence of the bacteria with capability for extracellular reduction of iodate. Front Microbiol 2022; 13:1070601. [PMID: 36504819 PMCID: PMC9732548 DOI: 10.3389/fmicb.2022.1070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
The γ-proteobacterium Shewanella oneidensis MR-1 reduces iodate to iodide extracellularly. Both dmsEFAB and mtrCAB gene clusters are involved in extracellular reduction of iodate by S. oneidensis MR-1. DmsEFAB reduces iodate to hypoiodous acid and hydrogen peroxide (H2O2). Subsequently, H2O2 is reduced by MtrCAB to facilitate DmsEFAB-mediated extracellular reduction of iodate. To investigate the distribution of bacteria with the capability for extracellular reduction of iodate, bacterial genomes were systematically searched for both dmsEFAB and mtrCAB gene clusters. The dmsEFAB and mtrCAB gene clusters were found in three Ferrimonas and 26 Shewanella species. Coexistence of both dmsEFAB and mtrCAB gene clusters in these bacteria suggests their potentials for extracellular reduction of iodate. Further analyses demonstrated that these bacteria were isolated from a variety of ecosystems, including the lakes, rivers, and subsurface rocks in East and Southeast Asia, North Africa, and North America. Importantly, most of the bacteria with both dmsEFAB and mtrCAB gene clusters were found in different marine environments, which ranged from the Arctic Ocean to Antarctic coastal marine environments as well as from the Atlantic Ocean to the Indian and Pacific Oceans. Widespread distribution of the bacteria with capability for extracellular reduction of iodate around the world suggests their significant importance in global biogeochemical cycling of iodine. The genetic organization of dmsEFAB and mtrCAB gene clusters also varied substantially. The identified mtrCAB gene clusters often contained additional genes for multiheme c-type cytochromes. The numbers of dmsEFAB gene cluster detected in a given bacterial genome ranged from one to six. In latter, duplications of dmsEFAB gene clusters occurred. These results suggest different paths for these bacteria to acquire their capability for extracellular reduction of iodate.
Collapse
Affiliation(s)
- Jinzhi Guo
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jie Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhaofeng Peng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,*Correspondence: Zhaofeng Peng,
| | - Yuhong Zhong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China,*Correspondence: Zhaofeng Peng,
| |
Collapse
|
11
|
Kaplan DI, Nichols R, Xu C, Lin P, Yeager C, Santschi PH. Large seasonal fluctuations of groundwater radioiodine speciation and concentrations in a riparian wetland in South Carolina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151548. [PMID: 34780820 DOI: 10.1016/j.scitotenv.2021.151548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Recent studies evaluating multiple years of groundwater radioiodine (129I) concentration in a riparian wetland located in South Carolina, USA identified strong seasonal concentration fluctuations, such that summer concentrations were much greater than winter concentrations. These fluctuations were observed only in the wetlands but not in the upland portion of the plume and only with 129I, and not with other contaminants of anthropogenic origin: nitrate/nitrite, strontium-90, technecium-99, tritium, or uranium. This unexplained observation was hypothesized to be the result of strongly coupled processes involving hydrology, water temperature, microbiology, and chemistry. To test this hypothesis, an extensive historical groundwater database was evaluated, and additional measurements of total iodine and iodine speciation were made from recently collected samples. During the summer, the water table decreased by as much as 0.7 m, surface water temperature increased by as much as 15 °C, and total iodine concentrations were consistently greater (up to 680%) than the following winter months. Most of the additional iodine observed in the summer could be attributed to proportional gains in organo-iodine, and not iodide or iodate. Furthermore, 129I concentrations were observed to be two-orders-of-magnitude greater at the bottom of the upland aquifer than at the top. A coupled hydrological and biogeochemical conceptual model is proposed to tie these observations together. First, as the surface water temperature increased during the summer, microbial activity was enhanced, which in turn stimulated the formation of mobile organo-I. Hydrological processes were also likely involved in the observed iodine seasonal changes: (1) as the water table decreased in summer, the remaining upland water entering the wetland was comprised of a greater proportion of water containing elevated iodine concentrations from the low depths, and (2) water flow paths in summer changed such that the wells intercepted more of the contaminant plume and less of the diluting rainwater (due to evapotranspiration) and streamwater (as the lower levels promote a predominantly recharging system). These results underscore the importance of coupled processes influencing contaminant concentrations, and the need to assess seasonal contaminant variations to optimize long-term monitoring programs of wetlands.
Collapse
Affiliation(s)
- Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Ralph Nichols
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Chen Xu
- Department of Marine Sciences, Texas A&M University, Galveston, TX 77551, United States
| | - Peng Lin
- Department of Marine Sciences, Texas A&M University, Galveston, TX 77551, United States
| | - Chris Yeager
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Peter H Santschi
- Department of Marine Sciences, Texas A&M University, Galveston, TX 77551, United States
| |
Collapse
|
12
|
Xu C, Lin P, Garimella R, Li D, Xing W, Patterson NE, Kaplan DI, Yeager CM, Hatcher PG, Santschi PH. 1H- 13C heteronuclear single quantum coherence NMR evidence for iodination of natural organic matter influencing organo-iodine mobility in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152546. [PMID: 34973322 DOI: 10.1016/j.scitotenv.2021.152546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The complex biogeochemical behavior of iodine (I) isotopes and their interaction with natural organic matter (NOM) pose a challenge for transport models. Here, we present results from iodination experiments with humic acid (HA) and fulvic acid (FA) using 1H-13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Even though not a quantitative approach, 1H-13C HSQC NMR corroborated that iodination of NOM occurs primarily through aromatic electrophilic substitution of proton by I, and also revealed how iodination chemically alters HA and FA in a manner that potentially affects the mobility of iodinated NOM in the environment. Three types of iodination experiments were conducted with HA and FA: a) non-enzymatic iodination by IO3- (pH 3) and I- (pH 4 and 7), b) addition of lactoperoxidase to promote I--iodination in the presence of the co-substrate, H2O2 (pH 7), and c) addition of laccase for facilitating I--iodination in the presence of O2, with or without a mediator (pH 4). When mediators or H2O2 were present, extracellular oxidases and peroxidases enhanced I- incorporation into NOM by between 54% and 3400%. Iodination of HA, which was less than that of FA, enhanced HA's stability (inferred from increases in aliphatic compounds, decreases in carbohydrate moieties, and thus increased molecular hydrophobicity) yet reduced HA's tendency to incorporate more iodine. As such, HA is expected to act more as a sink for iodine in the environment. In contrast, iodination of FA appeared to generate additional iodine binding sites, which resulted in greater iodine uptake capability and enhanced mobility (inferred from decreases in aliphatic compounds, increases in carbohydrates, and thus decreases in molecular hydrophobicity). These results indicate that certain NOM moieties may enhance while others may inhibit radioiodine mobility in the aqueous environment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States.
| | - Peng Lin
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| | | | - Dien Li
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Wei Xing
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| | - Nicole E Patterson
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| | - Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Chris M Yeager
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Patrick G Hatcher
- Department of Chemistry, Old Dominion University, Norfolk, VA 23529, United States
| | - Peter H Santschi
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| |
Collapse
|
13
|
Kato T, Kozai N, Tanaka K, Kaplan DI, Utsunomiya S, Ohnuki T. Chemical species of iodine during sorption by activated carbon -Effects of original chemical species and fulvic acids. J NUCL SCI TECHNOL 2021. [DOI: 10.1080/00223131.2021.1993370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tomoaki Kato
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Naofumi Kozai
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Kazuya Tanaka
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Daniel I. Kaplan
- Environmental Molecular Sciences Laboratory, Savannah River National Laboratory, Aiken, SC, United States
| | | | - Toshihiko Ohnuki
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
14
|
Kimmig SR, Thompson C, Baum S, Brown CF. Evaluation of iodine speciation and 129I/127I ratios at low concentrations in environmental samples using IC-ICP-MS. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07537-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Li J, Wang Y, Xue X, Xie X, Siebecker MG, Sparks DL, Wang Y. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140922. [PMID: 32736101 DOI: 10.1016/j.scitotenv.2020.140922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Long-term intake of groundwater with elevated iodine concentration can cause thyroid dysfunction in humans; however, little is known on the mechanisms controlling the fate of iodine in groundwater systems. In this study, the groundwater and aquifer sediment samples from the Datong basin, a geologic iodine-affected area, were collected to perform the batch incubation experiments to understand the release and enrichment of iodine in groundwater systems. The results showed that the groundwater from the deep confined aquifer had a total iodine concentration of 473 μg/L, higher than that of shallow groundwater, and iodide is the dominant species of iodine. The deep confined aquifer was characterized by the reducing conditions. Meanwhile, a higher ratio of Fe(II) to total Fe was observed in bulk deep aquifer sediments (59%) in comparison with that of shallow sediments (33%). The results of batch incubation experiments showed that during the reductive transformation of Fe minerals in shallow aquifer sediments, iodide concentration in solution was gradually increasing from 24.7 to 101.5 μg/L after 10 days. It suggests that the transformation of Fe minerals in aquifer sediments acts as a diver causing the release of iodine from sediment into groundwater, which was further supported by the features Fe K-edge EXAFS before and after the batch experiments. Moreover, the changes in iodine species from iodate or organic iodine into iodide during the release further promotes the release of sediment iodine, which was supported by the developed geochemical models. The prevalence of reducing condition in deep aquifer favors the enrichment of released iodide. This study provides new insights into the mechanisms of iodide enrichment observed in deep confined aquifer.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Yuting Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Xiaobin Xue
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, 430074 Wuhan, China.
| | - Matthew G Siebecker
- Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States; Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, United States
| | - Donald L Sparks
- Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
16
|
Szecsody JE, Emerson HP, Pearce CI, Gartman BN, Resch CT, Di Pietro SA. In situ reductive dissolution to remove Iodine-129 from aquifer sediments. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 216:106182. [PMID: 32063556 DOI: 10.1016/j.jenvrad.2020.106182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
The use of an aqueous reductant (Na-dithionite) with pH buffer (K-carbonate, pH 12) was evaluated in this laboratory study as a potential remedial approach for removing Fe oxide associated iodine and enhancing pump-and-treat extraction from iodine-contaminated sediments in the unconfined aquifer in the 200 West Area of the Hanford Site. X-ray fluorescence data of untreated sediment indicated that iodine was largely associated with Fe (i.e., potentially incorporated into Fe oxides), but XANES data was inconclusive as to valence state. During groundwater leaching, aqueous and adsorbed iodine was quickly released, then additional iodine was slowly released potentially from slow dissolution of one or more surface phases. The Na-dithionite treatment removed greater iodine mass (2.9x) at a faster rate (1-4 orders of magnitude) compared to leaching with groundwater alone. Iron extractions for untreated and treated sediments showed a decrease in Fe(III)-oxides, which likely released iodine to aqueous solution. Solid phase inorganic carbon and aqueous Ca and Mg analysis further confirmed that significant calcite dissolution did not occur in these experiments meaning these phases did not release significant iodine. Although it was expected that, after treatment, 127I concentrations would eventually be lower than untreated sediments, continued, elevated iodine concentrations for treated samples over 750 h were observed for leaching experiments. Stop flow events during 1-D column leaching suggested that some iodide precipitated within the first few pore volumes. Further, batch extraction experiments compared iodine-129/127 removal and showed that iodine-129 was more readily removed than iodine-127 suggesting that the two are present in different phases due to their different origins. Although significantly greater iodine is removed with treatment, the long-term leaching needs to be investigated further as it may limit dithionite treatment at the field scale.
Collapse
Affiliation(s)
- Jim E Szecsody
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| | - Hilary P Emerson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Brandy N Gartman
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - C Tom Resch
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Silvina A Di Pietro
- Applied Research Center, Florida International University, 10555, W Flagler St, Miami, FL, 33174, USA
| |
Collapse
|
17
|
Yamazaki C, Kashiwa S, Horiuchi A, Kasahara Y, Yamamura S, Amachi S. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. Environ Microbiol 2020; 22:2196-2212. [PMID: 32190953 DOI: 10.1111/1462-2920.14988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
Pseudomonas sp. strain SCT is capable of using iodate (IO3 - ) as a terminal electron acceptor for anaerobic respiration. A possible key enzyme, periplasmic iodate reductase (Idr), was visualized by active staining on non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that at least four proteins, designated as IdrA, IdrB, IdrP1 , and IdrP2 , were involved in Idr. IdrA and IdrB were homologues of catalytic and electron transfer subunits of respiratory arsenite oxidase (Aio); however, IdrA defined a novel clade within the dimethylsulfoxide (DMSO) reductase family. IdrP1 and IdrP2 were closely related to each other and distantly related to cytochrome c peroxidase. The idr genes (idrABP 1 P 2 ) formed an operon-like structure, and their transcription was upregulated under iodate-respiring conditions. Comparative proteomic analysis also revealed that Idr proteins and high affinity terminal oxidases (Cbb3 and Cyd), various H2 O2 scavengers, and chlorite (ClO2 - ) dismutase-like proteins were expressed specifically or abundantly under iodate-respiring conditions. These results suggest that Idr is a respiratory iodate reductase, and that both O2 and H2 O2 are formed as by-products of iodate respiration. We propose an electron transport chain model of strain SCT, in which iodate, H2 O2 , and O2 are used as terminal electron acceptors.
Collapse
Affiliation(s)
- Chihiro Yamazaki
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba, 271-8510, Japan
| | - Sumie Kashiwa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba, 271-8510, Japan
| | - Ayaka Horiuchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba, 271-8510, Japan
| | - Yasuhiro Kasahara
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Shigeki Yamamura
- Center for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba, 271-8510, Japan
| |
Collapse
|
18
|
Neeway JJ, Kaplan DI, Bagwell CE, Rockhold ML, Szecsody JE, Truex MJ, Qafoku NP. A review of the behavior of radioiodine in the subsurface at two DOE sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:466-475. [PMID: 31323591 DOI: 10.1016/j.scitotenv.2019.07.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Multiple processes affect the fate of the radioactive isotope 129I in the environment. Primary categories of these processes include electron transfer reactions mediated by minerals and microbes, adsorption to sediments, interactions with organic matter, co-precipitation, and volatilization. A description of dominant biogeochemical processes is provided to describe the interrelationship of these processes and the associated iodine chemical species. The majority of the subsurface iodine fate and transport studies in the United States have been conducted at U.S. Department of Energy (DOE) sites where radioisotopes of iodine are present in the environment and stored waste. The DOE Hanford Site and Savannah River Site (SRS) are used to illustrate how the iodine species and dominant processes at a site are controlled by the prevailing site biogeochemical conditions. These sites differ in terms of climate (arid vs. sub-tropical), major geochemical parameters (e.g., pH ~7.5 vs. 4), and mineralogy (carbonate vs. Fe/Al oxide dominated). The iodine speciation and dominant processes at a site also have implications for selection and implementation of suitable remedy approaches for 129I.
Collapse
Affiliation(s)
- James J Neeway
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC, United States of America
| | | | - Mark L Rockhold
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - James E Szecsody
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Michael J Truex
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Nikolla P Qafoku
- Pacific Northwest National Laboratory, Richland, WA, United States of America.
| |
Collapse
|
19
|
Li D, Xu C, Yeager CM, Lin P, Xing W, Schwehr KA, Chen N, Arthur Z, Kaplan DI, Santschi PH. Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12416-12424. [PMID: 31553176 DOI: 10.1021/acs.est.9b03682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iodine-129 is one of three key risk drivers at several US Department of Energy waste management sites. Natural organic matter (NOM) is thought to play important roles in the immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: (1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in a pH 4 buffer, (2) I- in the presence of lactoperoxidase (LPO) and H2O2 in a pH 7 buffer, and (3) IO3- in a pH 3 groundwater. Both oxidase and peroxidase systems could oxidize I- to I2 or hypoiodide (HOI) leading to organo-I formation. However, the laccase-ABTS mediator was the most effective and enhanced I- uptake by HA up to 13.5 mg/g, compared to 1.9 mg/g for the LPO-H2O2. IO3- was abiotically reduced to I2 or HOI leading to an organo-I formation. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from the oxidation of phenolic C species. This study improves our molecular-level understanding of NOM-iodine interactions and stresses the important role that mediators may play in the enzymatic reactions between iodine and NOM.
Collapse
Affiliation(s)
- Dien Li
- Savannah River National Laboratory , Aiken , South Carolina 29808 , United States
| | - Chen Xu
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Chris M Yeager
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Peng Lin
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Wei Xing
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Kathleen A Schwehr
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Ning Chen
- Canadian Light Source Inc. , Saskatoon , Saskatchewan S7N 2V3 , Canada
| | - Zachary Arthur
- Canadian Light Source Inc. , Saskatoon , Saskatchewan S7N 2V3 , Canada
| | - Daniel I Kaplan
- Savannah River National Laboratory , Aiken , South Carolina 29808 , United States
| | - Peter H Santschi
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| |
Collapse
|
20
|
Li D, Kaplan DI, Price KA, Seaman JC, Roberts K, Xu C, Lin P, Xing W, Schwehr K, Santschi PH. Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 208-209:106017. [PMID: 31325735 DOI: 10.1016/j.jenvrad.2019.106017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Silver (Ag)-based technologies are amongst the most common approaches to removing radioiodine from aqueous waste streams. As a result, a large worldwide inventory of radioactive AgI waste presently exits, which must be stabilized for final disposition. In this work, the efficacy of silver-impregnated granular activated carbon (Ag-GAC) to remove iodide (I-), iodate (IO3-) and organo-iodine (org-I) from cementitious leachate was examined. In addition, cementitious materials containing I-, IO3-, or org-I loaded Ag-GAC were characterized by iodine K-edge XANES and EXAFS to provide insight into iodine stability and speciation in these waste forms. The Ag-GAC was very effective at removing I- and org-I, but ineffective at removing IO3- from slag-free grout leachate under oxic conditions. I- or org-I removal was due to the formation of insoluble AgI(s) or Ag-org-I(s) on the Ag-GAC. When I--loaded Ag-GAC material was cured with slag-free and slag grouts, I- was released from AgI(s) to form a hydrated I- species. Conversely, when org-I loaded Ag-GAC material was cured in the two grout formulations, no change was observed in the iodine speciation, indicating the org-I species remained bound to the Ag. Because little IO3- was bound to the Ag-GAC, it was not detectable in the grout. Thus, grout formulation and I speciation in the waste stream can significantly influence the effectiveness of the long-term disposal of radioiodine associated with Ag-GAC in grout waste forms.
Collapse
Affiliation(s)
- Dien Li
- Savannah River National Laboratory, Aiken, SC, 29808, United States.
| | - Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC, 29808, United States
| | - Kimberly A Price
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, United States
| | - John C Seaman
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, United States
| | - Kimberly Roberts
- Savannah River National Laboratory, Aiken, SC, 29808, United States
| | - Chen Xu
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX, 77553, United States
| | - Peng Lin
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX, 77553, United States
| | - Wei Xing
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX, 77553, United States
| | - Kathleen Schwehr
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX, 77553, United States
| | - Peter H Santschi
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX, 77553, United States
| |
Collapse
|
21
|
Nihei R, Usami M, Taguchi T, Amachi S. Role of fungal laccase in iodide oxidation in soils. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:127-134. [PMID: 29665575 DOI: 10.1016/j.jenvrad.2018.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Previously, we hypothesized that microbial laccase oxidizes iodide (I-) in soils to molecular iodine (I2) or hypoiodous acid (HIO), both of which are easily incorporated into natural soil organic matter, and thus plays a role in iodine sorption on soils. In this study, soil iodide oxidase activity was determined by a colorimetric assay to evaluate if laccase is responsible for iodide oxidation in soils. Three types of Japanese soil showed significant iodide oxidase activities (0.751-2.87 mU g soil-1) at pH 4.0, which decreased with increasing pH, until it was no longer detected at pH 5.5. The activity was inhibited strongly by autoclaving or by the addition of common laccase inhibitors. Similar tendency of inhibition was observed in soil laccase activity, which was determined with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Significant positive correlations (R2 values of 0.855-0.896) between iodide oxidase activity and laccase activity were observed in two of three soils. Commercially available fungal laccases showed only very low iodide oxidase activities (4.68-18.0 mU mg-1), but enhanced activities of 102-739 mU mg-1 were observed in the presence of redox mediators. Finally, we successfully isolated fungal strains with iodide-oxidizing phenotype in the presence of redox mediators. Polyacrylamide gel electrophoresis of the culture supernatant of Scytalidium sp. strain UMS and subsequent active stain revealed that the fungal laccase actually oxidized iodide in the presence of redox mediators. These results suggest that at least part of iodide in soils is oxidized by fungal laccase through the laccase-mediator system.
Collapse
Affiliation(s)
- Reiko Nihei
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Mizuki Usami
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Taro Taguchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan.
| |
Collapse
|
22
|
Radionuclide uptake by colloidal and particulate humic acids obtained from 14 soils collected worldwide. Sci Rep 2018; 8:4795. [PMID: 29556085 PMCID: PMC5859050 DOI: 10.1038/s41598-018-23270-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/08/2018] [Indexed: 11/08/2022] Open
Abstract
Uptake of six particle-reactive and/or redox-sensitive radionuclides (210Pb, 234Th, 7Be, 59Fe, 237Np and 233Pa) by 14 humic acids (HAs) was investigated in artificial groundwater under mildly acidic conditions (pH~5.5). In HA-groundwater slurry, Pb, Be, Fe and Pa bound strongly to particulate HA (>0.45 µm), supporting their application as tracers of soil erosion. Th bound strongly to the colloidal HA (3 kDa-0.45 µm) and as such, would not be a good candidate as a tracer for monitoring soil erosion. HAs likely reduced the oxidized neptunyl form (Np(V)O4+) to Np(IV) based on its enhanced particle-reactivity and Np uptake by particulate HAs, partially retarding the movement of anthropogenic 237Np in field polluted environments. Particulate/colloidal carbonyl/O-aryl (likely through hydroquinone/quinone) functionalities in the HA correlated to Np and Pa uptake, but only particulate O-aryl functionalities was responsible for Fe uptake. The carboxylate- and carbonyl/O-aryl-containing organic functionalities in the HA correlated strongly with Th uptake. In contrast, no significant correlations between organic parameters and Pb or Be uptake implied their predominance of uniform surface adsorption onto particles. This study provides novel insight into the binding of six radionuclides with different organic functionalities of three size fractions, as well as its possible impact on their application in the soil-tracing research.
Collapse
|
23
|
Humphrey OS, Young SD, Bailey EH, Crout NMJ, Ander EL, Watts MJ. Iodine soil dynamics and methods of measurement: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:288-310. [PMID: 29302664 DOI: 10.1039/c7em00491e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Iodine is an essential micronutrient for human health: insufficient intake can have multiple effects on development and growth, affecting approximately 1.9 billion people worldwide. Previous reviews have focussed on iodine analysis in environmental and biological samples, however, no such review exists for the determination of iodine fractionation and speciation in soils. This article reviews the geodynamics of both stable 127I and the long-lived isotope 129I (t1/2 = 15.7 million years), alongside the analytical methods for determining iodine concentrations in soils, including consideration of sample preparation. The ability to measure total iodine concentration in soils has developed significantly from rudimentary spectrophotometric analysis methods to inductively coupled plasma mass spectrometry (ICP-MS). Analysis with ICP-MS has been reported as the best method for determining iodine concentrations in a range of environmental samples and soils due to developments in extraction procedures and sensitivity, with extremely good detection limits typically <μg L-1. The ability of ICP-MS to measure iodine and its capabilities to couple on-line separation tools has the significance to develop the understanding of iodine geodynamics. In addition, nuclear-related analysis and recent synchrotron light source analysis are discussed.
Collapse
Affiliation(s)
- O S Humphrey
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
| | | | | | | | | | | |
Collapse
|
24
|
Li J, Zhou H, Qian K, Xie X, Xue X, Yang Y, Wang Y. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:239-248. [PMID: 28441602 DOI: 10.1016/j.scitotenv.2017.04.158] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
To better understand the enrichment of fluoride and iodine in groundwater at North China Plain (NCP), speciation analysis and geochemical modeling were conducted to identify the key hydrochemical processes controlling their mobilization in groundwater system. Groundwater fluoride and iodine concentrations ranged from 0.18 to 5.59mg/L and from 1.51 to 1106μg/L, respectively, and approximately 63% and 32.3% of groundwater fluoride and iodine were higher than the guidelines for drinking water (1.5mg/L and 150μg/L). High fluoride concentration (>1.5mg/L) can be detected in groundwater from the flow-through and discharge areas of NCP, and high iodine groundwater (>150μg/L) is mainly scattered in the coastal area. Na-HCO3/Cl type water resulted from water-rock interaction and seawater intrusion favors fluoride and iodine enrichment in groundwater. Speciation analysis results indicate that (1) fluoride complexes in groundwater are dominated by free fluoride, the negative charge of which favors fluoride enrichment in groundwater under basic conditions, and (2) iodide, iodate and organic iodine co-occur in groundwater at NCP with iodide as the dominant species. The geochemical modeling results indicate that groundwater fluoride is mainly associated with the saturation states of fluorite and calcite, as well as the adsorption equilibrium onto goethite and gibbsite, including the competitive adsorption between fluoride and carbonate. Groundwater iodine is mainly controlled by redox potential and pH condition of groundwater system. Reducing condition favors the mobilization and enrichment of groundwater iodide, which has the highest mobility among iodine species. Under reducing condition, reductive dissolution of iron (oxy)hydroxides is a potential geochemical process responsible for iodine release from sediment into groundwater. Under (sub)oxidizing condition, as groundwater pH over the 'point of zero charge' of iron (oxy)hydroxides, the lowering adsorption capacity of groundwater iodide/iodate on minerals leads to the release of sediment iodine into groundwater.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Hailing Zhou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Kun Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Xiaobin Xue
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yijun Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
25
|
Lin P, Xu C, Zhang S, Fujitake N, Kaplan DI, Yeager CM, Sugiyama Y, Schwehr KA, Santschi PH. Plutonium Partitioning Behavior to Humic Acids from Widely Varying Soils Is Related to Carboxyl-Containing Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11742-11751. [PMID: 28933160 DOI: 10.1021/acs.est.7b03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to examine the influence of the HA molecular composition on the partitioning of Pu, ten different kinds of humic acids (HAs) of contrasting chemical composition, collected and extracted from different soil types around the world were equilibrated with groundwater at low Pu concentrations (10-14 M). Under mildly acidic conditions (pH ∼ 5.5), 29 ± 24% of the HAs were released as colloidal organic matter (>3 kDa to <0.45 μm), yet this HA fraction accounted for a vast majority of the bound Pu, 76 ± 13% on average. In comparison, the particulate HA fraction bound only 8 ± 4% on average of the added Pu. The truly dissolved Pu fraction was typically <1%. Pu binding was strongly and positively correlated with the concentrations of organic nitrogen in both particulate (>0.45 μm) and colloidal phases in terms of activity percentage and partitioning coefficient values (logKd). Based on molecular characterization of the HAs by solid state 13C nuclear magnetic resonance (NMR) and elemental analysis, Pu binding was correlated to the concentration of carboxylate functionalities and nitrogen groups in the particulate and colloidal phases. The much greater tendency of Pu to bind to colloidal HAs than to particulate HA has implications on whether NOM acts as a Pu source or sink during natural or man-induced episodic flooding.
Collapse
Affiliation(s)
- Peng Lin
- Department of Marine Science, Texas A & M University at Galveston , Galveston, Texas 77553, United States
| | - Chen Xu
- Department of Marine Science, Texas A & M University at Galveston , Galveston, Texas 77553, United States
| | - Saijin Zhang
- Department of Marine Science, Texas A & M University at Galveston , Galveston, Texas 77553, United States
| | - Nobuhide Fujitake
- Division of Agroenvironmental Biology, Graduate School of Agriculture Science, Kobe University , Kyoto, 606-8501, Japan
| | - Daniel I Kaplan
- Savannah River National Laboratory , Aiken, South Carolina 29808, United States
| | - Chris M Yeager
- Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Yuko Sugiyama
- School of Human Science and Environment, University of Hyogo , 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Kathleen A Schwehr
- Department of Marine Science, Texas A & M University at Galveston , Galveston, Texas 77553, United States
| | - Peter H Santschi
- Department of Marine Science, Texas A & M University at Galveston , Galveston, Texas 77553, United States
| |
Collapse
|
26
|
Li J, Zhou H, Wang Y, Xie X, Qian K. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 201:39-47. [PMID: 28495233 DOI: 10.1016/j.jconhyd.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Hailing Zhou
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Kun Qian
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
27
|
Santschi PH, Xu C, Zhang S, Schwehr KA, Lin P, Yeager CM, Kaplan DI. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 171:226-233. [PMID: 28286302 DOI: 10.1016/j.jenvrad.2017.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds that are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed here that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. More importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.
Collapse
Affiliation(s)
| | - C Xu
- Texas A&M-Galveston, Galveston, TX, USA
| | - S Zhang
- Texas A&M-Galveston, Galveston, TX, USA
| | | | - P Lin
- Texas A&M-Galveston, Galveston, TX, USA
| | - C M Yeager
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - D I Kaplan
- Savannah River National Laboratory, Aiken, SC, USA
| |
Collapse
|
28
|
Yeager CM, Amachi S, Grandbois R, Kaplan DI, Xu C, Schwehr KA, Santschi PH. Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:83-136. [PMID: 29050668 DOI: 10.1016/bs.aambs.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.
Collapse
|
29
|
Ežerinskis Ž, Hou XL, Druteikienė R, Puzas A, Šapolaitė J, Gvozdaitė R, Gudelis A, Buivydas Š, Remeikis V. Distribution and source of (129)I, (239)(,240)Pu, (137)Cs in the environment of Lithuania. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 1:166-173. [PMID: 26476410 DOI: 10.1016/j.jenvrad.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Fifty five soil samples collected in the Lithuania teritory in 2011 and 2012 were analyzed for (129)I, (137)Cs and Pu isotopes in order to investigate the level and distribution of artificial radioactivity in Lithuania. The activity and atomic ratio of (238)Pu/((239,24)0)Pu, (129)I/(127)I and (131)I/(137)Cs were used to identify the origin of these radionuclides. The (238)Pu/(239+240)Pu and (240)Pu/(239)Pu ratios in the soil samples analyzed varied in the range of 0.02-0.18 and 0.18-0.24, respectively, suggesting the global fallout as the major source of Pu in Lithuania. The values of 10(-9) to 10(-6) for (129)I/(127)I atomic ratio revealed that the source of (129)I in Lithuania is global fallout in most cases though several sampling sites shows a possible impact of reprocessing releases. Estimated (129)I/(131)I ratio in soil samples from the southern part of Lithuania shows negligible input of the Chernobyl fallout. No correlation of the (137)Cs and Pu isotopes with (129)I was observed, indicating their different sources terms. Results demonstrate uneven distribution of these radionuclides in the Lithuanian territory and several sources of contamination i.e. Chernobyl accident, reprocessing releases and global fallout.
Collapse
Affiliation(s)
- Ž Ežerinskis
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania.
| | - X L Hou
- Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark
| | - R Druteikienė
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - A Puzas
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - J Šapolaitė
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - R Gvozdaitė
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - A Gudelis
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - Š Buivydas
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - V Remeikis
- Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
30
|
Xu C, Zhang S, Kaplan DI, Ho YF, Schwehr KA, Roberts KA, Chen H, DiDonato N, Athon M, Hatcher PG, Santschi PH. Evidence for Hydroxamate Siderophores and Other N-Containing Organic Compounds Controlling (239,240)Pu Immobilization and Remobilization in a Wetland Sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11458-67. [PMID: 26313339 DOI: 10.1021/acs.est.5b02310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pu concentrations in wetland surface sediments collected downstream of a former nuclear processing facility in F-Area of the Savannah River Site (SRS), USA, were ∼2.5 times greater than those measured in the associated upland aquifer sediments; similarly, the Pu concentration solid/water ratios were orders of magnitude greater in the wetland than in the low-organic matter content aquifer soils. Sediment Pu concentrations were correlated to total organic carbon and total nitrogen contents and even more strongly to hydroxamate siderophore (HS) concentrations. The HS were detected in the particulate or colloidal phases of the sediments but not in the low molecular weight fractions (<1000 Da). Macromolecules which scavenged the majority of the potentially mobile Pu were further separated from the bulk mobile organic matter fraction ("water extract") via an isoelectric focusing experiment (IEF). An electrospray ionization Fourier-transform ion cyclotron resonance ultrahigh resolution mass spectrometry (ESI FTICR-MS) spectral comparison of the IEF extract and a siderophore standard (desferrioxamine; DFO) suggested the presence of HS functionalities in the IEF extract. This study suggests that while HS are a very minor component in the sediment particulate/colloidal fractions, their concentrations greatly exceed those of ambient Pu, and HS may play an especially important role in Pu immobilization/remobilization in wetland sediments.
Collapse
Affiliation(s)
- Chen Xu
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77554, United States
| | - Saijin Zhang
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77554, United States
| | - Daniel I Kaplan
- Savannah River National Laboratory , Aiken, South Carolina 29808, United States
| | - Yi-Fang Ho
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77554, United States
| | - Kathleen A Schwehr
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77554, United States
| | - Kimberly A Roberts
- Savannah River National Laboratory , Aiken, South Carolina 29808, United States
| | - Hongmei Chen
- Department of Chemistry and Biochemistry, College of Sciences, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Nicole DiDonato
- Department of Chemistry and Biochemistry, College of Sciences, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Matthew Athon
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77554, United States
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, College of Sciences, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Peter H Santschi
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77554, United States
| |
Collapse
|
31
|
Shiroyama K, Kawasaki Y, Unno Y, Amachi S. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2. Biosci Biotechnol Biochem 2015; 79:1898-905. [PMID: 26041311 DOI: 10.1080/09168451.2015.1052767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Roseovarius sp. strain A-2 is an aerobic heterotrophic bacterium with a capacity for oxidizing iodide ion (I(-)) to form molecular iodine (I2). In this study, iodide-oxidizing enzyme of strain A-2 was characterized. The enzyme was an extracellular protein, and Cu(2+) ion significantly enhanced the enzyme activity in the culture supernatant. When iodide was used as the substrate, the crude enzyme showed Km and Vmax values of 4.78 mM and 25.1 U mg(-1), respectively. The enzyme was inhibited by NaN3, EDTA, KCN, and o-phenanthroline, and also had significant activities toward p-phenylenediamine and hydroquinone. Tandem mass spectrometric analysis of an active band excised from SDS-PAGE gel revealed that at least two proteins are involved in the enzyme. One of these proteins was closely related with IoxA, a multicopper oxidase previously found as a component of iodide-oxidizing enzyme of Alphaproteobacterium strain Q-1. Furthermore, a terrestrial bacterium Rhodanobacter denitrificans 116-2, which possesses an ioxA-like gene in its genome, was found to oxidize iodide. These results suggest that IoxA catalyzes the oxidation of iodide in phylogenetically distinct bacteria.
Collapse
Affiliation(s)
- Kanna Shiroyama
- a Graduate School of Horticulture , Chiba University , Matsudo-city , Japan
| | - Yasutaka Kawasaki
- a Graduate School of Horticulture , Chiba University , Matsudo-city , Japan
| | - Yusuke Unno
- b Institute for Environmental Sciences , Kamikita-gun , Japan
| | - Seigo Amachi
- a Graduate School of Horticulture , Chiba University , Matsudo-city , Japan
| |
Collapse
|
32
|
Xu C, Kaplan DI, Zhang S, Athon M, Ho YF, Li HP, Yeager CM, Schwehr KA, Grandbois R, Wellman D, Santschi PH. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 139:43-55. [PMID: 25464040 DOI: 10.1016/j.jenvrad.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the (129)I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semi-arid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO3(-)) to iodide (I(-)), but the loamy-sand sediment reduced more IO3(-) (100% reduced within 7 days) than the two sand-textured sediments (∼20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies. Iodate uptake Kd values ([Isolid]/[Iaq]; 0.8-7.6 L/kg) were consistently and appreciably greater than iodide Kd values (0-5.6 L/kg). Furthermore, desorption Kd values (11.9-29.8 L/kg) for both iodate and iodide were consistently and appreciably greater than uptake Kd values (0-7.6 L/kg). Major fractions of iodine associated with the sediments were unexpectedly strongly bound, such that only 0.4-6.6 % of the total sedimentary iodine could be exchanged from the surface with KCl solution, and 0-1.2% was associated with Fe or Mn oxides (weak NH2HCl/HNO3 extractable fraction). Iodine incorporated into calcite accounted for 2.9-39.4% of the total sedimentary iodine, whereas organic carbon (OC) is likely responsible for the residual iodine (57.1-90.6%) in sediments. The OC, even at low concentrations, appeared to be controlling iodine binding to the sediments, as it was found that the greater the OC concentrations in the sediments, the greater the values of uptake Kd, desorption Kd, and the greater residual iodine concentrations (non-exchangeable, non-calcite-incorporated and non-Mn, Fe-oxide associated). This finding is of particular interest because it suggests that even very low OC concentrations, <0.2%, may have an impact on iodine geochemistry. The findings that these sediments can readily reduce IO3(-), and that IO3(-) sorbs to a greater extent than I(-), sheds light into earlier unexplained Hanford field data that demonstrated increases in groundwater (127)I(-)/(127)IO3(-) ratios and a decrease groundwater (129)IO3(-) concentrations along a transect away from the point sources, where iodine was primarily introduced as IO3(-). While a majority of the radioiodine does not bind to these alkaline sediments, there is likely a second smaller iodine fraction in the Hanford subsurface that is strongly bound, presumably to the sediment OC (and carbonate) phases. This second fraction may have an impact on establishing remediation goals and performance assessment calculations.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA.
| | | | - Saijin Zhang
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| | - Matthew Athon
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| | - Yi-Fang Ho
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| | - Hsiu-Ping Li
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| | - Chris M Yeager
- 29808 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kathleen A Schwehr
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| | - Russell Grandbois
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| | - Dawn Wellman
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Peter H Santschi
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA
| |
Collapse
|
33
|
Kurosaki H, Kaplan DI, Clark SB. Impact of environmental curium on plutonium migration and isotopic signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13985-13991. [PMID: 25350948 DOI: 10.1021/es500968n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ Kd values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory Kd values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of (240)Pu/(239)Pu was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) (240)Pu produced by decay of (244)Cm may exist predominantly in high oxidation states (Pu(V)O2(+) and Pu(VI)O2(2+)) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that (240)Pu, which is derived primarily from the decay of (244)Cm, had a value of 10 ± 2 mL g(-1), whereas (239)Pu originating from the waste effluents discharged at the site had a value of 101 ± 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that (240)Pu likely existed in the weaker sorbing oxidation states, +5 or +6, than (239)Pu, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term.
Collapse
Affiliation(s)
- Hiromu Kurosaki
- Department of Chemistry, Washington State University , Post Office Box 644630, Pullman, Washington 99164, United States
| | | | | |
Collapse
|
34
|
Orucoglu E, van den Akker BP, Ahn J. Effects of depth on transport of 129I in crystalline rock. ANN NUCL ENERGY 2014. [DOI: 10.1016/j.anucene.2014.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Schwehr KA, Otosaka S, Merchel S, Kaplan DI, Zhang S, Xu C, Li HP, Ho YF, Yeager CM, Santschi PH. Speciation of iodine isotopes inside and outside of a contaminant plume at the Savannah River Site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:671-678. [PMID: 25173764 DOI: 10.1016/j.scitotenv.2014.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
A primary obstacle in understanding the fate and transport of the toxic radionuclide (129)I (a thyroid seeker) is an accurate method to distinguish it from the stable isotope, (127)I, and to quantify the various species at environmentally relevant concentrations (~10(-8) M). A pH-dependent solvent extraction and combustion method was paired with accelerator mass spectrometry (AMS) to measure ambient levels of (129)I/(127)I isotope ratios and iodine speciation (iodide (I(-)), iodate (IO3(-)), and organo-I (OI)) in aquatic systems. The method exhibited an overall uncertainty of 10% or less for I(-) and IO3(-), and less than 30% for OI species concentrations and enabled (129)I measurements as low as 0.001 Bq/L (1 Bq/L=10(-13) M). The method was used to analyze groundwater from the Savannah River Site (SRS), South Carolina, USA, along a pH, redox potential (Eh), and organic carbon gradient (8-60 μM DOC). The data confirmed that the (129)I/(127)I ratios and species distribution were strongly pH dependent and varied in a systematic manner from the strongly acidic source. While (129)I speciation in plume samples containing total I concentrations >1.7 Bq/L was similar whether measured by AMS or GC-MS ([I(-)]≫[IO3(-)]=[OI]), AMS enabled (129)I speciation measurements at much lower concentrations than what was possible with GC-MS. AMS analyses demonstrated that groundwater samples minimally impacted by the plume were still orders of magnitude higher than ambient (129)I concentrations typically found elsewhere in the USA groundwaters and rivers. This is likely due to past atmospheric releases of volatile (129)I species by SRS nuclear reprocessing facilities near the study site. Furthermore, the results confirmed the existence of (129)I not only as I(-), but also as OI and IO3(-) species.
Collapse
Affiliation(s)
- Kathleen A Schwehr
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States
| | - Shigeyoshi Otosaka
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States; Research Group for Environmental Science, Japan Atomic Energy Agency, Tokai Mura, Ibaraki 319 1195, Japan
| | - Silke Merchel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Saijin Zhang
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States
| | - Chen Xu
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States
| | - Hsiu-Ping Li
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States
| | - Yi-Fang Ho
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States
| | - Chris M Yeager
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Peter H Santschi
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553, United States
| |
Collapse
|
36
|
Kaplan DI, Denham ME, Zhang S, Yeager C, Xu C, Schwehr KA, Li HP, Ho YF, Wellman D, Santschi PH. Radioiodine Biogeochemistry and Prevalence in Groundwater. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2014; 44:2287-2335. [PMID: 25264421 PMCID: PMC4160254 DOI: 10.1080/10643389.2013.828273] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
129I is commonly either the top or among the top risk drivers, along with 99Tc, at radiological waste disposal sites and contaminated groundwater sites where nuclear material fabrication or reprocessing has occurred. The risk stems largely from 129I having a high toxicity, a high bioaccumulation factor (90% of all the body's iodine concentrates in the thyroid), a high inventory at source terms (due to its high fission yield), an extremely long half-life (16M years), and rapid mobility in the subsurface environment. Another important reason that 129I is a key risk driver is that there is uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define 129I mass balance and flux at sites, but cannot predict accurately its response to changes in the environment. As a consequence of some of these characteristics, 129I has a very low drinking water standard, which is set at 1 pCi/L, the lowest of all radionuclides in the Federal Register. Recently, significant advancements have been made in detecting iodine species at ambient groundwater concentrations, defining the nature of the organic matter and iodine bond, and quantifying the role of naturally occurring sediment microbes to promote iodine oxidation and reduction. These recent studies have led to a more mechanistic understanding of radioiodine biogeochemistry. The objective of this review is to describe these advances and to provide a state of the science of radioiodine biogeochemistry relevant to its fate and transport in the terrestrial environment and provide information useful for making decisions regarding the stewardship and remediation of 129I contaminated sites. As part of this review, knowledge gaps were identified that would significantly advance the goals of basic and applied research programs for accelerating 129I environmental remediation and reducing uncertainty associated with disposal of 129I waste. Together the information gained from addressing these knowledge gaps will not alter the observation that 129I is primarily mobile, but it will likely permit demonstration that the entire 129I pool in the source term is not moving at the same rate and some may be tightly bound to the sediment, thereby smearing the modeled 129I peak and reducing maximum calculated risk.
Collapse
Affiliation(s)
- D. I. Kaplan
- Savannah River National Laboratory, Aiken, SC, USA
- Address correspondence to D. I. Kaplan, Savannah River National Laboratory, Building 773–43A, Room 215, Aiken, SC29808, USA. E-mail:
| | - M. E. Denham
- Savannah River National Laboratory, Aiken, SC, USA
| | - S. Zhang
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - C. Yeager
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - C. Xu
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - K. A. Schwehr
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - H. P. Li
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - Y. F. Ho
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - D. Wellman
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - P. H. Santschi
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| |
Collapse
|
37
|
Zhang S, Ho YF, Creeley D, Roberts KA, Xu C, Li HP, Schwehr KA, Kaplan DI, Yeager CM, Santschi PH. Temporal variation of iodine concentration and speciation (127I and 129I) in wetland groundwater from the Savannah River Site, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11218-11226. [PMID: 25219373 DOI: 10.1021/es502003q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
(129)I derived from a former radionuclide disposal basin located on the Savannah River Site (SRS) has concentrated in a wetland 600 m downstream. To evaluate temporal environmental influences on iodine speciation and mobility in this subtropical wetland environment, groundwater was collected over a three-year period (2010-2012) from a single location. Total (127)I and (129)I showed significant temporal variations, ranging from 68-196 nM for (127)I and <5-133 pCi/L for (129)I. These iodine isotopes were significantly correlated with groundwater acidity and nitrate, two parameters elevated within the contaminant plume. Additionally, (129)I levels were significantly correlated with those of (127)I, suggesting that biogeochemical controls on (127)I and (129)I are similar within the SRS aquifer/wetland system. Iodine speciation demonstrates temporal variations as well, reflecting effects from surface recharges followed by acidification of groundwater and subsequent formation of anaerobic conditions. Our results reveal a complex system where few single ancillary parameters changed in a systematic manner with iodine speciation. Instead, changes in groundwater chemistry and microbial activity, driven by surface hydrological events, interact to control iodine speciation and mobility. Future radiological risk models should consider the flux of (129)I in response to temporal changes in wetland hydrologic and chemical conditions.
Collapse
Affiliation(s)
- Saijin Zhang
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University , Building 3029, 200 Seawolf Parkway, Galveston, Texas 77554, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaplan DI, Zhang S, Roberts KA, Schwehr K, Xu C, Creeley D, Ho YF, Li HP, Yeager CM, Santschi PH. Radioiodine concentrated in a wetland. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 131:57-61. [PMID: 24075117 DOI: 10.1016/j.jenvrad.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/22/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants.
Collapse
Affiliation(s)
| | - Saijin Zhang
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | | | - Kathy Schwehr
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Danielle Creeley
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Yi-Fang Ho
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Hsiu-Ping Li
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Chris M Yeager
- Los Alamos National Laboratory (LANL), Los Alamos, NM, USA
| | - Peter H Santschi
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| |
Collapse
|
39
|
Xu C, Athon M, Ho YF, Chang HS, Zhang S, Kaplan DI, Schwehr KA, DiDonato N, Hatcher PG, Santschi PH. Plutonium immobilization and remobilization by soil mineral and organic matter in the far-field of the Savannah River Site, U.S. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3186-3195. [PMID: 24555528 DOI: 10.1021/es404951y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To study the effects of natural organic matter (NOM) on Pu sorption, Pu(IV) and (V) were amended at environmentally relevant concentrations (10(-14) M) to two soils of contrasting particulate NOM concentrations collected from the F-Area of the Savannah River Site. More Pu(IV) than (V) was bound to soil colloidal organic matter (COM). A de-ashed humic acid (i.e., metals being removed) scavenged more Pu(IV,V) into its colloidal fraction than the original HA incorporated into its colloidal fraction, and an inverse trend was thus observed for the particulate-fraction-bound Pu for these two types of HAs. However, the overall Pu binding capacity of HA (particulate + colloidal-Pu) decreased after de-ashing. The presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction in the elevated pH systems, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form.
Collapse
Affiliation(s)
- Chen Xu
- Department of Marine Sciences, Texas A&M University , Building 3029, Galveston, Texas 77553, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li J, Wang Y, Guo W, Xie X, Zhang L, Liu Y, Kong S. Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:738-745. [PMID: 24064343 DOI: 10.1016/j.scitotenv.2013.08.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM-PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L(-1) with 47% of samples exceeding its drinking water level of 150 μg L(-1) as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L(-1) were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine.
Collapse
Affiliation(s)
- Junxia Li
- School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Choung S, Um W, Kim M, Kim MG. Uptake mechanism for iodine species to black carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10349-10355. [PMID: 23941630 DOI: 10.1021/es401570a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.
Collapse
Affiliation(s)
- Sungwook Choung
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH) , 77 Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Zhang LY, Hou XL. Speciation analysis of 129I and its applications in environmental research. RADIOCHIM ACTA 2013. [DOI: 10.1524/ract.2013.2077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Summary
129I, a long-lived radionuclide, is important in view of geological repository of nuclear waste, and environmental tracing applications related to diverse natural processes of iodine. The environmental behaviors and bioavailability of 129I are highly related to its species. A number of methods have been reported for speciation analysis of 129I in a variety of environmental samples. These methods have been applied in many researches, including conversion processes of iodine species in marine and terrestrial systems, migration and retention of iodine in soil and sediment, geochemical cycling of iodine, as well as studies on atmospheric chemistry of iodine. This article aims to review these methods and their applications in environmental research.
Collapse
Affiliation(s)
- L. Y. Zhang
- Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, Roskilde 4000, Denmark
| | - X. L. Hou
- Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, Roskilde 4000, Denmark
- Xi’an AMS Center, SKLLQG, Institute of Earth Environment, CAS, Xi’an 710075, China
| |
Collapse
|
43
|
Zhang S, Xu C, Creeley D, Ho YF, Li HP, Grandbois R, Schwehr KA, Kaplan DI, Yeager CM, Wellman D, Santschi PH. Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9635-9642. [PMID: 23885783 DOI: 10.1021/es401816e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.
Collapse
Affiliation(s)
- Saijin Zhang
- Department of Marine Science, Texas A&M University at Galveston , Texas 77554, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xu C, Chen H, Sugiyama Y, Zhang S, Li HP, Ho YF, Chuang CY, Schwehr KA, Kaplan DI, Yeager C, Roberts KA, Hatcher PG, Santschi PH. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:244-252. [PMID: 23428755 DOI: 10.1016/j.scitotenv.2013.01.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
Major fractions of radioiodine ((129)I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios (<0.2 or <0.4) and yet some degree of un-saturation close to that of lignin, have multiple important environmental implications concerning possibly less sterically-hindered aromatic ring system for iodine to get access to and a lower hydrophilicity of the molecules thus to retard their migration in the natural aquatic systems. Lastly, ~69% of the identified organo-iodine species contains nitrogen, which is presumably present as NH2 or HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on (129)I migration.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li J, Wang Y, Xie X, Zhang L, Guo W. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:848-859. [PMID: 23478640 DOI: 10.1039/c3em30841c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
High iodine concentrations in groundwater have seldom been reported and there have been few systematic studies on high iodine groundwater worldwide. To better understand the sources and processes responsible for iodine enrichment in the groundwater of the Datong Basin, the hydrochemical characteristics of groundwater and geochemical features of aquifer sediments were studied. High iodine groundwater mainly occurs in the center of the Datong Basin with iodine concentrations ranging between 3.31 and 1890 μg L(-1). Most samples with iodine concentrations higher than 500 μg L(-1) are from wells with depths between 75 and 120 m. High pH and a reducing environment are favorable for iodine enrichment in the groundwater, with iodide as the dominant species that accounts for 63.2-99.3% of the total iodine. Sediment samples from a borehole specifically drilled for this study contain 0.18-1.46 mg kg(-1) iodine that is moderately correlated with total organic carbon (TOC). The results of sequential extraction experiments show that iodine is mostly bound to iron oxyhydroxides and organic matter in the sediments. The mobilization processes of iodine are proposed to include reductive dissolution of iron oxyhydroxides and transformations among iodide, iodate and organic iodine driven by microbial activities under alkaline and reducing conditions.
Collapse
Affiliation(s)
- Junxia Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | | | | | | | | |
Collapse
|
46
|
Seki M, Oikawa JI, Taguchi T, Ohnuki T, Muramatsu Y, Sakamoto K, Amachi S. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:390-397. [PMID: 23194146 DOI: 10.1021/es303228n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.
Collapse
Affiliation(s)
- Miharu Seki
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba 271-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Factors Controlling Spatial Variation of Iodine Species in Groundwater of the Datong Basin, Northern China. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proeps.2013.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Li HP, Yeager CM, Brinkmeyer R, Zhang S, Ho YF, Xu C, Jones WL, Schwehr KA, Otosaka S, Roberts KA, Kaplan DI, Santschi PH. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4837-44. [PMID: 22455542 DOI: 10.1021/es203683v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 μM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.
Collapse
Affiliation(s)
- Hsiu-Ping Li
- Department of Marine Sciences, Texas A&M University, Galveston, Texas 77551, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wan J, Tokunaga TK, Dong W, Denham ME, Hubbard SS. Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: the F-Area Savannah River Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4490-4497. [PMID: 22432961 DOI: 10.1021/es204265q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
At the Savannah River Site's F-Area, wastewaters containing radionuclides were disposed into seepage basins for decades. After closure and capping in 1991, the U.S. Department of Energy (DOE) has being monitoring and remediating the groundwater plume. Despite numerous studies of the plume, its persistence for over 20 years has not been well understood. To better understand the plume dynamics, a limited number of deep boreholes were drilled to determine the current plume characteristics. A mixing model was developed to predict plume tritium and nitrate concentrations. We found that the plume trailing edges have emerged for some contaminants, and that contaminant recharge from the basin's vadose zone is still important. The model's estimated time-dependent basin drainage rates combined with dilution from natural recharge successfully predicted plume tritium and nitrate concentrations. This new understanding of source zone influences can help guide science-based remediation, and improve predictions of the natural attenuation timeframes.
Collapse
Affiliation(s)
- Jiamin Wan
- Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA.
| | | | | | | | | |
Collapse
|
50
|
Arakawa Y, Akiyama Y, Furukawa H, Suda W, Amachi S. Growth stimulation of iodide-oxidizing α-Proteobacteria in iodide-rich environments. MICROBIAL ECOLOGY 2012; 63:522-531. [PMID: 22138964 DOI: 10.1007/s00248-011-9986-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
α-Proteobacteria that can oxidize iodide (I(-)) to molecular iodine (I(2)) have only been isolated from iodide-rich natural and artificial environments, i.e., natural gas brine waters and seawaters supplemented with iodide, respectively. To understand the growth characteristics of such iodide-oxidizing bacteria (IOB) under iodide-rich environments, microcosms comprising natural seawater and 1 mM iodide were prepared, and the succession of microbial communities was monitored by culture-independent techniques. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis showed that bacteria closely related with known IOB were predominant in the microcosms after several weeks of incubation. Quantitative PCR analysis targeting specific 16S rRNA gene regions of IOB showed that the relative abundance of IOB in the microcosms was 6-76% of the total bacterial population, whereas that in natural seawater was less than 1%. When 10(3) cells mL(-1) of IOB were inoculated into natural seawater supplemented with 0.1-1 mM iodide, significant growth (cell densities, 10(5)-10(6) cells mL(-1)) and I(2) production (6-32 μM) were observed. Interestingly, similar growth stimulation occurred when 12-44 μM of I(2) was added to seawater, instead of iodide. IOB were found to be more I(2) tolerant than the other heterotrophic bacteria in seawater. These results suggest that I(2) plays a key role in the growth stimulation of IOB in seawater. IOB could potentially attack other bacteria with I(2) to occupy their ecological niche in iodide-rich environments.
Collapse
Affiliation(s)
- Yumi Arakawa
- Department of Applied Biosciences, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo City, Chiba, 271-8510, Japan
| | | | | | | | | |
Collapse
|