1
|
Zhou B, Fan B, Gong Z, Shao S, Zhou D, Gao S. Optimized preparation of Ni-Fe bm bimetallic particles by ball milling NiSO 4 and iron powder for efficient removal of triclosan. CHEMOSPHERE 2024; 360:142359. [PMID: 38782133 DOI: 10.1016/j.chemosphere.2024.142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 μM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.
Collapse
Affiliation(s)
- Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhou J, Li Y, Li Y, Lan J, Zhao Z, Shi R. Copper-zinc nanoparticle-decorated nitrogen-doped carbon composite for electrochemical determination of triclosan. Mikrochim Acta 2024; 191:155. [PMID: 38403740 DOI: 10.1007/s00604-024-06219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
A new sensor based on copper-zinc bimetal embedded and nitrogen-doped carbon-based composites (CuZn@NC) was prepared for triclosan (TCS) detection by pyrolyzing the precursor of Cu-Zn binuclear metal-organic framework (MOF). The performance for detecting TCS was evaluated using linear scanning voltammetry (LSV) and differential pulse voltammetry (DPV), and the proton and electron numbers during TCS oxidation have been proved to be one-to-one. The results indicated that CuZn@NC can present a satisfactory analysis performance for TCS detection. Under the optimized conditions, the linear response range was 0.2-600 µM and the detection limit was 47.9 nM. The sensor presented good stability (signal current dropped only 2.5% after 21 days) and good anti-interference of inorganic salts and small molecular organic acids. The good recovery (97.5-104.1%) for detecting spiked TCS in commercial products (toothpaste and hand sanitizer) suggested its potential for routine determination of TCS in real samples.
Collapse
Affiliation(s)
- Jie Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Rongguang Shi
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, China
| |
Collapse
|
3
|
Cai Q, Zeng J, Lin X, Xia D, Yu W, Qiu J, Yang M, Wang X. Study on the Effect of AO-Coupled Constructed Wetlands on Conventional and Trace Organic Pollutant Treatment. ACS OMEGA 2023; 8:38983-38990. [PMID: 37901527 PMCID: PMC10601076 DOI: 10.1021/acsomega.3c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
In this study, a pilot-scale integrated process was developed, which combined the integrated biological contact oxidation technology (AO) and the improved constructed wetland technology. The results showed significant removal efficiency for both conventional and trace organic pollutants. The average removal efficiencies for COD, NH4+-N, and TP were 78.52, 85.95, and 49.47%, respectively. For trace organic pollutants, triclocarban, triclosan, and sulfadiazine, the removal efficiencies reached 60.14, 57.42, and 84.29%, respectively. The AO stage played a crucial role in removing trace organic pollutants, achieving removal efficiencies of 37.28, 43.44, and 83.82% for triclocarban, triclosan, and sulfadiazine, respectively. Subsequent treatment using improved constructed wetland technology with coal slag + gravel fillers demonstrated the highest removal efficiency, with average efficiencies of 68.66, 63.38, and 81.32% for triclocarban, triclosan, and sulfadiazine, respectively. Correlation analysis revealed positive correlations between temperature, precipitation, and the removal efficiency of COD, NH4+-N, and TP, while negative correlations were observed with the removal efficiency of triclocarban, triclosan, and sulfadiazine. Furthermore, the influent concentrations of triclocarban and triclosan were significantly negatively correlated with the removal efficiency of COD and TP. The presence of triclocarban and triclosan potentially reduced the microbial diversity and hindered sludge sedimentation performance.
Collapse
Affiliation(s)
- Qianyi Cai
- College
of Forestry, Guangxi University, Nanning 530004, China
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jingwen Zeng
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaojun Lin
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Di Xia
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weida Yu
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinrong Qiu
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mei Yang
- College
of Forestry, Guangxi University, Nanning 530004, China
| | - Xiujuan Wang
- South
China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
4
|
Li Y, Xiang S, Hu L, Qian J, Liu S, Jia J, Cui J. In vitro metabolism of triclosan and chemoprevention against its cytotoxicity. CHEMOSPHERE 2023; 339:139708. [PMID: 37536533 DOI: 10.1016/j.chemosphere.2023.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 μM, 20 ± 10 μM and 60 ± 20 μM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.
Collapse
Affiliation(s)
- Yubei Li
- School of China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Shouyan Xiang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Qian
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Shuoguo Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China; School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
5
|
Sun C, Zhang T, Zhou Y, Liu ZF, Zhang Y, Bian Y, Feng XS. Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161885. [PMID: 36731573 DOI: 10.1016/j.scitotenv.2023.161885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) has been widely used in daily life because of its broad-spectrum antibacterial activities. The residue of TCS and related compounds in the environment is one of the critical environmental safety problems, and the pandemic of COVID-19 aggravates the accumulation of TCS and related compounds in the environment. Therefore, detecting TCS and related compound residues in the environment is of great significance to human health and environmental safety. The distribution of TCS and related compounds are slightly different worldwide, and the removal methods also have advantages and disadvantages. This paper summarized the research progress on the source, distribution, degradation, analytical extraction, detection, and removal techniques of TCS and related compounds in different environmental samples. The commonly used analytical extraction methods for TCS and related compounds include solid-phase extraction, liquid-liquid extraction, solid-phase microextraction, liquid-phase microextraction, and so on. The determination methods include liquid chromatography coupled with different detectors, gas chromatography and related methods, sensors, electrochemical method, capillary electrophoresis. The removal techniques in various environmental samples mainly include biodegradation, advanced oxidation, and adsorption methods. Besides, both the pros and cons of different techniques have been compared and summarized, and the development and prospect of each technique have been given.
Collapse
Affiliation(s)
- Chen Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Milanović M, Đurić L, Milošević N, Milić N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25119-25140. [PMID: 34741734 PMCID: PMC8571676 DOI: 10.1007/s11356-021-17273-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even groundwater. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.
Collapse
Affiliation(s)
- Maja Milanović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia.
| | - Larisa Đurić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| |
Collapse
|
7
|
Wang Q, Han N, Shen Z, Li X, Chen Z, Cao Y, Si W, Wang F, Ni BJ, Thakur VK. MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Liu X, Tu M, Wang S, Wang Y, Wang J, Hou Y, Zheng X, Yan Z. Research on freshwater water quality criteria, sediment quality criteria and ecological risk assessment of triclosan in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151616. [PMID: 34774937 DOI: 10.1016/j.scitotenv.2021.151616] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent commonly used in pharmaceuticals and personal care products (PPCPs). The widespread use of TCS makes it frequently detected in various environmental mediums. In view of the high detection frequency of TCS in the aquatic environment and sediments, and its toxic effects on aquatic species, it is critical and necessary to derive Chinese TCS water quality criteria (WQC) and sediment quality criteria (SQC) for protecting Chinese aquatic organisms, and perform the ecological risk assessment. In fact, former research had derived the WQC of TCS mainly based on acute and chronic toxicity data. As an endocrine disrupting chemical (EDC), TCS poses adverse effects on the growth, development and reproduction of aquatic organisms at much lower concentration. Considering nonlethal endpoints are sensitive endpoints for EDCs, TCS long-term water quality criteria (LWQC) was derived based on reproduction and growth related endpoints. In this work, the acute toxicity data of 19 aquatic organisms and the chronic toxicity data of 15 aquatic organisms were obtained through collection and screening. The best fitting model of species sensitivity distribution (SSD) models including Normal, Log-Normal, Logistic and Log-Logistic of toxicity data was selected to derive WQC. The short-term and long-term WQC of TCS for Chinese aquatic organisms were 6.22 μg/L and 0.25 μg/L, respectively. Furthermore, through the phase-equilibrium partitioning method, SQC was derived based on WQC. SQC-low (SQC-L) and SQC-high (SQCH) were 0.13 mg/kg and 3.26 mg/kg, respectively. Moreover, the exposure concentration (EPC) data of TCS in Chinese rivers and sediments were collected. And through the hazard quotient (HQ) method and the joint probability curve (JPC) method we found that there were certain TCS ecological risks in Chinese rivers and sediments. Our work will provide a valuable reference for protecting aquatic organisms and minimizing TCS ecological risk in China.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yizhe Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yin Hou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
9
|
A molecularly imprinted electrochemical sensor based on cationic intercalated two-dimensional titanium carbide nanosheets for sensitive and selective detection of triclosan in food samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Mo J, Qi Q, Hao Y, Lei Y, Guo J. Transcriptional response of a green alga (Raphidocelis subcapitata) exposed to triclosan: photosynthetic systems and DNA repair. J Environ Sci (China) 2022; 111:400-411. [PMID: 34949369 DOI: 10.1016/j.jes.2021.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/14/2023]
Abstract
Recent studies show that triclosan (TCS) exposure causes reduction in pigments, suppression of photosynthesis, and induction of oxidative stress at the physiological level, resulting in morphological alteration and growth inhibition in algae including Raphidocelis subcapitata (R. subcapitata, a freshwater model green alga). However, the underlying molecular mechanisms remain to be elucidated, especially at environmentally relevant concentrations. The present study uncovered the transcriptional profiles and molecular mechanisms of TCS toxicity in R. subcapitata using next-generation sequencing. The algal growth was drastically inhibited following a 7-day exposure at both 75 and 100 μg/L TCS, but not at 5 μg/L (environmentally realistic level). The transcriptomic analysis shows that molecular signaling pathways including porphyrin and chlorophyll metabolism, photosynthesis - antenna proteins, and photosynthesis were suppressed in all three TCS treatments, and the perturbations of these signaling pathways were exacerbated with increased TCS exposure concentrations. Additionally, signaling of replication-coupled DNA repair was only activated in 100 μg/L TCS treatment. These results indicate that photosynthesis systems were sensitive targets of TCS toxicity in R. subcapitata, which is distinct from the inhibition of lipid synthesis by TCS in bacteria. This study provides novel knowledge on molecular mechanisms of TCS toxicity in R. subcapitata.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yongrong Hao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
11
|
Yuan X, Hu J, Li S, Yu M. Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115340. [PMID: 32828031 DOI: 10.1016/j.envpol.2020.115340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 05/08/2023]
Abstract
The identification and quantification of pharmaceutical and personal care products (PPCPs) in aquatic ecosystems is critical to further studies and elucidation of their fate as well as the potential threats to aquatic ecology and human health. This study used mass balances to analyse the sources, transformation, and transport of PPCPs in rivers based on the population and consumption habits of residents, the removal level of sewage treatment, the persistence and partitioning mechanisms of PPCPs, hydrological conditions, and other natural factors. Our results suggested that in an urbanized river of Guangzhou City, China, the daily consumption of PPCPs was the main reason for the variety of species and concentrations of PPCPs. Through the determination of PPCPs in the river water samples and a central composite design (CCD) methodology, the dominant elimination mechanisms of caffeine and carbamazepine from river water were photolysis and biodegradation, but that of triclosan was sorption rather than biodegradation. The mass data of 3 PPCPs were estimated and corroborated using the measured data to evaluate the accuracy of the mass balance. Finally, caffeine, carbamazepine and triclosan discharged from the Shijing River into the Pearl River accounted for 97.81%, 99.52%, and 28.00%, respectively, of the total mass of these three compounds in the surface water of Shijing River. The results suggest that photolysis are the main process of natural attenuation for selected PPCPs in surface waters of river systems, and the transfer processes of PPCPs is mainly attributed to riverine advection. In addition, the low concentration of dissolved oxygen inhibited the degradation of PPCPs in the surface water of Shijing River.
Collapse
Affiliation(s)
- Xiao Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Shiyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Mianzi Yu
- Guangdong Provincial Department of Ecological Environment, Guangzhou, 510630, China
| |
Collapse
|
12
|
Zhu Q, Wang M, Jia J, Hu Y, Wang X, Liao C, Jiang G. Occurrence, Distribution, and Human Exposure of Several Endocrine-Disrupting Chemicals in Indoor Dust: A Nationwide Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11333-11343. [PMID: 32803972 DOI: 10.1021/acs.est.0c04299] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Parabens, triclosan (TCS), triclocarban (TCC), and bisphenol A and its analogues (BPs) are used in various industrial and consumer products and are typical endocrine-disrupting chemicals (EDCs). In this study, six parabens, TCS, TCC, and eight BPs were determined in 289 indoor dusts collected from different geographical regions in China. Ten of 16 target compounds were found in >50% samples. Concentrations of Σ6parabens, Σ(TCS+TCC), and Σ8BPs in indoor dust ranged from 8.66-21,500 (median: 288), 19.6-8940 (104), and 8.80-37,400 (377) ng/g dw, respectively. The Σ(TCS+TCC) concentrations in dust from Northeast China were higher than those from Central South China (p < 0.05). The concentrations of Σ8BPs in dust from Eastern China were approximately 2 times higher than those found for North China (p < 0.05), whereas there was no significant spatial difference in concentrations of parabens among different geographical regions (p > 0.05). Human exposure to these EDCs through indoor dust ingestion and dermal absorption was evaluated. The median and 95th percentile estimated daily intakes of Σ16EDCs ranged from 0.439 (adults)-4.57 (infants) and 6.26 (adults)-62.1 (infants) ng/kg bw/day, respectively, generally decreasing with increasing age. This nationwide survey establishes a baseline concentration for parabens in the indoor environment in China.
Collapse
Affiliation(s)
- Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mei Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071003, China
| | - Jiabao Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
13
|
Wang XD, Lu YC, Xiong XH, Yuan Y, Lu LX, Liu YJ, Mao JH, Xiao WW. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11246-11259. [PMID: 31960244 DOI: 10.1007/s11356-020-07704-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is broadly used in personal care products. It has been shown to cause the contamination of a variety of aquatic environments. Since algae has been the primary producers of aquatic ecosystems, understanding the toxicological mechanisms and the metabolic fate of TCS is vital for assessing its risk in an aquatic environment. In our study, 0.5-4 mg L-1 TCS treatments for 72 h in a culture of Chlamydomonas reinhardtii (C. reinhardtii) showed progressive inhibition of cell growth and reduced the chlorophyll content. The EC50 value of C. reinhardtii after 72 h was 1.637 mg L-1, which showed its higher level of resistance to TCS in comparison with other algal species. The exposure to TCS led to oxidative injuries of algae in relation to the increment of malonaldehyde content, cell membrane permeability, and H2O2 levels. Furthermore, the oxidative stress from TCS stimulated a series of antioxidant enzyme activities and their gene expressions. Simultaneously, the accumulated TCS in C. reinhardtii arouses the detoxification/degradation-related enzymes and related gene transcriptions. In the medium, approximately 82% of TCS was removed by C. reinhardtii. Importantly, eight TCS metabolites were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry and their relative abundances were measured in a time-course experiment. Six of these metabolites are reported here for the first time. The metabolic pathways of triclosan via C. reinhardtii including reductive dechlorination, hydroxylation, sulfhydrylation, and binding with thiol/cysteine/GSH/glycosyl were manifested to broaden our understanding of the environmental fate of TCS. Graphical Abstract.
Collapse
Affiliation(s)
- Xiao Dong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yi Chen Lu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China.
| | - Xiao Hui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Li Xia Lu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yuan Jian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Jia Hao Mao
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Wei Wei Xiao
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| |
Collapse
|
14
|
Vimalkumar K, Seethappan S, Pugazhendhi A. Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. CHEMOSPHERE 2019; 230:201-209. [PMID: 31103866 DOI: 10.1016/j.chemosphere.2019.04.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/05/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Triclocarban (TCC) is considered as contaminant of emerging concern (CEC), and ranked in the top 10 CEC occurrence. TCC is a high production volume synthetic chemical used extensively in various personal care products. This chemical will be released into the environment via incomplete wastewater treatment and untreated wastewater discharge. TCC and its transformation products (4,4'-dichlorocarbilide (DCC),1-(3-chlorophenyl)-3-phenylurea (MCC) and carbanilide (NCC),2'OH-TCC, 3'OH-TCC) were detected in the environmental matrices. Sediment organic carbon will influence TCC concentrations in suspended and bed sediments. TCC is an antimicrobial agent and also emerging endocrine disruptor that can cause immune dysfunction and affect human reproductive outcomes. Furthermore, TCC alters the expression of proteins related to binding and metabolism, skeletal muscle development and function, nervous system development and immune response. TCC has potential health risks in wildlife and humans. Several animal studies illustrate that it can cause various adverse effects, which can be monitored by antioxidant biomarkers (CAT, GST and LPO). Accumulation of TCC in organisms depends on the lipophilicity and bioavailability of TCC in sediment and water. TCC was continuously detected in aquatic system. TCC is a lipophilic compound, which can efficiently bind with lipid content. Women are more vulnerable to TCC due to substantially higher frequency and extended exposure to TCC. This review provides basic information of occurrence of TCC and the exposure levels in aquatic organisms. Several literature have shown the higher usage and human exposure levels of TCC, which provides useful information for the chemical management approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Vimalkumar
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Sangeetha Seethappan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
15
|
Musee N. Environmental risk assessment of triclosan and triclocarban from personal care products in South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:827-838. [PMID: 30036836 DOI: 10.1016/j.envpol.2018.06.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Trends in the widespread use of personal care products (PCPs) containing triclosan (TCS) and triclocarban (TCC) have led to continuous emissions of these chemicals into the environment. Consequently, both chemicals are ubiquitously present at high concentrations in the aquatic systems based on widely reported measured environmental concentration (MECs) data in different environmental systems (e.g. freshwater) worldwide, especially in developed countries. In developing countries, however, lack of MECs data is a major issue, and therefore, inhibits effective risk assessment of these chemicals. Herein, TCS and TCC releases from personal care products (PCPs) were quantified, using a modelling approach to determine predicted environmental concentrations (PECs) in wastewater, freshwater, and soils, and likely risk(s) were estimated by calculating risk quotient (RQs). TCS and TCC in freshwater had RQs >1 based on estimated PECs with wide variations (≈2-232) as performed across the three dilutions factors (1, 3, and 10) considered in this study; an indicator of their likely adverse effect on freshwater organisms. In untreated and treated wastewater, TCS RQs values for bacteria were >1, but <1 for TCC, implying the former may adversely affect the functioning of wastewater treatment plants (WWTPs), and with no plausible impacts from the latter. In terrestrial systems, RQ results for individual chemicals revealed no or limited risks; therefore, additional investigations are required on their toxicity, as effects data was very limited and characterised by wide variations. Future national monitoring programs in developing countries should consider including TCS and TCC as the results suggest both chemicals are of concern to freshwater, and TCS in WWTPs. Potential risks of their metabolites remain unquantified to date.
Collapse
Affiliation(s)
- N Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
16
|
Gorenoglu E, Aydin E, Topuz E, Pehlivanoglu-Mantas E. Effect of triclosan and its photolysis products on marine bacterium V. fischeri and freshwater alga R. subcapitata. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 211:218-224. [PMID: 29408069 DOI: 10.1016/j.jenvman.2018.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 06/07/2023]
Abstract
The use of antibacterial agents in consumer products may lead to adverse effects in waters receiving treated wastewater. Triclosan is one of the antibacterial agents used widely in the world and its high usage leads to relatively high concentrations in wastewater effluents. In this study, the probable effect of triclosan in receiving waters was assessed using different organisms. The EC50 values were 668 ± 80 μg/L and 7.8 ± 0.1 μg/L, for Vibrio fischeri and Raphidocelis subcapitata, respectively, indicating the higher sensitivity of the alga. The toxicity of triclosan upon exposure to UV light decreased for both species, as suggested by the increase in EC50 values (1300 ± 50 μg/L and 8.7 ± 0.6 μg/L for V. fischeri and R. subcapitata, respectively). The effect of photolysis on toxicity reduction was higher for V. fischeri and the EC50 values were similar for direct and indirect photolysis. LC-MS/MS analysis of samples with and without UV exposure suggested a decrease in triclosan concentration as well as formation of photolysis byproducts upon photolysis.
Collapse
Affiliation(s)
- Eren Gorenoglu
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
| | - Egemen Aydin
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
| | - Emel Topuz
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey
| | - Elif Pehlivanoglu-Mantas
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
17
|
Ding T, Lin K, Bao L, Yang M, Li J, Yang B, Gan J. Biouptake, toxicity and biotransformation of triclosan in diatom Cyclotella sp. and the influence of humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:231-242. [PMID: 29175687 DOI: 10.1016/j.envpol.2017.11.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Triclosan is one of the most frequently detected emerging contaminants in aquatic environment. In this study, we investigated the biouptake, toxicity and biotransformation of triclosan in freshwater algae Cyclotella sp. The influence of humic acid, as a representative of dissolved organic matter, was also explored. Results from this study showed that triclosan was toxic to Cyclotella sp. with 72 h EC50 of 324.9 μg L-1. Humic acid significantly reduced the toxicity and accumulation of triclosan in Cyclotella sp. SEM analysis showed that Cyclotella sp. were enormously damaged under 1 mg L-1 triclosan exposure and repaired after the addition of 20 mg L-1 humic acid. Triclosan can be significantly taken up by Cyclotella sp. The toxicity of triclosan is related to bioaccumulated triclosan as the algal cell numbers decreased when intracellular triclosan increased. A total of 11 metabolites were identified in diatom cells and degradation pathways are proposed. Hydroxylation, methylation, dechlorination, amino acids conjunction and glucuronidation contributed to the transformative reactions of triclosan in Cyclotella sp., producing biologically active products (e.g., methyl triclosan) and conjugation products (e.g., glucuronide or oxaloacetic acid conjugated triclosan), which may be included in the detoxification mechanism of triclosan.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Kunde Lin
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lianjun Bao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Mengting Yang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bo Yang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Civancik D, Yetis U. Substance flow analysis of mercury in Turkey for policy decision support. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2996-3008. [PMID: 25561254 DOI: 10.1007/s11356-014-3996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
Identification and quantification of mercury flows in Turkey are essential for better policy development regarding to the implementation of water-related legislation. To this end, substance flow analysis (SFA) of mercury in Turkey was conducted in order to identify and quantify mercury releases to different environmental compartments and help policy decision makers to better understand their options to reduce mercury flows. For the quantification of mercury flows, United Nations Environment Programme (UNEP) Mercury Toolkit, which is develop by UNEP Chemicals Branch with the aim of assisting countries to develop their own mercury inventory, was used. Results of the study showed that a total of 34.61 t of mercury is released annually from the activities in Turkey to different environmental compartments. It was found that most of the mercury releases were to the atmosphere (74 %) and smaller amounts were to land (21 %) and to water (5 %). Mercury naturally found in the lithosphere was found to be responsible for most of the releases while intentional mercury uses have smaller shares and decreasing importance because of the phasing out of mercury.
Collapse
Affiliation(s)
- Didem Civancik
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
19
|
Ghattas AK, Fischer F, Wick A, Ternes TA. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. WATER RESEARCH 2017; 116:268-295. [PMID: 28347952 DOI: 10.1016/j.watres.2017.02.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 05/22/2023]
Abstract
Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs.
Collapse
Affiliation(s)
- Ann-Kathrin Ghattas
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Ferdinand Fischer
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany.
| |
Collapse
|
20
|
Huang CL, Abass OK, Yu CP. Triclosan: A review on systematic risk assessment and control from the perspective of substance flow analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:771-785. [PMID: 27239720 DOI: 10.1016/j.scitotenv.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 05/27/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent mainly used in Pharmaceutical and Personal Care Products. Its increasing use over recent decades have raised its concentration in the environment, with commonly detectable levels found along the food web-from aquatic organisms to humans in the ecosystem. To date, there is shortage of information on how to investigate TCS's systematic risk on exposed organisms including humans, due to the paucity of systematic information on TCS flows in the anthroposphere. Therefore, a more holistic approach to mass flow balancing is required, such that the systematic risk of TCS in all environmental matrices are evaluated. From the perspective of Substance Flow Analysis (SFA), this review critically summarizes the current state of knowledge on TCS production, consumption, discharge, occurrence in built and natural environments, its exposure and metabolism in humans, and also the negative effects of TCS on biota and humans. Recent risk concerns have mainly focused on TCS removal efficiencies and metabolism, but less attention is given to the effect of mass flows from source to fate during risk exposure. However, available data for TCS SFA is limited but SFA can derive logical systematic information from limited data currently available for systematic risk assessment and reduction, based on mass flow analysis. In other words, SFA tool can be used to develop a comprehensive flow chart and indicator system for the risk assessment and reduction of TCS flows in the anthroposphere, thereby bridging knowledge gaps to streamline uncertainties related to policy-making on exposure pathways within TCS flow-lines. In the final analysis, specifics on systematic TCS risk assessment via SFA, and areas of improvement on human adaptation to risks posed by emerging contaminants are identified and directions for future research are suggested.
Collapse
Affiliation(s)
- Chu-Long Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China; Department of Resources and Environmental Sciences, Quanzhou Normal University, 398, Donghai Street, Quanzhou 362000, China; Xiamen Key Lab of Urban Metabolism, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Olusegun K Abass
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China
| | - Chang-Ping Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan.
| |
Collapse
|
21
|
Wang X, Zhang C, Liu Z, Wang W, Chen L. Development of predicted no effect concentration (PNEC) for TCS to terrestrial species. CHEMOSPHERE 2015; 139:428-433. [PMID: 26233766 DOI: 10.1016/j.chemosphere.2015.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 06/04/2023]
Abstract
Triclosan (TCS) is an important broad-spectrum antimicrobial agent widely utilized in a range of personal care products, and is therefore commonly found in the environment. A few studies have been conducted to investigate predicted no effect concentration (PNEC) for TCS on terrestrial organisms. This could be due to lack of toxicity data especially chronic toxicity data for species on various taxonomic levels. In the present study, chronic toxicity of TCS on 6 terrestrial species (3 dicotyledonous plants, 2 monocotyledonous plants and 1 terrestrial invertebrate) were tested. PNEC values of TCS based on toxicity data of 14 terrestrial species (5 dicotyledonous plants, 4 monocotyledonous plants and 5 terrestrial invertebrates) from 4 Phyla and 11 Families were calculated using the log-logistic species sensitivity distribution (SSD) method. The result of our toxicity tests showed that the dicotyledonous plant Lactuca sativa was the most sensitive species to TCS exposure. The PNEC value for TCS was derived to be 0.04-0.21mgkg(-1) when using the log-logistic SSD method. The use of toxicity data from various taxonomic levels is recommended in deriving the PNEC value in the terrestrial environment.
Collapse
Affiliation(s)
- Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong Zhang
- China Offshore Environmental Services Co. Ltd., Tianjin 300452, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wanhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lihong Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
22
|
Lv M, Sun Q, Xu H, Lin L, Chen M, Yu CP. Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary. MARINE POLLUTION BULLETIN 2014; 88:383-388. [PMID: 25227953 DOI: 10.1016/j.marpolbul.2014.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
The occurrence of triclosan (TCS) and triclocarban (TCC) in a subtropical river (Jiulong River) and its estuary was investigated for two years. TCS and TCC were ubiquitously detected in the Jiulong River and its estuary. The levels of TCS and TCC ranged from less than the method detection limit to 64 ng/L and from 0.05 to 14.1 ng/L in the river, respectively. The levels of TCS and TCC in the estuary ranged from 2.56 to 27.25 ng/L and 0.38 to 5.76 ng/L, respectively. Temporal and spatial variations of TCS and TCC in the Jiulong River and its estuary were observed during the investigation. The weather conditions did not show significant correlations with TCS and TCC, whereas several water quality parameters showed high correlations with TCS and TCC. The microcosm studies showed that both direct photolysis and biodegradation contributed to TCS removal, whereas indirect photolysis was important for TCC removal in the surface water.
Collapse
Affiliation(s)
- Min Lv
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Qian Sun
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 351800, China
| | - Haili Xu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemical Engineering, HuaQiao University, Xiamen 361021, China
| | - Lifeng Lin
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meng Chen
- College of Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chang-Ping Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 351800, China.
| |
Collapse
|