1
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
2
|
Chandía C, Salamanca M, Hernández A, Urrutia R. Mercury distribution in the coastal zone of Central Chile, Southeast Pacific: A comprehensive assessment of seawater, sediment, and biota. MARINE POLLUTION BULLETIN 2024; 199:116005. [PMID: 38219292 DOI: 10.1016/j.marpolbul.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
This study examines the mercury content in the marine matrices water column, surface sediment and benthic invertebrates of Coronel and Coliumo bays, central Chile, under winter and summer conditions. Coronel Bay has been subject to intense industrialization in the last three decades, while Coliumo Bay remains as a fisherman's cove and a popular summer tourism destination. Our results reveal significantly higher mercury concentrations in the three environmental matrices analyzed for Coronel Bay, while Coliumo Bay exhibits levels within the range considered natural. Moreover, the mercury levels in Coronel Bay exceed the optimal criteria for aquatic life, indicating a deterioration in environmental quality of this locality. Industrial development is identified as main factor explaining the differences observed between these two coastal water bodies. This study presents the most updated record of mercury levels in the Southeast Pacific and represents the first comprehensive evaluation of marine environmental matrices in two bays with divergent activities.
Collapse
Affiliation(s)
- Cristian Chandía
- Programa de Doctorado en Ciencias Ambientales, Universidad de Concepción, Chile; Laboratorio de Oceanografía Química (LOQ), Universidad de Concepción, Chile; Facultad de Ciencias Ambientales y Centro-EULA, Universidad de Concepción, Chile.
| | - Marco Salamanca
- Laboratorio de Oceanografía Química (LOQ), Universidad de Concepción, Chile; Facultad de Ciencias Naturales y Oceanografía, Universidad de Concepción, Chile
| | - Aldo Hernández
- Centro de Investigación en Recursos Naturales HOLON SpA, Chile
| | - Roberto Urrutia
- Programa de Doctorado en Ciencias Ambientales, Universidad de Concepción, Chile; Facultad de Ciencias Ambientales y Centro-EULA, Universidad de Concepción, Chile
| |
Collapse
|
3
|
Hudelson K, Muir DCG, Köck G, Wang X, Kirk JL, Lehnherr I. Mercury at the top of the world: A 31-year record of mercury in Arctic char in the largest High Arctic lake, linked to atmospheric mercury concentrations and climate oscillations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122466. [PMID: 37689133 DOI: 10.1016/j.envpol.2023.122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Lake Hazen, the largest lake north of the Arctic circle, is being impacted by mercury (Hg) pollution and climate change. The lake is inhabited by two morphotypes of land-locked Arctic char (Salvelinus alpinus), a sensitive indicator species for pollution and climatic impacts. The objectives of this study were to describe the trends in Hg concentration over time and to determine the relationship of climate to length-at-age and Hg concentrations in each char morphotype, as well as the relationship to atmospheric Hg measurements at a nearby monitoring station. Results for Hg in char muscle were available from 20 sampling years over the period 1990 to 2021. We found significant declines in Hg concentrations for both morphotypes during the 31-year study period. Increased rain and earlier freeze-up of lake ice during the summer growing season was linked to increased length-at-age in both char morphotypes. For the large morphotype, higher total gaseous Hg in the fall and winter seasons was related to higher concentrations of Hg in char, while increased glacial runoff was related to decreases in char Hg. For the small morphotype char, increased snow and snow accumulation in the fall season were linked to declines in char Hg concentration. The Atlantic Multidecadal Oscillation and Arctic Oscillation were positively related to the large char Hg trend and Arctic Oscillation was positively related to the small char Hg trend. Significant trend relationships between atmospheric Hg and Hg in biota in remote regions are rare and uniquely valuable for evaluation of the effectiveness of the Minamata Convention and related monitoring efforts.
Collapse
Affiliation(s)
| | - Derek C G Muir
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Environment & Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, Canada, L7S 1A1.
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research (ÖAW-IGF), A-6020, Innsbruck, Austria.
| | - Xiaowa Wang
- Environment & Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, Canada, L7S 1A1.
| | - Jane L Kirk
- Environment & Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, Canada, L7S 1A1.
| | - Igor Lehnherr
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
4
|
Laske SM, Burke SM, Carey MP, Swanson HK, Zimmerman CE. Investigating effects of climate-induced changes in water temperature and diet on mercury concentrations in an Arctic freshwater forage fish. ENVIRONMENTAL RESEARCH 2023; 218:114851. [PMID: 36414108 DOI: 10.1016/j.envres.2022.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The amount of mercury (Hg) in Arctic lake food webs is, and will continue to be, affected by rapid, ongoing climate change. At warmer temperatures, fish require more energy to sustain growth; changes in their metabolic rates and consuming prey with potentially higher Hg concentrations could result in increased Hg accumulation. To examine the potential implications of climate warming on forage fish Hg accumulation in Arctic lakes, we quantified growth and Hg accumulation in Ninespine Stickleback Pungitius pungitius under different temperature and diet scenarios using bioenergetics models. Four scenarios were considered that examined the role of climate, diet, climate × diet, and climate × diet × elevated prey Hg. As expected, annual fish growth increased with warmer temperatures, but growth rates and Hg accumulation were largely diet dependent. Compared to current growth rates of 0.3 g⋅y-1, fish growth increased at least 200% for fish consuming energy-dense benthic prey and decreased at least 40% for fish consuming pelagic prey. Compared to baseline levels, the Hg burden per kilocalorie of Ninespine Stickleback declined up to 43% with benthic consumption - indicating strong somatic growth dilution - but no more than 4% with pelagic consumption; elevated prey Hg concentrations led to moderate Hg declines in benthic-foraging fish and Hg increases in pelagic-foraging fish. Bioenergetics models demonstrated the complex interaction of water temperature, growth, prey proportions, and prey Hg concentrations that respond to climate change. Further work is needed to resolve mechanisms and rates linking climate change to Hg availability and uptake in Arctic freshwater systems.
Collapse
Affiliation(s)
- Sarah M Laske
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK, USA.
| | - Samantha M Burke
- Department of Biology and Water Institute, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael P Carey
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Heidi K Swanson
- Department of Biology and Water Institute, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
5
|
Peraza I, Chételat J, Richardson M, Jung TS, Awan M, Baryluk S, Dastoor A, Harrower W, Kukka PM, McClelland C, Mowat G, Pelletier N, Rodford C, Ryjkov A. Diet and landscape characteristics drive spatial patterns of mercury accumulation in a high-latitude terrestrial carnivore. PLoS One 2023; 18:e0285826. [PMID: 37186585 PMCID: PMC10184919 DOI: 10.1371/journal.pone.0285826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Limited information exists on mercury concentrations and environmental drivers of mercury bioaccumulation in high latitude terrestrial carnivores. Spatial patterns of mercury concentrations in wolverine (Gulo gulo, n = 419) were assessed across a 1,600,000 km2 study area in relation to landscape, climate, diet and biological factors in Arctic and boreal biomes of western Canada. Hydrogen stable isotope ratios were measured in wolverine hair from a subset of 80 animals to assess the spatial scale for characterizing environmental conditions of their habitat. Habitat characteristics were determined using GIS methods and raster datasets at two scales, the collection location point and a 150 km radius buffer, which was selected based on results of a correlation analysis between hydrogen stable isotopes in precipitation and wolverine hair. Total mercury concentrations in wolverine muscle ranged >2 orders of magnitude from 0.01 to 5.72 μg/g dry weight and varied geographically, with the highest concentrations in the Northwest Territories followed by Nunavut and Yukon. Regression models at both spatial scales indicated diet (based on nitrogen stable isotope ratios) was the strongest explanatory variable of mercury concentrations in wolverine, with smaller though statistically significant contributions from landscape variables (soil organic carbon, percent cover of wet area, percent cover of perennial snow-ice) and distance to the Arctic Ocean coast. The carbon and nitrogen stable isotope ratios of wolverine muscle suggested greater mercury bioaccumulation could be associated with feeding on marine biota in coastal habitats. Landscape variables identified in the modelling may reflect habitat conditions which support enhanced methylmercury transfer to terrestrial biota. Spatially-explicit estimates of wet atmospheric deposition were positively correlated with wolverine mercury concentrations but this variable was not selected in the final regression models. These landscape patterns provide a basis for further research on underlying processes enhancing methylmercury uptake in high latitude terrestrial food webs.
Collapse
Affiliation(s)
- Inés Peraza
- Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Murray Richardson
- Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Malik Awan
- Department of Environment, Government of Nunavut, Igloolik, Nunavut, Canada
| | - Steve Baryluk
- Environment and Natural Resources, Government of the Northwest Territories, Inuvik, Northwest Territories, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, Quebec, Canada
| | - William Harrower
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piia M Kukka
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Garth Mowat
- Ministry of Forests, British Columbia Government, Nelson, British Columbia, Canada
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Nicolas Pelletier
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Christine Rodford
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Andrei Ryjkov
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, Quebec, Canada
| |
Collapse
|
6
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
7
|
Dastoor A, Wilson SJ, Travnikov O, Ryjkov A, Angot H, Christensen JH, Steenhuisen F, Muntean M. Arctic atmospheric mercury: Sources and changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156213. [PMID: 35623517 DOI: 10.1016/j.scitotenv.2022.156213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Global anthropogenic and legacy mercury (Hg) emissions are the main sources of Arctic Hg contamination, primarily transported there via the atmosphere. This review summarizes the state of knowledge of the global anthropogenic sources of Hg emissions, and examines recent changes and source attribution of Hg transport and deposition to the Arctic using models. Estimated global anthropogenic Hg emissions to the atmosphere for 2015 were ~2220 Mg, ~20% higher than 2010. Global anthropogenic, legacy and geogenic Hg emissions were, respectively, responsible for 32%, 64% (wildfires: 6-10%) and 4% of the annual Arctic Hg deposition. Relative contributions to Arctic deposition of anthropogenic origin was dominated by sources in East Asia (32%), Commonwealth of Independent States (12%), and Africa (12%). Model results exhibit significant spatiotemporal variations in Arctic anthropogenic Hg deposition fluxes, driven by regional differences in Hg air transport routes, surface and precipitation uptake rates, and inter-seasonal differences in atmospheric circulation and deposition pathways. Model simulations reveal that changes in meteorology are having a profound impact on contemporary atmospheric Hg in the Arctic. Reversal of North Atlantic Oscillation phase from strongly negative in 2010 to positive in 2015, associated with lower temperature and more sea ice in the Canadian Arctic, Greenland and surrounding ocean, resulted in enhanced production of bromine species and Hg(0) oxidation and lower evasion of Hg(0) from ocean waters in 2015. This led to increased Hg(II) (and its deposition) and reduced Hg(0) air concentrations in these regions in line with High Arctic observations. However, combined changes in meteorology and anthropogenic emissions led to overall elevated modeled Arctic air Hg(0) levels in 2015 compared to 2010 contrary to observed declines at most monitoring sites, likely due to uncertainties in anthropogenic emission speciation, wildfire emissions and model representations of air-surface Hg fluxes.
Collapse
Affiliation(s)
- Ashu Dastoor
- Air Quality Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, Québec H9P 1J3, Canada.
| | - Simon J Wilson
- Arctic Monitoring and Assessment Programme (AMAP). The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway.
| | - Oleg Travnikov
- Meteorological Synthesizing Centre-East, EMEP, 2nd Roshchinsky proezd, 8/5, 115419 Moscow, Russia
| | - Andrei Ryjkov
- Air Quality Research Division, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Dorval, Québec H9P 1J3, Canada
| | - Hélène Angot
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland
| | - Jesper H Christensen
- Department of Environmental Science, iClimate, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Frits Steenhuisen
- Arctic Centre, University of Groningen, Aweg 30, 9718CW Groningen, the Netherlands
| | - Marilena Muntean
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749 (T.P. 123), I-21027 Ispra, VA, Italy
| |
Collapse
|
8
|
Schartup AT, Soerensen AL, Angot H, Bowman K, Selin NE. What are the likely changes in mercury concentration in the Arctic atmosphere and ocean under future emissions scenarios? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155477. [PMID: 35472347 DOI: 10.1016/j.scitotenv.2022.155477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Arctic mercury (Hg) concentrations respond to changes in anthropogenic Hg emissions and environmental change. This manuscript, prepared for the 2021 Arctic Monitoring and Assessment Programme Mercury Assessment, explores the response of Arctic Ocean Hg concentrations to changing primary Hg emissions and to changing sea-ice cover, river inputs, and net primary production. To do this, we conduct a model analysis using a 2015 Hg inventory and future anthropogenic Hg emission scenarios. We model future atmospheric Hg deposition to the surface ocean as a flux to the surface water or sea ice using three scenarios: No Action, New Policy (NP), and Maximum Feasible Reduction (MFR). We then force a five-compartment box model of Hg cycling in the Arctic Ocean with these scenarios and literature-derived climate variables to simulate environmental change. No Action results in a 51% higher Hg deposition rate by 2050 while increasing Hg concentrations in the surface water by 22% and <9% at depth. Both "action" scenarios (NP and MFR), implemented in 2020 or 2035, result in lower Hg deposition ranging from 7% (NP delayed to 2035) to 30% (MFR implemented in 2020) by 2050. Under this last scenario, ocean Hg concentrations decline by 14% in the surface and 4% at depth. We find that the sea-ice cover decline exerts the strongest Hg reducing forcing on the Arctic Ocean while increasing river discharge increases Hg concentrations. When modified together the climate scenarios result in a ≤5% Hg decline by 2050 in the Arctic Ocean. Thus, we show that the magnitude of emissions-induced future changes in the Arctic Ocean is likely to be substantial compared to climate-induced effects. Furthermore, this study underscores the need for prompt and ambitious action for changing Hg concentrations in the Arctic, since delaying less ambitious reduction measures-like NP-until 2035 may become offset by Hg accumulated from pre-2035 emissions.
Collapse
Affiliation(s)
- Amina T Schartup
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Hélène Angot
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland
| | - Katlin Bowman
- University of California Santa Cruz, Ocean Sciences Department, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue [E17-381], Cambridge. MA 02139, USA
| |
Collapse
|
9
|
Pollet IL, Provencher JF, McFarlane Tranquilla L, Burgess NM, Mallory ML. Mercury levels in North Atlantic seabirds: A synthesis. MARINE POLLUTION BULLETIN 2022; 181:113884. [PMID: 35809474 DOI: 10.1016/j.marpolbul.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is globally-distributed, with severe toxic effects on wildlife. Methylmercury biomagnifies within food webs, so long-lived, top predators such as seabirds are prone to high mercury concentrations. We synthesized historical and contemporary data on mercury concentrations in seabirds from the North Atlantic. We collected 614 values determined from 39 species and 115 locations, ranging from 1895 to 1940 and from 1970 to 2020. Highest blood-equivalent Hg values were in Phalacrocoracidae. For the same species/tissue/collection site, blood-equivalent values were lower during pre-1940 than post-1970 period. In almost 5 % of post-1970 values, mean blood-equivalent Hg concentrations were above those considered to pose severe risks of adverse effects, and 21 % were above the high-risk effect. We found an imbalance in sample effort and did not find Hg values for many species. We argue that stronger, trans-Atlantic Hg monitoring schemes are required to coordinate research and better compare trends across a wide scale.
Collapse
Affiliation(s)
- Ingrid L Pollet
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6, Canada; Birds Canada, 43 Main Street, Sackville, NB E4L 1G6, Canada.
| | - Jennifer F Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
| | | | - Neil M Burgess
- Environment and Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
10
|
Chételat J, McKinney MA, Amyot M, Dastoor A, Douglas TA, Heimbürger-Boavida LE, Kirk J, Kahilainen KK, Outridge PM, Pelletier N, Skov H, St Pierre K, Vuorenmaa J, Wang F. Climate change and mercury in the Arctic: Abiotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153715. [PMID: 35149079 DOI: 10.1016/j.scitotenv.2022.153715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marc Amyot
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des Sciences, Montréal, QC H2V 0B3, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, QC H9P 1J3, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99709, USA
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Jane Kirk
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, ON L7S 1A1, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Peter M Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, ON K1A 0E8, Canada
| | - Nicolas Pelletier
- Geography and Environmental Studies, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Henrik Skov
- Department of Environmental Science, iClimate, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Kyra St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jussi Vuorenmaa
- Finnish Environment Institute (SYKE), Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Dept. of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Kim J, Kwon SY, Kim K, Han S. Import, export, and speciation of mercury in Kongsfjorden, Svalbard: Influences of glacier melt and river discharge. MARINE POLLUTION BULLETIN 2022; 179:113693. [PMID: 35525059 DOI: 10.1016/j.marpolbul.2022.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The major sources and sinks of total mercury (THg) and methylmercury (MeHg) in Kongsfjorden were estimated based on spreadsheet-based ecological risk assessment for the fate of mercury (SERAFM). SERAFM was parameterized and calibrated to fit Kongsfjorden using the physical properties of the fjord, runoff coefficients of Hg, transformation rate constants of Hg, partition coefficients of Hg, Hg loadings from freshwater, and solid balance parameters. The modeled Hg concentrations in the seawater matched with the measured concentrations, with a mean bias of 12% and a calibration error of 0.035. The mass budget showed that the major THg sources were tidal inflow and glacial runoff, while the major MeHg sources were tidal inflow and in situ methylation in shallow halocline water, which agreed with the distributions of THg and MeHg in seawater. The coupling of observation and fate modeling in Kongsfjorden provides a basic understanding of Hg cycles in the Arctic fjords.
Collapse
Affiliation(s)
- Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Morris AD, Braune BM, Gamberg M, Stow J, O'Brien J, Letcher RJ. Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabird eggs. ENVIRONMENTAL RESEARCH 2022; 207:112169. [PMID: 34624268 DOI: 10.1016/j.envres.2021.112169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Temporal trends of mercury in Arctic wildlife are inconsistent within and between species and are often insignificant, which limits data interpretation. Recent multivariate analyses have shown that weather and climate factors (e.g. temperatures, sea ice conditions) are related to total Hg (THg) concentrations in wildlife tissues, though relatively few studies have explored these relationships. The present study compared time series of THg concentrations in liver of polar bear (Ursus maritimus, 2007/08-2015/16), eggs of thick-billed murres (Uria lomvia, 1993-2015) and kidney of caribou (Rangifer tarandus groenlandicus, 2006-2015) from the Hudson Bay region of Canada and statistically modelled THg over time with available climate and weather data. Significant temporal trends of THg concentrations were not detected in any species. However, in multivariate models that included time-lagged sea ice freeze up dates, THg concentrations increased 4.4% yr-1 in Qamanirjuaq caribou. Sea ice conditions were also related to THg levels in polar bear liver but not those in eggs of murres, though year was not a signifcant factor. Greater precipitation levels one to two years prior to sampling were associated with greater THg concentrations in polar bears and caribou, likely due to greater deposition, flooding and discharge from nearby wetlands and rivers. Time-lagged Arctic and/or North Atlantic Oscillation (AO/NAO) indices also generated significant, inverse models for all three species, agreeing with relationships in other time series of similar length. The magnitude and direction of many relationships were affected by season, duration of time-lags, and the length of the time series. Our findings support recent observations suggesting that temporal studies monitoring Hg in Arctic wildlife should consider including key climatic or weather factors to help identify consistent variables of influence and to improve temporal analyses of THg time series.
Collapse
Affiliation(s)
- Adam D Morris
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| | - Birgit M Braune
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada.
| | - Mary Gamberg
- Gamberg Consulting, Box 11267, Whitehorse, YT, Y1A 2J2, Canada.
| | - Jason Stow
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| | - Jason O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
13
|
Roberts SL, Kirk JL, Muir DCG, Wiklund JA, Evans MS, Gleason A, Tam A, Drevnick PE, Dastoor A, Ryjkov A, Yang F, Wang X, Lawson G, Pilote M, Keating J, Barst BD, Ahad JME, Cooke CA. Quantification of Spatial and Temporal Trends in Atmospheric Mercury Deposition across Canada over the Past 30 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15766-15775. [PMID: 34792335 DOI: 10.1021/acs.est.1c04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a pollutant of concern across Canada and transboundary anthropogenic Hg sources presently account for over 95% of national anthropogenic Hg deposition. This study applies novel statistical analyses of 82 high-resolution dated lake sediment cores collected from 19 regions across Canada, including nearby point sources and in remote regions and spanning a full west-east geographical range of ∼4900 km (south of 60°N and between 132 and 64°W) to quantify the recent (1990-2018) spatial and temporal trends in anthropogenic atmospheric Hg deposition. Temporal trend analysis shows significant synchronous decreasing trends in post-1990 anthropogenic Hg fluxes in western Canada in contrast to increasing trends in the east, with spatial patterns largely driven by longitude and proximity to known point source(s). Recent sediment-derived Hg fluxes agreed well with the available wet deposition monitoring. Sediment-derived atmospheric Hg deposition rates also compared well to the modeled values derived from the Hg model, when lake sites located nearby (<100 km) point sources were omitted due to difficulties in comparison between the sediment-derived and modeled values at deposition "hot spots". This highlights the applicability of multi-core approaches to quantify spatio-temporal changes in Hg deposition over broad geographic ranges and assess the effectiveness of regional and global Hg emission reductions to address global Hg pollution concerns.
Collapse
Affiliation(s)
- Sarah L Roberts
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Johan A Wiklund
- Biology Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marlene S Evans
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Amber Gleason
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Allison Tam
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Paul E Drevnick
- Alberta Environment and Parks, 3535 Research Road NW, Calgary, Alberta T2L 2K8, Canada
- National Institute of Scientific Research, Centre Eau Terre Environment, 490 rue de la Couronne, Québec, Québec G1K 9A9, Canada
| | - Ashu Dastoor
- Air Quality Research Division, Environment and Climate Change Canada, Québec H9P 1J3, Canada
| | - Andrei Ryjkov
- Air Quality Research Division, Environment and Climate Change Canada, Québec H9P 1J3, Canada
| | - Fan Yang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Greg Lawson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Martin Pilote
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, Québec H2Y 2E7, Canada
| | - Jonathan Keating
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Benjamin D Barst
- National Institute of Scientific Research, Centre Eau Terre Environment, 490 rue de la Couronne, Québec, Québec G1K 9A9, Canada
- Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Jason M E Ahad
- Geological Survey of Canada─Québec Division, Québec G1K 9A9, Canada
| | - Colin A Cooke
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
- Alberta Environment and Parks, 9888 Jasper Ave, Edmonton, Alberta T5J 5C6, Canada
| |
Collapse
|
14
|
Shah V, Jacob DJ, Thackray CP, Wang X, Sunderland EM, Dibble TS, Saiz-Lopez A, Černušák I, Kellö V, Castro PJ, Wu R, Wang C. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14445-14456. [PMID: 34724789 DOI: 10.1021/acs.est.1c03160] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a new chemical mechanism for Hg0/HgI/HgII atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg0 by Br and OH, subsequent oxidation of HgI by ozone and radicals, respeciation of HgII in aerosols and cloud droplets, and speciated HgII photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg0 concentrations and HgII wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg0 to HgII. Ozone is the principal HgI oxidant, enabling the efficient oxidation of Hg0 to HgII by OH. BrHgIIOH and HgII(OH)2, the initial HgII products of Hg0 oxidation, respeciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of HgII to Hg0 takes place largely through photolysis of aqueous HgII-organic complexes. 71% of model HgII deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of HgI, and speciation and photoreduction of HgII in aerosols and clouds.
Collapse
Affiliation(s)
- Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel J Jacob
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Colin P Thackray
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xuan Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Vladimir Kellö
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Pedro J Castro
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Rongrong Wu
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States
| |
Collapse
|
15
|
Bergin R, Koch I, Rutter A, Shirley J, Zeeb B. Evaluating mercury concentrations in edible plant and fungi species in the Canadian Arctic environment. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:877-888. [PMID: 34048608 DOI: 10.1002/jeq2.20253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Levels of environmental mercury (Hg) within the Canadian Arctic are a current area of concern. Although efforts have been made to reduce Hg released into the environment, levels remain elevated in flora and fauna. This study examined the concentrations of Hg in soil and naturally occurring edible plant and fungi species, identified by local Inuit residents, from eight locations in Iqaluit, Nunavut, and the surrounding area during the summers of 2018 and 2019. Total Hg concentrations were obtained in 24 soil samples, 112 flora samples from 23 plant and five lichen species, and 157 fungal samples from eight species. Median Hg concentrations in plant species ranged from 0.005 μg g-1 Hg dry weight (dw) in Saxifraga cernua to 0.19 μg g-1 Hg dw in Oxytropis maydelliana. Median concentrations in edible fungi species ranged from 0.084 μg g-1 Hg dw in the Cortinarius croceus (non-puffball species) to 1.6 μg g-1 Hg dw in Lycoperdon perlatum (a puffball mushroom). Additionally, median Hg concentration in puffball species (1.4 μg g-1 ) were higher than non-puffball species (0.12 μg g-1 ). Three puffball species were assessed for methylmercury (MeHg), with mean concentrations ranging from 0.013 to 0.085 μg g-1 MeHg dw. Limited research has been conducted on Hg uptake in naturally occurring edible plant and fungi species of the Canadian Arctic. This study contributes important information on Hg accumulation and processes in edible plant and fungi Arctic species, is the first to focus on plants used by the local Indigenous community, and demonstrates a need for further studies to assess Hg in Arctic environments.
Collapse
Affiliation(s)
- Ryan Bergin
- School of Environmental Studies, Bioscience Complex, Queen's Univ., Kingston, ON, K7L 3N6, Canada
| | - Iris Koch
- Dep. of Chemistry and Chemical Engineering, Royal Military College of Canada (RMC), Kingston, ON, K7K 7B4, Canada
| | - Allison Rutter
- School of Environmental Studies, Bioscience Complex, Queen's Univ.s, Kingston, ON, K7L 3N6, Canada
| | - Jamal Shirley
- Nunavut Research Institute, Box 1720, Building 959, Iqaluit, Nunavut, X0A 0H0, Canada
| | - Barbara Zeeb
- Dep. of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| |
Collapse
|
16
|
Moriarity RJ, Liberda EN, Tsuji LJS. Using a geographic information system to assess local scale methylmercury exposure from fish in nine communities of the Eeyou Istchee territory (James Bay, Quebec, Canada). ENVIRONMENTAL RESEARCH 2020; 191:110147. [PMID: 32877705 DOI: 10.1016/j.envres.2020.110147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Exposure to methylmercury is a concern for those who rely on fish as a traditional food in the Eeyou Istchee territory of James Bay, Quebec, Canada, because industrial land uses overlap with community water bodies where fish are harvested. Consequently, this study assessed if traditional practices, particularly fishing, increased the risk of exposure to methylmercury from the consumption of locally harvested fish. We designed a geographic information system (GIS) that included land use and fish methylmercury tissue concentrations to assess clustering of potential hot spots. We also used generalized linear models to assess the association of fish consumption to blood organic-mercury concentrations, and logistic regression models to assess the probability of fish exceeding the safety threshold for methylmercury tissue concentrations in areas of high intensity land use. The GIS demonstrated significant clustered hot spots around regions of hydroelectric and mining land use. Our results also revealed that adult consumption of pike, lake trout and/or walleye, and child consumption of pike or walleye were significantly associated with blood organic-mercury concentrations. Further, large fish harvested in a community with high intensity land use yielded a 77% probability that the fish exceeded the safety threshold. From a human exposure perspective, our study highlights the need for further research on children who consume fish from this region.
Collapse
Affiliation(s)
- Robert J Moriarity
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada.
| | - Eric N Liberda
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Leonard J S Tsuji
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Roberts S, Kirk JL, Wiklund JA, Muir DCG, Keating J, Yang F, Gleason A, Lawson G, Wang X, Evans M. Sources of atmospheric metal(loid) pollution recorded in Thompson Manitoba lake sediment cores within the Canadian boreal biome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139043. [PMID: 32417552 DOI: 10.1016/j.scitotenv.2020.139043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Global atmospheric emissions and subsequent deposition of numerous metal(loid)s has increased markedly since the industrial revolution. Due to a paucity of long-term metal(loid) flux measurements, the magnitude and timing of change are largely unknown, resulting in limited ability to predict time-scales of ecosystem recovery in response to emission decreases. In the absence of long-term data, palaeo-reconstructions provide continuous records of atmospheric metal(loid) deposition on an ecosystem, and landscape, scale. Here, we use high-resolution dated lake sediment cores to reconstruct the last c. 100 years of atmospheric anthropogenic deposition of a full suite (40) of metal(loid)s near a large nickel (Ni) and copper (Cu) smelter in an other-wise largely "pristine" region of northern Canada (Thompson, Manitoba). Anthropogenic depositional fluxes were compared to other regions of Canada including Kejimkujik National Park in Nova Scotia, Experimental Lakes Area in Ontario, as well as the Flin Flon, Manitoba Cu and zinc (Zn) smelter, located ~200 km southwest of Thompson. Deposition of 12 metal(loid)s were enriched above baseline (pre-1915) levels: antimony (Sb) > palladium (Pd) > bismuth (Bi) > mercury (Hg) > cadmium (Cd) > Ni > lead (Pb) > arsenic (As) > strontium (Sr) > Cu > platinum (Pt) > Zn. Spatio-temporal patterns in depositional fluxes and inventories demonstrate that 6 of these metal(loid)s were sourced primarily from the smelter, while As, Hg, Pb, Pt, Sb and Zn were sourced primarily from global and/or regional sources. Comparison of anthropogenic fluxes and inventories to available emissions data showed that Cu and Ni deposition has plateaued since the late 1970s despite dramatic smelter emission decreases between 2005 and 2014. We hypothesize that this discrepancy is due to releases of terrestrial metal(loid)s by climate-driven permafrost degradation, which is widespread across the region and will likely continue to drive increased metal(loid) fluxes to northern Canadian lakes for unknown time-scales.
Collapse
Affiliation(s)
- Sarah Roberts
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada.
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada.
| | - Johan A Wiklund
- Biology Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Jonathan Keating
- Watershed Hydrology Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - Fan Yang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Amber Gleason
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Greg Lawson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Marlene Evans
- Watershed Hydrology Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
| |
Collapse
|
18
|
Kim J, Soerensen AL, Kim MS, Eom S, Rhee TS, Jin YK, Han S. Mass Budget of Methylmercury in the East Siberian Sea: The Importance of Sediment Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9949-9957. [PMID: 32660243 DOI: 10.1021/acs.est.0c00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological concentrations of methylmercury (MeHg) are elevated throughout the Arctic Ocean; however, to date, the major sources and the spatial variability of MeHg are not well quantified. To identify the major inputs and outputs of MeHg to the Arctic shelf water column, we measured MeHg concentrations in the seawater and sediment samples from the East Siberian Sea collected from August to September 2018. We found that the MeHg concentrations in seawater and pore water were higher on the slope than on the shelf, while the MeHg concentrations in the sediment were higher on the shelf than on the slope. We created a mass budget for MeHg and found that the benthic diffusion and resuspension largely exceed other sources, such as atmospheric deposition and river water input. The major sinks of MeHg in the water column were dark demethylation and evasion. When we extrapolated our findings on benthic diffusion to the entire Arctic shelf system, the annual MeHg diffusion from the shelf sediments was estimated to be 23,065 ± 939 mol yr-1, about 2 times higher than previously proposed river discharges. Our study suggests that the MeHg input from shelf sediments in the Arctic Ocean is significant and has been previously underestimated.
Collapse
Affiliation(s)
- Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, SE-10405, Stockholm 114 18, Sweden
| | - Mi Seon Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sangwoo Eom
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Tae Siek Rhee
- Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Young Keun Jin
- Division of Polar Earth System Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
Gamberg M, Pratte I, Brammer J, Cuyler C, Elkin B, Gurney K, Kutz S, Larter NC, Muir D, Wang X, Provencher JF. Renal trace elements in barren-ground caribou subpopulations: Temporal trends and differing effects of sex, age and season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138305. [PMID: 32272411 DOI: 10.1016/j.scitotenv.2020.138305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Caribou (Rangifer tarandus) are a culturally significant food resource for communities in northern Canada and Greenland. Many barren-ground caribou subpopulations are currently in decline, some dramatically; understanding the influence of stressors, such as toxic trace metals, is important. These contaminants enter Arctic terrestrial environments via atmospheric transport from industrialized areas and from local sources, accumulating there in the environment. Understanding how trace element concentrations interact and are influenced by caribou sex, age and season of collection is essential to evaluating trends in these elements over time and differences among subpopulations. We used path analysis to model the direct and indirect relationships between these variables in the Porcupine subpopulation and in barren-ground caribou from the Canadian Arctic and Greenland. Renal cadmium (Cd), copper (Cu) and mercury (Hg) varied significantly among subpopulations. Hg was positively correlated with Cd, Cu and selenium (Se) in female Porcupine caribou whereas Cd and Cu were negatively correlated in male Porcupine caribou. Age, season and sex influenced all three element concentrations and should be considered when comparing elements among caribou subpopulations or years. Renal Cd decreased slightly from the Canadian Western Arctic to Greenland and increased slightly over time, possibly reflecting patterns of atmospheric deposition. Renal Hg did not change significantly over time, and differences among subpopulations did not follow specific geographical patterns. Renal Cu declined over time, the changes being markedly different among subpopulations, sexes and seasons. This temporal decline is likely due to changes in diet, which could be driven by various environmental factors. Declining Cu concentrations in caribou is of concern as low levels could negatively affect reproductive success and therefore caribou at a population level. Continuing to monitor element concentrations in caribou is essential to better comprehend potential threats facing the species, and to promote food security in communities harvesting this important resource.
Collapse
Affiliation(s)
- M Gamberg
- Gamberg Consulting, Whitehorse, Canada.
| | - I Pratte
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, Canada
| | - J Brammer
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Canada
| | - C Cuyler
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - B Elkin
- Government of the Northwest Territories Department of Environment and Natural Resources, Yellowknife, Canada
| | - K Gurney
- Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Canada
| | - S Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - N C Larter
- Environment and Natural Resources, Government of Northwest Territories, Fort Simpson, Canada
| | - D Muir
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Canada
| | - X Wang
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Canada
| | - J F Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, Canada
| |
Collapse
|
20
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
21
|
Lyman SN, Cheng I, Gratz LE, Weiss-Penzias P, Zhang L. An updated review of atmospheric mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135575. [PMID: 31784172 DOI: 10.1016/j.scitotenv.2019.135575] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The atmosphere is a key component of the biogeochemical cycle of mercury, acting as a reservoir, transport mechanism, and facilitator of chemical reactions. The chemical and physical behavior of atmospheric mercury determines how, when, and where emitted mercury pollution impacts ecosystems. In this review, we provide current information about what is known and what remains uncertain regarding mercury in the atmosphere. We discuss new ambient, laboratory, and theoretical information about the chemistry of mercury in various atmospheric media. We review what is known about mercury in and on solid- and liquid-phase aerosols. We present recent findings related to wet and dry deposition and spatial and temporal trends in atmospheric mercury concentrations. We also review atmospheric measurement methods that are in wide use and those that are currently under development.
Collapse
Affiliation(s)
- Seth N Lyman
- Bingham Research Center, Utah State University, 320 N Aggie Blvd., Vernal, UT, USA; Department of Chemistry and Biochemistry, Utah State University, 4820 Old Main Hill, Logan, UT, USA.
| | - Irene Cheng
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, 14 East Cache la Poudre St., Colorado Springs, CO, USA
| | - Peter Weiss-Penzias
- Chemistry and Biochemistry Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA; Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Leiming Zhang
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| |
Collapse
|
22
|
Input of terrestrial organic matter linked to deglaciation increased mercury transport to the Svalbard fjords. Sci Rep 2020; 10:3446. [PMID: 32103054 PMCID: PMC7044282 DOI: 10.1038/s41598-020-60261-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Deglaciation has accelerated the transport of minerals as well as modern and ancient organic matter from land to fjord sediments in Spitsbergen, Svalbard, in the European Arctic Ocean. Consequently, such sediments may contain significant levels of total mercury (THg) bound to terrestrial organic matter. The present study compared THg contents in surface sediments from three fjord settings in Spitsbergen: Hornsund in the southern Spitsbergen, which has high annual volume of loss glacier and receives sediment from multiple tidewater glaciers, Dicksonfjorden in the central Spitsbergen, which receives sediment from glacifluvial rivers, and Wijdefjorden in the northern Spitsbergen, which receive sediments from a mixture of tidewater glaciers and glacifluvial rivers. Our results showed that the THg (52 ± 15 ng g-1) bound to organic matter (OM) was the highest in the Hornsund surface sediments, where the glacier loss (0.44 km3 yr-1) and organic carbon accumulation rates (9.3 ~ 49.4 g m-2 yr-1) were elevated compared to other fjords. Furthermore, the δ13C (-27 ~ -24‰) and δ34S values (-10 ~ 15‰) of OM indicated that most of OM were originated from terrestrial sources. Thus, the temperature-driven glacial melting could release more OM originating from the meltwater or terrestrial materials, which are available for THg binding in the European Arctic fjord ecosystems.
Collapse
|
23
|
Foster KL, Braune BM, Gaston AJ, Mallory ML. Climate influence on mercury in Arctic seabirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133569. [PMID: 31634995 DOI: 10.1016/j.scitotenv.2019.07.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The historic influence of interannual weather and climate variability on total mercury concentrations (THg) in the eggs of two species of Arctic seabird in the Canadian High Arctic was investigated. Time series of THg in the eggs of northern fulmars (Fulmarus glacialis) and thick-billed murres (Uria lomvia) from Prince Leopold Island span 40 years (1975-2014), making these among the longest time series available for contaminants in Arctic wildlife and uniquely suitable for evaluation of long-term climate and weather influence. We compiled a suite of weather and climate time series reflecting atmospheric (air temperature, wind speed, sea level pressure) and oceanic (sea surface temperature, sea ice cover) conditions, atmosphere-ocean transfer (snow and rain), as well as broad-scale teleconnection indices such as the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO). We staggered these to the optimal time lag, then in a tiered approach of successive General Linear Models (GLMs), strategically added them to GLMs to identify possible key predictors and assess any main effects on THg concentrations. We investigated time lags of 0 to 10 years between weather/climate shifts and egg collections. For both fulmars and murres, after time lags of two to seven years, the most parsimonious models included NAO and temperature, and for murres, snowfall, while the fulmar model also included sea ice. Truncated versions of the datasets (2005-2014), reflective of typical time series length for THg in Arctic wildlife, were separately assessed and generally identified similar weather predictors and effects as the full time series, but not for NAO, indicating that longer time series are more effective at elucidating relationships with broad scale climate indices. Overall, the results suggest a significant and larger than expected effect of weather and climate on THg concentrations in Arctic seabirds.
Collapse
Affiliation(s)
- Karen L Foster
- Karen Foster Environmental Research, Peterborough, ON K9J 8L2, Canada; Applications of Modelling & Quantitative Methods (AMOD), Trent University, Peterborough, ON K9L 0G2, Canada
| | - Birgit M Braune
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Anthony J Gaston
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada.
| |
Collapse
|
24
|
Kumar A, Wu S. Mercury Pollution in the Arctic from Wildfires: Source Attribution for the 2000s. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11269-11275. [PMID: 31479246 DOI: 10.1021/acs.est.9b01773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric mercury (Hg) is a global environmental pollutant, with wildfire emissions being an important source. There have been growing concerns on Hg contamination in the Arctic region, which is largely attributed to long-range transport from lower latitude regions. In this work, we estimate the contributions of wildfire emissions from various source regions to Hg pollution in the Arctic (66° N to 90° N) using a newly developed global Hg wildfire emissions inventory and an atmospheric chemical transport model (GEOS-Chem). Our results show that global wildfires contribute to about 10% (15 Mg year-1) of the total annual Hg deposition to the Arctic, with the most important source region being Eurasia, which contribute to 5.3% of the total annual Hg deposition followed by Africa (2.5%) and North America (1%). The substantial contributions from the Eurasia region are driven by the strong wildfire activity in the boreal forests. The total wildfire-induced Hg deposition to the Arctic amounts to about one-third of the deposition caused by present-day anthropogenic emissions. We also find that wildfires result in significant Hg deposition to the Arctic across all seasons (winter: 8.3%, spring: 7%, summer: 11%, and fall: 14.6%) with the largest deposition occurring during the boreal fire season. These findings indicate that wildfire is a significant source for Arctic Hg contamination and also demonstrate the importance of boreal forest in the global and regional Hg cycle through the mobilization of sequestered Hg reservoir.
Collapse
Affiliation(s)
- Aditya Kumar
- Now at Space Science and Engineering Center , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | | |
Collapse
|
25
|
Hudelson KE, Muir DCG, Drevnick PE, Köck G, Iqaluk D, Wang X, Kirk JL, Barst BD, Grgicak-Mannion A, Shearon R, Fisk AT. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:801-812. [PMID: 31085496 DOI: 10.1016/j.scitotenv.2019.04.453] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Climate warming and mercury (Hg) are concurrently influencing Arctic ecosystems, altering their functioning and threatening food security. Non-anadromous Arctic char (Salvelinus alpinus) in small lakes were used to biomonitor these two anthropogenic stressors, because this iconic Arctic species is a long-lived top predator in relatively simple food webs, and yet population characteristics vary greatly, reflecting differences between lake systems. Mercury concentrations in six landlocked Arctic char populations on Cornwallis Island, Nunavut have been monitored as early as 1989, providing a novel dataset to examine differences in muscle [Hg] among char populations, temporal trends, and the relationship between climate patterns and Arctic char [Hg]. We found significant lake-to-lake differences in length-adjusted Arctic char muscle [Hg], which varied by up to 9-fold. Arctic char muscle [Hg] was significantly correlated to dissolved and particulate organic carbon concentrations in water; neither watershed area or vegetation cover explained differences. Three lakes exhibited significant temporal declines in length-adjusted [Hg] in Arctic char; the other three lakes had no significant trends. Though precipitation, temperature, wind speed, and sea ice duration were tested, no single climate variable was significantly correlated to length-adjusted [Hg] across populations. However, Arctic char Hg in Resolute Lake exhibited a significant correlation with sea ice duration, which is likely closely linked to lake ice duration, and which may impact Hg processing in lakes. Additionally, Arctic char [Hg] in Amituk Lake was significantly correlated to snow fall, which may be linked to Hg deposition. The lack of consistent temporal trends in neighboring char populations indicates that currently, within lake processes are the strongest drivers of [Hg] in char in the study lakes and potentially in other Arctic lakes, and that the influence of climate change will likely vary from lake to lake.
Collapse
Affiliation(s)
- Karista E Hudelson
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC G1K 9A9, Canada.
| | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada.
| | - Paul E Drevnick
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC G1K 9A9, Canada; Alberta Environment and Parks, Environmental Monitoring and Science Division, Calgary, AB T2E 7L7, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research, 6020 Innsbruck, Austria
| | - Deborah Iqaluk
- Hamlet of Resolute Bay, Resolute Bay, NU X0A 0V0, Canada
| | - Xiaowa Wang
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Jane L Kirk
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Benjamin D Barst
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC G1K 9A9, Canada; Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Alice Grgicak-Mannion
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Rebecca Shearon
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
26
|
Olson CL, Jiskra M, Sonke JE, Obrist D. Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1502-1512. [PMID: 30743942 DOI: 10.1016/j.scitotenv.2019.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Vegetation uptake of atmospheric mercury (Hg) is an important mechanism enhancing atmospheric Hg deposition via litterfall and senescence. We here report Hg concentrations and pool sizes of different plant functional groups and plant species across nine tundra sites in northern Alaska. Significant spatial differences were observed in bulk vegetation Hg concentrations at Toolik Field station (52 ± 9 μg kg-1), Eight Mile Lake Observatory (40 ± 0.2 μg kg-1), and seven sites along a transect from Toolik Field station to the Arctic coast (36 ± 9 μg kg-1). Hg concentrations in non-vascular vegetation including feather and peat moss (58 ± 6 μg kg-1 and 34 ± 2 μg kg-1, respectively) and brown and white lichen (41 ± 2 μg kg-1 and 34 ± 2 μg kg-1, respectively), were three to six times those of vascular plant tissues (8 ± 1 μg kg-1 in dwarf birch leaves and 9 ± 1 μg kg-1 in tussock grass). A high representation of nonvascular vegetation in aboveground biomass resulted in substantial Hg mass contained in tundra aboveground vegetation (29 μg m-2), which fell within the range of foliar Hg mass estimated for forests in the United States (15 to 45 μg m-2) in spite of much shorter growing seasons. Hg stable isotope signatures of different plant species showed that atmospheric Hg(0) was the dominant source of Hg to tundra vegetation. Mass-dependent isotope signatures (δ202Hg) in vegetation relative to atmospheric Hg(0) showed pronounced shifts towards lower values, consistent with previously reported isotopic fractionation during foliar uptake of Hg(0). Mass-independent isotope signatures (Δ199Hg) of lichen were more positive relative to atmospheric Hg(0), indicating either photochemical reduction of Hg(II) or contributions of inorganic Hg(II) from atmospheric deposition and/or dust. Δ199Hg and Δ200Hg values in vascular plant species were similar to atmospheric Hg(0) suggesting that overall photochemical reduction and subsequent re-emission was relatively insignificant in these tundra ecosystems, in agreement with previous Hg(0) ecosystem flux measurements.
Collapse
Affiliation(s)
- Christine L Olson
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Martin Jiskra
- Geosciences Environnement Toulouse, CNRS/OMP/Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France; Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Jeroen E Sonke
- Geosciences Environnement Toulouse, CNRS/OMP/Université de Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Daniel Obrist
- Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA; Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA, USA.
| |
Collapse
|
27
|
Laird MJ, Henao JJA, Reyes ES, Stark KD, Low G, Swanson HK, Laird BD. Mercury and omega-3 fatty acid profiles in freshwater fish of the Dehcho Region, Northwest Territories: Informing risk benefit assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1508-1517. [PMID: 29801244 DOI: 10.1016/j.scitotenv.2018.04.381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Traditional foods have significant nutritional, sociocultural and economic value in subarctic First Nations communities of the Northwest Territories, and play a crucial role in promoting cultural continuity and sovereignty. Omega-3 polyunsaturated fatty acids (N-3 PUFAs), including eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), carry significant benefits for neurocognitive development and cardiovascular health. However, the health risks posed by methylmercury may serve to undermine the benefits of fish consumption in Northern Indigenous communities. The objective of this study was to characterize profiles for mercury (Hg) and fatty acids in fish species harvested across lakes of the Dehcho Region, in the Mackenzie Valley of the Northwest Territories, to better understand the risks and benefits associated with traditional foods. Hg levels increased with trophic position, with the highest levels found in Burbot, Lake Trout, Walleye, and Northern Pike. Lake Trout, along with planktivorous species including Lake Whitefish, Cisco, and Sucker, demonstrated higher N-3 PUFAs than other species. Negative associations were observed between Hg and N-3 PUFAs in Lake Trout, Northern Pike, Walleye and Burbot. Further stratifying these relationships revealed significant interactions by lake. Significant differences observed in fatty acid and Hg profiles across lakes underscore the importance of considering both species- and lake-specific findings. This growing dataset of freshwater fish of the Dehcho will inform future efforts to characterize human Hg exposure profiles using probabilistic dose reconstruction models.
Collapse
Affiliation(s)
- Matthew J Laird
- School of Public Health and Health Systems, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Juan J Aristizabal Henao
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Ellen S Reyes
- School of Public Health and Health Systems, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - George Low
- Dehcho Aboriginal Aquatic Resources & Oceans Management, 13 Riverview Drive, Hay River, NT, X0E 0R7, Canada
| | - Heidi K Swanson
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Brian D Laird
- School of Public Health and Health Systems, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
28
|
Clackett SP, Porter TJ, Lehnherr I. 400-Year Record of Atmospheric Mercury from Tree-Rings in Northwestern Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9625-9633. [PMID: 30070840 DOI: 10.1021/acs.est.8b01824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tree-rings are a promising high-resolution archive for gaseous atmospheric mercury (composed primarily of Hg0) reconstruction, but the influence of cambial age (ring number from pith) and tree-specific differences are uncertainties with potential implications for interpreting tree-ring Hg signals. We address these uncertainties and reconstruct the last 400 years of Hg0 change using a tree-ring Hg data set from 20 white spruce ( Picea glauca) trees from a pristine site in central Yukon. Cambial age has no significant influence on tree-ring Hg concentration, but tree-specific differences in mean concentration are prevalent and must be normalized to a common mean to accurately constrain long-term trends in the mean tree-ring Hg record. Our record shows stable, low Hg0 concentrations prior to ∼1750 CE, a persistent rise from ∼1750-1950 (increasing more rapidly post-1850), a pause from ∼1951-1975, and then a resumed increase to record-high levels at present. This general pattern is reflected in other proxy-based Hg reconstructions worldwide. This study provides a novel long-term Hg0 reconstruction in the Western subarctic from one of the most widely distributed boreal tree species in North America and, therefore this proxy may also hold potential for investigating broader spatial patterns in Hg0 cycling across the subarctic and northern boreal forest.
Collapse
Affiliation(s)
- Sydney P Clackett
- Department of Geography , University of Toronto , Erindale Campus , Mississauga L5L 1C6 , Canada
| | - Trevor J Porter
- Department of Geography , University of Toronto , Erindale Campus , Mississauga L5L 1C6 , Canada
| | - Igor Lehnherr
- Department of Geography , University of Toronto , Erindale Campus , Mississauga L5L 1C6 , Canada
| |
Collapse
|
29
|
Gustaytis MA, Myagkaya IN, Chumbaev AS. Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia). CHEMOSPHERE 2018; 202:446-459. [PMID: 29579679 DOI: 10.1016/j.chemosphere.2018.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Gold-bearing polymetallic Cu-Zn deposits of sulphur-pyrite ores were discovered in the Novo-Ursk region in the 1930s. The average content of mercury (Hg) was approximately 120 μg/g at the time. A comprehensive study of Hg distribution in waste of metal ore enrichment industry was carried out in the cold season on the tailing dump site and in adjacent areas. Mercury concentration in among snow particulate, dissolved and colloid fractions was determined. The maximal Hg content in particulate fraction from the waste tailing site ranged 230-573 μg/g. Such indices as the frequency of aerosol dust deposition events per units of time and area, enrichment factor and the total load allowed to establish that the territory of the tailing waste dump site had a snow cover highly contaminated with dust deposited at a rate of 247-480 mg/(m2∙day). Adjacent areas could be considered as area with low Hg contamination rate with average deposition rate of 30 mg/(m2∙day). The elemental composition of the aerosol dust depositions was determined as well, which allowed to reveal the extent of enrichment waste dispersion throughout adjacent areas. The amount of Hg entering environment with snowmelt water discharge was estimated. As a result of snowmelting, in 2014 the nearest to the dump site hydrographic network got Hg as 7.1 g with colloids and as 5880 g as particles. The results obtained allowed to assess the degree of Hg contamination of areas under the impact of metal enrichment industry.
Collapse
Affiliation(s)
- M A Gustaytis
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave., 3, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov Str., 3, Novosibirsk, 630090, Russia.
| | - I N Myagkaya
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave., 3, Novosibirsk, 630090, Russia
| | - A S Chumbaev
- Institute of Soil Science and Agrochemistry, Siberian Branch of Russian Academy of Sciences, Lavrent'eva Ave., 8/2, Novosibirsk, 630090, Russia
| |
Collapse
|
30
|
Chételat J, Hickey MBC, Poulain AJ, Dastoor A, Ryjkov A, McAlpine D, Vanderwolf K, Jung TS, Hale L, Cooke ELL, Hobson D, Jonasson K, Kaupas L, McCarthy S, McClelland C, Morningstar D, Norquay KJO, Novy R, Player D, Redford T, Simard A, Stamler S, Webber QMR, Yumvihoze E, Zanuttig M. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:668-677. [PMID: 29396333 DOI: 10.1016/j.scitotenv.2018.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric mercury deposition is important in determining spatial patterns of mercury accumulation in a mammalian species.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada.
| | | | - Alexandre J Poulain
- Biology Department, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ashu Dastoor
- Air Quality Research Division, Environment and Climate Change Canada, Dorval, Quebec H9P 1J3, Canada
| | - Andrei Ryjkov
- Air Quality Research Division, Environment and Climate Change Canada, Dorval, Quebec H9P 1J3, Canada
| | - Donald McAlpine
- New Brunswick Museum, Saint John, New Brunswick E2K 1E5, Canada
| | - Karen Vanderwolf
- New Brunswick Museum, Saint John, New Brunswick E2K 1E5, Canada; Canadian Wildlife Federation, Kanata, Ontario K2M 2W1, Canada
| | - Thomas S Jung
- Yukon Department of Environment, Whitehorse, Yukon Territory Y1A 2C6, Canada
| | - Lesley Hale
- Ontario Ministry of Natural Resources & Forestry, Peterborough, Ontario K9J 8M5, Canada
| | - Emma L L Cooke
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Dave Hobson
- Alberta Environment and Parks, Edson, Alberta T7E 1T2, Canada
| | - Kristin Jonasson
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Laura Kaupas
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sara McCarthy
- Wildlife Division, Fisheries and Land Resources, Goose Bay, Newfoundland and Labrador A0P 1E0, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | | | - Kaleigh J O Norquay
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba R3B 2G3, Canada
| | - Richard Novy
- Golder Associates Ltd., Calgary, Alberta T2A 7W5, Canada
| | | | - Tony Redford
- Animal Health Centre, BC Ministry of Agriculture, Abbotsford, British Columbia V3G 2M3, Canada
| | - Anouk Simard
- Direction de l'expertise sur la faune terrestre, l'herpétofaune et l'avifaune, Ministère des Forêts, de la Faune et des Parcs, Québec, Quebec G1S 4X4, Canada
| | - Samantha Stamler
- Alberta Environment and Parks, Edmonton, Alberta T6H 4P2, Canada
| | - Quinn M R Webber
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba R3B 2G3, Canada
| | - Emmanuel Yumvihoze
- Biology Department, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michelle Zanuttig
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
31
|
Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. AMBIO 2018; 47:116-140. [PMID: 29388126 PMCID: PMC5794683 DOI: 10.1007/s13280-017-1004-9] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.
Collapse
Affiliation(s)
- Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, One University Ave, Lowell, MA 01854 USA
| | - Jane L. Kirk
- Environment and Climate Change, Canada, 867 Lakeshore Road, Burlington, ON L7P 2X3 Canada
| | - Lei Zhang
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 Jiangsu China
| | - Elsie M. Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard T.H. Chan School of Public Health, Harvard University, 29 Oxford Street, Cambridge, MA 02138 USA
| | - Martin Jiskra
- Géosciences Environnement Toulouse, GET-CNRS, CNRS – OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Noelle E. Selin
- Institute for Data, Systems, and Society and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
32
|
Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of Methylmercury to Dissolved Organic Carbon in Water Explains Methylmercury Bioaccumulation Across a Latitudinal Gradient from North-Temperate to Arctic Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:79-88. [PMID: 29172471 DOI: 10.1021/acs.est.7b04180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated monomethylmercury (MMHg) bioaccumulation in lakes across a 30° latitudinal gradient in eastern Canada to test the hypothesis that climate-related environmental conditions affect the sensitivity of Arctic lakes to atmospheric mercury contamination. Aquatic invertebrates (chironomid larvae, zooplankton) provided indicators of MMHg bioaccumulation near the base of benthic and planktonic food chains. In step with published data showing latitudinal declines in atmospheric mercury deposition in Canada, we observed lower total mercury concentrations in water and sediment of higher latitude lakes. Despite latitudinal declines of inorganic mercury exposure, MMHg bioaccumulation in aquatic invertebrates did not concomitantly decline. Arctic lakes with greater MMHg in aquatic invertebrates either had (1) higher water MMHg concentrations (reflecting ecosystem MMHg production) or (2) low water concentrations of MMHg, dissolved organic carbon (DOC), chlorophyll, and total nitrogen (reflecting lake sensitivity). The MMHg:DOC ratio of surface water was a strong predictor of lake sensitivity to mercury contamination. Bioaccumulation factors for biofilms and seston in Arctic lakes showed more efficient uptake of MMHg in low DOC systems. Environmental conditions associated with low biological production in Arctic lakes and their watersheds increased the sensitivity of lakes to MMHg.
Collapse
Affiliation(s)
- John Chételat
- National Wildlife Research Centre, Environment and Climate Change Canada , Ottawa, Ontario, Canada K1A 0H3
| | - Murray C Richardson
- Geography and Environmental Studies, Carleton University , Ottawa, Ontario, Canada K1S 5B6
| | - Gwyneth A MacMillan
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal , Montréal, Quebec, Canada H2V 2S9
| | - Marc Amyot
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal , Montréal, Quebec, Canada H2V 2S9
| | - Alexandre J Poulain
- Department of Biology, University of Ottawa , Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
33
|
Estimating Uncertainty in Global Mercury Emission Source and Deposition Receptor Relationships. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
García GF, Álvarez HB, Echeverría RS, de Alba SR, Rueda VM, Dosantos EC, Cruz GV. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:973-985. [PMID: 28498787 DOI: 10.1080/10962247.2017.1314871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Atmospheric mercury in the environment as a result of the consumption of fossil fuels, such as coal used in electricity generation, has gained increased attention worldwide because of its toxicity, atmospheric persistence, and bioaccumulation. Determining or predicting the concentration of this pollutant in ambient air is essential for determining sensitive areas requiring health protection. This study investigated the spatiotemporal variability of gaseous elemental mercury (GEM) concentrations and its dry deposition surrounding the Presidente Plutarco Elías Calles (CETEPEC) coal-fired power plant, located on Mexico's Pacific coast. The CALPUFF dispersion model was applied on the basis of the daily consumption of coal during 2013 for each generating unit in the power plant and considering the local scale. The established 300-ng/m3 annual average risk factor considered by the U.S. Department of Health and Human Services (U.S. DHHS) and Integrated Risk Information System (IRIS) must not be exceeded to meet satisfactory air quality levels. An area of 65 × 60 km was evaluated, and the results show that the risk level for mercury vapor was not exceeded because the annual average concentration was 2.8 ng/m3. Although the predicted risk level was not exceeded, continuous monitoring studies of GEM and of particulates in the atmosphere, soil, and water may be necessary to identify the concentration of this pollutant, specifically that resulting from coal-fired power plants operated in environmental areas of interest in Mexico. The dry mercury deposition was low in the study area; according to the CALPUFF model, the annual average was 1.40E-2 ng/m2/sec. These results represent a starting point for Mexico's government to implement the Minamata Convention on Mercury, which Mexico signed in 2013. IMPLICATIONS The obtained concentrations of mercury from a bigger coal-fired plant in Mexico, through the application of the CALPUFF dispersion model by the mercury emissions, are below the level recommended according to the US Department of Health and Human Services and Integrated Risk Information System. These results provide evidence of important progress in the planning and installation to the future of monitoring mercury stations in the area of interest.
Collapse
Affiliation(s)
- Gilberto Fuentes García
- a Posgrado en Ingeniería, Facultad de Ingeniería , Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
- b Sección de Contaminación Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| | - Humberto Bravo Álvarez
- b Sección de Contaminación Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| | - Rodolfo Sosa Echeverría
- b Sección de Contaminación Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| | | | - Víctor Magaña Rueda
- d Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| | - Ernesto Caetano Dosantos
- d Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| | - Gustavo Vázquez Cruz
- d Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad Universitaria , Mexico City , Mexico
| |
Collapse
|
35
|
Domagalski J, Majewski MS, Alpers CN, Eckley CS, Eagles-Smith CA, Schenk L, Wherry S. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:638-650. [PMID: 27015962 DOI: 10.1016/j.scitotenv.2016.02.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.
Collapse
Affiliation(s)
- Joseph Domagalski
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, United States.
| | - Michael S Majewski
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, United States
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, United States
| | - Chris S Eckley
- U.S. Environmental Protection Agency, Office of Environmental Assessment, EPA-Region 10, 1200 6th Ave., Suite 900, Seattle, WA 98101, United States
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, United States
| | - Liam Schenk
- U.S. Geological Survey, Oregon Water Science Center, 2795 Anderson Ave., Suite 106, Klamath Falls, OR 97603, United States
| | - Susan Wherry
- U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5th Ave., Portland, OR 97201, United States
| |
Collapse
|
36
|
Braune BM, Gaston AJ, Mallory ML. Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:124-131. [PMID: 27074200 DOI: 10.1016/j.envpol.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
We compared temporal trends of total mercury (Hg) in eggs of five seabird species breeding at Prince Leopold Island in the Canadian high Arctic. As changes in trophic position over time have the potential to influence contaminant temporal trends, Hg concentrations were adjusted for trophic position (measured as δ(15)N). Adjusted Hg concentrations in eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) increased from 1975 to the 1990s, followed by a plateauing of levels from the 1990s to 2014. Trends of adjusted Hg concentrations in eggs of murres, fulmars, black guillemots (Cepphus grylle) and black-legged kittiwakes (Rissa tridactyla) had negative slopes between 1993 and 2013. Adjusted Hg concentrations in glaucous gull (Larus hyperboreus) eggs decreased by 50% from 1993 to 2003 before starting to increase again. Glaucous gull eggs had the highest Hg concentrations followed by black guillemot eggs, and black-legged kittiwake eggs had the lowest concentrations consistently in the five years compared between 1993 and 2013. Based on published toxicological thresholds for Hg in eggs, there is little concern for adverse reproductive effects due to Hg exposure in these birds, although the levels in glaucous gull eggs warrant future scrutiny given the increase in Hg concentrations observed in recent years. There is evidence that the Hg trends observed reflect changing anthropogenic Hg emissions. It remains unclear, however, to what extent exposure to Hg on the overwintering grounds influences the Hg trends observed in the seabird eggs at Prince Leopold Island. Future research should focus on determining the extent to which Hg exposure on the breeding grounds versus the overwintering areas contribute to the trends observed in the eggs.
Collapse
Affiliation(s)
- Birgit M Braune
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3, Canada.
| | - Anthony J Gaston
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario K1A 0H3, Canada
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
37
|
The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11254-68. [PMID: 26378551 PMCID: PMC4586673 DOI: 10.3390/ijerph120911254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/12/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022]
Abstract
Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.
Collapse
|
38
|
Chételat J, Braune B, Stow J, Tomlinson S. Special issue on mercury in Canada's North: summary and recommendations for future research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:260-2. [PMID: 25669603 DOI: 10.1016/j.scitotenv.2014.06.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 05/16/2023]
Abstract
Important scientific advances have been made over the last decade in identifying the environmental fate of mercury and the processes that control its cycling in the Canadian Arctic. This special issue includes a series of six detailed reviews that summarize the main findings of a scientific assessment undertaken by the Government of Canada's Northern Contaminants Program. It was the first assessment to focus exclusively on mercury pollution in the Canadian Arctic. Key findings, as detailed in the reviews, relate to sources and long-range transport of mercury to the Canadian Arctic, its cycling within marine, freshwater, and terrestrial environments, and its bioaccumulation in, and effects on, the biota that live there. While these accomplishments are significant, the complex nature of the mercury cycle continues to provide challenges in characterizing and quantifying the relationships of mercury sources and transport processes with mercury levels in biota and biological effects of mercury exposure. Of particular concern are large uncertainties in our understanding of the processes that are contributing to increasing mercury concentrations in some Arctic fish and wildlife. Specific recommendations are provided for future research and monitoring of the environmental impacts of anthropogenic mercury emissions, influences of climate change, and the effectiveness of mitigation strategies for mercury in the Canadian Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3.
| | - Birgit Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3
| | - Jason Stow
- Aboriginal Affairs and Northern Development Canada, Northern Contaminants Program, Ottawa, Ontario, Canada K1A 0H4
| | - Scott Tomlinson
- Aboriginal Affairs and Northern Development Canada, Northern Contaminants Program, Ottawa, Ontario, Canada K1A 0H4
| |
Collapse
|