1
|
Huang ZY, Yuan CS, Yen PH, Tu IC, Tseng YL. Temporal variations and chemical characteristics of marine PM 2.5 at Dongsha Islands, South China Sea: Three-year measurement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124378. [PMID: 38885829 DOI: 10.1016/j.envpol.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The study of long-range transport effects on marine fine particles (PM2.5), particularly in remote sites such as the Dongsha Islands, is pivotal for advancing our understanding of air pollution dynamics on a regional scale and for formulating effective environmental policies. PM2.5 concentrations were examined over three consecutive years and grouped based on their transport routes. The backward trajectory simulation revealed that high PM2.5 concentrations were observed in the West Channel, originating from North and Central China, the Korean Peninsula, and the Japanese Islands, opposed to the East Channel. High PM2.5 concentrations, commonly observed in winter and spring, were mainly attributed to the Asian Northeastern Monsoons. Water-soluble inorganic ions constituted the major components, accounting for 37.8-48.7% of PM2.5, and followed by metal elements (15.5-20.0%), carbons (7.5-13.3%), levoglucosan (0.01-0.17%), and organic aerosols (0.2-2.2%). Secondary inorganic aerosols as the dominant source accounted for 8.3-24.7% of PM2.5, while sea salts were the secondary major contributor. High levoglucosan contribution (3.8-7.2%) in winter and spring was attributed to biomass burning, mainly from the Indochina Peninsula. Chemical mass balance receptor modeling resolved that major sources of PM2.5 were secondary sulfate, sea salts, fugitive dust, and industrial boilers. This study concluded that the long-range transport of PM2.5 gradually increased since fall, contributing 52.1-74.3%, highlighting its substantial impact on PM2.5 in all seasons except summer.
Collapse
Affiliation(s)
- Zi-You Huang
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan.
| | - Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - I-Chieh Tu
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung, 804, Taiwan
| |
Collapse
|
2
|
Yen PH, Yuan CS, Soong KY, Jeng MS, Cheng WH. Identification of potential source regions and long-range transport routes/channels of marine PM 2.5 at remote sites in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170110. [PMID: 38232833 DOI: 10.1016/j.scitotenv.2024.170110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Long-range transport (LRT) of air masses in East Asia and their impacts on marine PM2.5 were explored. Situated in the leeward region of East Asia, Taiwan Island marked by its elevated Central Mountain Range (CMR) separates air masses into two distinct air currents. This study aims to investigate the transport of PM2.5 from the north to the leeward region. Six transport routes (A-F) were identified and further classified them into three main channels (i.e. East, West, and South Channels) based on their transport routes and potential sources. Green Island (Site GR) and Hengchun Peninsula (Site HC) exhibited similarities in their transport routes, with Central China, North China, and Korean Peninsula being the major source regions of PM2.5, particularly during the Asian Northeastern Monsoons (ANMs). Dongsha Island (Site DS) was influenced by both Central China and coastal regions of East China, indicating Asian continental outflow (ACO) as the major source of PM2.5. The positive matrix factorization (PMF) analysis of PM2.5 resolved that soil dust, sea salts, biomass burning, ship emissions, and secondary aerosols were the major sources. Northerly Channels (i.e. East and West Channels) were primarily influenced by ship emissions and secondary aerosols, while South Channel was dominated by oceanic spray and soil dust. The results of W-PSCF and W-CWT analysis indicated that three remote sites experienced significant contributions from Central China in the highest PM2.5 concentration range (75-100%). In contrast, PM2.5 in the 0-25% and 25-50% ranges primarily originated from the open seas, with ship emissions being the prominent source. It suggested that northern regions with heavy industrialization and urbanization have impacts on high PM2.5 concentrations, while open seas are the main sources of low PM2.5 concentrations.
Collapse
Affiliation(s)
- Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC.
| | - Ker-Yea Soong
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung City, Taiwan, ROC
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, Taiwan, ROC; Green Island Marine Research Station, Biodiversity Research Center, Academia Sinica, Green Island, Taitung, Taiwan, ROC
| | - Wen-Hsi Cheng
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
3
|
Fu X, Chen D, Wang X, Li Y, Lang J, Zhou Y, Guo X. The impacts of ship emissions on ozone in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166252. [PMID: 37574059 DOI: 10.1016/j.scitotenv.2023.166252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Tropospheric ozone (O3), which is one of the main pollutants impeding air quality compliance, has received considerable attention in China. As maritime transportation continues to expand, the effect of ship emissions on air quality is becoming increasingly important. In this study, the Weather Research and Forecast model (WRF), the Community Multiscale Air Quality model (CMAQ), and the integrated process rate (IPR) module provided in the CMAQ are applied to evaluate the impacts of ship emissions on O3 concentration at a national scale in China, including the spatiotemporal characteristics and influencing pathways. Ship emissions can increase or decrease O3 concentrations, with varying effects in different seasons and regions. In the winter, spring, and fall, ship emissions were predicted to decrease O3 concentrations in most areas, whereas in the summer, they increase the O3 concentration, even in regions far away from the coastline, thus adversely affecting the Yangtze River Delta (YRD) and Pearl River Delta (YRD). Additionally, owing to differences in the emissions of volatile organic compounds and nitrogen oxides, the northern and southern regions of the YRD respond differently to ship emissions. Additionally, the influence of ship emissions on the diurnal variation of O3 in the summer was investigated, where significant differences were indicated between cities. The IPR was used to investigate the individual processes contributing to changes in the O3 concentration caused by ship emissions. The transport process appears to be the primary contributor to O3 production, whereas chemistry and dry deposition played key roles in O3 loss. This study provides an in-depth insight into the impacts of ship emissions on O3 in China, which can facilitate the formulation of corresponding environmental policies.
Collapse
Affiliation(s)
- Xinyi Fu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Dongsheng Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Xiaotong Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yue Li
- Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China
| | - Jianlei Lang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Ying Zhou
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Xiurui Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Bai Z, Shao J, Xu W, Zhu K, Zhao L, Wang L, Chen J. An unneglected source to ambient brown carbon and VOCs at harbor area: LNG tractor truck. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165575. [PMID: 37499815 DOI: 10.1016/j.scitotenv.2023.165575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The ambient air quality of harbors area in Asia is commonly more polluted compared to other continents. The airborne pollutant is directly or indirectly related to a significant impact of traffic emissions. This study for the first time assessed the impacts on brown carbon (BrC) and volatile organic compounds (VOCs) from in-port liquid natural gas (LNG) tractor truck at harbor areas, via conducting real-time monitoring of VOCs characteristic and sampling for ambient air at a harbor (named as W harbor) in Shanghai, China, collecting emissions of in-port LNG tractor truck and miniCast in laboratory, as well as statistics of external container diesel trucks in the port for further validation. HPLC/DAD/Q-Tof MS was adopted for sample analysis. Results showed that many CHO compounds were associated with vehicle exhausts. Among of them, aliphatic CHO compounds with low degree of unsaturation were identified as fatty acids and fatty acid methyl esters extensively existing in fuel combustion emissions. And non-aliphatic CHO compounds characterized by low O/C ratios (<0.17) identified for the harbor air came from the emissions of in-port LNG power trucks with low-speed driving and idling. The ambient average non-methane total hydrocarbons (NMHC) concentration (0.59 ppm) at W harbor was much greater than that for other areas in Shanghai. The higher ratios of toluene/benzene (3.30) and m/p-xylene/ethylbenzene (3.11) observed at W harbor implied instead of external container diesel trucks, the dominating contributing of internal LNG tractor trucks to ambient VOCs cannot be neglected. This study concluded that LNG is not as clean as it was expected. The LNG-fueled vehicles can produce strong light-absorption chromophores as well as high concentration of VOCs.
Collapse
Affiliation(s)
- Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| | - Jiantao Shao
- China Construction Eighth Engineering Division Corp., Ltd., Shanghai 200112, China
| | - Wei Xu
- Shanghai Jianke Environmental Techonology Co., Ltd, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| | - Ling Zhao
- School of Ecology and Environment, Inner Mongolia University, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| |
Collapse
|
5
|
Tsai CY, Peng YP, Lin CH, Chen KF, Lai CH, Qiu PH. Seasonal Disparities of Human Health Risk and Particle-Bound Metal Characteristics Associated with Atmospheric Particles in a Fishery Harbor. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:438-450. [PMID: 37910195 DOI: 10.1007/s00244-023-01037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
The effects of atmospheric pollution from ship emissions have been considered for several harbors worldwide. The health risk assessment and source apportionment of particle-bound metals in a fishery harbor were investigated in this study. The most abundant metal elements in particulate matter (PM) on all sampling days in three seasons were Fe (280.94 ± 136.93 ng/m3), Al (116.40 ± 71.25 ng/m3), and Zn (110.55 ± 26.70 ng/m3). The ratios of V/Ni were 1.44 ± 0.31, 1.48 ± 0.09 and 1.87 ± 0.06 in PM10, PM2.5, and PM1, respectively. Meanwhile, the ratios higher than 1 indicated that fuel oil combustion from ship emission in fishery harbor. The highest deposits of total particle-bound metals in the human respiratory tract were in the head airway (HA), accounting for 76.77 ± 2.29% of the total particle-bound metal concentration, followed by 5.32 ± 0.13% and 2.53 ± 0.15% in the alveolar region (AR) and tracheobronchial (TB) region, respectively. The total cancer risk (CR) of inhalation exposure to local residents exceeded 10-6. Mean total CR values followed the sequence: autumn (1.24 × 10-4) > winter (8.53 × 10-5) > spring (2.77 × 10-6). Source apportionment of related metal emissions was mobile pollution emissions (vehicle/boat) (37.10-48.92%), metal fumes of arc welding exhaust (19.68-34.42%), spray-painting process (12.34-16.24%), combustion emissions (6.32-13.12%), and metal machining processes (9.04-16.31%) in Singda fishing harbor. These results suggest that proper control of heavy metals from each potential source in fishing harbor areas should be carried out to reduce the carcinogenic risk of adverse health effects.
Collapse
Affiliation(s)
- Cheng-Yun Tsai
- Institute of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yen-Ping Peng
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 632301, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, 545, Taiwan
| | - Chia-Hsiang Lai
- Department of Biotechnology, National Formosa University, Yunlin, 632301, Taiwan.
| | - Pin-Hao Qiu
- Department of Biotechnology, National Formosa University, Yunlin, 632301, Taiwan
| |
Collapse
|
6
|
Jang E, Choi S, Yoo E, Hyun S, An J. Impact of shipping emissions regulation on urban aerosol composition changes revealed by receptor and numerical modelling. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2023; 6:52. [PMID: 37274460 PMCID: PMC10226717 DOI: 10.1038/s41612-023-00364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/03/2023] [Indexed: 06/06/2023]
Abstract
Various shipping emissions controls have recently been implemented at both local and national scales. However, it is difficult to track the effect of these on PM2.5 levels, owing to the non-linear relationship that exists between changes in precursor emissions and PM components. Positive Matrix Factorisation (PMF) identifies that a switch to cleaner fuels since January 2020 results in considerable reductions in shipping-source-related PM2.5, especially sulphate aerosols and metals (V and Ni), not only at a port site but also at an urban background site. CMAQ sensitivity analysis reveals that the reduction of secondary inorganic aerosols (SIA) further extends to inland areas downwind from ports. In addition, mitigation of secondary organic aerosols (SOA) in coastal urban areas can be anticipated either from the results of receptor modelling or from CMAQ simulations. The results in this study show the possibility of obtaining human health benefits in coastal cities through shipping emission controls.
Collapse
Affiliation(s)
- Eunhwa Jang
- Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616 Republic of Korea
| | - Seongwoo Choi
- Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616 Republic of Korea
| | - Eunchul Yoo
- Busan Metropolitan City Institute of Health and Environment, 120, Hambakbong-ro, 140beon-gil, Buk-gu, Busan, 46616 Republic of Korea
| | - Sangmin Hyun
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan, 49111 Republic of Korea
| | - Joongeon An
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201 Republic of Korea
| |
Collapse
|
7
|
Tseng YL, Yuan CS, Wong KW, Lin C. Chemical fingerprints and source resolution of atmospheric fine particles in an industrial harbor based on one-year intermittent field sampling data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161335. [PMID: 36603635 DOI: 10.1016/j.scitotenv.2022.161335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the spatiotemporal variation, chemical characteristics, and source resolution of PM2.5 in an East Asian seaport adjacent to industrial complex and urban area. Three representative harbor sites were selected to simultaneously sample 24-h PM2.5 once every 13 days in four seasons. A significant seasonal variation was observed with the highest and the lowest PM2.5 concentration in February (winter) and May (summer), respectively. High contribution of secondary inorganic aerosols (SIAs) showed that SO2 and NOx emitted from neighboring combustion sources burning coal and heavy fuel oil (HFO) were the major precursors forming secondary inorganic PM2.5. High ratios of V/Ni and V/Cu were observed in summer (June~August) since the prevailing west and southwest winds from outer port carried ship emissions to inter port. The correlation of chemical fingerprints (V, Ni, V/Ni, Zn, nss-SO42-, OC) and the number of ships were high at the Zhung-He Site and moderate at the Qi-Ho Site. The Cl-, Na+, V, Ni, nss-SO42-, OC, and V/Ni of PM2.5 were co-influenced by ship missions and oceanic spray in the Kaohsiung Harbor. The influences were relatively higher for winds blown from the harbor areas than those blown from the industrial areas. Oppositely, the Fe, Mn, Cr, Cu, Ca, Zn, and Al in PM2.5 were higher for winds blown from the industrial areas than those from the harbor areas. The CMB receptor modelling resolved that the major sources of PM2.5 were industrial missions, secondary aerosols, mobile sources, ship emissions, oceanic spray, fugitive dust, biomass burning, and organic carbon. Similar to Busan (South Korea), Brindisi (Italy), Lampedusa (Italy), and Barcelona (Spain), the contributions of ship emissions in the Kaohsiung Harbor were in the range of 7.4-7.8 %. Meanwhile, Kaohsiung Harbor was highly influenced by emissions from industrial areas and urban areas.
Collapse
Affiliation(s)
- Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC; Aeroaol Science Research Center, National Sun Yat-sen University, Kaohsiung City, Taiwan, ROC.
| | - Kwok-Wai Wong
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
8
|
Xiong X, Wang Z, Cheng C, Li M, Yun L, Liu S, Mao L, Zhou Z. Long-Term Observation of Mixing States and Sources of Vanadium-Containing Single Particles from 2020 to 2021 in Guangzhou, China. TOXICS 2023; 11:339. [PMID: 37112565 PMCID: PMC10144789 DOI: 10.3390/toxics11040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The distribution of vanadium (V) in aerosols is commonly used to track ship exhaust emissions, yet the atmospheric abundance of V has been greatly reduced due to the implementation of a clean fuel policy. Recent research mainly discussed the chemical compositions of ship-related particles during specific events, yet few studies focus on the long-term changes of V in the atmosphere. In this study, a single-particle aerosol mass spectrometer was used to measure V-containing particles from 2020 to 2021 in Huangpu Port in Guangzhou, China. The long-term trend of the particle counts of V-containing particles declined annually, but the relative abundance of V-containing particles in the total single particles increased in summer due to the influence of ship emissions. Positive matrix factorization revealed that in June and July 2020, 35.7% of the V-containing particles were from ship emissions, followed by dust and industrial emissions. Furthermore, more than 80% of the V-containing particles were found mixing with sulfate and 60% of the V-containing particles were found mixing with nitrate, suggesting that the majority of the V-containing particles were secondary particles processed during the transport of ship emissions to urban areas. Compared with the small changes in the relative abundance of sulfate in the V-containing particles, the relative abundance of nitrate exhibited clear seasonal variations, with a high abundance in winter. This may have been due to the increased production of nitrate from high concentrations of precursors and a suitable chemical environment. For the first time, the long-term trends of V-containing particles in two years are investigated to demonstrate changes in their mixing states and sources after the clean fuel policy, and to suggest the cautious application of V as an indicator of ship emissions.
Collapse
Affiliation(s)
- Xin Xiong
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Zaihua Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy Science, Xi’an 710061, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Lijun Yun
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Sulin Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Liyuan Mao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| |
Collapse
|
9
|
Kuang B, Zhang F, Shen J, Shen Y, Qu F, Jin L, Tang Q, Tian X, Wang Z. Chemical characterization, formation mechanisms and source apportionment of PM 2.5 in north Zhejiang Province: The importance of secondary formation and vehicle emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158206. [PMID: 36028033 DOI: 10.1016/j.scitotenv.2022.158206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
PM2.5 affects air quality, therefore, chemical evolution, formation mechanism and source identification of PM2.5 are essential to help figure out mitigation measures. PM2.5 and its constituents were comprehensively characterized with highly time-resolved measurements from 2019 to 2020 in north Zhejiang Province (Shanxi, SX) for the first time, with an emphasis on the contribution of secondary formation and vehicle emission to PM2.5. Secondary inorganic ions (sulfate: 3.86 μg/m3, nitrate: 7.82 μg/m3 and ammonium: 4.59 μg/m3, SNA) were found to be the major components (54%) in PM2.5 (29.70 μg/m3). The highly consistence of nitrate, sulfate and secondary organic compounds (SOC) with Ox (NO2 + O3) or RH indicated the importance of photochemical oxidation and heterogeneous reaction in different scenarios. Higher atmospheric oxidative potential facilitated the SOC formation in spring. The PM2.5 mass was apportioned to eight sources resolved by positive matrix factorization (PMF): secondary nitrate (9.63 μg/m3), secondary sulfate (5.14 μg/m3), vehicle emission (7.26 μg/m3), coal combustion (2.39 μg/m3), biomass burning (1.38 μg/m3), soil dust (0.86 μg/m3), industry emission (0.50 μg/m3), and ship emission (0.32 μg/m3). Secondary nitrate (35%) and sulfate (19%) formation and vehicle emission (26%) were the main factors contributing to the PM2.5. Furthermore, the contribution of secondary nitrate formation increased with elevating PM2.5 concentration. Regional transport was synthetically studied by chemical and backward trajectory analysis, reflecting that secondary nitrate contributed severely to the air quality at SX, while vehicle emission contribution enhanced when atmosphere was stagnant. This study first provides long-term comprehensive chemical characterization and source apportionments of PM2.5 pollution in north Zhejiang, which may provide some guidance for the air pollution control.
Collapse
Affiliation(s)
- Binyu Kuang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Fei Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jiasi Shen
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Yemin Shen
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Fangqi Qu
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lingling Jin
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Qian Tang
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Xudong Tian
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Zhibin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China.
| |
Collapse
|
10
|
Huang H, Zhou C, Huang L, Xiao C, Wen Y, Li J, Lu Z. Inland ship emission inventory and its impact on air quality over the middle Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156770. [PMID: 35728651 DOI: 10.1016/j.scitotenv.2022.156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Shipping emissions have been considered a significant source of air pollution in the cities along the Yangtze River, with severe impacts on the climate and human health. This study created a complete annual ship emission inventory for the middle reaches of the Yangtze River and assessed its impact on air quality on a regional scale. To estimate the complete emissions, 9 main engine power regression models for different ship types were created to handle those vessels with absent main power data, and a high spatial-temporal resolution annual emission inventory was developed with the activity-based method combined with Automatic Identification System (AIS) data of the full year of 2018. The total emissions of CO2, CO, SO2, NOX, PM2.5, PM10 and HC in middle reaches of the Yangtze River were 5.67 × 105, 1.02 × 103, 5.41 × 102, 1.06 × 104, 2.43 × 102, 2.45 × 102 and 3.52 × 102 tons respectively. Then, the Weather Research and Forecasting with Chemistry (WRF-Chem) model was used to study the dispersion of the ship pollutants in the atmosphere and quantize the impact on the urban area. This research will provide services for the maritime authorities to develop green shipping and emission supervision.
Collapse
Affiliation(s)
- Hongxun Huang
- School of Navigation, Wuhan University of Technology, Wuhan, China; Hubei Key Laboratory of Inland Shipping Technology, Wuhan, China
| | - Chunhui Zhou
- School of Navigation, Wuhan University of Technology, Wuhan, China; Hubei Key Laboratory of Inland Shipping Technology, Wuhan, China; Laboratory of Transport Pollution Control and Monitoring Technology, Beijing, China.
| | - Liang Huang
- Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan, China; National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, China
| | - Changshi Xiao
- School of Navigation, Wuhan University of Technology, Wuhan, China; Hubei Key Laboratory of Inland Shipping Technology, Wuhan, China; National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, China
| | - Yuanqiao Wen
- Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan, China; National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, China
| | - Jing Li
- School of Navigation, Wuhan University of Technology, Wuhan, China; Hubei Key Laboratory of Inland Shipping Technology, Wuhan, China
| | - Zhigang Lu
- Zhejiang Scientific Research Institute of Transport, Hangzhou, China
| |
Collapse
|
11
|
Park J, Kim H, Kim Y, Heo J, Kim SW, Jeon K, Yi SM, Hopke PK. Source apportionment of PM 2.5 in Seoul, South Korea and Beijing, China using dispersion normalized PMF. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155056. [PMID: 35395292 DOI: 10.1016/j.scitotenv.2022.155056] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
East Asian countries experience severe air pollution owing to their rapid development and urbanization induced by substantial economic activities. South Korea and China are among the most polluted East Asian countries with high mass concentrations of PM2.5. Although the occurrence of transboundary air pollution among neighboring countries has been recognized for a long time, studies involving simultaneous ground-based PM2.5 monitoring and source apportionment in South Korea and China have not been conducted to date. This study performed simultaneous daily ground-based monitoring of PM2.5 in Seoul and Beijing from January to December 2019. The mass concentrations of PM2.5 and its major chemical components were analyzed simultaneously during 2019. Positive matrix factorization (PMF) as well as dispersion normalized PMF (DN-PMF) were utilized for the source apportionment of ambient PM2.5 at the two sites. 23 h average ventilation coefficients were applied for daily PM2.5 chemical constituents' data. Nine sources were identified at both sites. While secondary nitrate, secondary sulfate, mobile, oil combustion, biomass burning, soil, and aged sea salt were commonly found at both sites, industry/coal combustion and incinerator were identified only at Seoul and incinerator/industry and coal combustion were identified only at Beijing. Reduction of the meteorological influences were found in DN-PMF compare to C-PMF but the effects of DN on mobile source were reduced by averaging over the 23 h sampling period. The DN-PMF results showed that Secondary nitrate (Seoul: 25.5%; Beijing: 31.7%) and secondary sulfate (Seoul: 20.5%; Beijing: 17.6%) were most dominant contributors to PM2.5 at both sites. Decreasing secondary sulfate contributions and increasing secondary nitrate contributions were observed at both sites.
Collapse
Affiliation(s)
- Jieun Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Hyewon Kim
- Korea Conformity Laboratories, Seoul, Republic of Korea
| | - Youngkwon Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jongbae Heo
- Busan Development Institute, Busan, Republic of Korea
| | - Sang-Woo Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kwonho Jeon
- Climate and Air Quality Research, Department Global Environment Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Seung-Muk Yi
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Chen J, Zhang H, Xue J, Yuan L, Yao W, Wu H. Study on spatial distribution, potential sources and ecological risk of heavy metals in the surface water and sediments at Shanghai Port, China. MARINE POLLUTION BULLETIN 2022; 181:113923. [PMID: 35843161 DOI: 10.1016/j.marpolbul.2022.113923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal concentrations in surface waters and sediments of Shanghai port were measured to analyze the spatial distribution characteristics, sources and pollution degrees. The southern Shanghai port was heavily polluted by Cd, Pb, Cr and Cu in water, and the concentrations of Pb, Hg and Zn in sediments exceeded Effects Range Low. Cu, Pb, Cd and Cr in water were positively correlated in group, and they probably derived from industrial and domestic sewage, fossil fuel burning and vehicular pollution and represented 82.47 % of the contribution. Zn, Hg and As contaminations represented industrial and agricultural effluent sources and accounted for the remaining 17.53 %. Heavy metal pollution of Yangshan Port water was at high pollution, and the remaining sites were at low pollution. Most of the sampling sites were at moderate ecological risk in sediments, and the pollution of Cd, Hg and Zn were serious.
Collapse
Affiliation(s)
- Jianwu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Yao
- Shanghai Coscoshipping industry co.ltd, Shanghai 200135, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
López M, López Lilao A, Ribalta C, Martínez Y, Piña N, Ballesteros A, Fito C, Koehler K, Newton A, Monfort E, Viana M. Particle release from refit operations in shipyards: Exposure, toxicity and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150216. [PMID: 34520930 DOI: 10.1016/j.scitotenv.2021.150216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
European harbours are known to contribute to air quality degradation. While most of the literature focuses on emissions from stacks or logistics operations, ship refit and repair activities are also relevant aerosol sources in EU harbour areas. Main activities include abrasive removal of filler and spray painting with antifouling coatings/primers/topcoats. This work aimed to assess ultrafine particle (UFP) emissions from ship maintenance activities and their links with exposure, toxicity and health risks for humans and the aquatic environment. Aerosol emissions were monitored during mechanical abrasion of surface coatings under real-world operating conditions in two scenarios in the Mallorca harbour (Spain). Different types of UFPs were observed: (1) highly regular (triangular, hexagonal) engineered nanoparticles (Ti-, Zr-, Fe-based), embedded as nano-additives in the coatings, and (2) irregular, incidental particles emitted directly or formed during abrasion. Particle number concentrations monitored were in the range of industrial activities such as drilling or welding (up to 5 ∗ 105/cm3, mean diameters <30 nm). The chemical composition of PM4 aerosols was dominated by metallic tracers in the coatings (Ti, Al, Ba, Zn). In vitro toxicity of PM2 aerosols evidenced reduced cell viability and a moderate potential for cytotoxic effects. While best practices (exhaust ventilation, personal protective equipment, dust removal) were in place, it is unlikely that exposures and environmental release can be fully avoided at all times. Thus, it is advisable that health and safety protocols should be comprehensive to minimise exposures in all types of locations (near- and far-field) and periods (activity and non-activity). Potential release to coastal surface waters of metallic engineered and incidental nanomaterials, as well as fine and coarse particles (in the case of settled dust), should be assessed and avoided.
Collapse
Affiliation(s)
- M López
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain; Barcelona University, Chemistry Faculty, C/ de Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - A López Lilao
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - C Ribalta
- The National Research Center for Work Environment (NRCWE), Lersø Parkallé 105, 2100 København, Denmark
| | - Y Martínez
- Baleari Island University (UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - N Piña
- Baleari Island University (UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - A Ballesteros
- Technological Institute of Packaging, Transportation and Logistics (ITENE), C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - C Fito
- Technological Institute of Packaging, Transportation and Logistics (ITENE), C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - K Koehler
- Johns Hopkins University (JHU), Baltimore, MD 21218, USA
| | - A Newton
- Johns Hopkins University (JHU), Baltimore, MD 21218, USA
| | - E Monfort
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - M Viana
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
14
|
Potential Risks of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals from Inland and Marine Directions for a Marine Background Site in North China. TOXICS 2022; 10:toxics10010032. [PMID: 35051074 PMCID: PMC8779893 DOI: 10.3390/toxics10010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/02/2023]
Abstract
Ambient PM2.5-bound ions, OC, EC, heavy metals (HMs), 18 polycyclic aromatic hydrocarbons (PAHs), 7 hopanes, and 29 n-alkanes were detected at Tuoji Island (TI), the only marine background atmospheric monitoring station in North China. The annual PM2.5 average concentration was 47 ± 31 μg m-3, and the average concentrations of the compositions in PM2.5 were higher in cold seasons than in warm seasons. The cancer and non-cancer risks of HMs and PAHs in cold seasons were also higher than in warm seasons. BaP, Ni, and As dominated the ∑HQ (hazard quotient) in cold seasons, while the non-carcinogenic risk in warm seasons was mainly dominated by Ni, Mn, and As. The ILCR (incremental lifetime cancer risk) values associated with Cr and As were higher in the cold season, while ILCR-Ni values were higher in the warm season. The backward trajectory was calculated to identify the potential directions of air mass at TI. Through the diagnostic ratios of organic and inorganic tracers, the sources of particulate matter in different directions were judged. It was found that ship emissions and sea salt were the main sources from marine directions, while coal combustion, vehicles emissions, industrial process, and secondary aerosols were the main source categories for inland directions. In addition, potential HM and PAH risks from inland and marine directions were explored. The non-cancerous effects of TI were mainly affected by inland transport, especially from the southeast, northwest, and west-northwest. The cancerous effects of TI were mainly simultaneously affected by the inland direction and marine direction of transport.
Collapse
|
15
|
Tseng YL, Wu CH, Yuan CS, Bagtasa G, Yen PH, Cheng PH. Inter-comparison of chemical characteristics and source apportionment of PM 2.5 at two harbors in the Philippines and Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148574. [PMID: 34328987 DOI: 10.1016/j.scitotenv.2021.148574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study inter-compared the concentration and chemical characteristics of PM2.5 at two harbors in East Asia, and identified the potential sources of PM2.5 and their contribution. Two sites located at the Kaohsiung (Taiwan) and Manila (the Philippines) Harbors were selected for simultaneous sampling of PM2.5 in four seasons. The sampling of 24-h PM2.5 was conducted for continuous seven days in each season. Water-soluble ions, metallic elements, carbonaceous content, anhydrosugars, and organic acids in PM2.5 were analyzed to characterize their chemical fingerprints. Receptor modeling and trajectory simulation were further applied to resolve the source apportionment of PM2.5. The results indicated that the Kaohsiung Harbor was highly influenced by long-range transport (LRT) of polluted air masses from Northeast Asia, while the Manila Harbor was mainly influenced by local emissions. Secondary inorganic aerosols were the most abundant ions in PM2.5. Crustal elements dominated the metallic content of PM2.5, but trace elements were mainly originated from anthropogenic sources. Higher concentrations of organic carbon (OC) than elemental carbon (EC) was found in PM2.5, with secondary OC (SOC) dominant to the former. Levoglucosan in PM2.5 at the Manila Harbor were superior to those at the Kaohsiung Harbor due to biomass burning surrounding the Manila Harbor. Additionally, high mass ratios of malonic and succinic acids (M/S) in PM2.5 indicated the formation of SOAs. Overall, the ambient air quality of Manila Harbor was more polluted than Kaohsiung Harbor. The Kaohsiung Harbor was more severely affected by LRT of polluted air masses from Northeast Asia, while those toward the Manila Harbor came from the oceans. The major sources resolved by CMB and PMF models at the Kaohsiung Harbor were secondary aerosols, ironworks, incinerators, oceanic spray, and ship emissions, while those at the Manila Harbor were secondary aerosols, soil dust, biomass burning, ship emissions, and oceanic spray.
Collapse
Affiliation(s)
- Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC
| | - Chien-Hsing Wu
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC; Aeroaol Science Research Center, National Sun Yat-sen University, Kaohsiung City, Taiwan, ROC.
| | - Gerry Bagtasa
- Institute of Environmental Science & Meteorology, University of the Philippines at Diliman, Quezon City, Manila, the Philippines
| | - Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC
| | - Po-Hung Cheng
- Institute of Environmental Engineering, National Sun-Yat Sen University, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
16
|
The Temporal and Spatial Changes of Ship-Contributed PM2.5 Due to the Inter-Annual Meteorological Variation in Yangtze River Delta, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ship-exhausted air pollutants could cause negative impacts on air quality, climate change, and human health. Increasing attention has been paid to investigate the impact of ship emissions on air quality. However, the conclusions are often based on a specific year, the extent to which the inter-annual variation in meteorological conditions affects the contribution is not yet fully addressed. Therefore, in this study, the Weather Research and Forecast model and the Community Multiscale Air Quality model(WRF/CMAQ) were employed to investigate the inter-annual variations in ship-contributed PM2.5 from 2010 to 2019. The Yangtze River Delta (YRD) region in China was selected as the target study area. To highlight the impact of inter-annual meteorological variations, the emission inventory and model configurations were kept the same for the 10-year simulation. We found that: (1) inter-annual meteorological variation had an evident impact on the ship-contributed PM2.5 in most coastal cities around YRD. Taking Shanghai as an example, the contribution varied between 3.05 and 5.74 µg/m3, with the fluctuation rate of ~65%; (2) the inter-annual changes in ship’s contribution showed a trend of almost simultaneous increase and decrease for most cities, which indicates that the impact of inter-annual meteorological variation was more regional than local; (3) the inter-annual changes in the northern part of YRD were significantly higher than those in the south; (4) the most significant inter-annual changes were found in summer, followed by spring, fall and winter.
Collapse
|
17
|
Wu Y, Liu D, Wang X, Li S, Zhang J, Qiu H, Ding S, Hu K, Li W, Tian P, Liu Q, Zhao D, Ma E, Chen M, Xu H, Ouyang B, Chen Y, Kong S, Ge X, Liu H. Ambient marine shipping emissions determined by vessel operation mode along the East China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144713. [PMID: 33736243 DOI: 10.1016/j.scitotenv.2020.144713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Marine shipping emissions exert important air quality and climate impacts. This study characterized the ambient pollutants predominant by emissions from a variety of marine vessel types near the mid-latitude East China Sea. Two discernible primary shipping emissions were identified by factorization analysis on detailed mass spectra of organic aerosol (OA), as emissions in maneuvering and cruise, highly linked with NOx (and less oxidized OA, black carbon, BC) or CO (and more oxidized OA), respectively. Using radio-recorded quantities and activities of 3566 vessels mixed with slow and high-speed diesel engines, we found emission of NOx or BC per vessel was positively correlated with vessel speed, while CO emission peaked at moderate speed. The approach here based on vessel operation mode directly linked the vessel activities to ambient concentrations of pollutants from marine shipping emission, and may synthesize the complex vessel types in shipping emission inventory.
Collapse
Affiliation(s)
- Yangzhou Wu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaotong Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Siyuan Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Jiale Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Hao Qiu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Shuo Ding
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Kang Hu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, PR China
| | - Ping Tian
- Beijing Weather Modification Office, Beijing 100089, PR China
| | - Quan Liu
- Beijing Weather Modification Office, Beijing 100089, PR China
| | - Delong Zhao
- Beijing Weather Modification Office, Beijing 100089, PR China
| | - Endian Ma
- Putuo District Meteorological Bureau of Zhoushan, Zhoushan 316100, PR China
| | - Meiting Chen
- Zhoushan Meteorological Bureau, Zhoushan 316021, PR China
| | - Honghui Xu
- Zhejiang Meteorological Science Institute, Hangzhou 310008, PR China
| | - Bin Ouyang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Ying Chen
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, PR China
| | - Xinlei Ge
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
18
|
Shipping and Air Quality in Italian Port Cities: State-of-the-Art Analysis of Available Results of Estimated Impacts. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Populated coastal areas are exposed to emissions from harbour-related activities (ship traffic, loading/unloading, and internal vehicular traffic), posing public health issues and environmental pressures on climate. Due to the strategic geographical position of Italy and the high number of ports along coastlines, an increasing concern about maritime emissions from Italian harbours has been made explicit in the EU and IMO (International Maritime Organization, London, UK) agenda, also supporting the inclusion in a potential Mediterranean emission control area (MedECA). This work reviews the main available outcomes concerning shipping (and harbours’) contributions to local air quality, particularly in terms of concentration of particulate matter (PM) and gaseous pollutants (mainly nitrogen and sulphur oxides), in the main Italian hubs. Maritime emissions from literature and disaggregated emission inventories are discussed. Furthermore, estimated impacts to air quality, obtained with dispersion and receptor modeling approaches, which are the most commonly applied methodologies, are discussed. Results show a certain variability that suggests the necessity of harmonization among methods and input data in order to compare results. The analysis gives a picture of the effects of this pollution source, which could be useful for implementing effective mitigation strategies at a national level.
Collapse
|
19
|
Bie S, Yang L, Zhang Y, Huang Q, Li J, Zhao T, Zhang X, Wang P, Wang W. Source appointment of PM 2.5 in Qingdao Port, East of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142456. [PMID: 33017760 DOI: 10.1016/j.scitotenv.2020.142456] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 05/19/2023]
Abstract
Field measurements were conducted near Qingdao Port to characterize the particulate air pollutants, assess the spatial and seasonal characteristics of the pollutants, and identify the contribution from ship traffic emissions. By utilizing multiple statistical methods and data collected at two sites in Qingdao, we comprehensively explored the PM2.5 seasonal characteristics and source apportionments of different PM2.5 constituents, especially those originating from ship emissions, and identified potential source regions for samples collected in Qingdao. In this study, 118 concurrent daily PM2.5 samples were collected from August 2018 to May 2019 at a port site (QH) and a coastal background site (BG). Vanadium (V) and Nickel (Ni) are the dominant metal elements from crude oil and crude oil combustion emissions. The significant correlations between V and Ni at both sampling sites, indicating that shipping emissions have a significant impact on the port and background area. Additionally, Ni and other metals showed significant correlations at the BG site, implying Ni also emission from the land-based oil at this site. The positive matrix factorization (PMF) model identified six main sources for the PM2.5 samples in Qingdao, and they are coal combustion, industrial emissions/mineral dust, marine vessel emissions, secondary aerosols/biomass burning, sea salt/crustal emissions, and vehicle exhaust, respectively. Marine vessel emissions were the dominant contributor to PM2.5 in Qingdao during the sampling periods (25.05%). The potential source contribution function (PSCF) analysis suggested that the Yellow Sea and Jiaodong Peninsula were the major sources regions for PM2.5 in Qingdao. The Yellow Sea and Bohai Sea were the potential source regions for shipping emissions in Qingdao. Therefore, efforts to control shipping emissions should be strengthened not only at the Qingdao Port but also in surrounding ports.
Collapse
Affiliation(s)
- Shujun Bie
- Environment Research Institute, Shandong University, Qingdao, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu 210093, China.
| | - Yan Zhang
- Environment Research Institute, Shandong University, Qingdao, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, China
| | - Jingshu Li
- Environment Research Institute, Shandong University, Qingdao, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Jiang J, Aksoyoglu S, Ciarelli G, Baltensperger U, Prévôt ASH. Changes in ozone and PM 2.5 in Europe during the period of 1990-2030: Role of reductions in land and ship emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140467. [PMID: 32886963 DOI: 10.1016/j.scitotenv.2020.140467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Air pollution is among the top threats to human health and ecosystems despite the substantial decrease in anthropogenic emissions. Meanwhile, the role of ship emissions on air quality is becoming increasingly important with the growing maritime transport and less strict regulations. In this study, we modeled the air quality in Europe between 1990 and 2030 with ten-year intervals, using the regional air quality model CAMx version 6.50, to investigate the changes in the past (1990-2010) as well as the effects of different land and ship emission scenarios in the future (2020,2030). The modeled mean ozone levels decreased slightly during the first decade but then started increasing again especially in polluted areas. Results from the future scenarios suggest that by 2030 the peak ozone would decrease, leading to a decrease in the days exceeding the maximum daily 8-h average ozone (MDA8) limit values (60 ppb) by 51% in southern Europe relative to 1990. The model results show a decrease of 56% (6.3 μg m-3) in PM2.5 concentrations from 1990 to 2030 under current legislation, mostly due to a large drop in sulfate (representing up to 44% of the total PM2.5 decrease during 1990-2000) while nitrate concentrations were predicted to go down with an increasing rate (10% of total PM2.5 decrease during 1990-2000 while 36% during 2020-2030). The ship emissions if reduced according to the maximum technically feasible reduction (MTFR) scenario were predicted to contribute up to 19% of the decrease in the PM2.5 concentrations over land between 2010 and 2030. Ship emission reductions according to the MTFR scenario would lead to a decrease in the days with MDA8 exceeding EU limits by 24-28% (10-14 days) around the coastal regions. The results obtained in our study show the increasing importance of ship emission reductions, after a relatively large decrease in land emissions was achieved in Europe.
Collapse
Affiliation(s)
- Jianhui Jiang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Sebnem Aksoyoglu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | - Giancarlo Ciarelli
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Now at: Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
21
|
Viana M, Rizza V, Tobías A, Carr E, Corbett J, Sofiev M, Karanasiou A, Buonanno G, Fann N. Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels. ENVIRONMENT INTERNATIONAL 2020; 138:105670. [PMID: 32203802 PMCID: PMC8314305 DOI: 10.1016/j.envint.2020.105670] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 05/19/2023]
Abstract
Ship traffic emissions degrade air quality in coastal areas and contribute to climate impacts globally. The estimated health burden of exposure to shipping emissions in coastal areas may inform policy makers as they seek to reduce exposure and associated potential health impacts. This work estimates the PM2.5-attributable impacts in the form of premature mortality and cardiovascular and respiratory hospital admissions, from long-term exposure to shipping emissions. Health impact assessment (HIA) was performed in 8 Mediterranean coastal cities, using a baseline conditions from the literature and a policy case accounting for the MARPOL Annex VI rules requiring cleaner fuels in 2020. Input data were (a) shipping contributions to ambient PM2.5 concentrations based on receptor modelling studies found in the literature, (b) population and health incidence data from national statistical registries, and (c) geographically-relevant concentration-response functions from the literature. Long-term exposure to ship-sourced PM2.5 accounted for 430 (95% CI: 220-650) premature deaths per year, in the 8 cities, distributed between groups of cities: Barcelona and Athens, with >100 premature deaths/year, and Nicosia, Brindisi, Genoa, Venice, Msida and Melilla, with tens of premature deaths/year. The more stringent standards in 2020 would reduce the number of PM2.5-attributable premature deaths by 15% on average. HIA provided a comparative assessment of the health burden of shipping emissions across Mediterranean coastal cities, which may provide decision support for urban planning with a special focus on harbour areas, and in view of the reduction in sulphur content of marine fuels due to MARPOL Annex VI in 2020.
Collapse
Affiliation(s)
- M Viana
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - V Rizza
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (FR), Italy
| | - A Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - E Carr
- Energy and Environmental Research Associates, LLC, Pittsford, NY, United States
| | - J Corbett
- College of Earth, Ocean, and Environment, University of Delaware, Newark, DE, United States
| | - M Sofiev
- Finnish Meteorological Institute (FMI), Helsinki, Finland
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (FR), Italy; Queensland University of Technology, Brisbane, Australia
| | - N Fann
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Washington, DC, United States
| |
Collapse
|
22
|
Chen D, Fu X, Guo X, Lang J, Zhou Y, Li Y, Liu B, Wang W. The impact of ship emissions on nitrogen and sulfur deposition in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134636. [PMID: 31791755 DOI: 10.1016/j.scitotenv.2019.134636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A large amount of NOX and SO2 emitted from ships may elevate atmospheric N and S and eventually aggravate the deposition of N and S. The understanding of N and S deposition due to ship emissions is still limited, especially for China because it has a long coastline, busy shipping routes, and several large ports. To fill this gap, a comprehensive air quality model was employed in this study to quantify the contributions of ship emissions to N and S deposition on a national scale in China. Both the spatial and temporal variations of N and S deposition, as well as the major N and S species from ship traffic, were investigated. The results indicate that ship emissions contributed significantly to the deposition of N and S, especially in coastal and offshore areas, where the largest ship contribution to both N and S deposition could exceed 15 kg·ha-1·yr-1. For N deposition, ship emissions caused an increase in the total N deposition, not only in port areas and along shipping routes but also far inland, with evident seasonal variations. The contribution from dry N deposition was evidently larger than wet N deposition, especially over the coastal areas. S deposition, however, was generally higher along shipping routes but exhibited distinct seasonal variations. The total S deposition was dominated by dry deposition, especially over offshore areas. Ship-caused dry S deposition occurred mainly in offshore areas, while wet S deposition could be found over wider inland regions and inland waterways, although with a markedly smaller magnitude.
Collapse
Affiliation(s)
- Dongsheng Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Xinyi Fu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Xiurui Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Jianlei Lang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Ying Zhou
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yue Li
- Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China
| | - Bo Liu
- School of Geography Science, Nantong University, Nantong, China.
| | - Wenlin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| |
Collapse
|
23
|
Nuñez A, Vallecillos L, Marcé RM, Borrull F. Occurrence and risk assessment of benzothiazole, benzotriazole and benzenesulfonamide derivatives in airborne particulate matter from an industrial area in Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135065. [PMID: 31787291 DOI: 10.1016/j.scitotenv.2019.135065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
In this study we monitored benzothiazole (BTHs), benzotriazole (BTRs) and benzenesulfonamide (BSAs) derivatives in airborne particulate matter from four sampling sites near the port of Tarragona (Spain) over a one-year period. To do so, we developed a method based on ultrasound-assisted solvent extraction (USAE) followed by gas chromatography-mass spectrometry (GC-MS). We also studied concentrations of NO2 and airborne particulate matter (PM2.5 and PMcoarse) for a year. Our results showed NO2 and PM2.5 concentrations below the maximum average values established by the Europen Directive 2008/50/EC in the zone under study. Moreover, NO2 values are directly proportional to changes in weather conditions and traffic emissions, while PMcoarse and PM2.5 concentrations do not follow a clear trend as these may be generated from multiple sources (loading and unloading activities and traffic emissions). Regarding BTHs, BTRs and BSAs concentrations in particulate matter, the compounds found at the highest concentrations were 1-H-benzothiazole, 2-methylbenzothiazole, 2-chlorobenzothiazole, 1-H-benzotriazole, 4-methyl-1-H-benzotriazole, 2-(methylthio)-benzothiazole, 5-methyl-1-H-benzotriazole and bromobenzenesulfonamide with average concentrations ranging from 0.19 to 1.54 ng m-3 in PMcoarse and from 0.09 to 0.61 ng m-3 in PM2.5. The remaining compounds were below the method quantification limits (MQLs) or were undetected in the samples analysed. Health risk values associated with the inhalation of the studied compounds were between 1.80 × 10-3 and 1.27 × 10-2 in the worst-exposure scenario.
Collapse
Affiliation(s)
- Aleix Nuñez
- Centre Tecnològic de la Química-Eurecat, Marcel·lí Domingo n° 1, Tarragona 43007, Spain
| | - Laura Vallecillos
- Centre Tecnològic de la Química-Eurecat, Marcel·lí Domingo n° 1, Tarragona 43007, Spain
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel∙lí Domingo s/n, Tarragona 43007, Spain
| | - Francesc Borrull
- Centre Tecnològic de la Química-Eurecat, Marcel·lí Domingo n° 1, Tarragona 43007, Spain; Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel∙lí Domingo s/n, Tarragona 43007, Spain.
| |
Collapse
|
24
|
Sorte S, Rodrigues V, Borrego C, Monteiro A. Impact of harbour activities on local air quality: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113542. [PMID: 31733971 DOI: 10.1016/j.envpol.2019.113542] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Several harbour activities cause negative environmental impacts in the harbours' surrounding areas, namely the degradation of air quality. This paper intends to comprehensively review the status of the air quality measured in harbour areas. The published studies show a limited number of available air quality monitoring data in harbours areas, mostly located in Europe (71%). Measured concentrations of the main air pollutants were compiled and intercompared, for different countries worldwide allowing a large spatial representativeness. The higher NO2 and PM10 concentrations were found in Europe - ranging between 12 and 107 μg/m3 and 2-50 μg/m3, respectively, while the higher concentrations of PM2.5 were found in Asia (25-70 μg/m3). In addition, the lower levels of SO2 monitored in recent years suggest that current mitigation strategies adopted across Europe were very efficient in promoting the reduction of SO2 concentrations. Part of the reviewed studies also estimated the contributions from ship emissions to PM concentration through the application of source apportionment methods, with an average of 5-15%. In some specific harbour areas in Asia, ships can contribute up to 7-26% to the local fine particulate matter concentrations. This review confirms that emissions from the maritime transport sector should be considered as a significant source of particulate matter in harbour areas, since this pollutant concentrations are frequently exceeding the established standard legal limit values. Therefore, the results from this review boost the implementation of mitigation measures, aiming to reduce, in particular, particulate matter emissions.
Collapse
Affiliation(s)
- Sandra Sorte
- CESAM, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Vera Rodrigues
- CESAM, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Borrego
- CESAM, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Alexandra Monteiro
- CESAM, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
25
|
Nakatsubo R, Oshita Y, Aikawa M, Takimoto M, Kubo T, Matsumura C, Takaishi Y, Hiraki T. Influence of marine vessel emissions on the atmospheric PM 2.5 in Japan's around the congested sea areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134744. [PMID: 31733559 DOI: 10.1016/j.scitotenv.2019.134744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
In recent years, PM2.5 concentrations in Japan have decreased as China's measures against the emission of air pollutants were strengthened and the subsequent transport of air pollutants to Japan decreased. On the other hand, along the coast of the Seto inland sea in Japan, the PM2.5 concentration remains high. In this study, in order to evaluate the impact of air pollutants from marine vessels on PM2.5 along the coast of the Seto inland sea, PM2.5 was seasonally collected in the vicinity of a congested sea lane (Akashi Strait) in 2016 and 2017, and a receptor-source analysis was performed to determine the main components of the collected PM2.5. In Japan's congested sea lane, the vanadium (V) concentration was very high and showed a strong correlation with the nickel (Ni) concentration. Also, the V/Ni ratio rose when the wind blew from the sea lane. Positive Matrix Factorization (PMF) analysis clarified that the contributions from marine vessel emissions to PM2.5 at the current observation sites were 2.5-2.7 μg m-3 (17.3-21.4%), and the marine vessel emissions were the main source of PM2.5 along the coast of the Seto inland sea. Fuel oil regulations for marine vessels to be introduced in January 2020 are expected to improve the air quality of coastal areas.
Collapse
Affiliation(s)
- Ryohei Nakatsubo
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan; Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminami-machi, Higashinada-ku, Kobe, Hyogo 658 0022, Japan.
| | - Yoshie Oshita
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan
| | - Masahide Aikawa
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808 0135, Japan
| | - Mitsuteru Takimoto
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan
| | - Tomoko Kubo
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan
| | - Chisato Matsumura
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan
| | - Yutaka Takaishi
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan
| | - Takatoshi Hiraki
- Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association, 3-1-18 Yukihira-cho, Suma-ku, Kobe, Hyogo 654 0018, Japan; Graduate School of Maritime Sciences, Kobe University, 5-1-1 Fukaeminami-machi, Higashinada-ku, Kobe, Hyogo 658 0022, Japan
| |
Collapse
|
26
|
PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy. ATMOSPHERE 2020. [DOI: 10.3390/atmos11010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The possibility to discriminate between different emission sources and between natural and anthropogenic contributions is a key issue for planning efficient air pollution reduction and mitigation strategies. Moreover, the knowledge of the particulate matter (PM) chemical composition for the different size fractions is recognized as increasingly important, in particular with respect to health effects of exposed population. This study is focused on the characterization of PM10 and PM2.5 main sources located in the Civitavecchia harbor-industrial area (Central Italy), namely a large coal-fired power plant, a natural gas power plant, the harbor area, the vehicular traffic (due to both the local traffic and the highway crossing the area) and small industrial activities. The approach was based on PM10/PM2.5 samples monthly collected for one year and a further relative chemical characterization of organic and inorganic fractions. Wind-select sensors, allowing a selective PM10 and PM2.5 sampling downwind to specific emission sources, were used for the overall sampling. This methodology manages to explain specific emission patterns and to assess the concentration levels of the micro pollutants emitted by local sources and particularly toxic for health. A descriptive statistical analysis of data was performed, also verifying the occurrence of legislative threshold exceedances. Moreover, in order to highlight the contribution of specific sources, the differences in the measured micro pollutants concentrations between wind directions, PM size fractions and sampling sites have been investigated, as well as the seasonal trends of pollutants concentrations. These results allow to highlight that the applied methodology represents a valid support in source apportionment studies.
Collapse
|
27
|
Chen D, Tian X, Lang J, Zhou Y, Li Y, Guo X, Wang W, Liu B. The impact of ship emissions on PM 2.5 and the deposition of nitrogen and sulfur in Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1609-1619. [PMID: 30308929 DOI: 10.1016/j.scitotenv.2018.08.313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Ship emissions contribute significantly to the deterioration of air quality, while their impacts on ambient PM2.5 and depositions have not been comprehensively evaluated. This is especially true for China because it has a long coastline, busy shipping routes and many large ports. To fill this gap, this study applied the SMOKE/WRF/CMAQ modeling system to quantifying the impacts of ships on PM2.5 compositions, annual and seasonal contribution to PM2.5 as well as the wet and dry deposition of nitrogen and sulfur compounds over the land areas in YRD region for 2014. The results showed that 4.0% of annual PM2.5 concentrations over the land areas could be explained by ship emissions and the largest contribution could reach up to 35.0% in port areas. Temporally, the contribution to PM2.5 exhibited an obviously seasonal variation. The highest contribution was predicted in autumn (6.2%), followed by summer (5.4%), spring (3.6%) and winter (1.2%) for the land areas. Spatially, the contribution reached up to 13.6% along the coastline and dropped to 2.1% 300 km inland. As for the impacts on PM2.5 components, the primary components were relatively small and increased mainly along the shipping routes and the Yangtze River, whereas the secondary components played a more important role in both water and land areas. The sulfur deposition due to ship emissions was occurred generally along the shipping routes and was dominated by the dry SO2 deposition. The nitrogen depositions, on the contrary, was observed not only along the shipping routes but also extend to wide land areas. Further investigation revealed that ship emissions have caused an evident increase of dry nitrogen deposition in NO2 and HNO3, while a slight decrease in NH3 over YRD region. These results indicated that comprehensive regulations of ship emissions are required considering their adverse effects on the ambient concentration of PM2.5 and the deposition of sulfur and nitrogen.
Collapse
Affiliation(s)
- Dongsheng Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Xiaolei Tian
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Jianlei Lang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Ying Zhou
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yue Li
- Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China
| | - Xiurui Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Wenlin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China.
| | - Bo Liu
- School of Geography Science, Nantong University, Nantong, China
| |
Collapse
|