1
|
Song A, Li H, Liu M, Peng P, Hu J, Sheng G, Ying G. Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in soil around municipal solid waste incinerator: A comparison with polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118563. [PMID: 34838709 DOI: 10.1016/j.envpol.2021.118563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) share similar toxicities and thermal origins, e.g., municipal solid waste incinerator (MSWI). Recently, PBDD/Fs from MSWI attracted rising concern because their important precursors, i.e., brominated flame retardants (BFRs), were frequently found in various wastes for landfill or MSWI feedstock. So far, however, little is known about PBDD/Fs and their associated risks in the vicinal environments of MSWI. Here we analyzed PBDD/Fs and PCDD/Fs in 29 soil samples collected around a multiyear large-scale MSWI, and compared their spatial distributions, sources and risks. PBDD/Fs demonstrated comparable concentrations and toxic equivalent quantities (TEQs) to PCDD/Fs in these samples. Spatially, both the concentrations of PBDD/Fs and PCDD/Fs decreased outwards from the MSWI, and exhibited significant linear correlations with the distances from the MSWI in the southeast downwind soil, suggesting the influence of the MSWI on its vicinal soil environment. However, the existence of other dioxin sources concealed its influence beyond 6 km. PBDD/Fs in the soils were characterized by highly-brominated PBDFs, especially Octa-BDF, and their sources were diagnosed as the MSWI and diesel exhaust; PCDD/Fs, however, were dominated by highly-chlorinated PCDDs, particularly Octa-CDD, and were contributed individually or jointly by the MSWI, automobile exhaust and pentachlorophenol (PCP)/Na-PCP. The non-carcinogenic risks of dioxins in all the soil samples were acceptable, but their carcinogenic risks in 17% of the samples were unacceptable. These samples were all located close to the MSWI and highways, therefore, the land use of these two high-risk zones should be cautiously planed.
Collapse
Affiliation(s)
- Aimin Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Mingyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China
| | - JianFang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Yang L, Liu G, Shen J, Wang M, Yang Q, Zheng M. Environmental characteristics and formations of polybrominated dibenzo-p-dioxins and dibenzofurans. ENVIRONMENT INTERNATIONAL 2021; 152:106450. [PMID: 33684732 DOI: 10.1016/j.envint.2021.106450] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) are emerging persistent organic pollutants (POPs) that have similar or higher toxicities than the notorious dioxins. Toxicities, formation mechanisms, and environmental fates of PBDD/Fs are lacking because accurate quantification, especially of higher brominated congeners, is challenging. PBDD/F analysis is difficult because of photolysis and thermal degradation and interference from polybrominated diphenyl ethers. Here, literatures on PBDD/F analysis and environmental occurrences are reviewed to improve our understanding of PBDD/F environmental pollution and human exposure levels. Although PBDD/Fs behave similarly to dioxins, different congener profiles between PBDD/Fs and dioxins in the environment indicates their different sources and formation mechanisms. Herein, potential sources and formation mechanisms of PBDD/Fs were critically discussed, and current knowledge gaps and future directions for PBDD/F research are highlighted. An understanding of PBDD/F formation pathways will allow for development of synergistic control strategies for PBDD/Fs, dioxins, and other dioxin-like POPs.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minxiang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
3
|
Fernandes AR, Falandysz J. Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs): Contamination in food, humans and dietary exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143191. [PMID: 33160676 DOI: 10.1016/j.scitotenv.2020.143191] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) have been recognised as environmental pollutants for decades but their occurrence in food has only recently been reported. They elicit the same type of toxic response as analogous polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) with similar potencies and effects, and share similar origins - inadvertent production during combustion and occurrence as by-products in industrial chemicals. Surprisingly, PBDD/Fs have received considerably less attention than PCDD/Fs, perhaps because determination requires a higher degree of analytical competence, a result of the higher adsorptivity and lability associated with carbon-bromine bonding. For most populations, the principal exposure pathway is dietary intake. The PBDD/F toxicity arising from occurrence in foods has often been expressed as toxic equivalents (TEQs) using the same scheme developed for PCDD/Fs. This approach is convenient, but resulting TEQ estimates are more uncertain, given the known differences in response for some analogous congeners and also the different patterns of PBDD/F occurrence confirmed by the newer data. Further studies to consolidate potency factors would help to refine TEQ estimates. Characteristically, most foods and human tissues show more frequent and higher PBDF concentrations relative to PBDDs, reflecting major source patterns. Occurrence in food ranges from <0.01 to several thousand pg/g (or up to 0.3 pg TEQ/g whole weight) which is comparable to PCDD/F occurrence (ΣPBDD/F TEQs are underestimated as not all relevant congeners are included). Plant based foods show higher PBDD/F: PCDD/F TEQ ratios. Reported PBDD/F dietary intakes suggest that some population groups, particularly young children, may exceed the revised tolerable weekly intake for dioxin-like contaminants (2 pg TEQ/kg bw/week), even for mean consumption estimated with lower bound data. It is evident that the omission of PBDD/Fs from the TEQ scheme results in a significant underestimation of the cumulative toxicity and associated risk arising from this mode of action.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Dubocq F, Bjurlid F, Ydstål D, Titaley IA, Reiner E, Wang T, Almirall XO, Kärrman A. Organic contaminants formed during fire extinguishing using different firefighting methods assessed by nontarget analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114834. [PMID: 32454383 DOI: 10.1016/j.envpol.2020.114834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
During a fire event, potentially hazardous chemicals are formed from the combustion of burning materials and are released to the surrounding environment, both via gas and soot particles. The aim of this investigation was to study if firefighting techniques influence the emission of chemicals in gas phase and soot particles. Five full-scale fire tests were extinguished using four different firefighting techniques. A nontarget chemical analysis approach showed that important contaminants in gas and soot separating the different tests were brominated flame retardants (BFRs), organophosphate flame retardants (OPFR), polycyclic aromatic hydrocarbons (PAHs) and linear hydrocarbons. Reproducibility was evaluated by a field replicate test and it was determined that the temperature curve during the event had a bigger impact on the released chemicals than the firefighting technique used. However, despite fire intensity being a confounding factor, multivariate statistics concluded that water mist with additive resulted in less BFR emissions compared to foam extinguishing. The analysis also showed that the conventional spray nozzle method released more PAHs compared with the water mist method. The comprehensive chemical analysis of gas and soot released during fire events was able to show that different firefighting techniques influenced the release of chemicals.
Collapse
Affiliation(s)
- Florian Dubocq
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82, Örebro, Sweden.
| | - Filip Bjurlid
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82, Örebro, Sweden; Department of Occupational and Environmental Health, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Danielle Ydstål
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Ivan A Titaley
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Eric Reiner
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, Canada (ret.)
| | - Thanh Wang
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| | - Xavier Ortiz Almirall
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, ON, Canada; Queen's University, School of Environmental Sciences, 116 Barrie St., Kingston, ON, Canada
| | - Anna Kärrman
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82, Örebro, Sweden
| |
Collapse
|
5
|
Fent KW, LaGuardia M, Luellen D, McCormick S, Mayer A, Chen IC, Kerber S, Smith D, Horn GP. Flame retardants, dioxins, and furans in air and on firefighters' protective ensembles during controlled residential firefighting. ENVIRONMENT INTERNATIONAL 2020; 140:105756. [PMID: 32388249 PMCID: PMC9989945 DOI: 10.1016/j.envint.2020.105756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Structure fires that involve modern furnishings may emit brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs), as well as brominated and chlorinated dioxins and furans, into the environment. OBJECTIVES The goal of this study was to quantify the airborne and personal protective equipment (PPE) contamination levels of these compounds during controlled residential fires in the U.S., and to evaluate gross-decontamination measures. METHODS Bulk-sampling was done to confirm the presence of flame retardants (FRs) in the furnishings used in 12 controlled residential structure fires. Area air samples were collected during the fires and PPE wipe samples were collected from the firefighters' turnout jackets and gloves after firefighting. For each fire, half of the jackets were decontaminated and the other half were not. RESULTS Of the BFRs and OPFRs measured in air during the fire period, decabromodiphenyl ether (BDE-209) and triphenyl phosphate (TPP) were the most abundant, with medians of 15.6 and 408 µg/m3, respectively, and were also detected during overhaul. These and several other BFRs and OPFRs were measured on PPE. Some gloves had contaminant levels exceeding 100 ng/cm2 and were generally more contaminated than jackets. Air and surface levels of the brominated furans appeared to be higher than the chlorinated dioxins and furans. Routine gross decontamination appeared to reduce many of the BFR contaminants, but results for the OPFRs were mixed. CONCLUSIONS Structure fires are likely to result in a variety of FRs, dioxins, and furans into the environment, leading to PPE contamination for those working on the fireground. Firefighters should wear self-contained breathing apparatus during all phases of the response and launder or decontaminate their PPE (including gloves) after fire events.
Collapse
Affiliation(s)
- Kenneth W Fent
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, USA.
| | - Mark LaGuardia
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Drew Luellen
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Seth McCormick
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Alexander Mayer
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Steve Kerber
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA
| | - Denise Smith
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| | - Gavin P Horn
- Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA; Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
6
|
Falandysz J, Smith F, Fernandes AR. Polybrominated dibenzo-p-dioxins (PBDDs) and - dibenzofurans (PBDFs) in cod (Gadus morhua) liver-derived products from 1972 to 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137840. [PMID: 32349199 DOI: 10.1016/j.scitotenv.2020.137840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Literature data on the occurrence and prevalence of polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated dibenzofurans (PBDFs) in foods including seafood are scarce. In this study, a number of cod-derived products including medicinal grade cod liver oils sourced from Northern Atlantic waters (Iceland, Norway) and the Baltic Sea (Poland) during 1972-2001 and canned cod liver sourced from the Baltic Sea in 2017, showed detectable levels of PBDFs: such as 2,3,8-TrBDF at 0.57 to 5.249 pg g-1 fat and 1,2,3,4,6,7,8-HpBDF at <0.018 to 0.302 pg g-1 fat. PBDDs were not detected in the cod liver oils. Canned cod liver products showed low levels of 2,3,7,8-TeBDD in the range <0.017 to 0.022 pg g-1 whole weight and 1,2,3,7,8-PeBDD at <0.03 to 0.039 pg g-1 whole weight. These concentrations were computed to yield upper bound toxic equivalences (TEQs) of 0.14 to 0.17 pg g-1 for the oils and 0.12 to 0.25 pg g-1 for the canned products (0.08 pg g-1 ww for both products). The resulting supplementary and dietary intakes are low (0.02 to 0.11 pg kg-1 bm day-1 for the oils and 0.07 to 0.17 pg kg-1 bm week-1 for the canned livers) in comparison to the recently expressed tolerable weekly intake of 2 pg kg-1 bm week-1. However, the intakes are underestimates, as due to a lack of analytical standards not all PBDD/F TEQ contributing congeners could be included. The PBDD/F TEQ contributes to the cumulative toxicity arising from other contaminants such as chlorinated dioxins and polychlorinated biphenyls.
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308 Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015 Cartagena, Colombia.
| | | | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Chang J, Pan W, Liu X, Xue Q, Fu J, Zhang A. The formation of PBDFs from the ortho-disubstituted phenol precursors: A comprehensive theoretical study on the PBDD/Fs formation from 2,4,6-tribromophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136657. [PMID: 31958733 DOI: 10.1016/j.scitotenv.2020.136657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Bromophenols are known as direct precursors of the notorious polybrominated dibenzo-p-dioxin/dibenzofurans (PBDD/Fs). There is a long-held viewpoint that only the more toxic dioxin-type products could be formed from the ortho-disubstituted phenols, totally contrary to the experimental observations that both PBDDs and PBDFs are generated. To tackle the issue, the gaseous formation mechanism of PBDD/Fs from 2,4,6-tribromophenol (TBP), a typical ortho-disubstituted phenol, was investigated in this study. Firstly, the reactions between TBP and the active H radical produce three key radical species including the bromophenoxyl radical, the substituted phenyl radical and phenoxyl diradical. The self- and cross-combinations of these radical species and TBP yield not only the dioxin-type products 1,3,6,8-TeBDD and 1,3,7,9-TeBDD, but also the brominated dibenzofurans 1,3,6,8-TeBDF and 2,4,6,8-TeBDF. Notably, the reactions involving the phenyl C sites in the substituted phenyl and phenoxyl diradicals are demonstrated to be both thermodynamically and kinetically more favorable than those involving the bromophenoxyl radical and the TBP molecule. Most importantly, the findings of the present work are of great importance as it provides feasible pathways to form less toxic dibenzofuran-type products from the ortho-disubstituted phenols. These results will improve the understanding of the PBDD/Fs formation mechanism from phenol precursors.
Collapse
Affiliation(s)
- Jiamin Chang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Environment and Health, Jianghan University, Wuhan 430056, PR China.
| |
Collapse
|
8
|
Wang X, He S, Wang G, Wang Y, Cai Y, Chen P, Mei J. Characterization of PBDD/F emissions from simulated polystyrene insulation foam via lab-scale programmed thermal treatment testing. CHEMOSPHERE 2018; 211:926-933. [PMID: 30119024 DOI: 10.1016/j.chemosphere.2018.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Accidental fires and open combustion are regarded as major potential contributors to the environmental release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs). The characterization of PBDD/Fs emitted from thermal treatment of simulated polystyrene (PS) foam is reported in this study. PS, hexabromocyclododecane (HBCDD) and metals (or metallic compounds) composed the test samples, which imitated real extruded (XPS) and expanded (EPS) polystyrene thermal insulation foams. Test samples were subjected to thermal treatments under different experimental conditions. This study shows that the temperature, metal (metallic compound) content, and type of atmosphere are the key factors in the formation of congeners and PBDD/Fs during thermal processes. The total yield of polybrominated dibenzofurans (PBDFs) was greater than that of the polybrominated dibenzo-p-dioxins (PBDDs) during the test, and 1,2,3,7,8-PeBDF and 2,3,7,8-TBDF were the predominant congeners emitted during the thermal treatment experiments.
Collapse
Affiliation(s)
- Xiuji Wang
- Analysis Center, Guangdong Medical University, Dongguan 523808, China
| | - Shufen He
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Guanhai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yanchun Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Ying Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Pei Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Mei
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
9
|
Bjurlid F, Dam M, Hoydal K, Hagberg J. Occurrence of polybrominated dibenzo-p-dioxins, dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs) in pilot whales (Globicephala melas) caught around the Faroe Islands. CHEMOSPHERE 2018; 195:11-20. [PMID: 29248748 DOI: 10.1016/j.chemosphere.2017.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Blubber from Faroese pilot whales (Globicephala melas) was analysed for brominated dioxins PBDD/Fs, with a subset also analysed for chlorinated dioxins, PCDD/Fs. The studied individuals were restricted to juvenile male whales sampled in the Faroe Islands during the period 1997-2013. Among the PBDD/Fs, the furans were predominant, although the relative abundance of various congeners differed between samples. Furans accounted for, on average, 79% of the ∑PBDD/Fs in the samples, with 1,2,3,4,6,7,8-HpBDF the most abundant congener, found in half of the analysed pilot whales. The concentration range for ∑PBDD/Fs among the samples was 0.080-71 pg/g l.w. (lipid weight), and the sum of toxic equivalents ranged from 0.0039 to 4.7 pg TEQ/g l.w. No relationship was found between PBDD/Fs and PCDD/Fs. In addition, 20 pilot whale samples from the period 2010-2013 were analysed for PBDEs. Several PBDE congeners were found in all of the sampled pilot whales, and at noticeably higher levels than PBDD/Fs and PCDD/Fs. The ∑PBDEs ranged from 140 to 1900 ng/g l.w., with BDE #47 the most abundant congener detected in the samples. Results from the present study were then compared with data from previous studies on pilot wales to investigate temporal trends between 1986 and 2013. The comparison indicated that PBDE concentrations in juvenile males have decreased from 1996 to the latest observations in 2013. No relationship between the concentration levels of PBDD/Fs and PBDEs in the sampled pilot whales could be identified, which indicates possible differences in the metabolism of, or exposure to, PBDEs and PBDD/Fs.
Collapse
Affiliation(s)
- F Bjurlid
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82, Örebro, Sweden.
| | - M Dam
- Environment Agency, Traðagøta 38, FO-165, Argir, Faroe Islands
| | - K Hoydal
- Environment Agency, Traðagøta 38, FO-165, Argir, Faroe Islands
| | - J Hagberg
- MTM Research Centre, School of Science and Technology, Örebro University, SE 701 82, Örebro, Sweden; Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85, Örebro, Sweden
| |
Collapse
|
10
|
Catalytic Degradation of Ortho-Chlorophenol Using Activated Carbon Modified by Different Methods. Catalysts 2018. [DOI: 10.3390/catal8010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The performance of activated carbon (AC) modified by different methods was compared for its catalytic degradation of ortho-chlorophenol (o-CP). For the chemically treated AC, the catalytic effect of AC–NH3·H2O was superior to the other catalysts examined, having an o-CP removal efficiency of 82.2% at 330 °C. For the metal-modified catalysts, AC–V and AC–Co showed similar removal performances of 93.2% at 330 °C. N2 adsorption-desorption isotherms, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and gas chromatography—mass spectrometry (GC-MS) analyses were used to characterize the reaction products, and different reaction mechanisms were proposed for both AC–NH3·H2O and AC–V according to the results. Complete oxidative degradation of o-CP was achieved by AC–V, with AC–NH3·H2O leading to the formation of additional dioxins. It can be deduced that a risk of dioxin synthesis and escape during the regeneration process is possible when nitrogen-modified carbon is used in selective catalytic reduction (SCR) denitrification reactions, especially in the presence of chlorine atoms, benzene rings, and oxygen.
Collapse
|