1
|
Fang K, He Y, Xu J, Shi J. Synchronous influence of soil amendments on alkylmercury and methane emissions in mercury-contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174415. [PMID: 38969116 DOI: 10.1016/j.scitotenv.2024.174415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Mercury (Hg) alkylation and methane (CH4) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH4 emissions. However, the relevance between Hg alkylation and CH4 emissions, especially their simultaneous reduction strategies, remains poorly understood. Here, we investigated the effects of biochar (BC), selenium (Se) and rice straw (RS) amendments on Hg alkylation and CH4 emissions in paddy soil, and the accumulation of Hg speciation. Results found that both BC and RS amendments significantly increased the levels of soil organic carbon (SOC) and humification index (HIX). Furthermore, BC decreased the concentrations of Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) by 63.1%, 53.6% and 100% in rice grains. However, RS increased Hg(II) concentration but decreased the total Hg (THg), MeHg and EtHg concentrations in rice grains. Compared to the CK, RS significantly increased CH4 emissions, while BC decreased CH4 emissions, and Se showed no significant difference. Se amendment increased the Hg(II) and EtHg concentrations by 20.3% and 17.0% respectively, and decreased the MeHg concentration in grains by 58.3%. Both BC and RS impacted the abundance of methanogens by enhancing SOC and HIX, subsequently modulating the relevance between Hg alkylation and CH4 emissions. These findings provide insights into the relevance between Hg alkylation and CH4 emissions and propose potential mitigation mechanisms in Hg-contaminated paddy soil.
Collapse
Affiliation(s)
- Kaikai Fang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiachun Shi
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sun J, Zhou H, Cheng H, Chen Z, Wang Y. Bacterial abundant taxa exhibit stronger environmental adaption than rare taxa in the Arctic Ocean sediments. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106624. [PMID: 38943698 DOI: 10.1016/j.marenvres.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Marine bacteria influence Earth's environmental dynamics in fundamental ways by controlling the biogeochemistry and productivity of the oceans. However, little is known about the survival strategies of their abundant and rare taxa, especially in polar marine environments. Here, bacterial environmental adaptation, community assembly processes, and co-occurrence patterns between abundant and rare taxa were compared in the Arctic Ocean sediments. Results indicated that the diversity of rare taxa is significantly higher than that of abundant taxa, whereas the distance-decay rate of rare taxa community similarity is over 1.5 times higher than that of abundant taxa. Furthermore, abundant taxa exhibited broader environmental breadth and stronger phylogenetic signals compared to rare taxa. Additionally, the community assembly processes of the abundant taxa were predominantly governed by 81% dispersal limitation, while rare taxa were primarily influenced by 48% heterogeneous selection. The co-occurrence network further revealed the abundant taxa formed a more complex network to enhance their environmental adaptability. This study revealed the differences in environmental responses and community assembly processes between bacterial abundant and rare taxa in polar ocean sediments, providing some valuable insights for understanding their environmental adaptation strategies in marine ecosystems.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
3
|
Wang W, Guo Y, Yang L, Adams JM. Methanogen-methanotroph community has a more consistent and integrated structure in rice rhizosphere than in bulk soil and rhizoplane. Mol Ecol 2024; 33:e17416. [PMID: 38801181 DOI: 10.1111/mec.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Methanogenic and methanotrophic microbes together determine the net methane flux from rice fields. Despite much research on them as separate communities, there has been little study of combined community patterns, and how these vary between the rhizoplane (root surface), rhizosphere (soil surrounding the root) and bulk soil around rice plants, especially at larger spatial scale. We collected samples from 32 geographically scattered rice fields in east central China, amplicon targeting the mcrA gene for methanogenesis and pmoA gene for methanotrophy by using high-throughput sequencing. Distinct communities of both methanogens and methanotrophs occurred in each of the three compartments, and predominantly positive links were found between methanogens and methanotrophs in all compartments indicating cross-feeding or consortia relationships. Methanogens were acting as the network hub in the bulk soil, and methanotrophs in rhizoplane. Network complexity and stability was greater in the rhizosphere than rhizoplane and bulk soil, with no network hubs detected, suggesting the strongest effect of homeostatic influence by plant occurred in the rhizosphere. The proportion of determinism (homogeneous selection) and distance-decay relation (DDR) in rhizoplane was consistently lower than that in the rhizosphere for both communities, indicating weaker phylogenetic clustering in rice root surface. Our results have provided a better understanding of CH4 oxidation and emission in rice paddy fields and future agriculture management could take into consideration of the subtle variation among different soil compartments and interactions within methanogenic and methanotrophic communities.
Collapse
Affiliation(s)
- Wenqi Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Yaping Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Lin Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | | |
Collapse
|
4
|
Hartman WH, Bueno de Mesquita CP, Theroux SM, Morgan-Lang C, Baldocchi DD, Tringe SG. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient. mSystems 2024; 9:e0093623. [PMID: 38170982 PMCID: PMC10804969 DOI: 10.1128/msystems.00936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.
Collapse
Affiliation(s)
| | | | | | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis D. Baldocchi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Sun J, Zhang A, Zhang Z, Liu Y, Zhou H, Cheng H, Chen Z, Li H, Zhang R, Wang Y. Distinct assembly processes and environmental adaptation of abundant and rare archaea in Arctic marine sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106082. [PMID: 37429213 DOI: 10.1016/j.marenvres.2023.106082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Revealing the ecological processes and environmental adaptation of abundant and rare archaea is a central, but poorly understood, topic in ecology. Here, abundant and rare archaeal diversity, community assembly processes and co-occurrence patterns were comparatively analyzed in Arctic marine sediments. Our findings revealed that the rare taxa exhibited significantly higher diversity compared to the abundant taxa. Additionally, the abundant taxa displayed stronger environmental adaptation than the rare taxa. The co-occurrence network analysis demonstrated that the rare taxa developed more interspecies interactions and modules in response to environmental disturbance. Furthermore, the community assembly of abundant and rare taxa in sediments was primarily controlled by stochastic and deterministic processes, respectively. These findings provide valuable insights into the archaeal community assembly processes and significantly contribute to a deeper understanding of the environmental adaptability of abundant and rare taxa in Arctic marine sediments.
Collapse
Affiliation(s)
- Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Aoqi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Zhongxian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China
| | - Hai Li
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Ran Zhang
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
6
|
Qian L, Yu X, Gu H, Liu F, Fan Y, Wang C, He Q, Tian Y, Peng Y, Shu L, Wang S, Huang Z, Yan Q, He J, Liu G, Tu Q, He Z. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. MICROBIOME 2023; 11:71. [PMID: 37020239 PMCID: PMC10074775 DOI: 10.1186/s40168-023-01501-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.
Collapse
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Huang
- School of Marine Science, Sun Yat-Sen University, Zhuhai, 519080 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jianguo He
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Guangli Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
7
|
Xu C, Shen S, Zhou B, Feng Y, He Z, Shi L, Wang Y, Wang H, Mishra T, Xue L. Long-term non-phosphorus application increased paddy methane emission by promoting organic acid and methanogen abundance in Tai Lake region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161146. [PMID: 36566847 DOI: 10.1016/j.scitotenv.2022.161146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Rice paddy is a significant source of atmospheric methane (CH4), a major global warming source. CH4 emission from paddy fields is greatly influenced by phosphorus (P) management, especially the long-term non-P application on CH4 emission is largely unexplored. In the present study, long-term non-P application (NK) and P application (NPK) treatments of two paddy fields in Suzhou (from 1980) and Yixing (from 2009), Tai Lake region was done. The effect of P application on CH4 emissions and related microorganisms (i.e., methanogens and methanotrophs) from 2019 to 2020 was analyzed. Results revealed that long-term NK treatment didn't alter the seasonal trend of CH4 flux, but significantly promoted CH4 emissions at the tillering stage. The non-P application for >12 years caused the cumulative CH4 emissions of NK treatment in the whole rice season significantly increased by 41.9-221 % in two fields compared to NPK treatment in 2019 and 2020. NK treatment increased the abundance and diversity of methanogens, while reducing the abundance and diversity of methanotrophs. Community composition of soil pmoA gene differed in two experiment sites. Correlation analysis revealed that the CH4 emission was significant and positively related to soil mcrA gene and C/P while negatively related to soil pmoA gene and P. Structure equation model analysis show the low soil available P content was the dominant driving factor for the high CH4 emission under long-term non-P application through its direct impact on soil mcrA and pmoA genes. The increased soil organic acid content was another driver which was positively related to soil mcrA gene and negatively to soil pmoA gene. Our findings demonstrate the important role of soil P in regulating CH4 emissions from paddy fields in the Tai Lake region, China, and suitable P application is necessary for ensuring the yield while reducing CH4 emission.
Collapse
Affiliation(s)
- Chen Xu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Susu Shen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Beibei Zhou
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhu He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Shi
- National Agricultural Experimental Station for Soil Quality, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haihou Wang
- National Agricultural Experimental Station for Soil Quality, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Tripti Mishra
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Ge W, Ren Y, Dong C, Shao Q, Bai Y, He Z, Yao T, Zhang Y, Zhu G, Deshmukh SK, Han Y. New perspective: Symbiotic pattern and assembly mechanism of Cantharellus cibarius-associated bacteria. Front Microbiol 2023; 14:1074468. [PMID: 36876069 PMCID: PMC9978014 DOI: 10.3389/fmicb.2023.1074468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cantharellus cibarius, an ectomycorrhizal fungus belonging to the Basidiomycetes, has significant medicinal and edible value, economic importance, and ecological benefits. However, C. cibarius remains incapable of artificial cultivation, which is thought to be due to the presence of bacteria. Therefore, much research has focused on the relationship between C. cibarius and bacteria, but rare bacteria are frequently overlooked, and symbiotic pattern and assembly mechanism of the bacterial community associated with C. cibarius remain unknown. In this study, the assembly mechanism and driving factors of both abundant and rare bacterial communities of C. cibarius were revealed by the null model. The symbiotic pattern of the bacterial community was examined using a co-occurrence network. Metabolic functions and phenotypes of the abundant and rare bacteria were compared using METAGENassist2, and the impacts of abiotic variables on the diversity of abundant and rare bacteria were examined using partial least squares path modeling. In the fruiting body and mycosphere of C. cibarius, there was a higher proportion of specialist bacteria compared with generalist bacteria. Dispersal limitation dominated the assembly of abundant and rare bacterial communities in the fruiting body and mycosphere. However, pH, 1-octen-3-ol, and total phosphorus of the fruiting body were the main driving factors of bacterial community assembly in the fruiting body, while available nitrogen and total phosphorus of the soil affected the assembly process of the bacterial community in the mycosphere. Furthermore, bacterial co-occurrence patterns in the mycosphere may be more complex compared with those in the fruiting body. Unlike the specific potential functions of abundant bacteria, rare bacteria may provide supplementary or unique metabolic pathways (such as sulfite oxidizer and sulfur reducer) to enhance the ecological function of C. cibarius. Notably, while volatile organic compounds can reduce mycosphere bacterial diversity, they can increase fruiting body bacterial diversity. Findings from this study further, our understanding of C. cibarius-associated microbial ecology.
Collapse
Affiliation(s)
- Wei Ge
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yulian Ren
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yanmin Bai
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Zhaoying He
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ting Yao
- Analysis and Test Center, Huangshan University, Huangshan, China
| | - Yanwei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang, Guizhou, China
| | - Guosheng Zhu
- Guizhou Key Laboratory of Edible Fungi Breeding, Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Wei Y, Quan F, Lan G, Wu Z, Yang C. Space Rather than Seasonal Changes Explained More of the Spatiotemporal Variation of Tropical Soil Microbial Communities. Microbiol Spectr 2022; 10:e0184622. [PMID: 36416607 PMCID: PMC9769686 DOI: 10.1128/spectrum.01846-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Soil microbiomes play an essential role in maintaining soil geochemical cycle and function. Although there have been some reports on the diversity patterns and drivers of the tropical forest soil microbial community, how space and seasonal changes affect spatiotemporal distribution at the regional scales are poorly understood. Based on 260 soil samples, we investigated the spatiotemporal patterns of rubber plantations and rainforest soil microbial communities across the whole of Hainan Island, China during the dry and rainy seasons. We examined soil bacterial and fungal composition and diversity and the main drivers of these microbes using Illumina sequencing and assembly. Our results revealed that the diversity (both alpha and beta) spatiotemporal variation in microbial communities is highly dependent on regional location rather than seasonal changes. For example, the site explained 28.5% and 37.2% of the variation in alpha diversity for soil bacteria and fungi, respectively, and explained 34.6% of the bacterial variance and 14.3% of the fungal variance in beta diversity. Soil pH, mean annual temperature, and mean annual precipitation were the most important factors associated with the distribution of soil microbial communities. Furthermore, we identified that variations in edaphic (e.g., soil pH) and climatic factors (e.g., mean annual temperature [MAT] and mean annual precipitation [MAP]) were mainly caused by regional sites (P < 0.001). Collectively, our work provides empirical evidence that space, rather than seasonal changes, explained more of the spatiotemporal variation of soil microbial communities in tropical forests, mediated by regional location-induced changes in climatic factors and edaphic properties. IMPORTANCE The soil microbiomes communities of the two forests were not only affected by environmental factors (e.g., edaphic and climatic factors), but also by different dominant geographic factors. In particular, our work showed that spatial variation in bacterial and fungal community composition was mainly dominated by edaphic properties (e.g., pH) and climatic factors (e.g., MAT and MAP). Moreover, the environmental factors were mainly explained by geographic location effect rather than by seasonal effect, and environmental dissimilarity significantly increased with geographic distance. In conclusion, our study provides solid empirical evidence that space rather than season explained more of the spatiotemporal variation of soil microbial communities in the tropical forest.
Collapse
Affiliation(s)
- Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Fei Quan
- School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| | - Chuan Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, People’s Republic of China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, People’s Republic of China
| |
Collapse
|
10
|
Zhang J, Meng HS, Shang YM, Lead JR, Guo ZZ, Hong JP. Response of Soil Bacterial Diversity, Predicted Functions and Co-Occurrence Patterns to Nanoceria and Ionic Cerium Exposure. Microorganisms 2022; 10:1982. [PMID: 36296258 PMCID: PMC9607988 DOI: 10.3390/microorganisms10101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
Release of nanoceria (nCeO2) into the environment has caused much concern about its potential toxicity, which still remains poorly understood for soil microorganisms. In this study, nanoceria and cerium (III) nitrate at different doses (10, 100 and 500 mg/kg) were applied to bok choy (Brassica rapa subsp. chinensis), grown in potting soil, to investigate the responses of soil bacterial communities to nanoceria (NC) and ionic cerium (IC) applications. The results showed that bacterial richness was slightly increased in all cerium treatments relative to the negative control without cerium amendment (CK), but a significant increase was only found in IC500. The patterns of bacterial community composition, predicted functions and phenotypes of all NC treatments were significantly differentiated from IC and CK treatments, which was correlated with the contents of cerium, available potassium and phosphorus in soil. The co-occurrence network of bacterial taxa was more complex after exposure to ionic cerium than to nanoceria. The keystone taxa of the two networks were entirely different. Predicted functions analysis found that anaerobic and Gram-negative bacteria were enriched under nanoceria exposure. Our study implies that Proteobacteria and nitrifying bacteria were significantly enriched after exposure to nanoceria and could be potential biomarkers of soil environmental perturbation from nanoceria exposure.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hui-Sheng Meng
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yan-Meng Shang
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jamie R. Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Zhang-Zhen Guo
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jian-Ping Hong
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
11
|
Wang N, Zhu X, Zuo Y, Liu J, Yuan F, Guo Z, Zhang L, Sun Y, Gong C, Song C, Xu X. Metagenomic evidence of suppressed methanogenic pathways along soil profile after wetland conversion to cropland. Front Microbiol 2022; 13:930694. [PMID: 36204618 PMCID: PMC9530824 DOI: 10.3389/fmicb.2022.930694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Wetland conversion to cropland substantially suppresses methane (CH4) emissions due to the strong suppression of methanogenesis, which consists of various pathways. In this study, we evaluated the cultivation impacts on four predominant CH4 production pathways, including acetate, carbon dioxide (CO2), methylamines, and methanol, in a wetland and cultivated cropland in northeastern China. The results showed significant suppression of CH4 production potential and the abundance of genes for all four methanogenic pathways in cropland. The consistency between CH4 production and methanogenesis genes indicates the robustness of genomic genes in analyzing methanogenesis. The suppression effects varied across seasons and along soil profiles, most evident in spring and 0 to 30 cm layers. The acetate pathway accounted for 55% in wetland vs. 70% in the cropland of all functional genes for CH4 production; while the other three pathways were stronger in response to cultivation, which presented as stronger suppressions in both abundance of functional genes (declines are 52% of CO2 pathway, 68% of methanol pathway, and 62% of methylamines pathway, vs. 19% of acetate pathway) and their percentages in four pathways (from 20 to 15% for CO2, 15 to 9% for methylamines, and 10 to 6% for methanol pathway vs. 55 to 70% for acetate pathway). The structural equation models showed that substrate availability was most correlated with CH4 production potential in the wetland, while the positive correlations of acetate, CO2, and methylamine pathways with CH4 production potential were significant in the cropland. The quantitative responses of four CH4 production pathways to land conversion reported in this study provide benchmark information for validating the CH4 model in simulating CH4 cycling under land use and land cover change.
Collapse
Affiliation(s)
- Nannan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Nannan Wang
| | - Xinhao Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yunjiang Zuo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhao Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fenghui Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, United States
| | - Ziyu Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Lihua Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Sun
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Chao Gong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA, United States
- Xiaofeng Xu
| |
Collapse
|
12
|
Zhou C, Zhang Y, Li S, Jiang Q, Chen H, Zhu T, Xu X, Liu H, Qiu S, Wu J, Nie M, Li B. Exogenous nitrogen from riverine exports promotes soil methane production in saltmarshes in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156203. [PMID: 35618128 DOI: 10.1016/j.scitotenv.2022.156203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Methane emissions from saltmarshes can potentially promote climate warming. Soil methane production is positively correlated with methane emissions from saltmarshes. Understanding the factors influencing soil methane production will improve the prediction of methane emissions, but an investigation of these factors has not been conducted in saltmarshes in China. We collected soils from native Phragmites australis and invasive Spartina alterniflora saltmarshes along the coast of China; the soil potential methane production (PMP) was determined by incubation experiments. The large-scale investigation results showed that the ratios of methanogens relative to sulfate-reducing bacteria (RMRS) and total organic carbon (TOC) were positively correlated with soil PMP for both species. Dissolved inorganic nitrogen (DIN) was positively correlated with the soil PMP of P. australis saltmarshes, and plant biomass was positively correlated with the soil PMP of S. alterniflora saltmarshes. Our results showed that exogenous nitrogen from riverine exports was positively correlated with DIN and plant biomass in both P. australis and S. alterniflora saltmarshes. In addition, exogenous nitrogen was also positively correlated with TOC in S. alterniflora saltmarshes. Consequently, exogenous nitrogen indirectly promoted soil methane production in P. australis saltmarshes by increasing the DIN and promoted soil methane production in S. alterniflora saltmarshes by enhancing the TOC and plant biomass. Moreover, we found that the promoting effect of DIN on the soil PMP of P. australis saltmarshes increased when the incubation temperature increased from 15 °C to 25 °C. Thus, the promoting effect of exogenous nitrogen on the soil methane production in P. australis saltmarshes might be strengthened in the peak of growing season. Our findings are the first to confirm that exogenous nitrogen inputs from rivers indirectly promote soil methane production in P. australis and S. alterniflora saltmarshes and provide new insights into the factors responsible for soil methane production in saltmarshes.
Collapse
Affiliation(s)
- Chenhao Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Songshuo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiuyue Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongyang Chen
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shiyun Qiu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
13
|
Liu Z, Liu J, Yu Z, Li Y, Hu X, Gu H, Li L, Jin J, Liu X, Wang G. Archaeal communities perform an important role in maintaining microbial stability under long term continuous cropping systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156413. [PMID: 35660449 DOI: 10.1016/j.scitotenv.2022.156413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Long-term continuous cropping of soybean can generate the development of disease-suppressive soils. However, whether the changes in microbial communities, especially for archaea, contribute to controlling soil sickness and improving crop yields remains poorly understood. Here, real-time PCR and high-throughput sequencing were employed to investigate the changes in soil archaeal communities in both bulk and rhizosphere soils under four cropping systems, including the continuous cropping of soybeans for a short-term of 3 and 5 years (CC3 and CC5, respectively) and for a long-term of 13 years (CC13), as well as a soybean-maize rotation for 5 years (CR5). The results showed that CC13 and CR5 significantly increased archaeal abundance, reduced the alpha-diversity of archaeal communities, and changed soil archaeal community structures compared to CC3 and CC5. Microbial co-occurrence network analysis revealed that CC13 led to the higher resistant microbial community and lower the relative abundance of potential plant pathogens in the network compared to CC3 and CC5. Correlation analysis showed that the microbial resistance index was negatively correlated with the relative abundance of potential plant pathogens and positively correlated with soybean yields in both bulk and rhizosphere soils. Intriguingly, the random forest (RF) analysis showed that archaea contributed the most to soil microbial resistance even though they were not at the core positions of the network. Overall, structural equation models (SEMs) revealed that high resistant microbial community could directly or indirectly improved soybean yields by regulating the relative abundance of plant pathogens and the soil nutrients, suggesting that the regulation of soil microbial taxa may play an important role in maintaining agricultural productivity under continuous cropping of soybean.
Collapse
Affiliation(s)
- Zhuxiu Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaojing Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Haidong Gu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Lujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
14
|
Li Y, Wei J, Yang H, Zhang D, Hu C. Biogeographic, Driving Factors, Assembly, and Co-occurrence Patterns of Archaeal Community in Biocrusts. Front Microbiol 2022; 13:848908. [PMID: 35495652 PMCID: PMC9042396 DOI: 10.3389/fmicb.2022.848908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Archaea exhibit strong community heterogeneity with microhabitat gradients and are a non-negligible part of biocrust's microorganisms. The study on archaeal biogeography in biocrusts could provide new insights for its application in environmental restoration. However, only a few studies on assembly processes and co-occurrence patterns of the archaeal community in patchy biocrusts have been reported, especially considering the number of species pools (SPs). Here, we comprehensively collected biocrusts across 3,500 km of northern China. Different successional biocrusts from various regions contain information of local climate and microenvironments, which can shape multiple unique archaeal SPs. The archaeal community differences in the same successional stage exceeded the variations between successional stages, which was due to the fact that the heterogeneous taxa tended to exchange between unknown patches driven by drift. We also comparatively studied the driving forces of community heterogeneity across three to ten SPs, and assembly and co-occurrence patterns were systematically analyzed. The results revealed that the impact of spatial factors on biogeographic patterns was greater than that of environmental and successional factors and that impact decreased with the number of SPs considered. Meanwhile, community heterogeneity at the phylogenetic facet was more sensitive to these driving factors than the taxonomic facet. Subgroups 1 (SG1) and 2 (SG2) of the archaeal communities in biocrusts were dominated by Nitrososphaeraceae and Haloarchaea, respectively. The former distribution pattern was associated with non-salinity-related variables and primarily assembled by drift, whereas the latter was associated with salinity-related variables and primarily assembled by homogeneous selection. Finally, network analysis indicated that the SG1 network had a higher proportion of competition and key taxa than the SG2 network, but the network of SG2 was more complex. Our study suggested that the development of the archaeal community was not consistent with biocrusts succession. The dominant taxa may determine the patterns of community biogeography, assembly, and co-occurrence.
Collapse
Affiliation(s)
- Yuanlong Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Wei
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Delu Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Wang W, Wang H, Cheng X, Wu M, Song Y, Liu X, Loni PC, Tuovinen OH. Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118812. [PMID: 35031403 DOI: 10.1016/j.envpol.2022.118812] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/20/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Bacterial communities in antimony (Sb) polluted soils have been well addressed, whereas the important players fungal communities are far less studied to date. Here, we report different responses of bacterial and fungal communities to Sb contamination and the ecological processes controlling their community assembly. Soil samples in the Xikuangshan mining area were collected and subjected to high through-put sequencing of 16S rRNA and ITS1 to investigate bacterial and fungal communities, respectively, along an Sb gradient. Sb speciation in the soil samples and other physicochemical parameters were analyzed as well. Bacterial communities were dominated by Deltaproteobacteria in the soil with highest Sb concentration, whereas Chloroflexi were dominant in the soil with lowest Sb concentration. Fungal communities in high-Sb soils were predominated by unclassified Fungi, whilst Leotiomycetes were dominant in low-Sb soil samples. Multivariate analysis indicated that Sb, pH and soil texture were the main drivers to strongly impact microbial communities. We further identified Sb-resistant microbial groups via correlation analysis. In total, 18 bacterial amplicon sequence variants (ASVs) were found to potentially involve in biogeochemical cycles such as Sb oxidation, sulfur oxidation or nitrate reduction, whereas 12 fungal ASVs were singled out for potential heavy metal resistance and plant growth promotion. Community assembly analysis revealed that variable selection contributed 100% to bacterial community assembly under acidic or high Sb concentration conditions, whereas homogeneous selection dominated fungal community assembly with a contribution over 78.9%. The community assembly of Sb-resistant microorganisms was mainly controlled by stochastic process. The results offer new insights into microbial ecology in Sb-contaminated soils, especially on the different responses of microbial communities under identical environmental stress and the different ecological processes underlining bacterial and fungal community assembly.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
16
|
Effects of Pig Manure and Its Organic Fertilizer Application on Archaea and Methane Emission in Paddy Fields. LAND 2022. [DOI: 10.3390/land11040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paddy fields account for 10% of global CH4 emissions, and the application of manure may increase CH4 emissions. In this study, high-throughput sequencing technology was used to investigate the effects of manure application on CH4 emissions and methanogens in paddy soil. Three treatments were studied: a controlled treatment (CK), pig manure (PM), and organic fertilizer (OF). The results showed that the contents of Zn, Cr and Ni in paddy soil increased with the application of manure, but the contents of heavy metals gradually decreased with the growth of rice. The Shannon index and Ace index showed that the application of pig manure and organic fertilizer less affected the diversity and richness of soil Archaea. The results of community composition analysis showed that Methanobacterium, Methanobrevibacter, Methanosphaera, Methanosarcina and Rice_Cluster_I were the main methanogens in paddy soil after manure and organic fertilizer application. Soil environmental factors were changed after applied manure, among which total potassium (TK) and total nitrogen (TN) were the main environmental factors affecting methanogens in paddy soil. The changes of soil environmental factors affected the community composition of methanogens, and the increase of the relative abundance of methanogens maybe the main reason for the increase of CH4 emission flux. The relative abundance of methanogens and CH4 emission flux in paddy soil were increased by both pig manure and organic fertilizer application, and pig manure had a bigger impact than organic manure.
Collapse
|
17
|
Liu B, Yao J, Chen Z, Ma B, Li H, Wancheng P, Liu J, Wang D, Duran R. Biogeography, assembly processes and species coexistence patterns of microbial communities in metalloids-laden soils around mining and smelting sites. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127945. [PMID: 34896705 DOI: 10.1016/j.jhazmat.2021.127945] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Microbes are important component in terrestrial ecosystem, which are believed to play vital roles in biogeochemical cycles of metalloids in mining and smelting surroundings. Many studies on microbial diversity and structures have been investigated around mining and smelting sites, whereas the ecological processes and co-occurrence patterns that influence the biogeographic distributions of microbial communities is yet poorly understood. Herein, microbial biogeography, assembly mechanism and co-occurrence pattern around mining and smelting zone were systematically unraveled using 16S rRNA gene sequencing. The 66 microbial phyla co-occurring across all the samples were dominated by Proteobacteria, Chloroflexi, Acidobacteria and Crenarchaeota. Obvious distance-decay (r = 0.3448, p < 0.001) of microbial community was observed across geographic distances. Differences in microbial communities were driven by the joint impacts of soil factors, spatial and metalloids levels. Dispersal limitation dominated the microbial assemblies in whole, SC and GX sites while homogeneous selection governed that in YN site. The changes in pH and Sb level significantly influenced the deterministic and stochastic processes of microbial communities. Network analysis suggested a typical module distribution, which had apparent ecological links among taxa in modules. This study provides first insight of the mechanism to maintain microbial diversity in metalloids-laden biospheres.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China.
| | - Zhihui Chen
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Hao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Pang Wancheng
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Daya Wang
- Huawei National Engineering Research Center of High Efficient Cyclic Utilization of Metallic Mineral Resources Co., Ltd., 666 Xitang Road, Huashan District, Maanshan, Anhui 243000, People's Republic of China; Sinosteel Maanshan Institute of Mining Research Co., Ltd., 666 Xitang Road, Huashan District, Maanshan, Anhui 243000, People's Republic of China
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
18
|
Selected rhizosphere bacteria are associated with endangered species - Scutellaria tsinyunensis via comparative microbiome analysis. Microbiol Res 2021; 258:126917. [DOI: 10.1016/j.micres.2021.126917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
|
19
|
Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees. mSphere 2021; 6:e0003921. [PMID: 34378984 PMCID: PMC8386477 DOI: 10.1128/msphere.00039-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Truffles are among the most expensive edible mushrooms; their value is worth billions of U.S. dollars annually in international markets. They establish ectomycorrhizal symbiotic relationships with diverse host tree roots and produce hypogeous ascomata. Their whole life cycle is closely related to their associated microbiome. However, whether truffle-associated compartments or host tree rhizospheres are the vital driver for truffle ascomata microbiome is unclear. To identify and compare fungal and bacterial communities in four truffle-associated compartments (Tuber indicum: bulk soil, adhering soil to peridium, peridium, and gleba) from three host trees, we sequenced their ITS (fungal) and 16S (bacterial) ribosomal DNA using the Illumina MiSeq high-throughput platform. We further applied the amplicon data to analyze the core microbiome and microbial ecological networks. Tuber indicum microbiome composition was strongly driven by its associated compartments rather than by their symbiotic host trees. Truffle microbiome was bacteria dominated, and its bacterial community formed a substantially more complex interacting network compared to that of the fungal community. The core fungal community changed from Basidiomycota dominated (bulk soil) to Rozellomycota dominated (interphase soil); the core bacterial community shifted from Bacteroidetes to Proteobacteria dominance from truffle peridium to gleba tissue. Especially, at the truffle and soil interphase, the niche-based selection of truffle microbiome was verified by (i) a clear exclusion of four bacterial phyla (Rokubacteria, Nitrospirae, Chloroflexi, and Planctomycetes) in gleba; (ii) a significant decrease in alpha-diversity (as revealed by Chao 1, Shannon, and Simpson indices); and (iii) the complexity of the network substantially decreased from bulk soil to soil-truffle interphase and further to the peridium and gleba. The network analysis of microbiome showed that the microbial positive interactions were higher in truffle tissues than in both bulk soil and peridium-adhering soil and that Cupriavidus, Bradyrhizobium, Aminobacter, and Mesorhizobium spp. were the keystone network hubs in the truffle gleba. This study provides insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components. IMPORTANCE Currently, the factors that drive the microbiome associated with truffles, the most highly prized fungi in the world, are largely unknown. We demonstrate for the first time here that truffle microbiome composition is strongly driven by associated compartments rather than by symbiotic host trees. The truffle microbiome was bacteria dominated, and its bacterial community formed a substantially more complex (with the higher numbers of nodes, links, and modules) interacting network compared to that of the fungal community. Network analysis showed a higher number of positive microbial interactions with each other in truffle tissues than in both bulk soil and peridium-adhering soil. For the first time, the fungal community structure associated with truffles using high-throughput sequencing, microbial networks, and keystone species analyses is presented. This study provides novel insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components, showing that they are more complex than previously thought.
Collapse
|
20
|
Mellado M, Vera J. Microorganisms that participate in biochemical cycles in wetlands. Can J Microbiol 2021; 67:771-788. [PMID: 34233131 DOI: 10.1139/cjm-2020-0336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several biochemical cycles are performed in natural wetlands (NWs) and constructed wetlands (CWs). The knowledge of the microorganisms could be used to monitor the restoration of wetlands or the performance of the wastewater treatment. Regarding bacteria, Proteobacteria phylum is the most abundant in NWs and CWs, which possesses a role in N, P, and S cycles, and in the degradation of organic matter. Other phyla are present in lower abundance. Archaea participate in methanogenesis, methane oxidation, and the methanogenic N2 fixation. Sulfur and phosphorus cycles are also performed by other microorganisms, such as Chloroflexi or Nitrospirae phyla. In general, there is more information about the N cycle, especially nitrification and denitrification. Processes where archaea participate (e.g. methane oxidation, methanogenic N2 fixation) are still unclear their metabolic role and several of these microorganisms have not been isolated so far. The study can use 16S rDNA genes or functional genes. The use of functional genes gives information to monitor specific microbial populations and 16S rDNA is more suitable to perform the taxonomic classification. Also, there are several Candidatus microorganisms, which have not been isolated so far. However, it has been described their metabolic role in the biochemical cycles in wetlands.
Collapse
Affiliation(s)
- Macarena Mellado
- Universidad de Santiago de Chile, 28065, Santiago de Chile, Chile, 8320000;
| | - Jeannette Vera
- Universidad del Bio-Bio - Sede Chillán, 185153, Chillán, Chile;
| |
Collapse
|
21
|
Bernardes FS, de Souza Pereira MA, Hassan IAI, de Castro AP, Roche KF, Paulo PL. Change in microbial profile and environmental conditions in a constructed wetland system treating greywater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34539-34552. [PMID: 33650054 DOI: 10.1007/s11356-021-12822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The objective of this work was to verify the relationships between environmental conditions and microbial processes along a raw-light greywater flow in an improved constructed wetland (CW) system. Physicochemical analysis and high-throughput DNA sequencing were performed in the different zones to investigate the environmental conditions and microbial communities. The results showed that the system operated predominantly under anaerobic conditions, with redox potential (Eh) increasing from the inlet (-342.9 mV) to the outlet (-316.4 mV). Conversely, the chemical oxygen demand (COD) decreased along the greywater flow, suggesting negative correlation between these characteristics. The zones of the evapotranspiration and treatment tank (CEvaT) were characterized by lower community diversity and richness and by the presence of specific groups: Proteobacteria and Synergistetes related to the first steps of the conversion of organic carbon, in the bottom layer inside the anaerobic chamber (AnC); methanogens (Methanosaeta and Methanobacterium) and sulphate-reducing bacteria (Desulfovibrio, Desulforhabdus and Desulfomonile) in the middle layer; and microorganisms associated with the nitrogen cycle and oxygen release (Acinetobacter, Novosphingobium, Candidatus Nitrososphaera) in the top layer. On the other hand, the increase of the ORP and decrease of organic matter concentrations were associated with higher community diversity and richness in the middle layer of the CW, which showed higher abundance of microorganisms involved in methane (Methylobacterium and Candidatus Koribacter) and sulphur (Rhodoblastus and Thiobacillus) oxidation.
Collapse
Affiliation(s)
- Fernando Silva Bernardes
- Faculty of Engineering, Architecture and Urbanism and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil.
| | | | - Ismail Abdallah Ismail Hassan
- Faculty of Engineering, Architecture and Urbanism and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil
| | | | - Kennedy Francis Roche
- Faculty of Engineering, Architecture and Urbanism and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil
| | - Paula Loureiro Paulo
- Faculty of Engineering, Architecture and Urbanism and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil
| |
Collapse
|
22
|
Gao F, Zeng G, Wang B, Xiao J, Zhang L, Cheng W, Wang H, Li H, Shi X. Discrimination of the geographic origins and varieties of wine grapes using high-throughput sequencing assisted by a random forest model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Pan X, Zhao L, Li C, Angelidaki I, Lv N, Ning J, Cai G, Zhu G. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis. WATER RESEARCH 2021; 190:116774. [PMID: 33387947 DOI: 10.1016/j.watres.2020.116774] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Acetate is a pivotal intermediate product during anaerobic decomposition of organic matter. Its generation and consumption network is quite complex, which almost covers the most steps in anaerobic digestion (AD) process. Besides acidogenesis, acetogenesis and methanogenesis, syntrophic acetate oxidation (SAO) replaced acetoclastic methanogenesis to release the inhibition of AD at some special conditions, and the importance of considering homoacetogenesis had also been proved when analysing anaerobic fermentations. Syntrophic acetate-oxidizing bacteria (SAOB), with function of SAO, can survive under high temperature and ammonia/ volatile fatty acids (VFAs) concentrations, while, homoacetogens, performed homoacetogenesis, are more active under acidic, alkaline and low temperature (10°C-20°C) conditions, This review summarized the roles of SAO and homoacetogenesis in AD process, which contains the biochemical reactions, metabolism pathways, physiological characteristics and energy conservation of functional bacteria. The specific roles of these two processes in the subprocess of AD (i.e., acidogenesis, acetogenesis and methanogenesis) were also analyzed in detail. A two phases anaerobic digester is proposed for protein-rich waste(water) treatment by enhancing the functions of homoacetogens and SAOB compared to the traditional two-phases anaerobic digesters, in which the first phase is fermentation phase including acidogens and homoacetogens for acetate production, and second phase is a mixed culture coupling syntrophic fatty acids bacteria, SAOB and hydrogenotrophic methanogens for methane production. This review provides a new insight into the network on production and consumption of acetate in AD process.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing100081, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China.
| |
Collapse
|
24
|
Liu X, Wang Y, Gu JD. Ecological distribution and potential roles of Woesearchaeota in anaerobic biogeochemical cycling unveiled by genomic analysis. Comput Struct Biotechnol J 2021; 19:794-800. [PMID: 33552450 PMCID: PMC7844129 DOI: 10.1016/j.csbj.2021.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
Woesearchaeota as a newly established member of the superphylum DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaea) are surprisingly abundant and diverse in a wide variety of environments, including deep oil reservoir, sulfuric springs and anoxic aquifers, indicating a high diversity of their roles in global biogeochemical cycles. However, ecological functions of them remain elusive. To fill up this gap, we analyzed and compared the global distribution patterns of Woesearchaeota using the genomes available publicly. As a result, both ecological distribution patterns and metabolic predictions support a key role of woesearchaeotal lineages in cycling of carbon, nitrogen, and sulfur. Multivariate regression analysis reveals that Woesearchaeota might function in consortium with methanogens in the cycling of carbon in anaerobic environments, particularly in soils or sediments. Moreover, comparative genomic analysis and ecological distribution suggest the potential roles of Woesearchaeota in the processes of denitrification, nitrogen fixation, and dissimilatory nitrite reduction, especially in the wastewater treatment systems; and also uncovered the potential capability of sulfate reduction, sulfide oxidation and thiosulfate oxidation in sulfuric or sulfidic-rich environments. Our findings add more information into the ecological roles of archaea in the anoxic environment.
Collapse
Affiliation(s)
- Xiaobo Liu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou 515063, Guangdong, China
| | - Yali Wang
- Conservation Center, Guangdong Museum, 2 Zhujiang East Road, Tianhe District, Guangzhou 510623, Guangdong, China
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou 515063, Guangdong, China
| |
Collapse
|
25
|
Cheng X, Yun Y, Wang H, Ma L, Tian W, Man B, Liu C. Contrasting bacterial communities and their assembly processes in karst soils under different land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142263. [PMID: 33181984 DOI: 10.1016/j.scitotenv.2020.142263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Structure and assembly processes of soil bacterial communities under different land use at karst areas remained poorly understood to date. To address this issue, soil samples from arable land and pristine forest over a karst cave, located in the acid rain impacted area, Hubei province, were collected and subjected to high-throughput sequencing and multivariate statistical analysis. Bacterial communities and functions remarkably distinguished between soils under different land use. Both edaphic properties (the content of SO42-, C/N, pH, TN) and weathering processes, such as Si concentration, Mg/Al and Ca/Al, significantly impacted on soil bacterial community structures. Variable selections were predominant ecological processes, and pH and SO42- concentration were of significance in community assembly. Random molecular ecological network analysis revealed a more stable and complex microbial network in the forest ecosystem, which can quickly response to environmental change. Forest soil bacteria were mainly phototrophs, involving in C and N cycles, whereas those in arable soils were mainly chemoheterotrophs, capable of degrading organic fertilizers due to anthropogenic activities as confirmed by the analysis of keystone taxa, indicators and functional prediction. These results reveal that land use constructed soil bacterial communities in different aspects such as the structure, potential functions, microbial interactions and correlations with environmental variables. To our knowledge, this is the first report on bacterial community assembly in karst soils under different land use which enhances our understanding about how land use impact on microbial interaction and community assembly processes.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074, China.
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Baiying Man
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Chaoyang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
26
|
Wei Y, Wachemo AC, Yuan H, Li X. Enhanced hydrolysis and acidification strategy for efficient co-digestion of pretreated corn stover with chicken manure: Digestion performance and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137401. [PMID: 32325556 DOI: 10.1016/j.scitotenv.2020.137401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/01/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
The effect of enhanced hydrolysis and acidification (EHA) strategy on co-digestion performance of pretreated corn stover (CS) with chicken manure (CM) was investigated. The EHA process was applied to the CS pretreated with KOH and liquid fraction of digestate (LFD), prior to anaerobic digestion. The results showed that the efficiencies of hydrolysis and acidification for the pretreated CS group were significantly higher than the CS group. The maximum cumulative biomethane yield of 240.5 mL·gVS-1 and 242.0 mL·gVS-1 were obtained for the KOH CS group and LFD CS group during the EHA process at 1 day, showing 26.6% and 27.4% improvement over that of the control, respectively. T90 was shortened by 38.2%-44.1% and 17.7%-38.2%, correspondingly. The synergistic effects and hydrolysis kinetics were also enhanced by the EHA process. The communities of bacteria (Firmicutes, Proteobacteria, and Bacteroidetes) and archaea (Methanosaeta, Methanobacterium, and Methanosarcina) were enriched by the EHA process, and their interactions contributed to the improved digestion performance. Therefore, the EHA process was recommended for efficient biomethane conversion in co-digestion of CS and CM.
Collapse
Affiliation(s)
- Yufang Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Akiber Chufo Wachemo
- Faculty of Water Supply and Environmental Engineering, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| | - HaiRong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| | - XiuJin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
27
|
Liechty Z, Santos-Medellín C, Edwards J, Nguyen B, Mikhail D, Eason S, Phillips G, Sundaresan V. Comparative Analysis of Root Microbiomes of Rice Cultivars with High and Low Methane Emissions Reveals Differences in Abundance of Methanogenic Archaea and Putative Upstream Fermenters. mSystems 2020; 5:e00897-19. [PMID: 32071162 PMCID: PMC7029222 DOI: 10.1128/msystems.00897-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 02/01/2023] Open
Abstract
Rice cultivation worldwide accounts for ∼7 to 17% of global methane emissions. Methane cycling in rice paddies is a microbial process not only involving methane producers (methanogens) and methane metabolizers (methanotrophs) but also other microbial taxa that affect upstream processes related to methane metabolism. Rice cultivars vary in their rates of methane emissions, but the influence of rice genotypes on methane cycling microbiota has been poorly characterized. Here, we profiled the rhizosphere, rhizoplane, and endosphere microbiomes of a high-methane-emitting cultivar (Sabine) and a low-methane-emitting cultivar (CLXL745) throughout the growing season to identify variations in the archaeal and bacterial communities relating to methane emissions. The rhizosphere of the high-emitting cultivar was enriched in methanogens compared to that in the low emitter, whereas the relative abundances of methanotrophs between the cultivars were not significantly different. Further analysis of cultivar-sensitive taxa identified families enriched in the high emitter that are associated with methanogenesis-related processes. The high emitter had greater relative abundances of sulfate-reducing and iron-reducing taxa which peak earlier in the season than methanogens and are necessary to lower soil oxidation reduction potential before methanogenesis can occur. The high emitter also had a greater abundance of fermentative taxa which produce methanogenesis precursors (acetate, CO2, and H2). Furthermore, the high emitter was enriched in taxa related to acetogenesis which compete with methanogens for CO2 and H2 These taxa were enriched in a spatio-specific manner and reveal a complex network of microbial interactions on which plant genotype-dependent factors can act to affect methanogenesis and methane emissions.IMPORTANCE Rice cultivation is a major source of anthropogenic emissions of methane, a greenhouse gas with a potentially severe impact on climate change. Emission variation between rice cultivars suggests the feasibility of breeding low-emission rice, but there is a limited understanding of how genotypes affect the microbiota involved in methane cycling. Here, we show that the root microbiome of the high-emitting cultivar is enriched both in methanogens and in taxa associated with fermentation, iron, and sulfate reduction and acetogenesis, processes that support methanogenesis. Understanding how cultivars affect microbes with methanogenesis-related functions is vital for understanding the genetic basis for methane emission in rice and can aid in the development of breeding programs that reduce the environmental impact of rice cultivation.
Collapse
Affiliation(s)
- Zachary Liechty
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | | | - Joseph Edwards
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | - Bao Nguyen
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | - David Mikhail
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | - Shane Eason
- Department of Agriculture, Arkansas State University, Jonesboro, Arkansas, USA
| | - Gregory Phillips
- Department of Agriculture, Arkansas State University, Jonesboro, Arkansas, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, Davis, California, USA
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| |
Collapse
|
28
|
Peng S, Li H, Xu Q, Lin X, Wang Y. Addition of zeolite and superphosphate to windrow composting of chicken manure improves fertilizer efficiency and reduces greenhouse gas emission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36845-36856. [PMID: 31745796 DOI: 10.1007/s11356-019-06544-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the impact of adding zeolite (F), superphosphate (G), and ferrous sulfate (L) in various combinations on reducing greenhouse gas (GHG) emission and improving nitrogen conservation during factory-scale chicken manure composting, aimed to identify the combination that optimizes the performance of the process. Chicken manure was mixed with F, G, FL, or FGL and subjected to windrow composting for 46 days. Results showed that global warming potential (GWP) was reduced by 21.9% (F), 22.8% (FL), 36.1% (G), and 39.3% (FGL). Further, the nitrogen content in the final composting product increased by 27.25%, 9.45%, and 21.86% in G, FL, and FGL amendments, respectively. The fertilizer efficiency of the compost product was assessed by measuring the biomass of plants grown in it, and it was consistent with the nitrogen content. N2O emission was negligible during composting, and 98% of the released GHGs comprised CO2 and CH4. Reduction in GHG emission was mainly achieved by reducing CH4 emission. The addition of FL, G, and FGL caused a clear shift in the abundance of dominant methanogens; particularly, the abundance of Methanobrevibacter decreased and that of Methanobacterium and Methanocella increased, which was correlated with CH4 emissions. Meanwhile, the changes in moisture content, NH4+-N content, and pH level also played an important role in the reduction of GHG emission. Based on the effects of nitrogen conservation, fertilizer efficiency improvement, and GHG emission reduction, we conclude that G and FGL are more beneficial than F or FL and suggest these additives for efficient chicken manure composting.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, Jiangsu, China
| | - Huijie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Qianqian Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China.
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, East Road, 71, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
29
|
Liu M, Sui X, Hu Y, Feng F. Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. BMC Microbiol 2019; 19:218. [PMID: 31519147 PMCID: PMC6743161 DOI: 10.1186/s12866-019-1584-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/28/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The broad-leaved Korean pine mixed forest is an important and typical component of a global temperate forest. Soil microbes are the main driver of biogeochemical cycling in this forest ecosystem and have complex interactions with carbon (C) and nitrogen (N) components in the soil. RESULTS We investigated the vertical soil microbial community structure in a primary Korean pine-broadleaved mixed forest in Changbai Mountain (from 699 to 1177 m) and analyzed the relationship between the microbial community and both C and N components in the soil. The results showed that the total phospholipid fatty acid (PLFA) of soil microbes and Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi (F), arbuscular mycorrhizal fungi (AMF), and Actinomycetes varied significantly (p < 0.05) at different sites (elevations). The ratio of fungal PLFAs to bacterial PLFAs (F/B) was higher at site H1, and H2. The relationship between microbial community composition and geographic distance did not show a distance-decay pattern. The coefficients of variation for bacteria were maximum among different sites (elevations). Total soil organic carbon (TOC), total nitrogen (TN), soil water content (W), and the ratio of breast-height basal area of coniferous trees to that of broad-leaved tree species (RBA) were the main contributors to the variation observed in each subgroup of microbial PLFAs. The structure equation model showed that TOC had a significant direct effect on bacterial biomass and an indirect effect upon bacterial and fungal biomass via soil readily oxidized organic carbon (ROC). No significant relationship was observed between soil N fraction and the biomass of fungi and bacteria. CONCLUSION The total PLFAs (tPLFA) and PLFAs of soil microbes, including G-, G+, F, AMF, and Actinomycetes, were significantly affected by elevation. Bacteria were more sensitive to changes in elevation than other microbes. Environmental heterogeneity was the main factor affecting the geographical distribution pattern of microbial community structure. TOC, TN, W and RBA were the main driving factors for the change in soil microbial biomass. C fraction was the main factor affecting the biomass of fungi and bacteria and ROC was one of the main sources of the microbial-derived C pool.
Collapse
Affiliation(s)
- Minghui Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xin Sui
- College of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Yanbo Hu
- Northeast Forestry University, Harbin, 150040, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
30
|
Tian W, Wang H, Xiang X, Wang R, Xu Y. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Front Microbiol 2019; 10:1661. [PMID: 31396183 PMCID: PMC6667737 DOI: 10.3389/fmicb.2019.01661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sphagnum microbiomes play an important role in the northern peatland ecosystems. However, information about above and belowground microbiomes related to Sphagnum at subtropical area remains largely limited. In this study, microbial communities from Sphagnum palustre peat, S. palustre green part, and S. palustre brown part at the Dajiuhu Peatland, in central China were investigated via 16S rRNA gene amplicon sequencing. Results indicated that Alphaproteobacteria was the dominant class in all samples, and the classes Acidobacteria and Gammaproteobacteria were abundant in S. palustre peat and S. palustre brown part samples, respectively. In contrast, the class Cyanobacteria dominated in S. palustre green part samples. Microhabitat differentiation mainly contributes to structural differences of bacterial microbiome. In the S. palustre peat, microbial communities were significantly shaped by water table and total nitrogen content. Our study is a systematical investigation on above and belowground bacterial microbiome in a subalpine Sphagnum peatland and the results offer new knowledge about the distribution of bacterial microbiome associated with different microhabitats in subtropical area.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ying Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
31
|
Liu D, Wang H, An S, Bhople P, Davlatbekov F. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1058-1069. [PMID: 30743903 DOI: 10.1016/j.scitotenv.2019.01.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Fungi are ecological drivers of carbon cycle in soils and also effectively mediate mineral nutrition for plants especially in the severely eroded Loess Plateau of China. However, factors determining variations in fungal diversity and their biogeographic patterns in this rigorously affected landscape area remain poorly understood. Therefore, we performed Illumina MiSeq high throughput sequencing of the fungal specific, internal transcribed spacer 2 (ITS2) region from 24 representative soils covering forest, grassland and agricultural lands from 8 distinct landscapes. Using this technique, we demonstrate that fungal members belonging to phylum Ascomycota dominated in all soils investigated in this study with an average relative abundance higher than 80%. High fungal richness in the Loess Plateau soils is ascribed to the retrieval of 1,822,499 quality sequences belonging to 13,533 different phylotypes. However, this richness/phylotype number decreased (from 779 to 561) with increasing longitudinal gradient through 107°39' to 109°36'. Interestingly, higher fungal diversity (in terms of presence of diverse fungal taxa) occurred as microbial biomass carbon (MBC) concentration decreased (approximately from 500 to 100mgkg-1) in soils. Variation partitioning analysis revealed that geographic distance contributed more to fungal community variation (38.3%) than soil properties (22.2%) at the landscape level (~400km). As indicated by non-metric multidimensional scaling (NMDS), among soil properties, concentrations of MBC primarily affected (significantly corrected with NMDS 1; r=0.620; p<0.01) fungal community structure in the current study. This study therefore constitutes an essential set of information and recommends usage of information on fungal community structure as a potential ecological indicator of the Loess Plateau region.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Honglei Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, PR China.
| | - Parag Bhople
- Faculty of Organic Agricultural Sciences, Department of Soil Biology and Plant Nutrition, University of Kassel, Germany
| | | |
Collapse
|
32
|
Hao X, Jiao S, Lu Y. Geographical pattern of methanogenesis in paddy and wetland soils across eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:281-290. [PMID: 30243161 DOI: 10.1016/j.scitotenv.2018.09.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Large variation of CH4 emissions from paddy and wetland ecosystems exists across different geographical locations in China. To obtain mechanistic understanding of this variation, we investigated the dynamics of methanogenesis over the course of glucose degradation in fourteen paddy field soils and five wetland soils collected from different regions of China. The results revealed that the maximal rate (2-3 mM per day) and the total amount (25-30 mM) of CH4 produced were similar across soil samples. The lag phase of methanogenesis, however, differed substantially with the shortest lag phase of 4 days in a paddy soil from north China and the longest of 32 days in a soil from south China, and this difference reflected a general geographical trend among all soils tested. Nitrate was reduced completely within 4 days in all soils. The reduction of Fe(III) and sulfate was completed after 21 days and 29 days, respectively. The depletion time of Fe(III) and sulfate were positively correlated with the lag phase of methanogenesis. Competition for common substrates between methanogens and iron and sulfate reducers, however, does not explain this coincidence because a slow production of CH4 was detected at the very beginning. It appears that the geographical variations in methanogenesis and the reduction of ferric iron and sulfate are related to the variation in soil pH but not to temperature, soil organic C and nutrient conditions in paddy and wetland soils across eastern China.
Collapse
Affiliation(s)
- Xin Hao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China.
| |
Collapse
|
33
|
Liu T, He J, Cui C, Tang J. Exploiting community structure, interactions and functional characteristics of fungi involved in the biodrying of storage sludge and beer lees. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:321-329. [PMID: 30496961 DOI: 10.1016/j.jenvman.2018.11.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
In this study, the dynamic changes in fungal biodiversity, community structure, fungal associations and functional characteristics were investigated in the biodrying of storage sludge and beer lees by using high throughput sequencing, network and correlation matrix analyses, and FUNGuild database. Additionally, a hypothetical model was provided to better understand the biodrying system. The results showed that fungal diversity decreased after biodrying, while community richness increased in the mesophilic stage and decreased as biodrying progressed. Fungal communities differed in different stages of the biodrying process. Ascomycota and Basidiomycota were the dominant phyla throughout the biodrying process, while Pichia was the dominant genus in the thermophilic stage. Network and correlation matrix analyses provided useful tools for insight into the fungal interactions, allowing us to propose a conceptual model of how succession in fungal associations regulates the dynamics of biodrying systems. Biodrying treatment had a significant effect on fungal trophic modes, with most pathogenic fungi fading away over the process, illustrating that biodrying is an effective bio-treatment method to eliminate pathogenic fungi. These findings provide information that elucidates the fungal interactions and functional characteristics during the biodrying process.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Junguo He
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jian Tang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
34
|
Jiao S, Xu Y, Zhang J, Lu Y. Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. MICROBIOME 2019; 7:15. [PMID: 30709414 PMCID: PMC6359761 DOI: 10.1186/s40168-019-0630-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/17/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding the spatial distributions and ecological diversity of soil archaeal communities in agricultural ecosystems is crucial for improvements in crop productivity. Here, we conducted a comprehensive, continental-scale survey of soil archaeal communities in adjacent pairs of maize (dryland) and rice (wetland) fields in eastern China. RESULTS We revealed the consequential roles of environmental filtering in driving archaeal community assembly for both maize and rice fields. Rice fields, abundant with Euryarchaeota, had higher archaeal diversity and steeper distance-decay slopes than maize fields dominated by Thaumarchaeota. Dominant soil archaea showed distinct continental atlases and niche differentiation between dryland and wetland habitats, where they were associated with soil pH and mean annual temperature, respectively. After identifying their environmental preferences, we grouped the dominant archaeal taxa into different ecological clusters and determined the unique co-occurrence patterns within each cluster. Using this empirical dataset, we built a continental atlas of soil archaeal communities to provide reliable estimates of their spatial distributions in agricultural ecosystems. CONCLUSIONS Environmental filtering plays a crucial role in driving the distinct continental atlases of dominant soil archaeal communities between dryland and wetland, with contrasting strategies of archaeal-driven nutrient cycling within these two agricultural ecosystems. These findings improve our ability to predict how soil archaeal communities respond to environmental changes and to manage soil archaeal communities for provisioning of agricultural ecosystem services.
Collapse
Affiliation(s)
- Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Yiqin Xu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Jie Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
35
|
Liu J, Yu Z, Yao Q, Sui Y, Shi Y, Chu H, Tang C, Franks AE, Jin J, Liu X, Wang G. Biogeographic Distribution Patterns of the Archaeal Communities Across the Black Soil Zone of Northeast China. Front Microbiol 2019; 10:23. [PMID: 30740093 PMCID: PMC6355713 DOI: 10.3389/fmicb.2019.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Although archaea are ubiquitous in various environments, the knowledge gaps still exist regarding the biogeographical distribution of archaeal communities at regional scales in agricultural soils compared with bacteria and fungi. To provide a broader biogeographical context of archaeal diversity, this study quantified the abundance and community composition of archaea across the black soil zone in northeast China using real-time PCR and high-throughput sequencing (HTS) methods. Archaeal abundances across all soil samples ranged from 4.04 × 107 to 26.18 × 107 16S rRNA gene copies per gram of dry soil. Several soil factors were positively correlated with the abundances including soil pH, concentrations of total C, N, and P, and available K in soil, and soil water content. Approximately 94.2, 5.7, and 0.3% of archaeal sequences, and 31, 151, and 3 OTUs aligned within the phyla Thaumarchaeota, Euryarchaeota, and Crenarchaeota, respectively. Within the phylum of Thaumarchaeota, group 1.1b was a dominating genus accounting for an average of 87% archaeal sequences and phylogenetically classified as Nitrososphaera, a genus of ammonia oxidizing archaea. The response of dominating OTUs to environmental factors differed greatly, suggesting the physiological characteristics of different archaeal members is diversified in the black soils. Although the number of OTUs was not related with any particular soil parameters, the number of OTUs within Thaumarchaeota and Euryarchaeota was marginally related with soil pH. Archaeal community compositions differed between samples, and a Canonical correspondence analysis (CCA) analysis indicated that soil pH and the latitude of sampling locations were two dominating factors in shifting community structures. A variance partitioning analysis (VPA) analysis showed that the selected soil parameters (32%) were the largest drivers of community variation, in particular soil pH (21%), followed by geographic distances (19%). These findings suggest that archaeal communities have distinct biogeographic distribution pattern in the black soil zone and soil pH was the key edaphic factor in structuring the community compositions.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Qin Yao
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yueyu Sui
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, AgriBio Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
36
|
Liu T, Cui C, He J, Tang J. Insights into the succession of the bacterial microbiota during biodrying of storage sludge mixed with beer lees: Studies on its biodiversity, structure, associations, and functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1088-1100. [PMID: 30743822 DOI: 10.1016/j.scitotenv.2018.06.298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/24/2018] [Indexed: 06/09/2023]
Abstract
Biodrying was first used for post-treatment of storage sludge mixed with beer lees. In this study, dynamic changes in dissolved organic matter (DOM), bacterial community structure, bacterial associations as well as metabolic functions were investigated using Excitation-Emission Matrix (EEM) spectra, high-throughput sequencing, network and correlation matrix analyses, and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Furthermore, a hypothetical model was proposed to better understand the biodrying process. The results showed that desired performance was obtained and DOM variations revealed that biodrying can increase biostability of the matrix. The bacterial communities differed among different stages of the biodrying. At the phylum level, the dominant phyla were Proteobacteria and Bacteroidetes in the mesophilic and cooling phases, whereas Firmicutes became the most dominant phylum in the thermophilic phase. At the genus level, the dominant bacteria in the mesophilic and cooling phases were not obvious, while Ureibacillus and Bacillus were the dominant genera in the thermophilic phase. Network and correlation matrix analyses were useful tools for insights into the bacterial interactions. PICRUSt metagenome inference indicated that metabolism, genetic information processing, and environmental information processing were the primary metabolic pathways. These results allowed us to advance a hypothetical model explaining how succession in bacterial associations regulates the dynamics of a biodrying system.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chongwei Cui
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Junguo He
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jian Tang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
37
|
Liu D, Yang Y, An S, Wang H, Wang Y. The Biogeographical Distribution of Soil Bacterial Communities in the Loess Plateau as Revealed by High-Throughput Sequencing. Front Microbiol 2018; 9:2456. [PMID: 30405547 PMCID: PMC6200921 DOI: 10.3389/fmicb.2018.02456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
The rigorous environmental stress of the severely eroded Loess Plateau may have promoted specific soil bacterial communities in comparison to other eco-environmental regions. In order to unmask the bacterial diversity and most influential environmental parameters, Illumina MiSeq high throughput sequencing of 16S rRNA from 24 representative soil samples collected across south-east to north-west transect of the Loess Plateau in northern Shaanxi, China was conducted. This high-throughput sequencing revealed a total of 1,411,001 high quality sequences that classified into 38 phyla, 127 classes, >240 orders, and over 650 genera, suggesting a high bacterial richness across the Loess Plateau soils. The seven dominant groups were: Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Gemmatimonadetes, Chloroflexi, and Verrucomicrobi (relative abundance of >5%). Increasing/decreasing soil pH and geographic longitudinal distance correlated significantly with increasing/decreasing bacterial richness and diversity indices. Pairwise correlation analysis showed higher bacterial diversity at longitudinal gradients across 107°39'-109°15' (south-east to north-west) in our studied Chinese loess zone. Variation partitioning analysis indicated significant influence of soil characteristics (~40.4%) than geographical distance (at a landscape scale of ~400 km) that was responsible for 13.6% of variation in bacterial community structure from these soils. Overall, contemporary soil characteristics structure the bacterial community in Loess Plateau soil to a greater extent than the spatial distances along the loess transect.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China.,Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yang Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Honglei Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Ying Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| |
Collapse
|