1
|
Khaled O, Ryad L, Eissa F. Determination of tetracycline residues in potatoes and soil by LC-MS/MS: Method development, validation, and risk assessment. Food Chem 2024; 461:140841. [PMID: 39146681 DOI: 10.1016/j.foodchem.2024.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
A method utilizing liquid-liquid extraction (LLE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated according to the Commission Implementing Regulation (CIR) EU 2021/808 for quantifying four tetracyclines (TCs) in potatoes and soil. The method demonstrated recovery values ranging from 70 to 121% and precision (repeatability and within-laboratory reproducibility), with coefficient of variation (CV) values below 18% for all TCs in both matrices. The limits of quantification (LOQs) for the TCs ranged from 0.90 to 1.87 μg/kg in potatoes and from 0.68 to 1.25 μg/kg in soil. The decision limit (CCα) and detection capability (CCβ) ranged from 10.4 to 12.3 μg/kg and 11.9 to 14.3 μg/kg, respectively. Analysis of 538 potato and soil samples from Egyptian farms revealed a 13.2% occurrence of TC residues, with a higher frequency in soil (19.33%) than in potatoes (7.06%). Target hazard quotient (THQ) values indicated that TC residues in potatoes do not pose a health risk to Egyptian consumers.
Collapse
Affiliation(s)
- Omar Khaled
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza 12311, Egypt
| | - Lamia Ryad
- Agriculture Research Centre, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Ministry of Agriculture, Giza 12311, Egypt
| | - Fawzy Eissa
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| |
Collapse
|
2
|
Chen A, Zhang T, Cheng F, Yang H, Guo Z, Zhao S, Zhang YN, Qu J. Comprehensive analysis and risk assessment of Antibiotic contaminants, antibiotic-resistant bacteria, and resistance genes: Patterns, drivers, and implications in the Songliao Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124852. [PMID: 39216670 DOI: 10.1016/j.envpol.2024.124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10-2 16S rRNA-1 and antibiotic-resistant bacteria (ARB) up to 5.76 log10 CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO₃⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R2 = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.
Collapse
Affiliation(s)
- Anjie Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhengfeng Guo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Li H, Sun H, Li Q, Zong X, Wu L, Han Z, Li X, Wu J, Ye Y, Pan F. Copper-doped orange peel biochar activated peroxydisulfate for efficient degrading tetracycline: The critical role of C-OH and Cu. ENVIRONMENTAL RESEARCH 2024; 263:120265. [PMID: 39481781 DOI: 10.1016/j.envres.2024.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The usage of biomass waste has aroused great concern in water purification. In this study, copper-doped orange peel biochar (Cu-OPB) prepared by one-step carbonization was firstly used to activate peroxydisulfate (PDS) to eliminate tetracycline (TC). The optimized Cu-OPB showed great activation ability for PDS and could degrade 93.7% of TC at pH 9.07. The presence of H2PO4-, Cl-, and HCO3- did not affect the degradation, while HA and SO42- inhibited TC degradation. SO4•-, •OH and 1O2 were confirmed as the primary active oxygen species in the Cu-OPB/PDS system. Moreover, Cu and the C-OH functional groups on the surface of Cu-OPB played a critical role in the activation by accelerating the electronic migration between Cu-OPB and PDS in the catalytic system. 15 possible intermediate products were found and three feasible degradation pathways were proposed. The toxicity of aquatic organisms of TC was reduced. Furthermore, Cu-OPB could be used as an economically efficient and environmentally friendly catalyst for PDS activation to degrade organic pollutants.
Collapse
Affiliation(s)
- Haochen Li
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Haochao Sun
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| | - Xiaofei Zong
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Longli Wu
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Zhengyu Han
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Xinyu Li
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Jiahui Wu
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
4
|
Huang X, Toro M, Reyes-Jara A, Moreno-Switt AI, Adell AD, Oliveira CJB, Bonelli RR, Gutiérrez S, Álvarez FP, Rocha ADDL, Kraychete GB, Chen Z, Grim C, Brown E, Bell R, Meng J. Integrative genome-centric metagenomics for surface water surveillance: Elucidating microbiomes, antimicrobial resistance, and their associations. WATER RESEARCH 2024; 264:122208. [PMID: 39116611 DOI: 10.1016/j.watres.2024.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Surface water ecosystems are intimately intertwined with anthropogenic activities and have significant public health implications as primary sources of irrigation water in agricultural production. Our extensive metagenomic analysis examined 404 surface water samples from four different geological regions in Chile and Brazil, spanning irrigation canals (n = 135), rivers (n = 121), creeks (n = 74), reservoirs (n = 66), and ponds (n = 8). Overall, 50.25 % of the surface water samples contained at least one of the pathogenic or contaminant bacterial genera (Salmonella: 29.21 %; Listeria: 6.19 %; Escherichia: 35.64 %). Furthermore, a total of 1,582 antimicrobial resistance (AMR) gene clusters encoding resistance to 25 antimicrobial classes were identified, with samples from Brazil exhibiting an elevated AMR burden. Samples from stagnant water sources were characterized by dominant Cyanobacteriota populations, resulting in significantly reduced biodiversity and more uniform community compositions. A significant association between taxonomic composition and the resistome was supported by a Procrustes analysis (p < 0.001). Notably, regional signatures were observed regarding the taxonomic and resistome profiles, as samples from the same region clustered together on both ordinates. Additionally, network analysis illuminated the intricate links between taxonomy and AMR at the contig level. Our deep sequencing efforts not only mapped the microbial landscape but also expanded the genomic catalog with newly characterized metagenome-assembled genomes (MAGs), boosting the classification of reads by 12.85 %. In conclusion, this study underscores the value of metagenomic approaches in surveillance of surface waters, enhancing our understanding of microbial and AMR dynamics with far-reaching public health and ecological ramifications.
Collapse
Affiliation(s)
- Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - Aiko D Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Celso J B Oliveira
- Laboratório de Avaliação de Produtos de Origem Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Raquel R Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Sebastián Gutiérrez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisca P Álvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - Alan Douglas de Lima Rocha
- Laboratório de Avaliação de Produtos de Origem Animal, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Gabriela B Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, College Park, MD, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, College Park, MD, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration, College Park, MD, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), Food Safety and Security Systems (CFS(3)), University of Maryland, College Park, MD, USA.
| |
Collapse
|
5
|
Guo J, Xin J, Wang J, Li Z, Yang J, Yu X, Yan M, Mo J. A high-efficiency and selective fluorescent assay for the detection of tetracyclines. Sci Rep 2024; 14:22918. [PMID: 39358472 PMCID: PMC11447125 DOI: 10.1038/s41598-024-74411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Tetracyclines (TCs) rank second globally in the use of animal infection therapy and animal husbandry as growth promoters among all antibiotics. However, large amounts of TCs residue in food products and more than 75% of TCs are excreted into the environment, causing adverse effects on the ecological system and human health. It has been challenging to simultaneously realize low-cost, rapid, and highly selective detection of TCs. Here, inspired by the fluorogenic reactions between resorcinol and catecholamines, we find the fluorescence quenching ability of tetracycline (TC) and firstly propose a fluorescent "turn-off" detection of TC using dopamine and 4-fluororesorcinol. The optimal reaction condition for the fluorescent assay is investigated and the optimized probe showed a good limit of detection (LOD of 1.7 µM) and a wide linear range (10 µM to 350 µM). Moreover, this fluorescent assay proved to be an effective tool for detecting TC in river, Sprite, and beer samples, which represent the aquatic environments and food and may contain tetracyclines residues. Finally, the high selectivity of the method for TC has been confirmed by eliminating the interference from common substances. The proposed strategy provides a high-efficiency and selective solution for the detection of TCs in environment and food and the application fields of this fluorescent assay could be further expanded in the future.
Collapse
Affiliation(s)
- Jingqiao Guo
- College of Medicine and Nursing, Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Jianhui Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Jine Wang
- College of Medicine and Nursing, Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
| | - Jianlei Yang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| | - Mengxia Yan
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| | - Jiangyang Mo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China.
| |
Collapse
|
6
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
7
|
Flores-Vargas G, Bergsveinson J, Korber DR. Environmentally Relevant Antibiotic Concentrations Exert Stronger Selection Pressure on River Biofilm Resistomes than AMR-Reservoir Effluents. Antibiotics (Basel) 2024; 13:539. [PMID: 38927205 PMCID: PMC11200958 DOI: 10.3390/antibiotics13060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Freshwater environments are primary receiving systems of wastewater and effluents, which carry low concentrations of antibiotics and antimicrobial-resistant (AMR) bacteria and genes. Aquatic microbial communities are thus exposed to environmentally relevant concentrations of antibiotics (ERCA) that presumably influence the acquisition and spread of environmental AMR. Here, we analyzed ERCA exposure with and without the additional presence of municipal wastewater treatment plant effluent (W) and swine manure run-off (M) on aquatic biofilm resistomes. Microscopic analyses revealed decreased taxonomic diversity and biofilm structural integrity, while metagenomic analysis revealed an increased abundance of resistance, virulence, and mobile element-related genes at the highest ERCA exposure levels, with less notable impacts observed when solely exposed to W or M effluents. Microbial function predictions indicated increased gene abundance associated with energy and cell membrane metabolism and heavy metal resistance under ERCA conditions. In silico predictions of increased resistance mechanisms did not correlate with observed phenotypic resistance patterns when whole communities were exposed to antimicrobial susceptibility testing. This reveals important insight into the complexity of whole-community coordination of physical and genetic responses to selective pressures. Lastly, the environmental AMR risk assessment of metagenomic data revealed a higher risk score for biofilms grown at sub-MIC antibiotic conditions.
Collapse
Affiliation(s)
- Gabriela Flores-Vargas
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Jordyn Bergsveinson
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada;
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
8
|
Chen X, Zhu Y, Zheng W, Yan S, Li Y, Xie S. Elucidating doxycycline biotransformation mechanism by Chryseobacterium sp. WX1: Multi-omics insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133975. [PMID: 38452667 DOI: 10.1016/j.jhazmat.2024.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Doxycycline (DOX) represents a second-generation tetracycline antibiotic that persists as a challenging-to-degrade contaminant in environmental compartments. Despite its ubiquity, scant literature exists on bacteria proficient in DOX degradation. This study marked a substantial advancement in this field by isolating Chryseobacterium sp. WX1 from an activated sludge enrichment culture, showcasing its unprecedented ability to completely degrade 50 mg/L of DOX within 44 h. Throughout the degradation process, seven biotransformation products were identified, revealing a complex pathway that began with the hydroxylation of DOX, followed by a series of transformations. Employing an integrated multi-omics approach alongside in vitro heterologous expression assays, our study distinctly identified the tetX gene as a critical facilitator of DOX hydroxylation. Proteomic analyses further pinpointed the enzymes postulated to mediate the downstream modifications of DOX hydroxylation derivatives. The elucidated degradation pathway encompassed several key biological processes, such as the microbial transmembrane transport of DOX and its intermediates, the orchestration of enzyme synthesis for transformation, energy metabolism, and other gene-regulated biological directives. This study provides the first insight into the adaptive biotransformation strategies of Chryseobacterium under DOX-induced stress, highlighting the potential applications of this strain to augment DOX removal in wastewater treatment systems containing high concentrations of DOX.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Zhu X, Wang X, Wang F, Tian X, Pang J. The integrative and conjugative element ICECiPOL15 mediates horizontal transfer of β-lactam resistance gene in Chryseobacterium indoltheticum POL15. J Glob Antimicrob Resist 2024; 36:223-229. [PMID: 38185239 DOI: 10.1016/j.jgar.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVES The dissemination of antibiotic resistance genes (ARGs) from the environment, including agricultural sources, is of increasing concern. In this study, we examined the antibiotic resistance profile and genomic sequence of a strain of Chryseobacterium indoltheticum obtained from an agricultural location. METHODS The multidrug-resistant bacterial strain POL15 was isolated from the wastewater of a livestock farm in China. Whole-genome sequencing was performed followed by bioinformatics analyses to identify integrative and conjugative elements (ICEs) and ARGs. Mating assays were performed to analyse ICE transferability. RESULTS Whole-genome sequencing and annotation showed that the genome of POL15 encodes ARGs. Additionally, an ICE named ICECiPOL15, which carries a class C β-lactamase-encoding gene blaAQU, was identified in the POL15 genome. Genes encoding an integrase, an excisionase, a relaxase, a type IV coupling protein and conjugative transposon proteins involved in a type IV secretion system were also identified in ICECiPOL15. Sequence alignment revealed that ICECiPOL15 might have evolved from other Chryseobacterium species. The horizontal transferability of ICECiPOL15 was demonstrated by mating experiments between C. indoltheticum POL15 and Escherichia coli DL21. CONCLUSIONS This study represents the first characterization of a mobilizable antibiotic resistance ICE in a species of C. indoltheticum and provides evidence that C. indoltheticum strains could be important reservoirs and vehicles for ARGs on livestock farms.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Shandong Center for Disease Control and Prevention, Ji'nan, 250014, China
| | - Xiangpeng Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Fengtian Wang
- Jinan Municipal Minzu Hospital, Ji'nan, 250001, China
| | - Xinyi Tian
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Jingxiang Pang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China.
| |
Collapse
|
10
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
11
|
Xin R, Li K, Ding Y, Zhang K, Qin M, Jia X, Fan P, Li R, Zhang K, Yang F. Tracking the extracellular and intracellular antibiotic resistance genes across whole year in wastewater of intensive dairy farm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115773. [PMID: 38039853 DOI: 10.1016/j.ecoenv.2023.115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Monitoring the annual variation of antibiotic resistance genes (ARGs) in livestock wastewater is important for determining the high-risk period of transfer and spread of animal-derived antibiotic resistance into the environment. However, the knowledge regarding the variation patterns of ARGs, especially intracellular ARGs (iARGs) and extracellular ARGs (eARGs), over time in livestock wastewater is still unclear. Herein, we conducted a year-round study to trace the profiles of ARGs at a Chinese-intensive dairy farm, focusing on the shifts observed in different months. The results showed significant differences in the composition and variation between iARGs and eARGs. Tetracycline, sulfonamide, and macrolide resistance genes were the major types of iARGs, while cfr was the major type of eARG. The environmental adaptations of the host bacteria determine whether ARGs appear as intracellular or extracellular forms. The total abundance of ARGs was higher from April to September, which can be attributed to the favorable climatic conditions for bacterial colonization and increased antibiotic administration during this period. Integron was found to be highly correlated with most iARGs, potentially playing a role in the presence of these genes within cells and their similar transmission patterns in wastewater. The intracellular and extracellular bacterial communities were significantly different, primarily because of variations in bacterial adaptability to the high salt and anaerobic environment. The intracellular co-occurrence network indicated that some dominant genera in wastewater, such as Turicibacter, Clostridium IV, Cloacibacillus, Subdivision5_genera_incertae_sedis, Saccharibacteria_genera_incertae_sedis and Halomonas, were potential hosts for many ARGs. To the best of our knowledge, this study demonstrates, for the first time, the annual variation of ARGs at critical points in the reuse of dairy farm wastewater. It also offers valuable insights into the prevention and control of ARGs derived from animals.
Collapse
Affiliation(s)
- Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kuangjia Li
- Development Research Center, Ministry of Water Resources of People's Republic of China, Beijing 100032, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Mengyuan Qin
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xian Jia
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Penglin Fan
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruojing Li
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Kai Zhang
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
12
|
Xia M, Niu Q, Qu X, Zhang C, Qu X, Li H, Yang C. Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122728. [PMID: 37844861 DOI: 10.1016/j.envpol.2023.122728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Due to the adverse effects of long-term oxytetracycline (OTC) residues in aquatic environments, an effective treatment is urgently needed. Immobilized microbial technology has been widely explored in the treatment of various organic pollutants in aquatic environments with its excellent environmental adaptability. Nevertheless, studies on its application in the removal of antibiotics are relatively scarce and not in sufficient depth. Only a few studies have further investigated the final fate of antibiotics in the immobilized bacteria system. In this study, a novel kind of OTC-degrading bacteria Mycolicibacterium sp. was immobilized on straw biochar and magnetic biochar, respectively. Magnetic biochar was proved to be a more satisfactory immobilization carrier due to its superior property and the advantage of easy recycling. Compared with free bacteria, immobilized bacteria had stronger environmental adaptability under different OTC concentrations, pH, and heavy metal ions. After 5 cycles, immobilized bacteria could still remove 71.8% of OTC, indicating that it had a stable recyclability. Besides, OTC in real swine wastewater was completely removed by immobilized bacteria within 2 days. The results of FTIR showed that bacteria were successfully immobilized on biochar and O-H, N-H, and C-N groups might be involved in the removal of OTC. The fate analysis indicated that OTC was removed by simultaneous adsorption and biodegradation, while biodegradation (92.8%) played a dominant role in the immobilized bacteria system. Meanwhile, the amount of adsorbed OTC (7.20%) was rather small, which could effectively decrease the secondary pollution of OTC. At last, new degradation pathways of OTC were proposed. This study provides an eco-friendly and effective approach to remedy OTC pollution in wastewater.
Collapse
Affiliation(s)
- Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China.
| | - Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Haoran Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| |
Collapse
|
13
|
Wang Z, Zhao C, Lu B, Zhang H, Zhao Y. Attenuation of antibiotics from simulated swine wastewater using different microalgae-based systems. BIORESOURCE TECHNOLOGY 2023; 388:129796. [PMID: 37742816 DOI: 10.1016/j.biortech.2023.129796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Antibiotic misuse are potentially harmful to the environment and human health. Four algal symbionts were constructed using Chlorella vulgaris, endophytic bacterium and Clonostachys rosea (C. rosea) as the biomaterials. The growth, photosynthetic activity, and antibiotic removal efficiency of symbiont under different initial antibiotic concentrations was analyzed. The results showed that the microalgae-bacteria-fungi symbiont had a maximum growth rate of 0.307 ± 0.030 d-1 and achieved 99.35 ± 0.47%, 81.06 ± 7.83%, and 79.15 ± 7.26% removal of oxytetracycline (OTC), sulfadimethazine (SM2), and ciprofloxacin hydrochloride (CPFX), respectively, at an initial antibiotic concentration of 0.25 mg/L. C. rosea has always existed as a biocontrol fungus. In this study, it was innovatively used to construct algal symbionts and used for antibiotic wastewater treatment with a high efficiency. The results contribute to the development of appropriate bioaugmentation strategies and the design of an algal symbiont process for the treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Chunzhi Zhao
- School of engineering, Hangzhou Normal University, Hangzhou 311121, China; School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Hui Zhang
- College of data Science, Jiaxing University, Jiaxing 314001, China
| | - Yongjun Zhao
- School of engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
14
|
Wang X, Jiang M, Lynch I, Guo Z, Zhang P, Wu L, Ma J. Construction of urchin-like core-shell Fe/Fe 2O 3@UiO-66 hybrid for effective tetracycline reduction and photocatalytic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122280. [PMID: 37573962 DOI: 10.1016/j.envpol.2023.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Although Fe/Fe2O3 has potential application compared with nanoscale zero-valent iron (nZVI), its smooth structure largely limits the catalytic performance. To address this challenge, we innovatively constructed highly efficient composite Fe/Fe2O3@UiO-66 via employing an urchin-like core-shell structure of Fe/Fe2O3 onto UiO-66 through a facile ion exchange precipitation method without inert gas protection. The characterization results show the urchin-like core-shell configuration can extend the life span of Fe0 and produce more active sites. Besides, the absorption spectrum is broadened by Fe2O3 which has narrow band gap and the high-efficiency separation of photogenerated electron-hole pairs is obtained with the load of Fe/Fe2O3. Moreover, Two-parameter pseudo-first-order decay model fits well with the reduction and adsorption of composites in the dark reaction, and a plausible pathway for tetracycline (TC) degradation is also proposed. The findings of this research provide a promising method for promoting the catalytic properties of MOF-based materials and Fe/Fe2O3.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Min Jiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
15
|
Chen X, Zhu Y, Chen J, Yan S, Xie S. Multi-omic profiling of a novel activated sludge strain Sphingobacterium sp. WM1 reveals the mechanism of tetracycline biodegradation and its merits of potential application. WATER RESEARCH 2023; 243:120397. [PMID: 37499542 DOI: 10.1016/j.watres.2023.120397] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
As an emerging pollutant, the antibiotic tetracycline (TC) has been consistently detected in wastewater and activated sludge. Biodegradation represents a potentially crucial pathway to dissipate TC contamination. However, few efficient TC-degrading bacteria have been isolated and a comprehensive understanding of the molecular mechanisms underlying TC degradation is still lacking. In this study, a novel TC-degrading bacterium, designated as Sphingobacterium sp. WM1, was successfully isolated from activated sludge. Strain WM1 exhibited a remarkable performance in degrading 50 mg/L TC within 1 day under co-metabolic conditions. Genomic analysis of the strain WM1 unveiled the presence of three functional tetX genes. Unraveling the complex molecular mechanisms, transcriptome analysis highlighted the role of upregulated transmembrane transport and accelerated electron transport in facilitating TC degradation. Proteomics confirmed the up-regulation of proteins involved in cellular biosynthesis/metabolism and ribosomal processes. Crucially, the tetX gene-encoding protein showed a significant upregulation, indicating its role in TC degradation. Heterologous expression of the tetX gene resulted in TC dissipation from an initial 51.9 mg/L to 4.2 mg/L within 24 h. The degradation pathway encompassed TC hydroxylation, transforming into TP461 and subsequent metabolites, which effectively depleted TC's inhibitory activity. Notably, the tetX genes in strain WM1 showed limited potential for horizontal gene transfer. Collectively, strain WM1's potent TC degradation capacity signals a promise for enhancing TC clean-up strategies.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfei Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Hu J, Li S, Zhang W, Helbling DE, Xu N, Sun W, Ni J. Animal production predominantly contributes to antibiotic profiles in the Yangtze River. WATER RESEARCH 2023; 242:120214. [PMID: 37329718 DOI: 10.1016/j.watres.2023.120214] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Human-induced antibiotic pollution in the world's large rivers poses significant risk to riverine ecosystems, water quality, and human health. This study identified geophysical and socioeconomic factors driving antibiotic pollution in the Yangtze River by quantifying 83 target antibiotics in water and sediment samples collected in its 6300-km-long reach, followed by source apportionment and statistical modeling. Total antibiotic concentrations ranged between 2.05-111 ng/L in water samples and 0.57-57.9 ng/g in sediment samples, contributed predominantly by veterinary antibiotics, sulfonamides and tetracyclines, respectively. Antibiotic compositions were clustered according to three landform regions (plateau, mountain-basin-foothill, and plains), resulting from varying animal production practices (cattle, sheep, pig, poultry, and aquaculture) in the sub-basins. Population density, animal production, total nitrogen concentration, and river water temperature are directly associated with antibiotic concentrations in the water samples. This study revealed that the species and production of food animals are key determinants of the geographic distribution pattern of antibiotics in the Yangtze River. Therefore, effective strategies to mitigate antibiotic pollution in the Yangtze River should include proper management of antibiotic use and waste treatment in animal production.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences; Environmental Science, and Policy Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Jinren Ni
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
17
|
Pereira AR, de Ávila Barbosa Fonseca L, Paranhos AGDO, da Cunha CCRF, de Aquino SF, de Queiroz Silva S. Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91803-91817. [PMID: 37477815 DOI: 10.1007/s11356-023-28823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L-1), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | | | | | | | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
18
|
Meng F, Sun S, Geng J, Ma L, Jiang J, Li B, Yabo SD, Lu L, Fu D, Shen J, Qi H. Occurrence, distribution, and risk assessment of quinolone antibiotics in municipal sewage sludges throughout China. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131322. [PMID: 37043851 DOI: 10.1016/j.jhazmat.2023.131322] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
A nationwide study of the occurrence, distribution, potential drivers, and ecological risks of 24 quinolone antibiotics (QNs) in 74 Chinese sludge samples from 48 wastewater treatment plants (WWTPs) was conducted. In domestic sludge, the ∑QNs concentrations were <LOD to 21,925.10 ug/kg (mean: 4808.67 ug/kg), and ofloxacin had the highest concentration (<LOD-11,138.52 ug/kg), and detection frequency (98.48%). Of four generations QNs, the levels showed the following order: 2nd-generation QNs > 3rd-generation QNs > 4th-generation QNs > 1st-generation QNs. Meanwhile, abundant veterinary and human/veterinary quinolones (<LOD-2606.96 and <LOD-12,643.47 ug/kg, respectively) were detected in municipal sludge. Interestingly, the relatively low levels of veterinary quinolones (<LOD-299.21 ug/kg) were also found in industrial sludge (the relevant WWTPs receiving ≤ 10% domestic wastewater, without other direct entry of antibiotics). The correlation analysis demonstrated QNs contamination was negatively influenced by the air temperature of sampling days. The positive correlation between moxifloxacin contents and regional economy possibly suggested local regions with relatively high economic levels face a more difficult situation of QNs antibacterial activity. Environmental risk assessment indicated ofloxacin, ciprofloxacin, and moxifloxacin posed high ecological risks to the domestic sludge. This work delineates a valuable nationwide QNs contamination profile to support their safe use and control in China.
Collapse
Affiliation(s)
- Fan Meng
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Jialu Geng
- Bureau of Ecological Environment of Hinggan League, Hinggan League, 137400, China
| | - Lixin Ma
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinpan Jiang
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Li
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stephen Dauda Yabo
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Lu
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donglei Fu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
| | - Jimin Shen
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
19
|
Chen CH, Chiou YC, Yang CL, Wang JH, Chen WR, Whang LM. Biosorption and biotransformation behaviours of veterinary antibiotics under aerobic livestock wastewater treatment processes. CHEMOSPHERE 2023:139034. [PMID: 37277000 DOI: 10.1016/j.chemosphere.2023.139034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
To study the fate of veterinary antibiotics released from swine wastewater treatment plants (SWTP), 10 antibiotics were investigated in each unit of a local SWTP periodically. Over a 14-month period of field investigation into target antibiotics, it was confirmed that tetracycline, chlortetracycline, sulfathiazole, and lincomycin were used in this SWTP, with their presence observed in raw manure. Most of these antibiotics could be effectively treated by aerobic activated sludge, except for lincomycin, which was still detected in the effluent, with a maximum concentration of 1506 μg/L. In addition, the potential for removing antibiotics was evaluated using lab-scale aerobic sequencing batch reactors (SBRs) that were dosed with high concentrations of antibiotics. The SBR results, however, showed that both sulfonamides and macrolides, as well as lincomycin, can achieve 100% removal in lab-scale aerobic SBRs within 7 days. This reveals that the potential removal of those antibiotics in field aeration tanks can be facilitated by providing suitable conditions, such as adequate dissolved oxygen, pH, and retention time. Furthermore, the biosorption of target antibiotics was also confirmed in the abiotic sorption batch tests. Biotransformation and hydrolysis were identified as the dominant mechanism for removing negatively charged sulfonamides and positively charged antibiotics (macrolides and lincomycin) in SBRs. This is due to their relatively low sorption affinity (resulting in negligible to 20% removal) onto activated sludge in abiotic sorption tests. On the other hand, tetracyclines exhibited significant sorption behavior both onto activated sludge and onto soluble organic matters in swine wastewater supernatant, accounting for 70%-91% and 21%-94% of removal within 24 h, respectively. S-shape sorption isotherms with saturation were observed when high amounts of tetracyclines were spiked into sludge, with equilibrium concentrations ranging from 0.4 to 65 mg/L. Therefore, the sorption of tetracyclines onto activated sludge was governed by electrostatic interaction rather than hydrophobic partition. This resulted in a saturated sorption capacity (Qmax) of 17,263 mg/g, 1637 mg/g, and 641.7 mg/g for OTC, TC, and CTC, respectively.
Collapse
Affiliation(s)
- Chih-Hung Chen
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan; Tainan Hydraulics Laboratory (THL), National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Yi-Chu Chiou
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Chao-Lung Yang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Jen-Hung Wang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
20
|
Liu W, Wang Y, Xia R, Ding X, Xu Z, Li G, Nghiem LD, Luo W. Occurrence and fate of antibiotics in swine waste treatment: An industrial case. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121945. [PMID: 37268217 DOI: 10.1016/j.envpol.2023.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This study mapped the fate of antibiotics in a swine farm with integrated waste treatment including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show the prevalent and consistent occurrence of 12 antibiotics in swine waste. Mass balance of these antibiotics was calculated to track their flow and evaluate their removal by different treatment units. The integrated treatment train could effectively reduce antibiotic loading to the environment by 90% (measured as combined mass of all antibiotic residues). Within the treatment train, anoxic stabilization as the initial treatment step, accounted for the highest contribution (43%) to overall antibiotic elimination. Results also show that aerobic was more effective than anaerobic regarding antibiotic degradation. Composting accounted for an additional of 31% removal of antibiotics while anaerobic digestion contributed to 15%. After treatment, antibiotic residues in the treated effluent and composted materials were 2 and 8% of the initial antibiotic loading in raw swine waste, respectively. Ecological risk assessment showed negligible or low risk quotient associated with most individual antibiotics released into the aquatic environment or soil from swine farming. Nevertheless, antibiotic residues in treated water and composted materials together showed significant ecological risk to water and soil organisms. Thus, further work to improve treatment performance or develop new technologies is necessary to reduce the impact of antibiotics from swine farming.
Collapse
Affiliation(s)
- Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongfang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruohan Xia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangrui Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Liang H, Zhang J, Hu J, Li X, Li B. Fluoroquinolone Residues in the Environment Rapidly Induce Heritable Fluoroquinolone Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4784-4795. [PMID: 36917150 DOI: 10.1021/acs.est.2c04999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive antibiotic use increases the environmental presence of their residues and may accelerate the development of antibiotic resistance, although this remains poorly understood at environmentally relevant concentrations. Herein, susceptible Escherichia coli K12 was continuously exposed to five antibiotics at such concentrations for 100 days. The de novo-evolved mutants rapidly obtained fluoroquinolone resistance within 10 days, as indicated by the 4- and 16-fold augmentation of minimum inhibitory concentrations against enrofloxacin and ciprofloxacin, respectively. Moreover, the mutants maintained heritable fluoroquinolone resistance after the withdrawal of antibiotics for 30 days. Genomic analysis identified Asp87Gly or Ser83Leu substitutions in the gyrA gene in the mutants. Transcriptomics data showed that the transcriptional response of the mutants to fluoroquinolones was primarily involved in biofilm formation, cellular motility, porin, oxidative stress defense, and energy metabolism. Homologous recombination and molecular docking revealed that mutations of gyrA primarily mainly conferred fluoroquinolone resistance, while mutations at different positions of gyrA likely endowed different fluoroquinolone resistance levels. Collectively, this study revealed that environmentally relevant concentrations of antibiotics could rapidly induce heritable antibiotic resistance; therefore, the discharge of antibiotics into the environment should be rigorously controlled to prevent the development of antibiotic resistance.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
22
|
Evaluation of bacterial diversity in a swine manure composting system contaminated with veterinary antibiotics (VAs). Arch Microbiol 2023; 205:85. [PMID: 36757625 DOI: 10.1007/s00203-022-03382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 02/10/2023]
Abstract
Composting has become an alternative for the treatment of organic effluents, due to its low cost, easy handling, and a great capacity for treating swine manure. As it is a biological process, many microorganisms are involved during the composting process and act in the degradation of organic matter and nutrients and also have the ability to degrade contaminants and accelerate the transformations during composting. The objective of this work was to identify microorganisms present in the swine effluent composting system, under the contamination by most used veterinary drugs in Brazil. The composting took place for 150 days, there was an addition of 200 L of manure (these 25 L initially contaminated with 17 antibiotics) in 25 kg of eucalyptus wood shavings. The microorganisms were measured at times (0 until 150 days) and were identified by the V3-V4 regions of the 16S rRNA for Bacteria, by means of next-generation sequencing (NSG). The results show seven different bacterial phyla (Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Spirochaetota and Tenericutes) and 70 bacterial genera (more than 1% significance), of which the most significant ones were Pseudomonas, Sphingobacterium, Devosia, Brucella, Flavisolibacter, Sphingomonas and Nitratireductor. The genus Brucella was found during mesophilic and thermophilic phases, and this genus has not yet been reported an in article involving composting process. With the results obtained, the potential for adaptation of the bacterial community was observed, being under the influence of antibiotics for veterinary use.
Collapse
|
23
|
Wang B, Gu C, Jiao Y, Gao Y, Liu X, Guo J, Qian T. Novel preparation of red fluorescent carbon dots for tetracycline sensing and its application in trace determination. Talanta 2023; 253:123975. [PMID: 36228555 DOI: 10.1016/j.talanta.2022.123975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/23/2022]
Abstract
The controllable design of red-emitting carbon dots and further exploration of their application in the trace determination of environmental pollutants remains a tremendous challenge. Herein, the novel strategy for red fluorescent carbon dots (R-CDs) with a higher quantum yield of 58.9% was proposed by doping small-molecule urea into the bio-dye of resazurin for the first time, which can retain the luminophore of precursors and exhibit exceptional optical, advantageous reversibility and outstanding photostability. Importantly, the R-CDs exhibit a remarkable fluorescence reduction towards tetracyclines (TCs) accompanied by a noticeable color change of R-CDs solution from red to yellow, which can realize the trace detection of TCs at strelatively low levels, including tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC). The linear range of TC, CTC, and OTC are 3-40 μM, 4-50 μM, and 2-50 μM, and the corresponding detection limits are 38.5 nM, 64.6 nM, and 45.4 nM, respectively (S/N = 3). Furthermore, the R-CDs demonstrate sensitivity to the physiological pH in the linear range of 4.0-5.0 and 5.0-6.2 with a pKa of 5.61. As a multifunctional fluorescent sensor, R-CDs can provide a new perspective for the preparation of long-wavelength CDs, and further realize the trace determination of environmental pollutants.
Collapse
Affiliation(s)
- Bingyan Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Changxin Gu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Yifang Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Junmei Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| |
Collapse
|
24
|
Chen Z, Ou D, Gu G, Gao S, Li X, Hu C, Liang X, Zhang Y. Removal of tetracycline from water by catalytic photodegradation combined with the microalga Scenedesmus obliquus and the responses of algal photosynthesis and transcription. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116693. [PMID: 36347215 DOI: 10.1016/j.jenvman.2022.116693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The antibiotic tetracycline (TC) and its degradation products (TDPs) in degradation solution present serious environmental problems, such as human health damage and ecological risk; thus further treatment is required before being released into the aquatic environment. Furthermore, their environmental impact on microalgae remains unclear. In this study, TC was degraded by photocatalysis using birnessite and UV irradiation, followed by biological purification using the microalga Scenedesmus obliquus. In addition, the photosynthetic activity and transcription of the microalgae were examined to evaluate the toxicity of TC and TDPs. The results show that photocatalytic degradation efficiency reached 92.7% after 30 min, and 11 intermediate products were detected. The microalgae achieved a high TC removal efficiency (99.7%) after 8 days. Exposure to the degraded TC solution (D) resulted in significantly lower (p < 0.05) biomass than the pure TC (T), and S. obliquus in the T treatment showed better resilience than the D treatment. Transcriptomic assays for different treatments revealed differential gene expression mainly involving the photosynthesis, ribosome, translation and peptide metabolic progresses. The up-regulation of photosynthesis-related genes and differential expression of chloroplast genes may be important for S. obliquus to acquire high photosynthetic efficiency and growth recovery when exposed to TC and TDPs. Our study provides a reference for TC removal using a combination of catalytic degradation and microalgal purification, and it is also helpful for understanding the environmental risk of TDPs in natural aquatic environments.
Collapse
Affiliation(s)
- Zhehua Chen
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Dong Ou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Gan Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Shumei Gao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Xianrui Liang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuejin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| |
Collapse
|
25
|
Tang T, Chen Y, Du Y, Yao B, Liu M. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129870. [PMID: 36063716 DOI: 10.1016/j.jhazmat.2022.129870] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
26
|
Balakrishnan A, Chinthala M, Polagani RK, Vo DVN. Removal of tetracycline from wastewater using g-C 3N 4 based photocatalysts: A review. ENVIRONMENTAL RESEARCH 2023; 216:114660. [PMID: 36368373 DOI: 10.1016/j.envres.2022.114660] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Tetracycline is currently one of the most consumed antibiotics for human therapy, veterinary purpose, and agricultural activities. Tetracycline worldwide consumption is expected to rise by about more than 30% by 2030. The persistence of tetracycline has necessitated implementing and adopting strategies to protect aquatic systems and the environment from noxious pollutants. Here, graphitic carbon nitride-based photocatalytic technology is considered because of higher visible light photocatalytic activity, low cost, and non-toxicity. Thus, this review highlights the recent progress in the photocatalytic degradation of tetracycline using g-C3N4-based photocatalysts. Additionally, properties, worldwide consumption, occurrence, and environmental impacts of tetracycline are comprehensively addressed. Studies proved the occurrence of tetracycline in all water matrices across the world with a maximum concentration of 54 μg/L. Among different g-C3N4-based materials, heterojunctions exhibited the maximum photocatalytic degradation of 100% with the reusability of 5 cycles. The photocatalytic membranes are found to be feasible due to easiness in recovery and better reusability. Limitations of g-C3N4-based wastewater treatment technology and efficient solutions are also emphasized in detail.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India.
| | - Rajesh Kumar Polagani
- Department of Chemical Engineering, Bheemanna Khandre Institute of Technology, Bhalki, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
27
|
Wang Y, Sutton NB, Zheng Y, Dong H, Rijnaarts HHM. Seasonal variation in antibiotic resistance genes and bacterial phenotypes in swine wastewater during three-chamber anaerobic pond treatment. ENVIRONMENTAL RESEARCH 2023; 216:114495. [PMID: 36208778 DOI: 10.1016/j.envres.2022.114495] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a global public health concern. Antibiotic usage in pigs makes swine wastewater (SW) a reservoir for antibiotic resistance genes (ARGs). SW is usually stored and treated in a three-chamber anaerobic pond (3-CAP) in medium and small pig farms in northern China. However, the yet unexplored presence of ARGs in SW during 3-CAP treatment may result in ARGs spreading into the environment if farmers apply SW to farmland as a liquid organic fertilizer. This study investigated the profiles of and changes in ARGs in SW during its treatment in 3-CAP over four seasons and analyzed the correlation between ARGs and bacterial phenotypes, along with the physicochemical parameters of the water. The results revealed that ARG abundance decreased considerably after 3-CAP treatment in April (47%), October (47%), and December (62%) but increased in May (43%) and August (73%). The ARG copies in the influent and other SW samples increased significantly from 107 copies/mL in April to 109 copies/mL in October and were maintained in December. The increase in ARG abundance was not as rapid as the growth of the bacterial population, resulting in lower relative abundance in October and December. Bacterial communities possessed more sul1 and tetM genes, which were also positively correlated with mobile genetic elements. After the 3-CAP treatment, 16% of antibiotics and 60% of heavy metals were removed, and both had a weak correlation with ARGs. Predicted phenotypes showed that gram-positive (G+) and gram-negative (G-) bacteria have different capacities for carrying ARGs. G+ bacteria carry more ARGs than G- bacteria. This study revealed the persistence of ARGs in SW after 3-CAP treatment over different seasons. Applying SW in the proper month will mitigate ARG dissemination to the environment.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700, AA Wageningen, the Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700, AA Wageningen, the Netherlands
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
28
|
Huang F, Hong Y, Mo C, Huang P, Liao X, Yang Y. Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects. Front Vet Sci 2022; 9:1054316. [PMID: 36619948 PMCID: PMC9813402 DOI: 10.3389/fvets.2022.1054316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that have received extensive attention. Many different types of ARGs exist in livestock wastewater. If not effectively treated, they can threaten animal production, public health and the ecological safety of the surrounding environment. To address the high risk of livestock wastewater contamination by ARGs, the effects of different wastewater treatment processes on ARGs and their influencing factors and mechanisms are reviewed herein. Additionally, the current problems associated with removal of ARGs are discussed, and future research is proposed.
Collapse
Affiliation(s)
- Feng Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanting Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chunhao Mo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peier Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, China,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, China,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China,*Correspondence: Yiwen Yang ✉
| |
Collapse
|
29
|
John KI, Adeleye AT, Adeniyi AG, Sani LA, Abesa S, Orege IJ, Adenle AA, Elawad M, Omorogie MO. Screening of Zeolites series: H-β/H-MOR/H-ZSM-5 as potential templates for photocatalyst heterostructure composites through photocatalytic degradation of tetracycline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Zhang K, Ruan R, Zhang Z, Zhi S. An exhaustive investigation on antibiotics contamination from livestock farms within sensitive reservoir water area: Spatial density, source apportionment and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157688. [PMID: 35908704 DOI: 10.1016/j.scitotenv.2022.157688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Although the studies on antibiotic contamination are common at present, large-scale sampling studies drawing highly representative conclusions are still scarce. This study conducted a comprehensive investigation on a total of 1183 samples from 70 livestock farms within a sensitive area around reservoir waters. 45 types of antibiotics belonging to 5 different classes were monitored. This is the first analysis to comprehensively investigate the density distribution, source apportionment, ecological and health risk of antibiotics in an entire area of sensitive waters. The results showed that the layer manure samples had highest detection rate of antibiotics (0.0 %-96.1 %, average value = 30.7 %) followed by pig manure samples. Oxytetracycline had the highest concentration of 712.16 mg/kg in a pig manure sample. Different from using antibiotic concentration as a proxy for pollution level, the spatial density was calculated by averaging antibiotic concentration to area and converting different livestock to pig equivalent. The spatial density of pig equivalent can more realistically reflect the pollution caused by different breeds of livestocks. It was shown that the pig farms contributed higher to total antibiotic density than the layer and cattle farms did. After assessed, a few antibiotics (oxytetracycline, chlorotetracycline and tetracycline) have posed high ecological risks to soil around the farms. However, none of them caused hazard quotient (HQ) risk and carcinogenic risk (CR) to human health in the water of reservoir. Children were more likely to be at hazard risk than adults. Antibiotic mass fluctuation rules were analyzed along the chain (feed → livestock waste → soil → surface water). Feed, livestock waste and soil had similar diversity, but the antibiotic concentrations continued to decline, implying the possible sources of antibiotic residues were similar. Thus, it is important to reduce unnecessary antibiotic use to prevent the potential long-term risk of antibiotics.
Collapse
Affiliation(s)
- Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Rong Ruan
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen AB18 8QH, United Kingdom
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
31
|
Wu D, Sui Q, Mei X, Yu X, Gu Y, Zhao W. Non-antibiotics matter: Evidence from a one-year investigation of livestock wastewater from six farms in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157418. [PMID: 35850340 DOI: 10.1016/j.scitotenv.2022.157418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Livestock wastewater is an important source of pharmaceuticals in aquatic environments; however, most related studies only focused on antibiotics. This study investigated 18 pharmaceutical active compounds (PhACs), including 12 antibiotics and 6 non-antibiotics, in livestock wastewater during a one-year survey of six livestock farms in East China. The results showed that four non-antibiotic PhACs-caffeine, N,N-diethyl-m-toluamide, gemfibrozil, and diclofenac-exhibited high detection frequencies (80% to 97%), high concentrations (median 0.43 to 3.79 μg/L), poor removal efficiencies (3% to 53%), and high environmental risks. A ranking system was developed to prioritize PhACs based on their occurrence, removal, and environmental risks in livestock wastewater; diclofenac, N,N-diethyl-m-toluamide, sulfamethazine, sulfadiazine, and gemfibrozil, were identified as the top five priority PhACs that should be considered first. Finally, a preliminary source apportionment protocol using four priority PhACs was proposed to trace the emission originating from treated and untreated livestock wastewater and to indicate the major contributor (cattle or swine farms) in the region. To the best of our knowledge, this is the first long-term investigation on the pollution characteristics of non-antibiotics in livestock wastewater in China, and our findings highlight the importance of considering non-antibiotics and the prioritized PhACs for the pollution control of PhACs in livestock wastewater.
Collapse
Affiliation(s)
- Dongquan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuebing Mei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
32
|
Zeng X, Shu S, Guo F, Yang M, Meng Y. Photocatalytic degradation of ofloxacin by ZnO combined with persulfate under simulated solar light irradiation: performance, kinetics and degradation pathways. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Tian Y, Li J, Li X, Li J, Meng J. Sample pretreatment and analytical methodology for the determination of antibiotics in swine wastewater and activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83671-83685. [PMID: 35773613 DOI: 10.1007/s11356-022-21595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
An analytical method for the simultaneous extraction and determination of eight veterinary antibiotics in swine wastewater and activated sludge was developed and validated based on the instrumental determination by liquid chromatography tandem quadrupole mass spectrometry. Ultrasound-assisted extraction and solid-phase extraction were introduced into the pretreatment procedure of the two complex environmental matrices. The critical steps involved in the sample pretreatment procedure and the instrumental analysis conditions were optimized progressively. Recoveries of the optimized method were good with 75.3-118.2% in wastewater and 82.8-130.1% in sludge. The absolute deviations of methods were lower than 11.7%, presenting a high reproducibility and precision. The limits of quantification for the eight pharmaceuticals in wastewater and sludge were 5-15 ng·L-1 and 2-6 ng·g-1, showing high sensitivity of the methods. The developed method has been successfully applied to evaluate the actual concentration levels of tetracyclines, quinolones, and sulfonamides in actual swine wastewater (maximum detected concentration of 87.377 μg·L-1) and activated sludge (maximum detected concentration of 51242.3 ng·g-1).
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China.
| |
Collapse
|
34
|
Adsorption of lincomycin on microwave activated biochar: Batch and dynamic adsorption. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Li J, Li W, Liu K, Guo Y, Ding C, Han J, Li P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129628. [PMID: 35905608 DOI: 10.1016/j.jhazmat.2022.129628] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of macrolide antibiotics (MCLs) has led to their frequent detection in aquatic environments, affecting water quality and ecological health. In this study, the sources, global distribution, environmental fate, ecotoxicity and global risk assessment of MCLs were analyzed based on recently published literature. The results revealed that there are eight main sources of MCLs in the water environment. These pollution sources resulted in MCL detection at average or median concentrations of up to 3847 ng/L, and the most polluted water bodies were the receiving waters of wastewater treatment plants (WWTPs) and densely inhabited areas. Considering the environmental fate, adsorption, indirect photodegradation, and bioremoval may be the main attenuation mechanisms in natural water environments. N-demethylation, O-demethylation, sugar and side chain loss from MCL molecules were the main pathways of MCLs photodegradation. Demethylation, phosphorylation, N-oxidation, lactone ring hydrolysis, and sugar loss were the main biodegradation pathways. The median effective concentration values of MCLs for microalgae, crustaceans, fish, and invertebrates were 0.21, 39.30, 106.42, and 28.00 mg/L, respectively. MCLs induced the generation of reactive oxygen species, that caused oxidative stress to biomolecules, and affected gene expression related to photosynthesis, energy metabolism, DNA replication, and repair. Moreover, over 50% of the reported water bodies represented a medium to high risk to microalgae. Further studies on the development of tertiary treatment technologies for antibiotic removal in WWTPs, the combined ecotoxicity of antibiotic mixtures at environmental concentration levels, and the development of accurate ecological risk assessment models should be encouraged.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yanhui Guo
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Chun Ding
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
36
|
Zhang RM, Liao MN, Wu JE, Lu XQ, Tan HZ, Sun J, Liao XP, Liu YH. Metagenomic insights into the influence of mobile genetic elements on ARGs along typical wastewater treatment system on pig farms in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156313. [PMID: 35654190 DOI: 10.1016/j.scitotenv.2022.156313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The wastewater treatment processes (WTP) on pig farms are heavily contaminated by antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) play an important role in shaping ARG profiles. Here we first employed metagenomic sequencing to follow the diversities and shifts of ARG associated mobile genetic elements (AAMGEs) including insertion sequences (ISs) and plasmids along the WTP for three pig farms in southeast China. The IS average relative abundance rose from the initial pig feces source to the wastewater storage lagoon (WSL) but decreased in the influent and rose in the effluent of the anaerobic digestor (AD). In contrast, plasmids were eliminated rapidly along this process. These results indicated that the AD reduced plasmid copies while IS abundance increased. We found a great diversity ISs, including IS91, ISNCY, IS630 and IS701, were large contributors to the transfer of multi-drug resistance. In addition, the tetracycline resistance genes co-occurred with a greater diversity of ISs than other ARG classes and this likely contributed to the high abundance of tetracycline resistance genes we found. The transfer of ARGs mediated by MGEs along the WTP of pig farms was a key contributor for the ARGs persistence in the environment of pig farms. Collectively, our findings demonstrated different fates for ISs and plasmids along the WTP for pig farms and suggested that AAMGE monitoring served as an important role in controlling ARGs in pig waste.
Collapse
Affiliation(s)
- Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Mei-Na Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jia-En Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Qing Lu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Zhen Tan
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China.
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Effects of Tetracycline on Scenedesmus obliquus Microalgae Photosynthetic Processes. Int J Mol Sci 2022; 23:ijms231810544. [PMID: 36142466 PMCID: PMC9504007 DOI: 10.3390/ijms231810544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tetracycline (TC) antibiotics can be detected worldwide in the aquatic environment due to their extensive use and low utilization efficiency, and they may affect the physiological processes of non-target organisms. In this study, the acute and sub-acute toxicities of TC on the freshwater microalga Scenedesmus obliquus were investigated with an emphasis on algal photosynthesis and transcription alterations during an 8 d TC exposure. The results showed that the IC10, IC30 and IC50 values were 1.8, 4.1 and 6.9 mg/L, respectively. During sub-acute exposure, the microalgae of the IC10 treatment was able to recover comparable growth to that of the control by day 7, while significantly lower cell densities were observed in the IC30 and IC50 treatments at the end of the exposure. The photosynthetic efficiency Fv/FM of S. obliquus first decreased as the TC concentration increased and then returned to a level close to that of the control on day 8, accompanied by an increase in photosynthetic activities, including light harvesting, electron transport and energy dissipation. Transcriptomic analysis of the IC10 treatment (1.8 mg/L TC) revealed that 2157 differentially expressed genes were up-regulated and 1629 were down-regulated compared with the control. KEGG and GO enrichments demonstrated that 28 photosynthesis-related genes involving light-harvesting chlorophyll protein complex, photosystem I, photosystem II, photosynthetic electron transport and enzymes were up-regulated, which may be the factor responsible for the enhanced photosynthesis and recovery of the microalgae. Our work may be helpful not only for gaining a better understanding of the environmental risk of TC at concentrations close to the real levels in natural waters, but also for explaining photosynthesis and related gene transcription induced by antibiotics.
Collapse
|
38
|
Long S, Liu X, Chen J, Zhao L, Pavlostathis SG. Effect of tetracycline on bio-electrochemically assisted anaerobic methanogenic systems: Process performance, microbial community structure, and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155756. [PMID: 35533856 DOI: 10.1016/j.scitotenv.2022.155756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Bio-electrochemically assisted anaerobic methanogenic systems (An-BES) are highly effective in wastewater treatment for methane production and degradation of toxic compounds. However, information on the treatment of antibiotic-bearing wastewater in An-BES is still very limited. This study therefore investigated the effect of tetracycline (TC) on the performance, microbial community, as well as functional and antibiotic resistance genes of An-BES. TC at 1 and 5 mg/L inhibited methane production by less than 4.8% compared to the TC-free control. At 10 mg/L TC, application of 0.5 and 1.0 V decreased methane production by 14 and 9.6%, respectively. Under the effect of 1-10 mg/L TC, application of 1.0 V resulted in a decrease of current from 42.3 to 2.8 mA. TC was mainly removed by adsorption; its removal extent increased by 19.5 and 32.9% with application of 0.5 and 1.0 V, respectively. At 1.0 V, current output was not recovered with the addition of granular activated carbon, which completely removed TC by adsorption. Metagenomic analysis showed that propionate oxidizing bacteria and methanogens were more abundant in electrode biofilms than in suspended culture. Antibiotic resistance genes (ARGs) were less abundant in biofilms than in suspended culture, regardless of whether voltage was applied or not. Application of 1.0 V resulted in the enrichment of Geobacter in the anode and Methanobacterium in the cathode. TC inhibited exoelectrogens, propionate oxidizing bacteria, and the methylmalonyl CoA pathway, leading to a decrease of current output, COD consumption, and methane production. These findings deepen our understanding of the inhibitory effect of TC in An-BES towards efficient bioenergy recovery from antibiotic-bearing wastewater, as well as the response of functional microorganisms to TC in such systems.
Collapse
Affiliation(s)
- Sha Long
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaoguang Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Jinchen Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA.
| |
Collapse
|
39
|
Yang C, Yang Z, Yang K, Yu Z, Zuo Y, Cheng L, Wang Y, Sun H, Yu G, Zhang C, Li X. Periodate Activated by Different Crystalline Phases MnO2 for Profound Oxidation Tetracycline Hydrochloride: Oxygen Vacancy-Dominated Active Pivots and Mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
41
|
Zhong SF, Yang B, Lei HJ, Xiong Q, Zhang QQ, Liu F, Ying GG. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154647. [PMID: 35307430 DOI: 10.1016/j.scitotenv.2022.154647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics in the environment could undergo various processes with formation of transformation products, but little has been known about their occurrence and (eco)toxicological consequences. Here we investigated the occurrence and fate of nine transformation products of four tetracyclines (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in three municipal wastewater treatment plants (WWTPs) in Guangzhou, China. The results showed the detection of all the tetracyclines and their transformation products in the WWTPs, with mean concentrations ranging from 17.8 ng/L (anhydrotetracycline) to 49.1 ng/L (oxytetracycline) in influent, 3.03 ng/L (tetracycline) to 6.94 ng/L (4-epi-chlortetracycline) in effluent, and 19.8 ng/g (isochlortetracycline) to 503 ng/g (4-epi-tertracycline) in sludge, respectively. The transformation products of tetracycline, oxytetracycline, chlortetracycline and doxycycline accounted for 73%-83%, 26%-52%, 70%-73% and 69%-74% of total concentrations, respectively. The aqueous removal rates of tetracyclines and their transformation products in the three WWTPs ranged from 18.4% (demethyl-chlortetracycline) to 93.7% (oxytetracycline). Mass balance analysis based on both aqueous and solid phase showed that their removals were mainly attributed to the sludge adsorption. Residual tetracyclines and their transformation products in the effluents would pose no obvious ecological risks to three aquatic organisms (green algae, daphnia and fish). However, 43.5% of sludge samples had high risks from these tetracyclines and transformation products, especially the compounds with poor biodegradability. The results from this study suggest that transformation products should be included in future environmental monitoring and control.
Collapse
Affiliation(s)
- Shao-Fen Zhong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Fang Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Geography, South China Normal University, Guangzhou 510631, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Du D, Zhou J, Zhang K, Zhi S. Seasonal Pollution Characteristics of Antibiotics on Pig Farms of Different Scales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8264. [PMID: 35886115 PMCID: PMC9320919 DOI: 10.3390/ijerph19148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Scientific interest in pollution from veterinary antibiotics (VAs) on intensive animal farms has been increasing in recent years. However, limited information is available on the seasonal pollution characteristics and the associated ecological risks of VAs, especially about the different scale farms. Therefore, this study investigated the seasonal pollution status and ecological risks of 42 typical VAs (5 classes) on three different scale pig farms (breeding scales of about 30,000, 1200, and 300 heads, respectively) in Tianjin, China. The results showed that large-scale pig farms usually had the highest antibiotic pollution levels, followed by small-scale pig farms and medium-scale pig farms. Among different seasons, antibiotic contamination was more severe in winter and spring than that in the other seasons. Tetracyclines (TCs) usually had higher proportions (over 51.46%) and the residual concentration detected in manure, and wastewater samples ranged from not detected (ND)-1132.64 mg/kg and ND-1692.50 μg/L, respectively, which all occurred for oxytetracycline (OTC) during winter. For the antibiotic ecological risks in the effluent, we found high-risk level of 12 selected VAs accounted for 58% in spring, and 7 kinds of VAs were selected in the amended soil, but nearly all the antibiotics had no obvious ecological risks except OTC (spring and summer). All these data provided an insight into the seasonal variability and the associated ecological risks of antibiotics on intensive pig farms, which can provide scientific guidance on decreasing antibiotic contamination to enhance environmental security in similar areas.
Collapse
Affiliation(s)
- Delin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Jing Zhou
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China;
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Tianjin 300191, China
| |
Collapse
|
43
|
Tang T, Liu M, Chen Y, Du Y, Feng J, Feng H. Influence of sulfamethoxazole on anaerobic digestion: Methanogenesis, degradation mechanism and toxicity evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128540. [PMID: 35220120 DOI: 10.1016/j.jhazmat.2022.128540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sulfamethoxazole (SMX), one of the most widely used sulfonamides antibiotics, is frequently detected in the livestock wastewater. Currently, the focus needs to shift from performance effects to understanding of mechanisms and intermediate toxicity analysis. Our study found that SMX (0.5, 1, and 2 mg/L) stimulated methane production by promoting the process of acetogenesis and homo-acetogenesis. Since 1 mg/L SMX could inhibit the transformation of butyric acid, thus, the stimulation of methane was weak under this condition. Under anaerobic conditions, acetate kinase (AK) and cytochrome P450 enzymes (CYP450) continued to participate in SMX degradation. The increase in SMX concentration affected the release of metabolic enzymes, causing changes in SMX degradation pathways. Based on the main biotransformation products, five biotransformation pathways were proposed, the major transformation reactions including hydroxylation, hydrogenation, acetylation, deamination, oxidation, the elimination of oxygen atoms on sulfonyl, isoxazole ring and NS bond cleavage. Toxicity prediction analysis showed that the toxicities of most SMX transformation products were lower than that of SMX.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Jieling Feng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Haoran Feng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
44
|
Başkan G, Açıkel Ü, Levent M. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Mehrtens A, Freund W, Lüdeke P, Licha T, Burke V. Understanding flow patterns from the field - Controlled laboratory experiments on the transport behavior of veterinary antibiotics in the presence of liquid manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153415. [PMID: 35090912 DOI: 10.1016/j.scitotenv.2022.153415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The main entry path of veterinary antibiotics to the environment is the application of liquid manure on agricultural land. Along with the manure, they can infiltrate into soils and leach into groundwater. As the environmental behavior of veterinary antibiotics is strongly affected by the process of sorption, the comprehensive knowledge regarding their sorption behavior is key to a reliable risk assessment. However, the flow patterns in field experiments are influenced by several factors that can hardly be distinguished, while most of the sorption studies on veterinary antibiotics were designed without manure or as batch experiments, which means that the effects of manure on the transport behavior of the antibiotic substances remained unaccounted for. In order to understand the results from a previous field experiment and concurrently fill the identified knowledge gap, a column experiment was performed to investigate the effects of manure on the transport of sulfamethazine, sulfadiazine, tetracycline, and lincomycin in soil. Results show that sulfamethazine and sulfadiazine were highly mobile in both the presence and absence of manure, while tetracycline did not appear at the outlet of any column. Despite their high mobility, in the presence of manure the sulfonamides were slightly delayed compared to the conservative tracer as was also seen during the previous field experiment. Lincomycin transport was already delayed in the absence of manure. Furthermore, in the presence of manure, lincomycin was delayed by 4.5 times relative to the tracer, which clearly underlined the influence of manure on the transport of lincomycin and offers an explanation why lincomycin has barely been detected in the long-term field experiment. However, in contrast to the results obtained in the field experiment, the recovery rates were the same in presence and absence of manure for both sulfonamides and lincomycin, probably due to reduced degradation at the applied concentration level.
Collapse
Affiliation(s)
- Anne Mehrtens
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129 Oldenburg, Germany.
| | - Wiebke Freund
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129 Oldenburg, Germany
| | - Pia Lüdeke
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129 Oldenburg, Germany
| | - Tobias Licha
- Hydrochemistry Group, Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Victoria Burke
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129 Oldenburg, Germany
| |
Collapse
|
46
|
Yang X, Zhong Q, Liang S, Li Y, Wang Y, Zhu X, Liu Y. Global Supply Chain Drivers of Agricultural Antibiotic Emissions in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5860-5873. [PMID: 35442028 DOI: 10.1021/acs.est.1c07110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotic pollution causes serious environmental and social issues. China is the largest antibiotic producer and user in the world, with a large share of antibiotics used in agriculture. This study quantified agricultural antibiotic emissions of mainland China in 2014 as well as critical drivers in global supply chains. Results show that China's agriculture discharged 4131 tons of antibiotics. Critical domestic supply chain drivers are mainly located in Central China, North China, and East China. Foreign final demand contributes 9% of agricultural antibiotic emissions in mainland China and leads to 5-40% of emissions in each province. Foreign primary inputs (e.g., labor and capital) contribute 5% of agricultural antibiotic emissions in mainland China and lead to 2-63% of emissions in each province. Critical international drivers include the final demand of the United States and Japan for foods and textile products, as well as the primary inputs of the oil seeds sector in Brazil. The results indicate the uniqueness of supply chain drivers for antibiotic emissions compared with other emissions. Our findings reveal supply chain hotspots for multiple-perspective policy decisions to control China's agricultural antibiotic emissions as well as for international cooperation.
Collapse
Affiliation(s)
- Xuechun Yang
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qiumeng Zhong
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yumeng Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Wang
- School of Statistics, Beijing Normal University, Beijing 100875, China
| | - Xiaobiao Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Liu
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
- School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Chen X, Yang Y, Ke Y, Chen C, Xie S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152852. [PMID: 34995606 DOI: 10.1016/j.scitotenv.2021.152852] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/12/2023]
Abstract
The release of tetracyclines (TCs) in the environment is of significant concern because the residual antibiotics may promote resistance in pathogenic microorganisms, and the transfer of antibiotic resistance genes poses a potential threat to ecosystems. Microbial biodegradation plays an important role in removing TCs in both natural and artificial systems. After long-term acclimation, microorganisms that can tolerate and degrade TCs are retained to achieve efficient removal of TCs under the optimum conditions (e.g. optimal operational parameters and moderate concentrations of TCs). To date, cultivation-based techniques have been used to isolate bacteria or fungi with potential degradation ability. Moreover, the biodegradation mechanism of TCs can be unveiled with the development of chemical analysis (e.g. UPLC-Q-TOF mass spectrometer) and molecular biology techniques (e.g. 16S rRNA gene sequencing, multi-omics sequencing, and whole genome sequencing). In this review, we made an overview of the biodegradation of TCs in different systems, refined functional microbial communities and pure isolates relevant to TCs biodegradation, and summarized the biodegradation products, pathways, and degradation genes of TCs. In addition, ecological risks of TCs biodegradation were considered from the perspectives of metabolic products toxicity and resistance genes. Overall, this article aimed to outline the research progress of TCs biodegradation and propose future research prospects.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Deng H, He H, Li W, Abbas T, Liu Z. Characterization of amphoteric bentonite-loaded magnetic biochar and its adsorption properties for Cu 2+ and tetracycline. PeerJ 2022; 10:e13030. [PMID: 35251788 PMCID: PMC8896019 DOI: 10.7717/peerj.13030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023] Open
Abstract
To realize simultaneous adsorption of heavy metal and antibiotic pollutants by a BC-based recyclable material, Fe3O4 magnetic biochar (MBC) was prepared by co-precipitation method. Then different ratios of dodecyl dimethyl betaine (BS-12)-modified bentonite (BS-B) were loaded on the surfaces of biochar (BC) and MBC to prepare BS-B-loaded BC and MBC composites, called BS-B/BC and BS-B/MBC, respectively. The physicochemical and structural properties of the composites were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, specific surface area (SBET) analysis, and vibrating sample magnetometry, and the adsorption efficiencies of BS-B/BC and BS-B/MBC to Cu2+ and tetracycline (TC) were studied. The following results were obtained. (1) Compared with BS-B/BC, BS-B/MBC had decreased pH and cation exchange capacity (CEC) and increased SBET. The pH, CEC, and SBET of BS-B/BC and BS-B/MBC decreased with the increase in the BS-12 proportion of BS-B. The surface of BS-B/MBC became rough after Fe3O4 loading. (2) The residual rate of BS-B/MBC was higher than that of BS-B/BC after high-temperature combustion, and the residual rate decreased with the increase in the BS-12 proportion of BS-B. The 2D infrared spectra showed that Fe3O4 and BS-12 were modified on the surface of BS-B/MBC. MBC and BS-B/MBC had splendid magnetism and could be separated by external magnetic field. (3) Compared with unmagnetized ones, the adsorption effects of Cu2+ and TC on different BS-B/MBCs improved, and the average adsorption rate reached the largest value of 91.92% and 97.76%, respectively. Cu2+ and TC adsorptions were spontaneous, endothermic, and entropy-increasing processes. The pH and SBET of the material had a great influence on Cu2+ and TC adsorptions, respectively, than CEC.
Collapse
Affiliation(s)
- Hongyan Deng
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Haixia He
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Wenbin Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Touqeer Abbas
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Zhejiang, China
| | - Zhifeng Liu
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Hanzhong, China
| |
Collapse
|
49
|
He D, Zhu K, Huang J, Shen Y, Lei L, He H, Chen W. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127569. [PMID: 34741936 DOI: 10.1016/j.jhazmat.2021.127569] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heteroatoms doped carbon materials are widely used in the advanced oxidation process (AOPs) to remove organic pollutants in water due to the synergies effect between different heteroatoms. In this study, a novel kind of N, S co-doped magnetic mesoporous carbon nanosheets (Fe@NS-C) was prepared by simple one-step pyrolysis. Further, the influence of doping amount of S (L-methionine) and N (melamine) on catalytic activity was studied, the optimized sample Fe@NS-C-2-12/PMS showed a satisfying degradation ( 91.07%) for high concentrations of tetracycline (80 mg/L TC) in 10 min, which was attributed to the proper ratio of S content to N content (S(at.%)/ N(at.%)= 0.2097) in the sample could better play its synergistic effect by XPS analysis. The Fe@NS-C-2-12/ PMS system also exhibited satisfactory degradation effects in a wide pH range (3-10) and the existence of inorganic ions and humic acid. Then, the degradation mechanisms were mainly through the non-radical pathway (1O2 and electron transfer) and the major active sites were pyridinic N compared to thiophene S, CO, and Fe-Nx. This study could inspire the design of high-performance active and low-cost heteroatomic doping nano-magnetic catalysts for PMS-based waste treatment.
Collapse
Affiliation(s)
- Dongdong He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yaqian Shen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Lele Lei
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Hongmei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| |
Collapse
|
50
|
Wu Q, Xiao SK, Pan CG, Yin C, Wang YH, Yu KF. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150439. [PMID: 34597968 DOI: 10.1016/j.scitotenv.2021.150439] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of antibiotics has raised global concerns, but scarce information on antibiotics in the subtropical marine environment is available. In the present study, seawater and sediment samples were collected to investigate the occurrence, spatial distribution, source, and ecological risks of 22 antibiotics in the Beibu Gulf. The total concentrations of target antibiotics (∑antibiotics) were in the range of 1.74 ng/L to 23.83 ng/L for seawater and 1.33 ng/g to 8.55 ng/g dry weight (dw) for sediment. Spatially, a decreasing trend of antibiotic levels from coast to offshore area was observed, with relatively high levels at the sites close to the Qinzhou Bay and Qiongzhou Strait. Sulfamethoxazole (SMX), trimethoprim (TMP), and norfloxacin (NOX) were predominant in seawater, while NOX, enoxacin (ENX), and enrofloxacin (ENR) were the most abundant antibiotics in sediment. In general, the sediment-water partitioning coefficients (Kd) were positively correlated with log molecular weight (MW). Salinity, particle size, and pH of water were predicted to be vital factors influencing the partition of sulfadiazine (SDZ), CIX, and ENR (p < 0.05). Livestock and aquaculture were identified as dominant sources of antibiotics in the Beibu Gulf based on PCA-MLR and Unmix model. Risk assessment revealed that SMX, CIX could pose medium risks to algae in the Beibu Gulf. Overall, our results provided paramount insights into understanding the fate and transport behaviors of antibiotics in the subtropical marine environment.
Collapse
Affiliation(s)
- Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chao Yin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|