1
|
Salinas-Toledano MA, Gómez-Borraz TL, Belmont MA, Garcia-Becerra FY. Optimizing constructed wetland design and operation for dual benefits: A critical review to enhance micropollutant removal while mitigating greenhouse gas emissions. ENVIRONMENTAL RESEARCH 2024; 263:120144. [PMID: 39414101 DOI: 10.1016/j.envres.2024.120144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Constructed wetlands (CWs) are increasingly considered for secondary wastewater treatment, removing both conventional contaminants and emerging pollutants, notably pharmaceutical and personal care products (PPCPs). However, the CW design and operational conditions to biodegrade PPCPs as micropollutants may promote greenhouse gas (GHG) emissions, raising sustainability concerns. This meta-analysis investigates the relationship between PPCP removal (caffeine, ibuprofen, naproxen, diclofenac, ketoprofen, carbamazepine, sulfonamide compounds) and GHG emissions (methane, carbon dioxide, nitrous oxide) in CWs. We uniquely integrate two sets of studies, as prior research has not linked PPCP biodegradation with GHG emissions. Data from 26 papers identify factors driving PPCP removal and 26 publications inform GHG emission factors. Spearman's correlation coefficient and multiple linear regression assess parameter effects and interlinkages. Results highlight biological processes, particularly secondary metabolism or co-metabolism, as pivotal for PPCP removal and GHG emissions, with inlet PPCP concentration, carbon load, and temperature being significant influencers (p < 0.05). Challenges persist in optimizing operations to improve PPCP removal and abate GHG emissions simultaneously. Still, CW depth, influent chemical oxygen demand (COD), hydraulic retention time, and subsurface flow wetland configuration emerge as strategic parameters. This study underscores the need for integrated approaches to enhance PPCP removal and decrease GHG emissions in CWs, thereby advancing sustainable water management practices.
Collapse
Affiliation(s)
- M A Salinas-Toledano
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| | - T L Gómez-Borraz
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - M A Belmont
- Toronto Public Health, Toronto, ON, M5B 1W2, Canada.
| | - F Y Garcia-Becerra
- School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada.
| |
Collapse
|
2
|
Xu S, Li R, Liao Y, Bian J, Liu R, Liu H. Biodegradation of organic micropollutants by anoxic denitrification: Roles of extracellular polymeric substance adsorption, enzyme catalysis, and reactive oxygen species oxidation. WATER RESEARCH 2024; 268:122563. [PMID: 39388777 DOI: 10.1016/j.watres.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The control of organic micropollutants (OMPs) in water environments have received significant attention. Denitrification was reported to exhibit good efficiency to remove OMPs, and the mechanisms involved in are too intricate to be well illustrated. In this study, we selected nitrobenzene [NB] and bisphenol A [BPA] as model pollutants and aimed to unravel the mechanisms of Paracoccus Denitrificans in the removal of OMPs, with a specific emphasis on aerobic behavior during denitrification processes. We demonstrated the formation of extracellular superoxide radicals, i.e., extracellular •O2-, using a chemiluminescence probe and found that extracellular polymeric substance adsorption, extracellular •O2-, and microbial assimilation contributed approximately 40 %, 10 %, and 50 % to OMPs removal, respectively. Transcriptome analysis further revealed the high expression and enrichment of several pathways, such as drug metabolism-other enzymes, of which a typical aerobic enzyme of polyphenol oxidase [PPO] participates in the degradation of NB and BPA. Importantly, all the immediate products showed a significant decrease in toxicity during the aerobic activity-related OMPs degradation process based on the proposed degradation pathways. This study demonstrates the formation of extracellular •O2- and the mechanisms of extracellular •O2-- and PPO-mediated OMPs biodegradation, and offers new insights into OMPs control in widely-used denitrification treatment processes.
Collapse
Affiliation(s)
- Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyong Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
4
|
Feng Z, Schmitt H, van Loosdrecht MCM, Sutton NB. Sludge size affects sorption of organic micropollutants in full-scale aerobic granular sludge systems. WATER RESEARCH 2024; 267:122513. [PMID: 39378732 DOI: 10.1016/j.watres.2024.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Aerobic granular sludge (AGS) is gaining popularity as an alternative to activated sludge for wastewater treatment. However, little information is available on AGS regarding the removal of organic micropollutants (OMPs) through sorption. In this study, the sorption behavior of 24 OMPs at environmentally relevant concentrations (1 μg/L) was investigated in six sludge fractions of varying sizes (>4 mm, 2-4 mm, 1-2 mm, 0.6-1 mm, 0.2-0.6 mm, and <0.2 mm) from a full-scale AGS reactor using batch experiments. Sorption was significant (removal efficiency >40 %) for 10 OMPs, including 4 zwitterionic and 6 positively charged pharmaceuticals, indicating the importance of electrostatic interaction for OMP sorption in AGS systems. Larger granules exhibited a higher sorption coefficient and capacity than smaller AGS fractions, probably due to increased extracellular polymeric substance content for larger granules. Equilibrium OMP sorption was only reached after 72 h in granules larger than 2 mm, indicating an effect of longer diffusion distance for OMPs into larger granules. Additionally, compared to activated sludge, AGS demonstrates a similar or even slightly higher sorption capacity for 10 OMPs at 1 μg/L. Overall, this study is the first to investigate the sorption behavior of six AGS size fractions for OMPs at environmentally relevant concentrations (1 μg/L) and propose the possible roles of different-sized sludge in OMP sorption in the full-scale AGS reactor.
Collapse
Affiliation(s)
- Zhaolu Feng
- Environmental Technology, Wageningen University & Research, P.O. Box 17 6700 AA Wageningen, the Netherlands
| | - Heike Schmitt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands; National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9 3721 MA Bilthoven, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
5
|
Li Z, Wang Q, Lei Z, Zheng H, Zhang H, Huang J, Ma Q, Li F. Biofilm formation and microbial interactions in moving bed-biofilm reactors treating wastewater containing pharmaceuticals and personal care products: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122166. [PMID: 39154385 DOI: 10.1016/j.jenvman.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The risk of pharmaceuticals and personal care products (PPCPs) has been paid more attention after the outbreak of COVID-19, threatening the ecology and human health resulted from the massive use of drugs and disinfectants. Wastewater treatment plants are considered the final stop to restrict PPCPs from wide spreading into the environment, but the performance of conventional treatment is limited due to their concentrations and characteristics. Previous studies have shown the unreplaceable capability of moving bed-biofilm reactor (MBBR) as a cost-effective method with layered microbial structure for treating wastewater even with toxic compounds. The biofilm community and microbial interactions are essential for the MBBR process in completely degrading or converting types of PPCPs to secondary metabolites, which still need further investigation. This review starts with discussing the initiation of MBBR formation and its influencing parameters according to the research on MBBRs in the recent years. Then the efficiency of MBBRs and the response of biofilm after exposure to PPCPs are further addressed, followed by the bottlenecks proposed in this field. Some critical approaches are also recommended for mitigating the deficiencies of MBBRs based on the recently published publications to reduce the environmental risk of PPCPs. Finally, this review provides fundamental information on PPCPs removal by MBBRs with the main focus on microbial interactions, promoting the MBBRs to practical application in the real world of wastewater treatment.
Collapse
Affiliation(s)
- Zhichen Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qian Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hao Zheng
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Haoshuang Zhang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jiale Huang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qihao Ma
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Fengmin Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
6
|
Buakaew T, Ratanatamskul C. Unveiling the influence of microaeration and sludge recirculation on enhancement of pharmaceutical removal and microbial community change of the novel anaerobic baffled biofilm - membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172420. [PMID: 38614333 DOI: 10.1016/j.scitotenv.2024.172420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
This research aims to conduct a comparative investigation of the role played by microaeration and sludge recirculation in the novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) for enhancing pharmaceutical removal from building wastewater. Three AnBB-MBRs - R1: AnBB-MBR, R2: AnBB-MBR with microaeration and R3: AnBB-MBR with microaeration and sludge recirculation - were operated simultaneously to remove Ciprofloxacin (CIP), Caffeine (CAF), Sulfamethoxazole (SMX) and Diclofenac (DCF) from real building wastewater at the hydraulic retention time (HRT) of 30 h for 115 days. From the removal profiles of the targeted pharmaceuticals in the AnBB-MBRs, it was found that the fixed-film compartment (C1) could significantly reduce the targeted pharmaceuticals. The remaining pharmaceuticals were further removed with the microaeration compartment. R2 exhibited the utmost removal efficiency for CIP (78.0 %) and DCF (40.8 %), while SMX was removed most successfully by R3 (microaeration with sludge recirculation) at 91.3 %, followed by microaeration in R2 (88.5 %). For CAF, it was easily removed by all AnBB-MBR systems (>90 %). The removal mechanisms indicate that the microaeration in R2 facilitated the adsorption of CIP onto microaerobic biomass, while the enhanced biodegradation of CAF, SMX and DCF was confirmed by batch biotransformation kinetics and the adsorption isotherms of the targeted pharmaceuticals. The microbial groups involved in biodegradation of the targeted compounds under microaeration were identified as nitrogen removal microbials (Nitrosomonas, Nitrospira, Thiobacillus, and Denitratisoma) and methanotrophs (Methylosarcina, Methylocaldum, and Methylocystis). Overall, explication of the integration of AnBB-MBR with microaeration (R2) confirmed it as a prospective technology for pharmaceutical removal from building wastewater due to its energy-efficient approach characterized by minimal aeration supply.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Sharma S, Sharma M, Kumar R, Akhtar MS, Umar A, Alkhanjaf AAM, Baskoutas S. Recent advances and mechanisms of microbial bioremediation of nickel from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40224-40244. [PMID: 37930578 DOI: 10.1007/s11356-023-30556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The global concern over emerging pollutants, characterized by their low concentrations and high toxicity, necessitates effective remediation strategies. Among these pollutants, pharmaceutical and personal care products, pesticides, surfactants, and persistent organic pollutants have gained significant attention. These contaminants are extensively distributed within aquatic ecosystems, posing threats to both human and aquatic physiological systems. Nickel, a valuable metal renowned for its corrosion-resistant properties, is widely utilized in various industrial processes, leading to the generation of nickel-containing waste streams, including batteries, catalysts, wastewater, and electrolyte bleed-off. Contamination of soil, water, or air by these waste materials can have adverse effects on the environment and human health. This review article focuses on the recent advancements in environmental and economic implications associated with the removal of nickel from diverse waste sources. Physicochemical technologies employed for treating different nickel-containing effluents and wastewater are discussed, alongside bioremediation techniques and the underlying mechanisms by which microorganisms facilitate nickel removal. The recovery of nickel from waste materials holds paramount importance not only from an economic standpoint but also to mitigate environmental impacts.
Collapse
Affiliation(s)
- Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India.
| | - Mohammad Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
8
|
Nandikes G, Pathak P, Singh L. Unveiling microbial degradation of triclosan: Degradation mechanism, pathways, and catalyzing clean energy. CHEMOSPHERE 2024; 357:142053. [PMID: 38636917 DOI: 10.1016/j.chemosphere.2024.142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Emerging organic contaminants present in the environment can be biodegraded in anodic biofilms of microbial fuel cells (MFCs). However, there is a notable gap existing in deducing the degradation mechanism, intermediate products, and the microbial communities involved in degradation of broad-spectrum antibiotic such as triclosan (TCS). Herein, the possible degradation of TCS is explored using TCS acclimatized biofilms in MFCs. 95% of 5 mgL-1 TCS are been biodegraded within 84 h with a chemical oxygen demand (COD) reduction of 62% in an acclimatized-MFC (A-MFC). The degradation of TCS resulted in 8 intermediate products including 2,4 -dichlorophenol which gets further mineralized within the system. Concurrently, the 16S rRNA V3-V4 sequencing revealed that there is a large shift in microbial communities after TCS acclimatization and MFC operation. Moreover, 30 dominant bacterial species (relative intensity >1%) are identified in the biofilm in which Sulfuricurvum kujiense, Halomonas phosphatis, Proteiniphilum acetatigens, and Azoarcus indigens significantly contribute to dihydroxylation, ring cleavage and dechlorination of TCS. Additionally, the MFC was able to produce 818 ± 20 mV voltage output with a maximum power density of 766.44 mWm-2. The antibacterial activity tests revealed that the biotoxicity of TCS drastically reduced in the MFC effluent, signifying the non-toxic nature of the degraded products. Hence, this work provides a proof-of-concept strategy for sustainable mitigation of TCS in wastewaters with enhanced bioelectricity generation.
Collapse
Affiliation(s)
- Gopa Nandikes
- Resource Management Lab, Department of Environmental Science and Engineering, SRM University-AP, Andhra Pradesh, 522503, India
| | - Pankaj Pathak
- Resource Management Lab, Department of Environmental Science and Engineering, SRM University-AP, Andhra Pradesh, 522503, India.
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, H.P., India, 175001
| |
Collapse
|
9
|
Rivadulla M, Lois M, Elena AX, Balboa S, Suarez S, Berendonk TU, Romalde JL, Garrido JM, Omil F. Occurrence and fate of CECs (OMPs, ARGs and pathogens) during decentralised treatment of black water and grey water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169863. [PMID: 38190906 DOI: 10.1016/j.scitotenv.2023.169863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Decentralised wastewater treatment is becoming a suitable strategy to reduce cost and environmental impact. In this research, the performance of two technologies treating black water (BW) and grey water (GW) fractions of urban sewage is carried out in a decentralised treatment of the wastewater produced in three office buildings. An Anaerobic Membrane Bioreactor (AnMBR) treating BW and a Hybrid preanoxic Membrane Bioreactor (H-MBR) containing small plastic carrier elements, treating GW were operated at pilot scale. Their potential on reducing the release of contaminants of emerging concern (CECs) such as Organic Micropollutants (OMPs), Antibiotic Resistance Genes (ARGs) and pathogens was studied. After 226 d of operation, a stable operation was achieved in both systems: the AnMBR removed 92.4 ± 2.5 % of influent COD, and H-MBR removed 89.7 ± 3.5 %. Regarding OMPs, the profile of compounds differed between BW and GW, being BW the matrix with more compounds detected at higher concentrations (up to μg L-1). For example, in the case of ibuprofen the concentrations in BW were 23.63 ± 3.97 μg L-1, 3 orders of magnitude higher than those detected in GW. The most abundant ARGs were sulfonamide resistant genes (sul1) and integron class 1 (intl1) in both BW and GW. Pathogenic bacteria counts were reduced between 1 and 3 log units in the AnMBR. Bacterial loads in GW were much lower than in BW, being no bacterial re-growth observed for the GW effluents after treatment in the H-MBR. None of the selected enteric viruses was detected in GW treatment line.
Collapse
Affiliation(s)
- M Rivadulla
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - M Lois
- CRETUS, Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A X Elena
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - S Balboa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - S Suarez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - T U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - J L Romalde
- CRETUS, Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J M Garrido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - F Omil
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
10
|
Gutierrez M, Mutavdžić Pavlović D, Stipaničev D, Repec S, Avolio F, Zanella M, Verlicchi P. A thorough analysis of the occurrence, removal and environmental risks of organic micropollutants in a full-scale hybrid membrane bioreactor fed by hospital wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169848. [PMID: 38190908 DOI: 10.1016/j.scitotenv.2023.169848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
The Urban Wastewater Treatment Directive recent draft issued last October 2022 pays attention to contaminants of emerging concern including organic micropollutants (OMPs) and requires the removal of some of them at large urban wastewater treatment plants (WWTPs) calling for their upgrading. Many investigations to date have reported the occurrence of a vast group of OMPs in the influent and many technologies have been tested for their removal at a lab- or pilot-scale. Moreover, it is well-known that hospital wastewater (HWW) contains specific OMPs at high concentration and therefore its management and treatment deserves attention. In this study, a 1-year investigation was carried out at a full-scale membrane bioreactor (MBR) treating mainly HWW. To promote the removal of OMPs, powdered activated carbon (PAC) was added to the bioreactor at 0.1 g/L and 0.2 g/L which resulted in the MBR operating as a hybrid MBR. Its performance was tested for 232 target and 90 non-target OMPs, analyzed by UHPLC-QTOF-MS using a direct injection method. A new methodology was defined to select the key compounds in order to evaluate the performance of the treatments. It was based on their frequency, occurrence, persistence to removal, bioaccumulation and toxicity. Finally, an environmental risk assessment of the OMP residues was conducted by means of the risk quotient approach. The results indicate that PAC addition increased the removal of most of the key OMPs (e.g., sulfamethoxazole, diclofenac, lidocaine) and OMP classes (e.g., antibiotics, psychiatric drugs and stimulants) with the highest loads in the WWTP influent. The hybrid MBR also reduced the risk in the receiving water as the PAC dosage increased mainly for spiramycin, lorazepam, oleandomycin. Finally, uncertainties and issues related to the investigation being carried out at full-scale under real conditions are discussed.
Collapse
Affiliation(s)
- Marina Gutierrez
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| | - Dragana Mutavdžić Pavlović
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Analytical Chemistry, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Draženka Stipaničev
- Josip Juraj Strossmayer Water Institut, Central Water Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
| | - Siniša Repec
- Josip Juraj Strossmayer Water Institut, Central Water Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
| | - Francesco Avolio
- HERA S.p.A., Direzione Acqua, Via Cesare Razzaboni 80, 41122 Modena, Italy
| | - Marcello Zanella
- HERA S.p.A., Direzione Acqua, Via Cesare Razzaboni 80, 41122 Modena, Italy
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| |
Collapse
|
11
|
Wang L, Lei Z, Yun S, Yang X, Chen R. Quantitative structure-biotransformation relationships of organic micropollutants in aerobic and anaerobic wastewater treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169170. [PMID: 38072270 DOI: 10.1016/j.scitotenv.2023.169170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Biotransformation is one of the dominant processes to remove organic micropollutants (OMPs) in wastewater treatment. However, studies on the role of molecular structure in determining the biotransformation rates of OMPs are limited. We evaluated the biotransformation of 14 OMPs belonging to different chemical classes under aerobic and anaerobic conditions, and then explored the quantitative structure-biotransformation relationships (QSBRs) of the OMPs based on biotransformation rates using valid molecular structure descriptors (electrical and physicochemical parameters). Pseudo-first-order kinetic modeling was used to fit the biotransformation rate, and only 2 of the 14 OMPs showed that the biotransformation rate constant (kbio) values were higher under anaerobic conditions than aerobic conditions, indicating that aerobic conditions were more favorable for biotransformation of most OMPs. QSBRs infer that the electrophilicity index (ω) is a reliable predictor for OMPs biotransformation under aerobic conditions. ω corresponds to the interaction between OMPs and microbial enzyme active sites, this process is the rate-limiting step of biotransformation. However, under anaerobic conditions the QSBR based on ω was not significant, indicating that specific functional groups may be more critical than electrophilicity. In conclusion, QSBRs can serve as alternative tools for the prediction of the biotransformation of OMPs and provide further insights into the factors that influence biotransformation.
Collapse
Affiliation(s)
- Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Sining Yun
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
12
|
Xie Y, Guan D, Deng Y, Sato Y, Luo Y, Chen G. Factors hindering the degradation of pharmaceuticals from human urine in an iron-activated persulfate system. J Environ Sci (China) 2024; 135:130-148. [PMID: 37778790 DOI: 10.1016/j.jes.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 10/03/2023]
Abstract
This study investigated the degradation of clofibric acid (CFA), bezafibrate (BZF), and sulfamethoxazole (SMX) in synthetic human urine using a novel mesoporous iron powder-activated persulfate system (mFe-PS system), and identified the factors limiting their degradation in synthetic human urine. A kinetic model was established to expose the radical production in various reaction conditions, and experiments were conducted to verify the modeling results. In the phosphate-containing mFe-PS system, the 120 min removal efficiency of CFA decreased from 95.1% to 76.6% as the phosphate concentration increased from 0.32 to 6.45 mmol/L, but recovered to 90.5% when phosphate concentration increased to 16.10 mmol/L. Meanwhile, the increased concentration of phosphate from 0.32 to 16.10 mmol/L reduced the BZF degradation efficacy from 91.5% to 79.0%, whereas SMX removal improved from 37.3% to 62.9%. The mFe-PS system containing (bi)carbonate, from 4.20 to 166.70 mmol/L, reduced CFA and BZF removal efficiencies from 100% to 76.8% and 80.4%, respectively, and SMX from 83.5% to 56.7% within a 120-min reaction time. In addition, alkaline conditions (pH ≥ 8.0) inhibited CFA and BZF degradations, while nonacidic pH (pH ≥ 7.0) remarkably inhibited SMX degradation. Results of the kinetic model indicated the formation of phosphate (H2PO4·/HPO4·-) and/or carbonate radicals (CO3·-) could limit pharmaceutical removal. The transformation products (TPs) of the pharmaceuticals revealed more incompletely oxidized TPs occurred in the phosphate- and (bi)carbonate-containing mFe-PS systems, and indicated that H2PO4·/HPO4·- mainly degraded pharmaceuticals via a benzene ring-opening reaction while CO3·- preferentially oxidized pharmaceuticals via a hydroxylation reaction.
Collapse
Affiliation(s)
- Yiruiwen Xie
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Dao Guan
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China.
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Yugo Sato
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Yu Luo
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Hong Kong 999077, China.
| |
Collapse
|
13
|
Piaggio A, Mittapalli S, Calderón-Franco D, Weissbrodt D, van Lier J, de Kreuk M, Lindeboom R. The fate of sulfamethoxazole and trimethoprim in a micro-aerated anaerobic membrane bioreactor and the occurrence of antibiotic resistance in the permeate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2344-2363. [PMID: 37966187 PMCID: wst_2023_324 DOI: 10.2166/wst.2023.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study investigates the effects, conversions, and resistance induction, following the addition of 150 μg·L-1 of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), in a laboratory-scale micro-aerated anaerobic membrane bioreactor (MA-AnMBR). TMP and SMX were removed at 97 and 86%, indicating that micro-aeration did not hamper their removal. These antibiotics only affected the pH and biogas composition of the process, with a significant change in pH from 7.8 to 7.5, and a decrease in biogas methane content from 84 to 78%. TMP was rapidly adsorbed onto the sludge and subsequently degraded during the long solids retention time of 27 days. SMX adsorption was minimal, but the applied hydraulic retention time of 2.6 days was sufficiently long to biodegrade SMX. The levels of three antibiotic-resistant genes (ARGs) (sul1, sul2, and dfrA1) and one mobile genetic element biomarker (intI1) were analyzed by qPCR. Additions of the antibiotics increased the relative abundances of all ARGs and intI1 in the MA-AnMBR sludge, with the sul2 gene folding 15 times after 310 days of operation. The MA-AnMBR was able to reduce the concentration of antibiotic-resistant bacteria (ARB) in the permeate by 3 log.
Collapse
Affiliation(s)
- Antonella Piaggio
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands E-mail:
| | - Srilekha Mittapalli
- NX Filtration, Nanotechnology Research, Josink Esweg 44, 7545 PN, Enschede, The Netherlands
| | - David Calderón-Franco
- Faculty of Applied Science, Department of Biotechnology, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - David Weissbrodt
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Jules van Lier
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Merle de Kreuk
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Ralph Lindeboom
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
14
|
Chae SH, Lim SJ, Seid MG, Ejerssa WW, Son A, Son H, Choi S, Lee W, Lee Y, Hong SW. Predicting micropollutant fate during wastewater treatment using refined classical kinetic model based on quantitative monitoring in multi-metropolitan regions of South Korea. WATER RESEARCH 2023; 245:120627. [PMID: 37717334 DOI: 10.1016/j.watres.2023.120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to implement an extensive prediction model for the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs). Five WWTPs equipped with seven different biological treatment processes were monitored from 2020 to 2022 with three to four sampling events in each year, and 27 datasets for 20 MPs were collected. Among these datasets, 12 were used to investigate the behavior and fate of MPs in WWTPs in South Korea. Metformin, acetaminophen, caffeine, naproxen, and ibuprofen were the MPs with the highest influent concentrations (ranging from 3,933.3-187,637.0 ng L-1) at all WWTPs. More than 90% of MPs were removed by biological treatment processes in all WWTPs. The Kruskal-Wallis test verified that their efficacy did not differ statistically (p-value > 0.05). Meanwhile, to refine the performance of the prediction model, this study optimized the biodegradation rate constants (kbio) of each MP according to the variation of seasonal water temperature. As a result, compared to the original prediction model, the mean difference between the actual data and predicted results (MEAN) decreased by 6.77%, while the Nash-Sutcliffe efficiency (NSE) increased by 0.226. The final MEAN and NSE for the refined prediction model were calculated to be 5.09% and 0.964, respectively. The prediction model made accurate predictions, even for MPs exhibiting behaviors different from other cases, such as estriol and atrazine. Consequently, the optimization strategy proposed in this study was determined to be effective because the overall removal efficiencies of MPs were successfully predicted even with limited reference datasets.
Collapse
Affiliation(s)
- Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Ji Lim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wondesen Workneh Ejerssa
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Aseom Son
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Heejong Son
- Water Quality Institute, Busan Water Authority, Gimhae-si, Gyeongsangnam-do 50804, Republic of Korea
| | - Sangki Choi
- Water Quality Institute, Busan Water Authority, Gimhae-si, Gyeongsangnam-do 50804, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
15
|
Giráldez A, Fdez-Sanromán A, Terrón D, Sanromán MA, Pazos M. Nanostructured copper-organic frameworks for the generation of sulphate radicals: application in wastewater disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29394-9. [PMID: 37670094 DOI: 10.1007/s11356-023-29394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
In recent years, the presence of pathogens in the environment has become an issue of widespread concern in society. Thus, new research lines have been developed regarding the removal of pathogens and persistent pollutants in water. In this research, the efficacy of nanostructure copper-organic framework, HKUST-1, has been evaluated for its ability to eliminate Escherichia coli and generate sulphate radicals as catalyst for the treatment of effluents with a high microbiological load via peroxymonosulphate (PMS) activation. The disinfection process has been optimized, achieving complete elimination of Escherichia coli growth after 30 min of testing using a concentration of 60.5 mg/L HKUST-1 and 0.1 mM of PMS. To overcome the operational limitations of this system and facilitate its handling and reutilization in a flow disinfection process, HKUST-1 has been efficiently encapsulated on polyacrylonitrile as a novel development that could be scaled up to achieve continuous treatment.
Collapse
Affiliation(s)
- Alba Giráldez
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Antía Fdez-Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Daniel Terrón
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - M Angeles Sanromán
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Marta Pazos
- Department of Chemical Engineering, CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
16
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Zhang Y, Dong W, Li C, Wang H, Wang H, Ling Y, Yan G, Chang Y. Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. J Environ Sci (China) 2023; 130:24-36. [PMID: 37032040 DOI: 10.1016/j.jes.2022.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/19/2023]
Abstract
Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and Azospia) and fermentation bacteria (Ancalomicrobium) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that Niveibacterium and Bradyrhizobium were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.
Collapse
Affiliation(s)
- Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
18
|
James SN, Sengar A, Vijayanandan A. Investigating the biodegradability of iodinated X-ray contrast media in simultaneous nitrification and denitrification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131196. [PMID: 36940530 DOI: 10.1016/j.jhazmat.2023.131196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The present study investigated the biodegradation of three iodinated X-ray contrast media (ICM), namely, iopamidol, iohexol, and iopromide, in simultaneous nitrification-denitrification (SND) system maintained in a sequencing batch reactor (SBR). The results showed that variable aeration patterns (anoxic-aerobic-anoxic) and micro-aerobic condition were most effective in the biotransformation of ICM while achieving organic carbon and nitrogen removal. The highest removal efficiencies of iopamidol, iohexol, and iopromide were 48.24%, 47.75%, and 57.46%, respectively, in micro-aerobic condition. Iopamidol was highly resistant to biodegradation and possessed the lowest Kbio value, followed by iohexol and iopromide, regardless of operating conditions. The removal of iopamidol and iopromide was affected by the inhibition of nitrifiers. The transformation products after hydroxylation, dehydrogenation, and deiodination of ICM were detected in the treated effluent. Due to the addition of ICM, the abundance of denitrifier genera Rhodobacter and Unclassified Comamonadaceae increased, and the abundance of class TM7-3 decreased. The presence of ICM affected the microbial dynamics, and the diversity of microbes in SND resulted in improving the biodegradability of the compounds.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
19
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Sengar A, Vijayanandan A. Fate and removal of iodinated X-ray contrast media in membrane bioreactor: Microbial dynamics and effects of different operational parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161827. [PMID: 36708825 DOI: 10.1016/j.scitotenv.2023.161827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Iodinated X-ray contrast media (ICM) are mainly used in medical sector, and their presence in environmental waters is a cause of concern as they are capable of forming highly toxic iodinated disinfection byproducts. In the present study, the removal mechanisms of the three ICM- iohexol, iopromide, and iopamidol were elucidated in a lab-scale aerobic membrane bioreactor (MBR). At steady-state operation (solids retention time (SRT)- 70 days, organic loading rate (OLR)- 0.80 KgCOD/m3-day, nitrogen loading rate (NLR)- 0.08 KgNH4-N/m3-day, hydraulic retention time (HRT)- 12 h), the average removal of iohexol and iopromide was found to be 34.9 and 45.2 %, respectively, whereas iopamidol proved to be highly recalcitrant in aerobic conditions of the MBR (removal <10 % in all phases of the MBR operation). Further, through batch kinetic studies and mass balance analysis, it was observed that ICM were primarily biotransformed in the MBR system and biosorption (Kd < 10 L/Kg) was negligible. The biodegradation rate coefficient values (Kbiol) of the ICM were found to be <0.65 L/g-d which indicate that biotransformation rate of ICM was slow. Increased OLR (1.60 KgCOD/m3-day) and reduced SRT (20 days) were found to negatively affect the removal of the ICM. Further, the removal of ICM was found to depend on its initial concentration, and the increment in the ammonium loading (0.16 KgNH4-N/m3-day) did not favor its removal. The dosing of ICM altered the microbial dynamics of the mixed liquor and reduced the microbial diversity and richness. Bdellovibrio, Zoogloea, and bacteria belonging to TM7-3 class, Cryomorphaceae and Hyphomonadaceae families may contribute in ICM biotransformation.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), New Delhi 110016, India.
| |
Collapse
|
21
|
James SN, Vijayanandan A. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review. Biodegradation 2023; 34:103-123. [PMID: 36899211 DOI: 10.1007/s10532-023-10015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
Simultaneous Nitrification and Denitrification (SND) is a promising process for biological nitrogen removal. Compared to conventional nitrogen removal processes, SND is cost-effective due to the decreased structural footprint and low oxygen and energy requirements. This critical review summarizes the current knowledge on SND related to fundamentals, mechanisms, and influence factors. The creation of stable aerobic and anoxic conditions within the flocs, as well as the optimization of dissolved oxygen (DO), are the most significant challenges in SND. Innovative reactor configurations coupled with diversified microbial communities have achieved significant carbon and nitrogen reduction from wastewater. In addition, the review also presents the recent advances in SND for removing micropollutants. The micropollutants are exposed to various enzymes due to the microaerobic and diverse redox conditions present in the SND system, which would eventually enhance biotransformation. This review presents SND as a potential biological treatment process for carbon, nitrogen, and micropollutant removal from wastewater.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
22
|
Martínez-Quintela M, Balboa S, Coves JR, Omil F, Suárez S. Influence of metabolism and microbiology on organic micropollutants biotransformation in anoxic heterotrophic reactors. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129983. [PMID: 36193613 DOI: 10.1016/j.jhazmat.2022.129983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
There is scarce information about the biotransformation of organic micropollutants (OMPs) under anoxic conditions. In this study, a heterotrophic denitrifying bioreactor was set up to study the fate of several OMPs from metabolic and microbiological points of view. Primary metabolic activity was increased by adding progressively higher nitrogen loading rates during the operation (from 0.075 to 0.4 g N-NO3- L-1 d-1), which resulted in an important shift in the microbial population from a specialized biomass to a more diverse community. Such a change provoked a significant increase in the removal efficiency of erythromycin (ERY), roxithromycin (ROX) and bisphenol-A (BPA), and some bacterial taxa, such as Rhodoplanes, were identified as possible indicators related to the biodegradation of these compounds. The increasing primary metabolic activity in the reactor did not enhance the OMP-specific removal rates, suggesting that the bacterial composition is more influential than cometabolism.
Collapse
Affiliation(s)
- Miguel Martínez-Quintela
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Sabela Balboa
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - José R Coves
- Galician Water Research Center Foundation (Cetaqua Galicia), AquaHub - A Vila da Auga, Rúa José Villar Granjel 33, E-15890 Santia go de Compostela, Spain
| | - Francisco Omil
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Sonia Suárez
- CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Sun S, Li Z, Ren Z, Li Y. Multi-Dimensional Elimination of β-Lactams in the Rural Wetland: Molecule Design and Screening for More Antibacterial and Degradable Substitutes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238434. [PMID: 36500527 PMCID: PMC9739631 DOI: 10.3390/molecules27238434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Restricted economic conditions and limited sewage treatment facilities in rural areas lead to the discharge of small-scale breeding wastewater containing higher values of residual beta-lactam antibiotics (β-lactams), which seriously threatens the aquatic environment. In this paper, molecular docking and a comprehensive method were performed to quantify and fit the source modification for the combined biodegradation of β-lactams. Using penicillin (PNC) as the target molecule, combined with contour maps for substitute modification, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed for the high-performance combined biodegradation of β-lactams. The selected candidate with better environmental friendliness, functionality, and high performance was screened. By using the homology modeling algorithms, the mutant penicillin-binding proteins (PBPs) of Escherichia coli were constructed to have antibacterial resistance against β-lactams. The molecular docking was applied to obtain the target substitute by analyzing the degree of antibacterial resistance of β-lactam substitute. The combined biodegradation of β-lactams and substitute in the constructed wetland (CW) by different wetland plant root secretions was studied using molecular dynamics simulations. The result showed a 49.28% higher biodegradation of the substitutes than PNC when the combined wetland plant species of Eichhornia crassipes, Phragmites australis, and Canna indica L. were employed.
Collapse
Affiliation(s)
- Shuhai Sun
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Zhuang Li
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
- Correspondence:
| |
Collapse
|
24
|
Mannina G, Gulhan H, Ni BJ. Water reuse from wastewater treatment: The transition towards circular economy in the water sector. BIORESOURCE TECHNOLOGY 2022; 363:127951. [PMID: 36108940 DOI: 10.1016/j.biortech.2022.127951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Water is crucial for economic development since it interacts with the agricultural, production, and energy sectors. However, the increasing demand and climate change put pressure on water sources. This paper argued the necessity of using reclaimed water for irrigation within the scope of a circular economy. The barriers (i.e., technological and economic, institutional/regulatory, and social) to water reuse practices were revealed. Lessons on how to overcome the barriers were learned from good practices. The roadmaps adopted in the European Union for the transition towards the circular economy were reviewed. It has been observed that these roadmaps are generally on the circularity of solid wastes. However, water is too important for the economy to be ignored in the transition towards circular economy. Research needs and perspective for a comprehensive roadmap to widen water-smart solutions such as water reuse were drawn.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy.
| | - Hazal Gulhan
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy; Environmental Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
25
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
26
|
Gutiérrez M, Ghirardini A, Borghesi M, Bonnini S, Pavlović DM, Verlicchi P. Removal of micropollutants using a membrane bioreactor coupled with powdered activated carbon - A statistical analysis approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156557. [PMID: 35690191 DOI: 10.1016/j.scitotenv.2022.156557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of micropollutants in wastewater is largely documented as well as the environmental risk posed by their residues in the aquatic environment. Many investigations have been carried out and plan to study and improve their removal efficiency in existing wastewater treatment plants. At the same time, efforts are being made to develop new technologies or upgrade existing ones to increase the removal of a selection of micropollutants. Due to the great variability in their chemical and physical properties, it would be advisable to find representative compounds or identify the factors which most influence the removal mechanisms under specific conditions. This study analyses the removal efficiencies of a great number of micropollutants in wastewater treated in a membrane bioreactor coupled with powdered activated carbon (PAC), which was the subject of a review article we have recently published. The main operational parameters (i.e. PAC dosage, PAC retention time and sludge retention time) and compound physico-chemical properties (i.e. octanol-water distribution coefficient, charge and molecular weight) were first selected on the basis of a dedicated screening step and then an attempt was carried out to clarify their influence on the removal of micropollutants from wastewater during its treatment. To this end, a statistical analysis, mainly based on exploratory methods (cluster analysis and principal component analysis) and regression analysis, was carried out to compare and discuss the different results published in the scientific literature included in the cited review article. It emerged, that, based on the collected dataset, micropollutant charge and LogDow seem to play the most important role in the removal mechanisms occurring in MBR coupled with PAC.
Collapse
Affiliation(s)
- Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy; Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Andrea Ghirardini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
| | - Michela Borghesi
- Department of Economics and Management, University of Ferrara, Via Voltapaletto 11, 44121 Ferrara, Italy
| | - Stefano Bonnini
- Department of Economics and Management, University of Ferrara, Via Voltapaletto 11, 44121 Ferrara, Italy
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| |
Collapse
|
27
|
Roguet A, Newton RJ, Eren AM, McLellan SL. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. mSystems 2022; 7:e0011822. [PMID: 35762794 PMCID: PMC9426572 DOI: 10.1128/msystems.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbes have inhabited the oceans and soils for millions of years and are uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates back only ~150 years. Sewer pipes transport human waste and provide a view into public health, but the resident organisms that likely modulate these features are relatively unexplored. Here, we show that the bacterial assemblages sequenced from untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level, suggesting that urban infrastructure separated by great spatial distances can give rise to strikingly similar communities. Within the overall microbial community structure, temperature had a discernible impact on the distribution patterns of closely related amplicon sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were dominant in most cities regardless of their size or geographic location; on average, Arcobacter accounted for 11% and Acinetobacter 10% of the entire community. Metagenomic analysis of six cities revealed these highly abundant resident organisms carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast, human fecal bacteria account for only ~13% of the community; therefore, antibiotic resistance gene inputs from human sources to the sewer system could be comparatively small, which will impact measurement capabilities when monitoring human populations using wastewater. With growing awareness of the metabolic potential of microbes within these vast networks of pipes and the ability to examine the health of human populations, it is timely to increase our understanding of the ecology of these systems. IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of kilometers of pipes beneath cities. These wastewater conveyance systems contain large reservoirs of microbial biomass with a wide range of metabolic potential and are significant reservoirs of antibiotic resistant organisms; however, we lack an adequate understanding of the ecology or activity of these communities beyond wastewater treatment plants. The striking coherence of the sewer microbiome across the United States demonstrates that the sewer environment is highly selective for a particular microbial community composition. Therefore, results from more in-depth studies or proven engineering controls in one system could be extrapolated more broadly. Understanding the complex ecology of sewer infrastructure is critical for not only improving our ability to treat human waste and increasing the sustainability of our cities but also to create scalable and effective sewage microbial observatories, which are inevitable investments of the future to monitor health in human populations.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
28
|
Chyoshi B, Gomes Coelho LH, García J, Subtil EL. Fate and removal of emerging contaminants in anaerobic fluidized membrane bioreactor filled with thermoplastic gel as biofilm support. CHEMOSPHERE 2022; 300:134557. [PMID: 35405192 DOI: 10.1016/j.chemosphere.2022.134557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Anaerobic Fluidized Membrane Bioreactor (AnFMBR) is a membrane-based hybrid technology that can overcome the limitations of conventional anaerobic sewage treatment. Although previous studies have demonstrated excellent performance in the removal of conventional organic pollutants, further research into the removal paths of emerging contaminants (ECs) under various operating conditions is required for proper design and development of the AnFMBR technology. Regarding this, the fate of four ECs in a lab-scale AnFMBR filled with thermoplastic gel for biofilm growth was investigated under various Hydraulic Retention Time (HRT) conditions. When the HRT was 13 h, diclofenac and 17β-estradiol were efficiently removed at 93% and 72% respectively. Even after an HRT reduction to 6.5 h, the system was still able to maintain high ECs removals (74% for diclofenac and 69% for 17β-estradiol). However, irrespective of HRT operational condition, smaller removals of 17a-ethinylestradiol (37-52%) were observed, while only marginal removals of amoxicillin were achieved (5-29%). Biotransformation was attributed as the main route for ECs removal. The results obtained in this study indicate that the membrane-based hybrid AnFMBR can be used to treat the target ECs without influence on anaerobic process. The technology had better removal efficiency for diclofenac and 17β-estradiol. However, the AnFMBR system exhibits high variability in EC removal and low capacity for amoxicillin removal, implying that a combination of other processes is still required to properly avoid the release of these contaminants into the environment.
Collapse
Affiliation(s)
- Bruna Chyoshi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Lucia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Eduardo Lucas Subtil
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| |
Collapse
|
29
|
Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI). SENSORS 2022; 22:s22134668. [PMID: 35808163 PMCID: PMC9268973 DOI: 10.3390/s22134668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
The entire water cycle is contaminated with largely undetected micropollutants, thus jeopardizing wastewater treatment. Currently, monitoring methods that are used by wastewater treatment plants (WWTP) are not able to detect these micropollutants, causing negative effects on aquatic ecosystems and human health. In our case study, we took collective samples around different treatment stages (aeration tank, membrane bioreactor, ozonation) of a WWTP and analyzed them via Deep-UV laser-induced Raman and fluorescence spectroscopy (LIRFS) in combination with a CNN-based AI support. This process allowed us to perform the spectra recognition of selected micropollutants and thus analyze their reliability. The results indicated that the combination of sensitive fluorescence measurements with very specific Raman measurements, supplemented with an artificial intelligence, lead to a high information gain for utilizing it as a monitoring purpose. Laser-induced Raman spectroscopy reaches detections limits of alert pharmaceuticals (carbamazepine, naproxen, tryptophan) in the range of a few µg/L; naproxen is detectable down to 1 × 10−4 mg/g. Furthermore, the monitoring of nitrate after biological treatment using Raman measurements and AI support showed a reliable assignment rate of over 95%. Applying the fluorescence technique seems to be a promising method in observing DOC changes in wastewater, leading to a correlation coefficient of R2 = 0.74 for all samples throughout the purification processes. The results also showed the influence of different extraction points in a cleaning stage; therefore, it would not be sensible to investigate them separately. Nevertheless, the interpretation suffers when many substances interact with one another and influence their optical behavior. In conclusion, the results that are presented in our paper elucidate the use of LIRFS in combination with AI support for online monitoring.
Collapse
|
30
|
Chen Z, Tang Y, Wen Q, Hu H. Evaluation of Fe(VI)/Fe(II) combined with sludge adsorbents in secondary effluent organic matter removal. ENVIRONMENTAL RESEARCH 2022; 208:112737. [PMID: 35074351 DOI: 10.1016/j.envres.2022.112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Wastewater reclamation and reuse are important methods that help to achieve an equilibrium within demand and offer, and also one of the important ways to reduce carbon emission. The existence of secondary effluent organic matter (EfOM) will bring potential threat to the environment in reuse process. Therefore, it is important to develop reclaimed water reuse technology that effectively remove EfOM. In this study, the removal of EfOM performance of ferrates enhanced by FeCl2 (Fe(VI)/Fe(II)) combined with sludge adsorbents (SAs) was evaluated by using the continuous-flow process (FeSDF), which was composed of Fe(VI)/Fe(II), SAs, densadeg and filtration. The results showed that when the inflow rate was 1 L/h, the optimal operating conditions of FeSDF including 5 mg/L of Fe(VI), 1 mg/L of Fe(II), 1 g/L of SA and 50% of the reflux ratio. Bulk organic indicators, including chemical oxygen demand, dissolved organic carbon, ammonia, total nitrogen, total phosphorus, turbidity, and ultraviolet absorbance at 254 nm in the effluent met the water quality standard for scenic environment use (GB/T 18921-2019 in China). The addition of Fe(II) makes the coagulation process by Fe(VI) produce more Fe(III) and produce more quality of sedimentary flocs and improve the removal efficiency of EfOM. The removal of organic micro-pollutants (OMPs) was mainly due to ferrate oxidation and SA adsorption in FeSDF, and the removal of most of the OMPs was more than 90%. The total fluorescence intensity removal efficiency in FeSDF was 63.8%. Moreover, the genotoxicity of the FeSDF effluent decreased to 0.73 μg 4-nitroquiniline-N-oxide/L, and the reduction efficiency reached 97.6%. The actual efficiency of most of the indicators is greater than the expected efficiency, indicating that there is a synergistic comprehensive effect during the whole process operation of FeSDF.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China
| | - Yingcai Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE HIT), Harbin, 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE HIT), Harbin, 150090, PR China.
| | - Hongying Hu
- School of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
31
|
Duc Viet N, Lee H, Im SJ, Jang A. Fate, elimination, and simulation of low-molecular-weight micropollutants in an integrated activated carbon-fertiliser drawn osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 351:126972. [PMID: 35276379 DOI: 10.1016/j.biortech.2022.126972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the behaviour and simulation of low-molecular-weight (low-MW) micropollutants (MPs) in a powdered activated carbon (PAC)-assisted fertiliser-drawn OMBR. 10% increase in water recovery and two times thinner fouling layer were observed in OMBR with addition of 100 mg-PAC/g-MLSS. This amount of PAC also boosted the richness and diversity in microbial community (Chao1 and Shannon index increased 1.5 times). Nearly 100% low-MW MPs were eliminated in PAC-OMBR, while 2-80% was achieved with traditional OMBR. This reduced the pathway of low-MW MPs into diluted fertiliser from 47% to < 1% of the total influent mass. Hydrophilicity played the crucial role in the removal of low-MW MPs, especially acetaminophen and nonylphenol. Neural network was suitable for the simulation of MP behaviour with high accuracy (R = 0.98, RMSE = 4.7%). The findings support safer and cleaner use of the diluted fertiliser and promote a cost-effective tool for real-time analysis of MP behaviour.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyeonho Lee
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Ju Im
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Am Jang
- Dept. of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
32
|
Zhang X, Gao Y, Li Y, Zhou Y, Ma H, Shang J, Cheng X. Synthesis of magnetic NiFe2O4/CuS activator for degradation of lomefloxacin via the activation of peroxymonosulfate under simulated sunlight illumination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Unraveling pharmaceuticals removal in a sulfur-driven autotrophic denitrification process: Performance, kinetics and mechanisms. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Jayakumar A, Wurzer C, Soldatou S, Edwards C, Lawton LA, Mašek O. New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148977. [PMID: 34273833 DOI: 10.1016/j.scitotenv.2021.148977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Cost-effective, efficient, and sustainable water treatment solutions utilising existing materials and technology will make it easier for low and middle-income countries to adopt them, improving public health. The ability of biochar to mediate and support microbial degradation of contaminants, combined with its carbon-sequestration potential, has attracted attention in recent years. Biochar is a possible candidate for use in cost-effective and sustainable biological water treatment, especially in agrarian economies with easy access to abundant biomass in the form of crop residues and organic wastes. This review evaluates the scope, potential benefits (economic and environmental) and challenges of sustainable biological water treatment using 'Biologically-Enhanced Biochar' or BEB. We discuss the various processes occurring in BEB systems and demonstrate the urgent need to investigate microbial degradation mechanisms. We highlight the need to correlate biochar properties to biofilm development, which can eventually determine process efficiency. We also demonstrate the various opportunities in adopting BEB as a cheaper and more viable alternative in Low and Middle Income Countries and compare it to the current benchmark, 'Biological Activated Carbon'. We focus on the recent advances in the areas of data science, mathematical modelling and molecular biology to systematically and sustainably design BEB filters, unlike the largely empirical design approaches seen in water treatment. 'Sequential biochar systems' are introduced as specially designed end-of-life techniques to lower the environmental impact of BEB filters and examples of their integration into biological water treatment that can fulfil zero waste criteria for BEBs are given.
Collapse
Affiliation(s)
- Anjali Jayakumar
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Sylvia Soldatou
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Christine Edwards
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Linda A Lawton
- CyanoSol, School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Gutiérrez M, Grillini V, Mutavdžić Pavlović D, Verlicchi P. Activated carbon coupled with advanced biological wastewater treatment: A review of the enhancement in micropollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148050. [PMID: 34091341 DOI: 10.1016/j.scitotenv.2021.148050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/27/2023]
Abstract
This study consists of a review on the removal efficiencies of a wide spectrum of micropollutants (MPs) in biological treatment (mainly membrane bioreactor) coupled with activated carbon (AC) (AC added in the bioreactor or followed by an AC unit, acting as a post treatment). It focuses on how the presence of AC may promote the removal of MPs and the effects of dissolved organic matter (DOM) in wastewater. Removal data collected of MPs are analysed versus AC dose if powdered AC is added in the bioreactor, and as a function of the empty bed contact time in the case of a granular activated carbon (GAC) column acting as a post treatment. Moreover, the enhancement in macropollutant (organic matter, nitrogen and phosphorus compounds) removal is analysed as well as the AC mitigation effect towards membrane fouling and, finally, how sludge properties may change in the presence of AC. To sum up, it was found that AC improves the removal of most MPs, favouring their sorption on the AC surface, promoted by the presence of different functional groups and then enhancing their degradation processes. DOM is a strong competitor in sorption on the AC surface, but it may promote the transformation of GAC in a biologically activated carbon thus enhancing all the degradation processes. Finally, AC in the bioreactor increases sludge floc strength and improves its settling characteristics and sorption potential.
Collapse
Affiliation(s)
- Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - Vittoria Grillini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia.
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| |
Collapse
|
36
|
Tadda MA, Li C, Gouda M, Abomohra AEF, Shitu A, Ahsan A, Zhu S, Liu D. Enhancement of nitrite/ammonia removal from saline recirculating aquaculture wastewater system using moving bed bioreactor. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:105947. [DOI: 10.1016/j.jece.2021.105947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
37
|
Hammer L, Palmowski L. Fate of selected organic micropollutants during anaerobic sludge digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1910-1924. [PMID: 34196072 DOI: 10.1002/wer.1603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Organic micropollutants are incompletely removed from wastewater in Water Resource Recovery Facilities using conventional methods and can therefore enter the anaerobic sludge treatment together with primary and secondary sludge. This review compiles literature data on the fate of selected micropollutants (Carbamazepine [CBZ], Diclofenac [DCF], Ibuprofen [IBP], Sulfamethoxazole [SMX], and Triclosan [TCS]) during anaerobic sludge treatment and how the fate is affected by chemical properties, phase distribution and operating conditions. CBZ was found to be persistent to anaerobic degradation in most studies, with some exceptions reporting a degradation efficiency of 60%. Removal efficiencies for DCF, IBP, and TCS varied widely (from no to [very] high removal). For SMX, most studies reported a removal above 80%. A correlation was found between the fate during anaerobic digestion and physicochemical properties (hydrophobicity and molecular structure). Sorption to sludge, affected in some cases by pH changes during digestion, is suggested to reduce bioavailability. IBP and TCS were mainly present in the liquid phase or solid phase, respectively, CBZ and DCF were present in similar proportions in both phases, while statements were contradictory for SMX. Parameters such as temperature and sludge age did not significantly influence the fate of investigated micropollutants during anaerobic digestion. PRACTITIONER POINTS: Most studies report no significant removal of CBZ during anaerobic sludge digestion. Removal efficiencies of DCF, IBP, and TCS vary from study to study between no removal and high or very high removal. Considering such heterogeneous removal efficiencies, it is recommended to conduct digestion trials to find out in which range the values will be for a specific sludge. SMX is very highly removed during anaerobic digestion in most studies. Parameters such as temperature and SRT do not significantly influence the fate of the five investigated micropollutants. Hydrophobicity, which has some effect on the liquid/solid phase distribution of micropollutants, and molecular structure influence the removal efficiencies.
Collapse
Affiliation(s)
- Lisann Hammer
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen, Germany
| | - Laurence Palmowski
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
39
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
40
|
Kennes-Veiga DM, Vogler B, Fenner K, Carballa M, Lema JM. Heterotrophic enzymatic biotransformations of organic micropollutants in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146564. [PMID: 33774287 DOI: 10.1016/j.scitotenv.2021.146564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
While heterotrophic microorganisms constitute the major fraction of activated sludge biomass, the role of heterotrophs in the biotransformation of organic micropollutants (OMPs) has not been fully elucidated. Yet, such knowledge is essential, particularly when conceiving novel wastewater treatment plants based on a two-stage process including an A-stage under heterotrophic conditions and a B-stage based on anammox activity. Biotransformation of OMPs in activated sludge is thought to mostly occur cometabolically thanks to the action of low specificity enzymes involved in the metabolism of the primary substrates. For a better understanding of the process, it is important to determine such enzymatic activities and the underlying mechanisms involved in OMPs biotransformation. This task has proven to be difficult due to the lack of information about the enzymatic processes and the complexity of the biological systems present in activated sludge. In this paper, a continuous aerobic heterotrophic reactor following 20 OMPs at environmental concentrations was operated to (i) assess the potential of heterotrophs during the cometabolic biotransformation of OMPs, (ii) identify biotransformation reactions catalyzed by aerobic heterotrophs and (iii) predict possible heterotrophic enzymatic activities responsible for such biotransformations. Contradicting previous reports on the dominant role of nitrifiers in OMPs removal during activated sludge treatment, the heterotrophic population proved its capacity to biotransform the OMPs to extents equivalent to reported values in nitrifying activated sludge plants. Besides, 12 transformation products potentially formed through the activity of several enzymes present in heterotrophs, including monooxygenases, dioxygenases, hydrolases and transferases, were identified.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Bernadette Vogler
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Marta Carballa
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
41
|
Edefell E, Falås P, Torresi E, Hagman M, Cimbritz M, Bester K, Christensson M. Promoting the degradation of organic micropollutants in tertiary moving bed biofilm reactors by controlling growth and redox conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125535. [PMID: 33684823 DOI: 10.1016/j.jhazmat.2021.125535] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A novel process configuration was designed to increase biofilm growth in tertiary moving bed biofilm reactors (MBBRs) by providing additional substrate from primary treated wastewater in a sidestream reactor under different redox conditions in order to improve micropollutant removal in MBBRs with low substrate availability. This novel recirculating MBBR was operated on pilot scale for 13 months, and a systematic increase was seen in the biomass concentration and the micropollutant degradation rates, compared to a tertiary MBBR without additional substrate. The degradation rates per unit carrier surface area increased in the order of ten times, and for certain micropollutants, such as atenolol, metoprolol, trimethoprim and roxithromycin, the degradation rates increased 20-60 times. Aerobic conditions were critical for maintaining high micropollutant degradation rates. With innovative MBBR configurations it may be possible to improve the biological degradation of organic micropollutants in wastewater. It is suggested that degradation rates be normalized to the carrier surface area, in favor of the biomass concentration, as this reflects the diffusion limitations of oxygen, and will facilitate the comparison of different biofilm systems.
Collapse
Affiliation(s)
- Ellen Edefell
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Elena Torresi
- Veolia Water Technologies AB - AnoxKaldnes, Klosterängsvägen 11 A, SE-226 47 Lund, Sweden
| | - Marinette Hagman
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, DK-4000 Roskilde, Denmark
| | - Magnus Christensson
- Veolia Water Technologies AB - AnoxKaldnes, Klosterängsvägen 11 A, SE-226 47 Lund, Sweden
| |
Collapse
|
42
|
do Nascimento JGDS, Silva EVA, Dos Santos AB, da Silva MER, Firmino PIM. Microaeration improves the removal/biotransformation of organic micropollutants in anaerobic wastewater treatment systems. ENVIRONMENTAL RESEARCH 2021; 198:111313. [PMID: 33991572 DOI: 10.1016/j.envres.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/18/2020] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
This work assessed the effect of increasing microaeration flow rates (1-6 mL min-1 at 28 °C and 1 atm, equivalent to 0.025-0.152 L O2 L-1 feed) on the removal/biotransformation of seven organic micropollutants (OMPs) (three hormones, one xenoestrogen, and three pharmaceuticals), at 200 μg L-1 each, in a lab-scale upflow anaerobic sludge blanket reactor operated at a hydraulic retention time (HRT) of 7.4 h. Additionally, the operational stability of the system and the evolution of its microbial community under microaerobic conditions were evaluated. Microaeration was demonstrated to be an effective strategy to improve the limited removal/biotransformation of the evaluated OMPs in short-HRT anaerobic wastewater treatment systems. The rise in the airflow rate considerably increased the removal efficiencies of all OMPs. However, there seems to be a saturation limit for the biochemical reactions. Then, the best results were obtained with 4 mL air min-1 (0.101 L O2 L-1 feed) (~90%) because, above this flow rate, the efficiency increase was negligible. The long-term exposure to microaerobic conditions (249 days) led the microbiota to a gradual evolution. Consequently, there was some enrichment with species potentially associated with the biotransformation of OMPs, which may explain the better performance at the end of the microaerobic term even with the lowest airflow rate tested.
Collapse
Affiliation(s)
| | - Ester Viana Alencar Silva
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
43
|
Taoufik N, Boumya W, Achak M, Sillanpää M, Barka N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112404. [PMID: 33780817 DOI: 10.1016/j.jenvman.2021.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 05/12/2023]
Abstract
Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.
Collapse
Affiliation(s)
- Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| |
Collapse
|
44
|
Patureau D, Mailler R, Delgenes N, Danel A, Vulliet E, Deshayes S, Moilleron R, Rocher V, Gasperi J. Fate of emerging and priority micropollutants during the sewage sludge treatment - Part 2: Mass balances of organic contaminants on sludge treatments are challenging. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 125:122-131. [PMID: 33684663 DOI: 10.1016/j.wasman.2021.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This paper analyzes the fate of 71 priority and emerging organic contaminants all along the treatment trains of sewage sludge treatment facilities in Paris including dewatering by centrifugation, thermal drying and anaerobic digestion. It aimed at proposing and applying a mass balances calculation methodology to each process and pollutant. This data validation strategy demonstrated the complexity to perform representative inlet/outlet sampling and analysis campaigns at industrial scales regarding organic compounds and to propose options to overcome this issue. Centrifugation and drying processes only implied physical mechanisms as phase separation and water elimination. Hence, correct mass balance were expected observed for organic contaminants if sampling and analysis campaigns were representative. This was the case for hydrophobic and neutral compounds. For the other more hydrophilic and charged compounds, the mass balances were scarcely correct. Thus, the conventional sampling and analytical practices used with sludge should be questioned and adapted to better take into account the high heterogeneity of sludge and the evolution of matrix effect within sludge treatment processes on micropollutant determination. For the biological anaerobic digestion process where degradations can occur and removals can be observed, the mass balances were deeply interpreted for 60 contaminants. This process contributed to the elimination above 70% of 21 detected compounds including 16 pharmaceuticals, 2 phthalates, 2 hormones and 1 perfluorinated compound. Removals of domperidone, propranolol, escitalopram, lidocaine, verapamil and cefoperazone under this condition were reported for the first time.
Collapse
Affiliation(s)
- D Patureau
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, 11100 Narbonne, France.
| | - R Mailler
- SIAAP, Direction de l'Innovation, 82 avenue Kléber, 92700 Colombes, France.
| | - N Delgenes
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, 11100 Narbonne, France
| | - A Danel
- INRAE, Univ Montpellier, LBE, 102 avenue des étangs, 11100 Narbonne, France
| | - E Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - S Deshayes
- LEESU (UMR MA 102, Université Paris-Est, Agro ParisTech), 61 avenue du Général De Gaulle, 94010 Créteil Cedex, France
| | - R Moilleron
- LEESU (UMR MA 102, Université Paris-Est, Agro ParisTech), 61 avenue du Général De Gaulle, 94010 Créteil Cedex, France
| | - V Rocher
- SIAAP, Direction de l'Innovation, 82 avenue Kléber, 92700 Colombes, France
| | - J Gasperi
- GERS-LEE, Université Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France
| |
Collapse
|
45
|
Moya-Llamas MJ, Trapote A, Prats D. Carbamazepine removal from low-strength municipal wastewater using a combined UASB-MBR treatment system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1920-1931. [PMID: 33905362 DOI: 10.2166/wst.2021.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An Upflow Anaerobic Sludge Blanket reactor combined with a two-stage membrane bioreactor were operated for 193 days in order to evaluate the biological removal of carbamazepine (CBZ) from low-strength municipal wastewater. The system worked in three different organic load stages (0.7 ± 0.1 kg COD·m-3·d-1, 0.4 ± 0.1 kg COD·m-3·d-1 and 0.1 ± 0.0 kg COD·m-3·d-1) to assess the impact of the influent OLR on operational parameters such as anaerobic and aerobic sludge retention time (SRT), acidity, volatile fatty acids (VFAs), biomass activity or biogas production. The highest carbamazepine removals were achieved during the anaerobic stage (UASB reactor), reaching averages of 48.9%, 48.0% and 38.2% operating at high, medium and low OLR, respectively. The aerobic treatment (MBR) served as post-treatment, improving the removals, and the global UASB-MBR system reached averages of 70.0%, 59.6% and 49.8% when the influent was at medium and low OLR, respectively. The results demonstrate the potential of combined biological systems on the removal of recalcitrant pharmaceuticals.
Collapse
Affiliation(s)
- M J Moya-Llamas
- Department of Civil Engineering, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain E-mail:
| | - A Trapote
- Institute of Water and Environmental Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - D Prats
- Institute of Water and Environmental Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
46
|
Su Q, Schittich AR, Jensen MM, Ng H, Smets BF. Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment: Insights from Molecular, Cellular, and Community Level Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2173-2188. [PMID: 33543927 DOI: 10.1021/acs.est.0c06466] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic micropollutants (OMPs) are a threat to aquatic environments, and wastewater treatment plants may act as a source or a barrier of OMPs entering the environment. Understanding the fate of OMPs in wastewater treatment processes is needed to establish efficient OMP removal strategies. Enhanced OMP biotransformation has been documented during biological nitrogen removal and has been attributed to the cometabolic activity of ammonia-oxidizing bacteria (AOB) and, specifically, to the ammonia monooxygenase (AMO) enzyme. Yet, the exact mechanisms of OMP biotransformation are often unknown. This critical review aims to fundamentally and quantitatively evaluate the role of ammonia oxidation in OMP biotransformation during wastewater treatment processes. OMPs can be transformed by AOB via direct and indirect enzymatic reactions: AMO directly transforms OMPs primarily via hydroxylation, while biologically produced reactive nitrogen species (hydroxylamine (NH2OH), nitrite (NO2-), and nitric oxide (NO)) can chemically transform OMPs through nitration, hydroxylation, and deamination and can contribute significantly to the observed OMP transformations. OMPs containing alkyl, aliphatic hydroxyl, ether, and sulfide functional groups as well as substituted aromatic rings and aromatic primary amines can be biotransformed by AMO, while OMPs containing alkyl groups, phenols, secondary amines, and aromatic primary amines can undergo abiotic transformations mediated by reactive nitrogen species. Higher OMP biotransformation efficiencies and rates are obtained in AOB-dominant microbial communities, especially in autotrophic reactors performing nitrification or nitritation, than in non-AOB-dominant microbial communities. The biotransformations of OMPs in wastewater treatment systems can often be linked to ammonium (NH4+) removal following two central lines of evidence: (i) Similar transformation products (i.e., hydroxylated, nitrated, and desaminated TPs) are detected in wastewater treatment systems as in AOB pure cultures. (ii) Consistency in OMP biotransformation (rbio, μmol/g VSS/d) to NH4+ removal (rNH4+, mol/g VSS/d) rate ratios (rbio/rNH4+) is observed for individual OMPs across different systems with similar rNH4+ and AOB abundances. In this review, we conclude that AOB are the main drivers of OMP biotransformation during wastewater treatment processes. The importance of biologically driven abiotic OMP transformation is quantitatively assessed, and functional groups susceptible to transformations by AMO and reactive nitrogen species are systematically classified. This critical review will improve the prediction of OMP transformation and facilitate the design of efficient OMP removal strategies during wastewater treatment.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Anna-Ricarda Schittich
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Howyong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore, Singapore
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
47
|
Kennes-Veiga DM, Gonzalez-Gil L, Carballa M, Lema JM. The organic loading rate affects organic micropollutants' cometabolic biotransformation kinetics under heterotrophic conditions in activated sludge. WATER RESEARCH 2021; 189:116587. [PMID: 33188990 DOI: 10.1016/j.watres.2020.116587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Several studies have shown that organic micropollutants (OMPs) are biotransformed cometabolically in activated sludge systems. However, the individual role of heterotrophs in the microbial consortium is still not clear, i.e., there is still a gap regarding the influence of the heterotrophic activity on the cometabolic biotransformation kinetics and yield of the OMPs. Aiming to answer these questions, experiments with increasing primary substrate concentrations were performed under aerobic heterotrophic conditions in a continuous stirred tank reactor operated at several organic loading rates (OLR) with fixed hydraulic retention time. Moreover, the individual kinetic parameters were determined in batch assays with different initial substrate concentrations using the sludges from the continuous reactor. A set of 15 OMPs displaying a variety of physicochemical properties were spiked to the feeding in the ng L-1 - µg L-1 range. Results reveal that the biodegradation of the primary carbon source and the biotransformation of the OMPs occur simultaneously, in clear evidence of cometabolic behavior. Moreover, we conclude that the OMPs biotransformation kinetic constant (kbiol) shows a linear dependence with the OLR of the primary substrate for most of the compounds studied, suggesting that the heterotrophic activity seriously affects the OMPs biotransformation kinetics. However, under typical activated sludge systems operating conditions (hydraulic retention times above 8 h), their biotransformation yield would not be significantly affected.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Lorena Gonzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
48
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers (Basel) 2021; 13:392. [PMID: 33513670 PMCID: PMC7865700 DOI: 10.3390/polym13030392] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair bin Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah binti Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
49
|
Rout PR, Zhang TC, Bhunia P, Surampalli RY. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141990. [PMID: 32889321 DOI: 10.1016/j.scitotenv.2020.141990] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 05/27/2023]
Abstract
The "emerging contaminants" (ECs) are predominantly unregulated anthropogenic chemicals that occur in air, soil, water, food, and human/animal tissues in trace concentrations. The ECs are persistent in the environment, capable of perturbing the physiology of target receptors and, therefore, are regarded as contaminants of emerging environmental concerns in recent years. The prominent classes of ECs include pharmaceuticals and personal care products (PCPs), surfactants, plasticizers, pesticides, fire retardants, and nanomaterials. Some of the ECs with harmful effects on endocrine systems have been recognized as endocrine disrupting chemicals (EDCs). Since the 1990s intensive research has been done covering environmental occurrence, fate, ecological effects, and treatment technologies of ECs. However, a comprehensive summary of the EC removal techniques, particularly in wastewater treatment plants (WWTPs) are limited. Though the WWTPs are inefficient when it comes to ECs removal, they act as primary barriers against the spread of ECs. Therefore, this paper reviews the treatment technologies currently engaged for ECs removal in WWTPs for further possible upgrades of the existing designs. Results of this review indicate that the fate and distribution of ECs can be approximately estimated based on physicochemical properties like octanol-water partitioning coefficient (e.g., log KOW > 4, maximum sorption potential) and solid-water distribution coefficient [e.g., Kd < 300-500 L/kg MLSS (mixed liquor suspended solids), insignificant sorption into sludge]. Biodegradation potential of ECs can be predicted from biodegradation constant values (e.g., Kbio < 0.01 = low biodegradation and >10 = high biodegradation). In WWTPs, the EC removal efficiency varies in the range of 20-50%, 30-70%, and >90% during the primary, secondary, and tertiary treatment steps, respectively. Tertiary treatment technologies are considered as the most suitable alternatives for ECs treatment, but complete ECs removal is yet to be achieved. Further advancements in the treatment technologies will unquestionably be necessary in the future.
Collapse
Affiliation(s)
- Prangya R Rout
- Environmental Engineering, INHA University, Incheon, Republic of Korea
| | - Tian C Zhang
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Puspendu Bhunia
- Departement of Civil Engineering, Indian Institute of Technology Bhubaneswar, India
| | - Rao Y Surampalli
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA; Global Institute for Energy, Environment and Sustainability, Kansas, USA.
| |
Collapse
|
50
|
Martínez-Quintela M, Arias A, Alvarino T, Suarez S, Garrido JM, Omil F. Cometabolic removal of organic micropollutants by enriched nitrite-dependent anaerobic methane oxidizing cultures. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123450. [PMID: 32731114 DOI: 10.1016/j.jhazmat.2020.123450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The innovative and recently discovered n-damo process, based on anaerobic methane oxidation with nitrite, was developed in a membrane-based bioreactor and evaluated in terms of organic micropollutants (OMPs) removal. The main singularity of this study consisted in the evaluation of organic micropollutants (OMPs) removal in the biological reactor. A strategy consisting on progressively increasing the nitrogen loading rate in order to increase the specific denitrification activity was followed to check if the selected OMPs were co-metabolically biotransformed. Significant nitrite removal rate (24.1 mg N L-1 d-1) was achieved after only 30 days of operation. A maximum specific removal of 186.3 mg N gVSS-1 d-1 was obtained at the end of the operation, which is one of the highest previously reported. A successfully n-damo bacteria enrichment was achieved, being Candidatus Methylomirabilis the predominant bacteria during the whole operation attaining a maximum relative abundance of about 40 %. The natural hormones (E1 and E2) were completely removed in the bioreactor. The specific removal rates of erythromycin (ERY), fluoxetine (FLX), roxithromycin (ROX) and sulfamethoxazole (SMX) were successfully correlated with the specific nitrite removal rates, suggesting a co-metabolic biotransformation.
Collapse
Affiliation(s)
- Miguel Martínez-Quintela
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain.
| | - Adrián Arias
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Teresa Alvarino
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain; Galician Water Research Center Foundation (Cetaqua Galicia). Emprendia Building, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Sonia Suarez
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Juan Manuel Garrido
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| | - Francisco Omil
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Campus Vida, E-15782, Santiago de Compostela, Spain
| |
Collapse
|