1
|
Soegianto A, Mukholladun W, Putranto TWC, Marchellina A, Manaf LBA, Irnidayanti Y, Hartl MGJ, Payus CM. Evidence of microcystin bioaccumulation and its effects on structural alterations in various shrimp (Litopenaeus vannamei Boone, 1931) tissues from shrimp aquaculture in the northern coastal region of East Java, Indonesia. MARINE POLLUTION BULLETIN 2025; 211:117467. [PMID: 39700704 DOI: 10.1016/j.marpolbul.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Microcystins are generated by diverse cyanobacteria in shrimp ponds marked by high nutrient levels. The study examined microcystin-leucine arginine (MC-LR) in the pond water, gills, hepatopancreas, and muscle of shrimp (Litopenaeus vannamei) from shrimp ponds on the northern coast of East Java and its effects on their histological structures. In shrimp ponds dominated by cyanobacteria particularly Microcystis and Oscillatoria, MC-LR levels were high. In pond water, Microcystis and Oscillatoria levels increased along with NO2-, NH4+, clarity, and salinity. Shrimp tissues, such as the gills and hepatopancreas, experienced elevated MC-LR concentrations as a consequence of the MC-LR toxin increase in pond water. Shrimp inhabitants of ponds with elevated MC-LR concentrations exhibited significant changes in histological architecture, like hyperplasia in gill tissue and extensive vacuolation in hepatopancreas tissue. L. vannamei muscle samples show MC-LR amounts below the WHO's recommended daily intake of 0.04 μg/kg body weight/day, indicating no health risks to humans.
Collapse
Affiliation(s)
- Agoes Soegianto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
| | - Wildanun Mukholladun
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ary Marchellina
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Latifah Binti Abd Manaf
- Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Yulia Irnidayanti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Mark G J Hartl
- Institute for Life and Earth Sciences, Centre for Marine Biodiversity and Biotechnology, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh, Scotland, UK.
| | - Carolyn Melissa Payus
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
2
|
Soro MP, N'goran KM, Ouattara AA, Yao KM, Kouassi NLB, Diaco T. Nitrogen and phosphorus spatio-temporal distribution and fluxes intensifying eutrophication in three tropical rivers of Côte d'Ivoire (West Africa). MARINE POLLUTION BULLETIN 2023; 186:114391. [PMID: 36470099 DOI: 10.1016/j.marpolbul.2022.114391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Nutrient contamination assessments in the three West African tropical Comoé, Bandama, and Bia Rivers (Côte d'Ivoire) were performed from March 2016 to March 2018. Five stations per river were sampled. Nutrients spatio-temporal distributions were mapped and showed nitrogen concentrations (nitrite 0.001 to 0.025 mg/L NO2--N, and nitrate 0.26 to 3.60 mg/L NO3--N) increased significantly with rainfall contrary to phosphorus (0.01 to 0.12 mg/L P). The Chl-a and TSItsr data revealed the hypereutrophic status of rivers. Moreover, N:P mass ratio suggests nitrogen as the main limiting factor of primary production during the low (March) and high flow periods (October-November), while phosphorus is the limiting factor in June, at the high flow beginning. The land uses around watersheds were the main sources of phosphorus and nitrogen enhancing the rivers' eutrophication. Phosphorus and nitrogen fluxes were related to leaching river catchments and were significant sources of nutrients to the Atlantic Ocean.
Collapse
Affiliation(s)
- Maley-Pacôme Soro
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR-SFA, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire.
| | - Koffi Martin N'goran
- Laboratoire de Constitution et de Réaction de la Matière, Université Felix Houphouët Boigny, 22 BP 582, Abidjan 22, Côte d'Ivoire
| | - Ahbeauriet Ahmed Ouattara
- Département de Sciences et Techniques, Université Alassane Ouattara, BP V 18, Bouaké 01, Côte d'Ivoire
| | - Koffi Marcellin Yao
- Centre de Recherches Océanologiques, 29, rue des pêcheurs, BP V18, Abidjan, Côte d'Ivoire
| | | | - Thomas Diaco
- Laboratoire de Constitution et de Réaction de la Matière, Université Felix Houphouët Boigny, 22 BP 582, Abidjan 22, Côte d'Ivoire
| |
Collapse
|
3
|
Savadova-Ratkus K, Mazur-Marzec H, Karosienė J, Sivonen K, Suurnäkki S, Kasperovičienė J, Paškauskas R, Koreivienė J. Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15341. [PMID: 36430059 PMCID: PMC9690872 DOI: 10.3390/ijerph192215341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Monodominant (one species dominates) or polidominant (multiple species dominate) cyanobacterial blooms are pronounced in productive freshwater ecosystems and pose a potential threat to the biota due to the synthesis of toxins. Seasonal changes in cyanobacteria species and cyanometabolites composition were studied in two shallow temperate eutrophic lakes. Data on cyanobacteria biomass and diversity of dominant species in the lakes were combined with chemical and molecular analyses of fifteen potentially toxin-producing cyanobacteria species (248 isolates from the lakes). Anatoxin-a, saxitoxin, microcystins and other non-ribosomal peptides formed the diverse profiles in monodominant (Planktothrix agardhii) and polidominant (Aphanizomenon gracile, Limnothrix spp. and Planktolyngbya limnetica) lakes. However, the harmfulness of the blooms depended on the ability of the dominant species to synthesize cyanometabolites. It was confirmed that P. agardhii produced a greater amount and diverse range of MCs and other NRPs. In the polidominant lake, isolates of the co-dominant A. gracile, L. planctonica and P. limnetica synthesized no or only small amounts of cyanometabolites. In general, the profile of cyanometabolites was greater in cyanobacteria isolates than in environmental samples, indicating a high potential for toxic cyanobacteria bloom.
Collapse
Affiliation(s)
- Ksenija Savadova-Ratkus
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Biocenter 1, P.O. Box 56, FIN-00014 Helsinki, Finland
| | - Suvi Suurnäkki
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
| | - Jūratė Kasperovičienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Ričardas Paškauskas
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Judita Koreivienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
4
|
Katsoulis-Dimitriou S, Lefkaditis M, Barmpagiannakos S, Kormas KA, Kyparissis A. Comparison of iCOR and Rayleigh atmospheric correction methods on Sentinel-3 OLCI images for a shallow eutrophic reservoir. PeerJ 2022; 10:e14311. [PMID: 36353601 PMCID: PMC9639424 DOI: 10.7717/peerj.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Remote sensing of inland waters is challenging, but also important, due to the need to monitor the ever-increasing harmful algal blooms (HABs), which have serious effects on water quality. The Ocean and Land Color Instrument (OLCI) of the Sentinel-3 satellites program is capable of providing images for the monitoring of such waters. Atmospheric correction is a necessary process in order to retrieve the desired surface-leaving radiance signal and several atmospheric correction methods have been developed through the years. However, many of these correction methods require programming language skills, or function as commercial software plugins, limiting their possibility of use by end users. Accordingly, in this study, the free SNAP software provided by the European Space Agency (ESA) was used to evaluate the possible differences between a partial atmospheric correction method accounting for Rayleigh scattering and a full atmospheric correction method (iCOR), applied on Sentinel-3 OLCI images of a shallow, highly eutrophic water reservoir. For the complete evaluation of the two methods, in addition to the comparison of the band reflectance values, chlorophyll (CHL) and cyanobacteria (CI) indices were also calculated and their values were intercompared. The results showed, that although the absolute values between the two correction methods did not coincide, there was a very good correlation between the two methods for both bands' reflectance (r > 0.73) and the CHL and CI indices values (r > 0.95). Therefore, since iCOR correction image processing time is 25 times longer than Rayleigh correction, it is proposed that the Rayleigh partial correction method may be alternatively used for seasonal water monitoring, especially in cases of long time-series, enhancing time and resources use efficiency. Further comparisons of the two methods in other inland water bodies and evaluation with in situ chlorophyll and cyanobacteria measurements will enhance the applicability of the methodology.
Collapse
Affiliation(s)
| | - Marios Lefkaditis
- Department of Agriculture Ichthyology & Aquatic Environment, University of Thessaly, Volos, Magnesia, Greece
| | - Sotirios Barmpagiannakos
- Department of Agriculture Ichthyology & Aquatic Environment, University of Thessaly, Volos, Magnesia, Greece
| | - Konstantinos A. Kormas
- Department of Agriculture Ichthyology & Aquatic Environment, University of Thessaly, Volos, Magnesia, Greece
| | - Aris Kyparissis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Magnesia, Greece
| |
Collapse
|
5
|
Benayache NY, Afri-Mehennaoui FZ, Kherief-Nacereddine S, Vo-Quoc B, Hushchyna K, Nguyen-Quang T, Bouaïcha N. Massive fish death associated with the toxic cyanobacterial Planktothrix sp. bloom in the Béni-Haroun Reservoir (Algeria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80849-80859. [PMID: 35729384 DOI: 10.1007/s11356-022-21538-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
In July 2017, a massive bloom of the potentially toxic cyanobacterial species Planktothrix sp. was observed in the Béni-Haroun Reservoir (Algeria), which was followed by a massive fish death. Many questions were raised in association with the role of cyanotoxins and the fish massive mortality. The objective of this paper is twofold: (1) to investigate the variability of physicochemical and cyanobacterial parameters (chlorophyll-a, phycocyanin, allophycocyanin, and microcystins) throughout the period of July 2017 to June 2018; and (2) to determine the free and total MC levels in viscera and muscle tissues of the common carp (Cyprinus carpio), which are found dead in the considered reservoir in October 2017. Our results showed microcystin (MC) concentrations in water samples (by the protein phosphatase PP2A assay) had reached 651.2 ng MC-LR equiv./L. Total MC levels (free + bound) in the viscera and muscle tissues of sampled dead fish were at 960.24 and 438.54 µg MC-LR equiv./kg dw, respectively. It is assumed that high concentrations of MC observed in the tissues of common carp induced a strong degradation of the visceral contents resulting in the complete lysis of the hepatopancreas, and presumably the massive fish death.
Collapse
Affiliation(s)
- Naila-Yasmine Benayache
- Laboratoire Biologie Et Environnement, Université Frères Mentouri, Constantine1, 25000, Constantine, Algeria.
- Laboratoire Ecologie, Systématique, Evolution UMR 8079, Université Paris-Saclay, 12 Route 128 (Bât. IDEEV), 91190, Gif-sur Yvette, France.
| | | | - Saliha Kherief-Nacereddine
- Laboratoire Biologie Et Environnement, Université Frères Mentouri, Constantine1, 25000, Constantine, Algeria
| | - Bao Vo-Quoc
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Kateryna Hushchyna
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling Lab (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro-Bible Hill, NS, B2N 5E3, Canada
| | - Noureddine Bouaïcha
- Laboratoire Ecologie, Systématique, Evolution UMR 8079, Université Paris-Saclay, 12 Route 128 (Bât. IDEEV), 91190, Gif-sur Yvette, France
| |
Collapse
|
6
|
Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation. SUSTAINABILITY 2022. [DOI: 10.3390/su14074311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sustainable management is a prerequisite for a lake to provide a range of ecosystem services. The prioritization of needs is a difficult task, especially when the needs are in conflict and threaten water security. Lake Karla, situated in the Thessaly plain, Greece, was decimated in 1957–1962; due to environmental impacts, it was later refilled as a multipurpose reservoir with high ecological significance. The research objective is to achieve a compromise with respect to both the economic benefits derived from agricultural water use and environmental protection based on the minimum intersection. For this purpose, first, new managerial practices are introduced. Second, the ideas are quantified based on the hydrological budget, and these are used as input for flexible (fuzzy) programming. Under hypotheses about the acceptable range, the (flexible) fuzzy programming is identical with the MINMAX goal programming model, although the weights are not used directly in the first case. An understandable compromise (the maximum economic benefit from irrigation areas and the minimization of water retention time) is achieved, and the values of the membership functions can be used to verify the solution. The proposed solution leads to a quantitative proposition, incorporating new findings from modeling the recent real operation of the reservoir.
Collapse
|
7
|
Zhao F, Zhan X, Xu H, Zhu G, Zou W, Zhu M, Kang L, Guo Y, Zhao X, Wang Z, Tang W. New insights into eutrophication management: Importance of temperature and water residence time. J Environ Sci (China) 2022; 111:229-239. [PMID: 34949352 DOI: 10.1016/j.jes.2021.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/14/2023]
Abstract
Eutrophication and harmful cyanobacterial blooms threaten water resources all over the world. There is a great controversy about controlling only phosphorus or controlling both nitrogen and phosphorus in the management of lake eutrophication. The primary argument against the dual nutrients control of eutrophication is that nitrogen fixation can compensate the nitrogen deficits. Thus, it is of great necessary to study the factors that can significantly affect the nitrogen fixation. Due to the difference of climate and human influence, the water quality of different lakes (such as water temperature, N:P ratio and water residence time) is also quite different. Numerous studies have reported that the low N:P ratio can intensify the nitrogen fixation capacities. However, the effects of temperature and water residence time on the nitrogen fixation remain unclear. Thus, 30 shallows freshwater lakes in the eastern plain of China were selected to measure dissolved N2 and Ar concentrations through N2: Ar method using a membrane inlet mass spectrometer to quantify the nitrogen fixation capacities and investigate whether the temperature and water residence time have a great impact on nitrogen fixation. The results have shown that the short lake water residence time can severely inhibit the nitrogen fixation capacities through inhibiting the growth of nitrogen-fixing cyanobacteria, changing the N:P ratio and resuspending the solids from sediments. Similarly, lakes with low water temperature also have a low nitrogen fixation capacity, suggesting that controlling nitrogen in such lakes is feasible if the growth of cyanobacteria is limited by nitrogen.
Collapse
Affiliation(s)
- Feng Zhao
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xu Zhan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hai Xu
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangwei Zhu
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zou
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Zhu
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Kang
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Guo
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Zhao
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Wang
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Tang
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Differential Effect of Hydroxen Peroxide οn Toxic Cyanobacteria of Hypertrophic Mediterranean Waterbodies. SUSTAINABILITY 2021. [DOI: 10.3390/su14010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyanobacterial blooms have been known since ancient times; however, they are currently increasing globally. Human and ecological health risks posed by harmful cyanobacterial blooms have been recorded around the world. These risks are mainly associated with their ability to affect the ecosystem chain by different mechanisms like the production of cyanotoxins, especially microcystins. Their expansion and their harmful effects have led many researchers to seek techniques and strategies to control them. Among them, hydrogen peroxide could be a promising tool against cyanobacteria and cyanotoxins and it is well-established as an environmentally friendly oxidizing agent because of its rapid decomposition into oxygen and water. The aim of the present study was to evaluate the effect of hydrogen peroxide on phytoplankton from two hypertrophic waterbodies in Greece. The effect of hydrogen peroxide on concentration of microcystins found in the waterbodies was also studied. Treatment with 4 mg/L hydrogen peroxide was applied to water samples originated from the waterbodies and Cyanobacterial composition and biomass, phycocyanin, chlorophyll-a, and intra-cellular and total microcystin concentrations were studied. Cyanobacterial biomass and phycocyanin was reduced significantly after the application of 4 mg/L hydrogen peroxide in water treatment experiments while chlorophytes and extra-cellular microcystin concentrations were increased. Raphidiopsis (Cylindrospermopsis) raciborskii was the most affected cyanobacterial species after treatment of the water of the Karla Reservoir in comparison to Aphanizomenon favaloroi, Planktolyngbya limnetica, and Chroococcus sp. Furthermore, Microcystis aeruginosa was more resistant to the treatment of Pamvotis lake water in comparison with Microcystis wesenbergii and Microcystis panniformis. Our study showed that hydrogen peroxide differentially impacts the members of the phytoplankton community, affecting, thus, its overall efficacy. Different effects of hydrogen peroxide treatment were observed among cyanobacerial genera as well as among cyanobacterial species of the same genus. Different effects could be the result of the different resistance mechanisms of each genus or species to hydrogen peroxide. Hydrogen peroxide could be used as a treatment for the mitigation of cyanobacterial blooms in a waterbody; however, the biotic and abiotic characteristics of the waterbody should be considered.
Collapse
|
9
|
Tsoumalakou E, Papadimitriou T, Berillis P, Kormas KA, Levizou E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147948. [PMID: 34051502 DOI: 10.1016/j.scitotenv.2021.147948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Collapse
Affiliation(s)
- E Tsoumalakou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - P Berillis
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - K A Kormas
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece.
| |
Collapse
|
10
|
Brêda-Alves F, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11528-11539. [PMID: 33128150 DOI: 10.1007/s11356-020-11367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The large-scale use of herbicides deteriorates water quality and threatens aquatic biodiversity. Unfortunately, there are few studies on the ecological effects of herbicides on toxin-producing strains of cyanobacteria under changing nutrient conditions. The objective of the present study was to investigate the effects of the herbicide clethodim and nitrogen variation on the allelopathic interactions and toxin production of Microcystis aeruginosa BCCUSP232 and Raphidiopsis raciborskii (formerly known as Cylindrospermopsis raciborskii) ITEPA1. M. aeruginosa had increased cell density when exposed to the clethodim (H +) (23.55 mg/L), whereas the highest cell density of R. raciborskii was observed in the treatment with clethodim plus limited nitrogen. Also, the cell-free exudate of R. raciborskii significantly stimulated the growth of M. aeruginosa on day 3 of the experiment. The concentration of chlorophyll-a in M. aeruginosa cultures generally increased in all the treatments, while in R. raciborskii cultures, the opposite occurred. Total microcystins (MCs) content of M. aeruginosa in the mixed cultures was 68% higher in nitrogen-enriched conditions than the control. A similar increase in MC content occurred in M. aeruginosa unialgal culture treated with R. raciborskii exudate. Total saxitoxin concentration was 81% higher in mixed cultures of R. raciborskii simultaneously exposed to high nitrogen and clethodim. Similarly, unialgal cultures of R. raciborskii exposed to either high nitrogen or clethodim had higher saxitoxins concentrations than the control. The intracellular H2O2 content of M. aeruginosa cultures decreased, whereas, in R. raciborskii cultures, it increased during exposure to high nitrogen and clethodim. Only R. raciborskii had a significant variation in peroxidase activity. The activities of glutathione S-transferase of both strains were higher in the presence of clethodim. These results revealed that nitrogen enrichment and the presence of clethodim might lead to the excessive proliferation of M. aeruginosa and R. raciborskii and increased production of cyanotoxins in aquatic environments.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil.
| | - Valéria de Oliveira Fernandes
- Laboratório de Taxonomia e Ecologia de Algas Continentais, Departamento de Botânica, Universidade Federal do Espírito Santo, Av., Fernando Ferrari, Vitoria, 29075-015, Brasil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria
| |
Collapse
|
11
|
Interannual and Spatial Variability of Cyanotoxins in the Prespa Lake Area, Greece. WATER 2021. [DOI: 10.3390/w13030357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Prespa Lakes area in Greece—comprised partly of lake Great and lake Lesser Prespa and the Vromolimni pond—has a global importance for biodiversity. Although the waters show regular cyanobacteria blooms, assessments of water quality threats are limited. Samples collected in 2012 revealed scattered and low microcystin (MC) concentrations in Great Prespa (<0.2 μg MC L−1) whereas considerable spatial heterogeneity in both total chlorophyll (2.4–93 µg L−1) and MC concentrations (0.04–52.4 µg MC L−1) was detected in Lesser Prespa. In 2013, there was far less spatial variability of MC concentrations in Lesser Prespa (0.4–1.53 µg L−1), however in 2014, increased concentrations were detected near the lakeshore (25–861 µg MC L−1). In Vromolimni pond the MC concentrations were on average 26.6 (±6.4) µg MC L−1 in 2012, 2.1 (±0.3) µg MC L−1 in 2013 and 12.7 (±12.5) µg MC L−1 in 2014. In 2013, no anatoxins, saxitoxins, nor cylindrospermopsins were detected in Lesser Prespa and Vromolimni waters. Tissue samples from carps, an otter and Dalmatian Pelicans contained 0.4–1.9 µg MC g−1 dry weight. These results indicate that cyanotoxins could be a threat to the ecosystem functions of particularly Lesser Prespa and Vromolimni.
Collapse
|
12
|
Petrou M, Karas PA, Vasileiadis S, Zafiriadis I, Papadimitriou T, Levizou E, Kormas K, Karpouzas DG. Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115208. [PMID: 32683235 DOI: 10.1016/j.envpol.2020.115208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are toxins produced during cyanobacterial blooms. They reach soil and translocated to plants through irrigation of agricultural land with water from MC-impacted freshwater systems. To date we have good understanding of MC effects on plants, but not for their effects on plant-associated microbiota. We tested the hypothesis that MC-LR, either alone or with other stressors present in the water of the Karla reservoir (a low ecological quality and MC-impacted freshwater system), would affect radish plants and their rhizospheric and phyllospheric microbiome. In this context a pot experiment was employed where radish plants were irrigated with tap water without MC-LR (control) or with 2 or 12 μg L-1 of pure MC-LR (MC2 and MC12), or water from the Karla reservoir amended (12 μg L-1) or not with MC-LR. We measured MC levels in plants and rhizospheric soil and we determined effects on (i) plant growth and physiology (ii) the nitrifying microorganisms via q-PCR, (ii) the diversity of bacterial and fungal rhizospheric and epiphytic communities via amplicon sequencing. MC-LR and/or Karla water treatments resulted in the accumulation of MC in taproot at levels (480-700 ng g-1) entailing possible health risks. MC did not affect plant growth or physiology and it did not impose a consistent inhibitory effect on soil nitrifiers. Karla water rather than MC-LR was the stronger determinant of the rhizospheric and epiphytic microbial communities, suggesting the presence of biotic or abiotic stressors, other than MC-LR, in the water of the Karla reservoir which affect microorganisms with a potential role (i.e. pathogens inhibition, methylotrophy) in the homeostasis of the plant-soil system. Overall, our findings suggest that MC-LR, when applied at environmentally relevant concentrations, is not expected to adversely affect the radish-microbiota system but might still pose risk for consumers' health.
Collapse
Affiliation(s)
- M Petrou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - P A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - S Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - I Zafiriadis
- University of Thessaly, Department of Agriculture, Crop Production and Agricultural Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture, Ichthyology & Aquatic Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture, Crop Production and Agricultural Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - K Kormas
- University of Thessaly, Department of Agriculture, Ichthyology & Aquatic Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - D G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
13
|
Brêda-Alves F, Militão FP, de Alvarenga BF, Miranda PF, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. CHEMOSPHERE 2020; 243:125318. [PMID: 31995862 DOI: 10.1016/j.chemosphere.2019.125318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Increased agricultural intensification goes with the widespread use of herbicides that adversely affect aquatic biodiversity. The effects of herbicides on toxin-producing cyanobacteria have been poorly studied. The present study aimed to investigate the toxicological and physiological effects of the herbicide clethodim on Raphidiopsis raciborskii (a.k.a. Cylindrospermopsis raciborskii) ITEPA1 and Microcystis aeruginosa BCCUSP232. On day four of the experiment, the exposure to 25 mg/L clethodim resulted in the highest cell density of R. raciborskii. Similarly, exposure to the 1, 5, 20, and 50 mg/L clethodim treatments resulted in the highest cell densities of M. aeruginosa on day 4 of the experiment. Medium effect concentrations (EC50) after 96 h of exposure of both strains to clethodim were 192.98 mg/L and 168.73 mg/L for R. raciborskii and M. aeruginosa, respectively. The presence of clethodim significantly increased the total microcystin content of M. aeruginosa compared to the control cultures. At 400 mg/L, total saxitoxins content of R. raciborskii was 27% higher than that of the control cultures on day 4. In contrast, cultures exposed to 100 mg/L clethodim had the lowest saxitoxins levels per cell quota. There was an increase in the levels of intracellular hydrogen peroxide in both species during exposure to clethodim, which was followed by significant changes (p < 0.05) in the activity of antioxidant enzymes such as peroxidase and superoxide dismutase. These results revealed that the presence of low levels of clethodim in the aquatic environment might lead to the excessive proliferation of cyanobacteria and alteration of their cyanotoxins content.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil.
| | - Frederico Pacheco Militão
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Brener Freitas de Alvarenga
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Pamela Ferreira Miranda
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Valéria de Oliveira Fernandes
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
14
|
Tsaboula A, Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E. Assessment and management of pesticide pollution at a river basin level part I: Aquatic ecotoxicological quality indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1597-1611. [PMID: 30177275 DOI: 10.1016/j.scitotenv.2018.08.240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
During the last decade numerous monitoring programs have been conducted in order to assess pesticide pollution in catchments. This effort has led to the production of large, complex data sets of environmental results making the task of evaluation of the aquatic chemical status more difficult. Furthermore, the evaluation of the chemical status of the water ecosystems is one of the main aspects which should be considered in a River Basin Management Plan. In this study, two indices were developed in order to assess the combined pesticide ecotoxicity to aquatic non-target organisms, the Aquatic Quality Index of Short term Toxicity of Pesticides (AQI ShToxP) and the Aquatic Quality Index of Long term Toxicity of Pesticides (AQI LToxP). These indices were applied to the environmental results obtained from an intensive monitoring study of 302 pesticides in 102 stationary sampling stations located on the surface aquatic network of the Pinios River Basin, in Greece, in 2011 and 2012. The evaluation of the surface water quality was achieved by taking into consideration the frequency and the intensity of exposure of the aquatic organisms to pesticides above the respective ecotoxicological quality objectives such as the acute or chronic term predicted no-effect concentrations derived from risk assessment. Seventy-five pesticides, that have been previously identified as the River Basin Specific Pollutants of Pinios by an environmental and human risk hierarchy exercise, were assessed. It appears, from the implementation of the two indices, that the detected pesticides in the surface aquatic ecosystem of the Pinios River Basin exert significant pressure on the aquatic non-target organisms especially at the chronic effect level. The developed AQI ShToxP and AQI LToxP indices, as well as the proposed quality classification system could be valuable communication and interpretation tools for River Basin Management Plans that can contribute in the restoration of environmental health.
Collapse
Affiliation(s)
- Aggeliki Tsaboula
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Emmanouil-Nikolaos Papadakis
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Zisis Vryzas
- Laboratory of Agricultural Pharmacology and Ecotoxicology, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestias, Greece.
| | - Athina Kotopoulou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Katerina Kintzikoglou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| | - Euphemia Papadopoulou-Mourkidou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54126 Thessaloniki, Greece.
| |
Collapse
|
15
|
Budzyńska A, Rosińska J, Pełechata A, Toporowska M, Napiórkowska-Krzebietke A, Kozak A, Messyasz B, Pęczuła W, Kokociński M, Szeląg-Wasielewska E, Grabowska M, Mądrecka B, Niedźwiecki M, Alcaraz Parraga P, Pełechaty M, Karpowicz M, Pawlik-Skowrońska B. Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1338-1347. [PMID: 30308820 DOI: 10.1016/j.scitotenv.2018.09.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms are an increasing threat worldwide. Invasions of certain cyanobacterial species, mainly towards higher latitudes, add to this concern as they enrich the pool of potential bloom-formers in the invaded region. Among the numerous causes of this escalating process, climate warming is commonly considered the most crucial factor, but empirical studies of this issue are lacking. The aim of our study was to identify physical, chemical and biological factors related to the occurrence of an invasive cyanobacterium at the northern border of its putative current range, and thus enabling its expansion. This study focuses on the relatively little studied species Sphaerospermopsis aphanizomenoides (Nostocales, Cyanobacteria; synonyms: Aphanizomenon aphanizomenoides, Anabaena aphanizomenoides), which is predicted to become one of the main nuisance species of the future. Forty-nine freshwater lakes located between latitudes 51° and 55°N were examined for the presence of S. aphanizomenoides, and environmental factors that could drive its occurrence were studied simultaneously. To identify factors correlated with the presence of the species, principal component analysis (PCA) and Mann-Whitney U test were performed. Water temperature did not differentiate lakes with or without S. aphanizomenoides, however the study was conducted in a particularly hot summer. Total phosphorus concentration was identified as the primary driving factor of the occurrence of S. aphanizomenoides. The species grew in poor light conditions and high phytoplankton biomass, mainly in shallow lakes. As shown by detrended correspondence analysis (DCA), the species accompanied shade tolerant, eutrophic species of native and invasive cyanobacteria as well as eukaryotic algae. Our results indicate that eutrophication may be the primary factor enabling the increasing occurrence of S. aphanizomenoides in temperate environments, and suggest that this process may stimulate expansion of cyanobacterial species towards high latitudes.
Collapse
Affiliation(s)
- A Budzyńska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland.
| | - J Rosińska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland; Poznan University of Medical Sciences, Faculty of Health Sciences, Department of Environmental Medicine, Rokietnicka 8, 60-806 Poznań, Poland
| | - A Pełechata
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - M Toporowska
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - A Napiórkowska-Krzebietke
- Inland Fisheries Institute, Department of Ichthyology, Hydrobiology and Aquatic Ecology, Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - A Kozak
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland
| | - B Messyasz
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - W Pęczuła
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - M Kokociński
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - E Szeląg-Wasielewska
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Umultowska 89, 61-614 Poznań, Poland
| | - M Grabowska
- University of Białystok, Department of Hydrobiology, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - B Mądrecka
- Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Berdychowo 4, 60-965 Poznań, Poland
| | - M Niedźwiecki
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - P Alcaraz Parraga
- University of Jaén, Department of Animal Biology, Plant Biology and Ecology, Campus Las Lagunillas, 23071 Jaén, Spain
| | - M Pełechaty
- Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznań, Poland
| | - M Karpowicz
- University of Białystok, Department of Hydrobiology, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - B Pawlik-Skowrońska
- University of Life Sciences in Lublin, Department of Hydrobiology and Protection of Ecosystems, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
16
|
Christophoridis C, Zervou SK, Manolidi K, Katsiapi M, Moustaka-Gouni M, Kaloudis T, Triantis TM, Hiskia A. Occurrence and diversity of cyanotoxins in Greek lakes. Sci Rep 2018; 8:17877. [PMID: 30552354 PMCID: PMC6294760 DOI: 10.1038/s41598-018-35428-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Toxic cyanobacteria occur in Greek surface water bodies. However, studies on the occurrence of cyanotoxins (CTs) are often limited to mainly microcystins (MCs), with use of screening methods, such as ELISA, that are not conclusive of the chemical structure of the CT variants and can be subject to false positive results. A multi-lake survey in Greece (14 lakes) was conducted in water and biomass, targeted to a wide range of multi-class CTs including MCs, nodularin-R (NOD), cylindrospermopsin (CYN), anatoxin-a (ANA-a) and saxitoxins (STXs), using multi-class/variant LC-MS/MS analytical workflows, achieving sensitive detection, definitive identification and accurate quantitation. A wide variety of CTs (CYN, ANA-a, STX, neoSTX, dmMC-RR, MC-RR, MC-YR, MC-HtyR, dm3MC-LR, MC-LR, MC-HilR, MC-WR, MC-LA, MC-LY, MC-LW and MC-LF), were detected, with MCs being the most commonly occurring. In biomass, MC-RR was the most abundant toxin, reaching 754 ng mg−1 dw, followed by MC-LR (458 ng mg−1 dw). CYN and ANA-a were detected for the first time in the biomass of Greek lakes at low concentrations and STXs in lakes Trichonis, Vistonis and Petron. The abundance and diversity of CTs were also evaluated in relation to recreational health risks, in a case study with a proven history of MCs (Lake Kastoria).
Collapse
Affiliation(s)
- Christophoros Christophoridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & Neapoleos 27, 15341, Athens, Greece
| | - Sevasti-Kiriaki Zervou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & Neapoleos 27, 15341, Athens, Greece
| | - Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & Neapoleos 27, 15341, Athens, Greece
| | - Matina Katsiapi
- School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.,Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & Neapoleos 27, 15341, Athens, Greece
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
17
|
Papadimitriou T, Katsiapi M, Vlachopoulos K, Christopoulos A, Laspidou C, Moustaka-Gouni M, Kormas K. Cyanotoxins as the "common suspects" for the Dalmatian pelican (Pelecanus crispus) deaths in a Mediterranean reconstructed reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:779-787. [PMID: 29247940 DOI: 10.1016/j.envpol.2017.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Toxic cyanobacterial blooms have been implicated for their negative consequences on many terrestrial and aquatic organisms. Water birds belong to the most common members of the freshwater food chains and are most likely to be affected by the consumption of toxic cyanobacteria as food. However, the contribution of cyanotoxins in bird mortalities is under-studied. The aim of the study was to investigate the likely role of cyanotoxins in a mass mortality event of the Dalmatian pelican (Pelecanus crispus) in the Karla Reservoir, in Greece. Water, scum, tissues and stomach content of dead birds were examined for the presence of microcystins, cylindrospermopsins and saxitoxins by an enzyme-linked immunosorbent assay. High abundances of potential toxic cyanobacterial species and significant concentrations of cyanotoxins were recorded in the reservoir water. All examined tissues and stomach content of the Dalmatian pelicans contained significant concentrations of microcystins and saxitoxins. Cylindrospermopsin concentrations were detected in all tissues except from the brain. Our results suggest that cyanotoxins are a plausible cause for this bird mass mortality episode in the Karla Reservoir.
Collapse
Affiliation(s)
- T Papadimitriou
- Department of Civil Engineering, University of Thessaly, Volos, Greece
| | - M Katsiapi
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Greece
| | - K Vlachopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | | | - C Laspidou
- Department of Civil Engineering, University of Thessaly, Volos, Greece
| | - M Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Greece
| | - K Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
18
|
Levizou E, Statiris G, Papadimitriou T, Laspidou CS, Kormas KA. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:193-200. [PMID: 28550806 DOI: 10.1016/j.ecoenv.2017.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81μgl-1 of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for the tolerant lettuce indicate that MCs bioaccumulation in edible tissues is not necessarily coupled with phytotoxic effects.
Collapse
Affiliation(s)
- Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 384 46 Volos, Greece.
| | - George Statiris
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 384 46 Volos, Greece
| | - Theodoti Papadimitriou
- Civil Engineering Department, University of Thessaly, Pedion Areos, 383 33 Volos, Greece
| | - Chrysi S Laspidou
- Civil Engineering Department, University of Thessaly, Pedion Areos, 383 33 Volos, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46 Volos, Greece
| |
Collapse
|
19
|
Gkelis S, Ourailidis I, Panou M, Pappas N. Cyanobacteria of Greece: an annotated checklist. Biodivers Data J 2016:e10084. [PMID: 27956851 PMCID: PMC5139134 DOI: 10.3897/bdj.4.e10084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/24/2016] [Indexed: 01/17/2023] Open
Abstract
Background The checklist of Greek Cyanobacteria was created in the framework of the Greek Taxon Information System (GTIS), an initiative of the LifeWatchGreece Research Infrastructure (ESFRI) that has resumed efforts to compile a complete checklist of species reported from Greece. This list was created from exhaustive search of the scientific literature of the last 60 years. All records of taxa known to occur in Greece were taxonomically updated. New information The checklist of Greek Cyanobacteria comprises 543 species, classified in 130 genera, 41 families, and 8 orders. The orders Synechococcales and Oscillatoriales have the highest number of species (158 and 153 species, respectively), whereas these two orders along with Nostocales and Chroococcales cover 93% of the known Greek cyanobacteria species. It is worth mentioning that 18 species have been initially described from Greek habitats. The marine epilithic Ammatoideaaegea described from Saronikos Gulf is considered endemic to this area. Our bibliographic review shows that Greece hosts a high diversity of cyanobacteria, suggesting that the Mediterranean area is also a hot spot for microbes.
Collapse
Affiliation(s)
- Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iordanis Ourailidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikos Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Papadimitriou T, Kormas K, Dionysiou DD, Laspidou C. Using H 2O 2 treatments for the degradation of cyanobacteria and microcystins in a shallow hypertrophic reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21523-21535. [PMID: 27515523 DOI: 10.1007/s11356-016-7418-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Toxins produced by cyanobacteria in freshwater ecosystems constitute a serious health risk worldwide for humans that may use the affected water bodies for recreation, drinking water, and/or irrigation. Cyanotoxins have also been deemed responsible for loss of animal life in many places around the world. This paper explores the effect of H2O2 treatments on cyanobacteria and microcystins in natural samples from a hypertrophic reservoir in microcosm experiments. According to the results, cyanobacteria were more easily affected by H2O2 than by other phytoplanktonic groups. This was shown by the increase in the fractions of chlorophyll-a (a proxy for phytoplankton) and chlorophyll-b (a proxy for green algae) over total phytoplankton pigments and the decrease in the fraction of phycocyanin (a proxy for cyanobacteria) over total phytoplankton pigments. Thus, while an overall increase in phytoplankton occurred, a preferential decrease in cyanobacteria was observed with H2O2 treatments over a few hours. Moreover, significant degradation of total microcystins was observed under H2O2 treatments, while more microcystins were degraded when UV radiation was used in combination with H2O2. The combination of H2O2 and ultraviolet (UV) treatment in natural samples resulted in total microcystin concentrations that were below the World Health Organization limit for safe consumption of drinking water of 1 μg/L. Although further investigation into the effects of H2O2 addition on ecosystem function must be performed, our results show that the application of H2O2 could be a promising method for the degradation of microcystins in reservoirs and the reduction of public health risks related to the occurrence of harmful algal blooms.
Collapse
Affiliation(s)
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Chrysi Laspidou
- Department of Civil Engineering, University of Thessaly, Volos, Greece.
| |
Collapse
|
21
|
Waajen G, van Oosterhout F, Douglas G, Lürling M. Geo-engineering experiments in two urban ponds to control eutrophication. WATER RESEARCH 2016; 97:69-82. [PMID: 26725204 DOI: 10.1016/j.watres.2015.11.070] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Many urban ponds experience detrimental algal blooms as the result of eutrophication. During a two year field experiment, the efficacy of five in situ treatments to mitigate eutrophication effects in urban ponds was studied. The treatments targeted the sediment phosphorus release and were intended to switch the ponds from a turbid phytoplankton-dominated state to a clear-water state with a low phytoplankton biomass. Two eutrophic urban ponds were each divided into six compartments (300-400 m(2); 210-700 m(3)). In each pond the following treatments were tested: dredging in combination with biomanipulation (involving fish biomass control and the introduction of macrophytes) with and without the addition of the flocculant polyaluminiumchloride, interception and reduction of sediment phosphorus release with lanthanum-modified bentonite (Phoslock(®)) in combination with biomanipulation with and without polyaluminiumchloride; biomanipulation alone; and a control. Trial results support the hypothesis that the combination of biomanipulation and measures targeting the sediment phosphorus release can be effective in reducing the phytoplankton biomass and establishing and maintaining a clear-water state, provided the external phosphorus loading is limited. During the experimental period dredging combined with biomanipulation showed mean chlorophyll-a concentrations of 5.3 and 6.2 μg L(-1), compared to 268.9 and 52.4 μg L(-1) in the control compartments. Lanthanum-modified bentonite can be an effective alternative to dredging and in combination with biomanipulation it showed mean chlorophyll-a concentrations of 5.9 and 7.6 μg L(-1). Biomanipulation alone did not establish a clear-water state or only during a limited period. As the two experimental sites differed in their reaction to the treatments, it is important to choose the most promising treatment depending on site specific characteristics. In recovering the water quality status of urban ponds, continuing attention is required to the concurrent reduction of external phosphorus loading and to maintaining an appropriate fish community.
Collapse
Affiliation(s)
- Guido Waajen
- Water Authority Brabantse Delta, P.O. Box 5520, 4801 DZ Breda, The Netherlands; Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | | | - Grant Douglas
- CSIRO, Land and Water, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia.
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands.
| |
Collapse
|
22
|
Singh S, Asthana RK. Assessment of microcystin concentration in carp and catfish: a case study from Lakshmikund pond, Varanasi, India. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:687-692. [PMID: 24771133 DOI: 10.1007/s00128-014-1277-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
The present study was conducted to analyse microcystin concentrations in Lakshmikund pond, Varanasi, India, as well as in carp and catfish of the pond. The concentrations of microcystin were found well above the WHO guidelines (1 µg/L) both for the dissolved and particulate fractions of bloom samples. The microcystin concentrations in different organs of carp and catfish were in the following sequence; liver > gut > kidney > gall bladder > gills > muscles and gut > liver > kidney > gall bladder > gills > muscles, respectively. The bioaccumulation of microcystin in carp and catfish was negatively correlated with body weight, and showed species specificity. The higher bioaccumulation of microcystin in muscles of catfish (>tenfold) over carp indicates a possible threat to human beings on consumption of catfish. Therefore, to avoid animal and human intoxication, routine analyses of microcystin in pond water as well as fishes are strongly recommended.
Collapse
Affiliation(s)
- Shweta Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
23
|
Kaloudis T, Zervou SK, Tsimeli K, Triantis TM, Fotiou T, Hiskia A. Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 1:105-115. [PMID: 23958137 DOI: 10.1016/j.jhazmat.2013.07.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
A method for the determination of the hepatotoxic cyanotoxins microcystins (MCs, i.e. MC-LR, MC-RR, MC-YR, MC-LA) and nodularin (NOD) in water was developed using liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS) after solid phase extraction (SPE). New patterns of fragmentation of MC-LA were observed under the experimental conditions used. The method was fully validated to meet accreditation criteria. Mean recoveries at three concentration levels (0.006, 0.1 and 1 μg L(-1)) ranged between 70 and 114% with %RSD values generally below 20%. Detection limits were 2 ng L(-1) for all hepatotoxins. The method was applied to study the occurrence of MCs and NOD in Lake Marathonas, a water reservoir of Athens, over a period from July 2007 to December 2010. The protein phosphatase inhibition assay (PPIA) was additionally used for fast screening of samples. MC-YR, MC-LR and MC-RR were detected and found to vary seasonally with consistent peaks during early autumn, having maximum concentrations of 717, 451 and 174 ng L(-1), respectively. The results of this study constitute the first report on the presence, concentration levels and seasonal variations of MCs in Lake Marathonas. None of the target cyanotoxins were detected in treated drinking water samples during the period of the study.
Collapse
Affiliation(s)
- Triantafyllos Kaloudis
- Quality Control Department, Athens Water Supply and Sewerage Company (EYDAP SA), Oropou 156, 11146 Galatsi, Athens, Greece
| | | | | | | | | | | |
Collapse
|