1
|
Wang J, Han S, Zhang J, Luo Y, Wang Y, Chen L. Establishment and characterization of a gill cell line from Takifugu obscurus and transcriptome analysis of its gene expression profiles upon low temperature. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109843. [PMID: 39181522 DOI: 10.1016/j.fsi.2024.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Takifugu obscurus is a farmed fish of great economic importance in China. The rapid development of T. obscurus aquaculture industry has been accompanied by disease and low-temperature stress, resulting in huge economic losses. Cell lines are used extensively in teleost physiology and pathology as the most cost-effective platform for in vitro research. A novel gill cell line of T. obscurus (named TOG) was first successfully established, and passed through 52 generations. The optimal conditions for TOG growth were 20 % FBS concentration and 24 °C, TOG could be grown in both hypotonic (150 mOsmol-kg-1) and hypertonic (600 mOsmol-kg-1) environments. TOG was determined to be derived from T. obscurus by sequencing the mitochondrial COI gene. Karyotype analysis revealed that the chromosome number of TOG was 44 (2n = 44). Transfection experiment showed that TOG was able to express foreign genes. Furthermore, several immune-related genes were significantly up-regulated in TOG after LPS and poly (I:C) stimulation, including tlr3, isg15, il1β and il10. Additionally, transcriptome analysis of TOG under low-temperature stress (24 °C, 18 °C, 12 °C, 10 °C and 8 °C) found that differentially expressed genes (DEGs) were significantly clustered in several immunological and energy metabolic pathways, and cold stress could disrupt the immune barrier and reduce immunity by downregulating the immune-related pathways. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that bule module and turquoise module, which were closely correlated with low temperature and the degree of fish damage, were both predominantly found in PPAR, NOD-like receptor and Toll-like receptor signaling pathway. Hub genes were identified in these two modules, including mre11, clpb, dhx15, ddx18 and utp15. TOG cell line will become an effective experimental platform for genetic and immunological research, and our results would help us gain a deeper insight into the molecular mechanism of cold tolerance in teleost.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuang Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jingping Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yuhao Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youquan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Wang C, An L, Dong XS, Xu X, Feng XY, Wang ZZ, He F, Chen X, Zhu YA, Meng QL. The tricarboxylic acid cycle is inhibited under acute stress from carbonate alkalinity in the gills of Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101245. [PMID: 38772315 DOI: 10.1016/j.cbd.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Owing to population growth and environmental pollution, freshwater aquaculture has been rapidly shrinking in recent years. Aquaculture in saline-alkaline waters is a crucial strategy to meet the increasing demand for aquatic products. The Chinese mitten crab is an important economic food in China, but the molecular mechanism by which it tolerates carbonate alkalinity (CA) in water remains unclear. Here, we found that enzyme activities of the tricarboxylic acid (TCA) cycle in the gills, such as citrate synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase, were markedly reduced under CA stress induced by 40 mM NaHCO3. Secondly, the TCA cycle in the gills is inhibited under acute CA stress, according to proteomic and metabolomic analyses. The expressions of six enzymes, namely aconitate hydratase, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase, dihydrolipoyl dehydrogenase, succinate-CoA ligase, and malate dehydrogenase, were downregulated, resulting in the accumulation of phosphoenolpyruvic acid, citric acid, cis-aconitate, and α-ketoglutaric acid. Finally, we testified that if the TCA cycle is disturbed by malonate, the survival rate increases in CA water. To our knowledge, this is the first study to show that the TCA cycle in the gills is inhibited under CA stress. Overall, the results provide new insights into the molecular mechanism of tolerance to saline-alkaline water in crabs, which helped us expand the area for freshwater aquaculture and comprehensively understand the physiological characteristics of crab migration.
Collapse
Affiliation(s)
- Chao Wang
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Li An
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Xue-Sa Dong
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Xiao Xu
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Xiu-Yun Feng
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Zhi-Zhong Wang
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Fei He
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Xi Chen
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yong-An Zhu
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China.
| | - Qing-Lei Meng
- Department of Genetics and Breeding, Shandong Freshwater Fisheries Research Institute, Jinan 250013, China.
| |
Collapse
|
3
|
Gao Y, Huang X, Liu Y, Lv H, Yin X, Li W, Chu Z. Transcriptome analysis of large yellow croaker (Larimichthys crocea) at different growth rates. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1745-1757. [PMID: 38842792 DOI: 10.1007/s10695-024-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The unsynchronized growth of the large yellow croaker (Larimichthys crocea), which impacts growth efficiency, poses a challenge for aquaculture practitioners. In our study, juvenile stocks of large yellow croaker were sorted by size after being cultured in offshore cages for 4 months. Subsequently, individuals from both the fast-growing (FG) and slow-growing (SG) groups were sampled for analysis. High-throughput RNA-Seq was employed to identify genes and pathways that are differentially expressed during varying growth rates, which could suggest potential physiological mechanisms that influence growth rate. Our transcriptome analysis identified 382 differentially expressed genes (DEGs), comprising 145 upregulated and 237 downregulated genes in comparison to the SG group. GO and KEGG enrichment analyses indicated that these DEGs are predominantly involved in signal transduction and biochemical metabolic pathways. Quantitative PCR (qPCR) results demonstrated that cat, fasn, idh1, pgd, fgf19, igf2, and fads2 exhibited higher expression levels, whereas gadd45b and gadd45g showed lower expression compared to the slow-growing group. In conclusion, the differential growth rates of large yellow croaker are intricately associated with cellular proliferation, metabolic rates of the organism, and immune regulation. These findings offer novel insights into the molecular mechanisms and regulatory aspects of growth in large yellow croaker and enhance our understanding of growth-related genes.
Collapse
Affiliation(s)
- Yang Gao
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China.
| | - Xuming Huang
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Yanli Liu
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Huirong Lv
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Zhangjie Chu
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| |
Collapse
|
4
|
Shang X, Geng L, Wei HJ, Liu T, Che X, Li W, Liu Y, Shi XD, Li J, Teng X, Xu W. Analysis revealed the molecular mechanism of oxidative stress-autophagy-induced liver injury caused by high alkalinity: integrated whole hepatic transcriptome and metabolome. Front Immunol 2024; 15:1431224. [PMID: 39040116 PMCID: PMC11260628 DOI: 10.3389/fimmu.2024.1431224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Hai jun Wei
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Wang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiao dan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Zhu W, Li Q, Peng M, Yang C, Chen X, Feng P, Liu Q, Zhang B, Zeng D, Zhao Y. Biochemical indicators, cell apoptosis, and metabolomic analyses of the low-temperature stress response and cold tolerance mechanisms in Litopenaeus vannamei. Sci Rep 2024; 14:15242. [PMID: 38956131 PMCID: PMC11219869 DOI: 10.1038/s41598-024-65851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.
Collapse
Affiliation(s)
- Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
6
|
Wang A, Zhang R, Zhang X, Chen C, Gong Q, Wang L, Wang Y. Effects of cold acclimation on serum biochemical parameters and metabolite profiles in Schizothorax prenanti. BMC Genomics 2024; 25:547. [PMID: 38824590 PMCID: PMC11143564 DOI: 10.1186/s12864-024-10483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Environmental temperature is critical in regulating biological functions in fish. S. prenanti is a kind of cold-water fish, but of which we have little knowledge about the metabolic adaptation and physiological responses to long-term cold acclimation. RESULTS In this study, we determined the physiological responses of S. prenanti serum after 30 days of exposure to 6℃. Compared with the control group, the levels of TC, TG, and LDL-C in the serum were significantly (P < 0.05) increased, and the level of glucose was significantly (P < 0.05) decreased under cold acclimation. Cold acclimation had no effect on the gene expression of pro-inflammatory factors and anti-inflammatory factors of S. prenanti. Metabolomics analysis by LC-MS showed that a total of 60 differential expressed metabolites were identified after cold acclimation, which involved in biosynthesis of amino acids, biosynthesis of unsaturated fatty acids, steroid degradation, purine metabolism, and citrate cycle pathways. CONCLUSION The results indicate that cold acclimation can alter serum metabolites and metabolic pathways to alter energy metabolism and provide insights for the physiological regulation of cold-water fish in response to cold acclimation.
Collapse
Affiliation(s)
- Aiyu Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xianshu Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunjie Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611713, P.R. China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
Vicentini M, Simmons D, Silva de Assis HC. How does temperature rise affect a freshwater catfish Rhamdia quelen? A proteomic approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101219. [PMID: 38377663 DOI: 10.1016/j.cbd.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Outside of scientific circles, climate change is a hotly debated topic due to all its consequences. Changes in the temperature can affect aquatic organisms and it is important to understand and to detect earlier signals. This study aimed to analyze how a Neotropical fish species responds to temperature increases, using proteomic analysis as a tool. For this, fish of the species Rhamdia quelen, male and female, were exposed to two temperatures: 25 °C and 30 °C. After 96 h, the animals were anesthetized, euthanized and the liver was collected for proteomic analysis. Using freely available online software and databases (e.g. MetaboAnalyst, Gene Ontology and UniProt), we define the altered proteins in both sexes: 42 in females and 62 in males. Data are available via ProteomeXchange with identifier PXD046475. Differences between the two temperatures were observed mainly in the amino acid metabolic pathways. The cellular process and the immune response was altered, indicating that effects at lower levels of biological organization could serve as a predictor of higher-level effects when temperature rise affects wildlife populations. Thus, we conclude that the increase in temperature is capable of altering important cellular and physiological processes in R. quelen fish, with this response being different for males and females.
Collapse
Affiliation(s)
- Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Biological Sciences Sector, Federal University of Paraná, Box 19031, 81531-980 Curitiba, PR, Brazil; Pharmacology Department, Federal University of Paraná, Brazil, Box 19031, 81531-980 Curitiba, PR, Brazil. https://twitter.com/maiaravicentini
| | - Denina Simmons
- Faculty of Science, OntarioTech University, 2000 Simcoe St. North, Oshawa, Ontario L1G 0C5, Canada. https://twitter.com/DeninaSimmons
| | | |
Collapse
|
8
|
Jin X, Yao R, Yu X, Wu H, Liu H, Huang J, Dai Y, Sun J. Global responses to tris(1-chloro-2-propyl) phosphate and tris(2-butoxyethyl) phosphate in Escherichia coli: Evidences from biomarkers, and metabolic disturbance using GC-MS and LC-MS metabolomics analyses. CHEMOSPHERE 2024; 358:142177. [PMID: 38679182 DOI: 10.1016/j.chemosphere.2024.142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Haochuan Wu
- School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yicheng Dai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
9
|
Wang Y, Shen M, Xu G, Yu H, Jia C, Zhu F, Meng Q, Xu D, Du S, Zhang D, Zhang Z. Comprehensive analysis of histophysiology, transcriptome and metabolome tolerance mechanisms in black porgy (Acanthopagrus schlegelii) under low temperature stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172318. [PMID: 38608886 DOI: 10.1016/j.scitotenv.2024.172318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Low temperature stress has adverse effects on fish growth and reproduction, causing huge economic losses to the aquaculture industry. Especially, black porgy (Acanthopagrus schlegelii) farming industry in north of Yangtze River has been severely affected by low temperature for a long time. To explore the tolerance mechanism of black porgy to low temperature stress, the experiment was designed. The liver and gill tissues of black porgy were taken from the water temperature point of 15 °C (control group named as CG), 3.8 °C (cold sensitive group named as CS) and 2.8 °C (cold tolerant group named as CT) with a cooling rate of 3 °C/d from 15 °C for histophysiology, transcriptomics and metabolomics analysis. After cold stress, the histological results showed that the nucleus of the black porgy liver tissue appeared swelling, the cell arrangement was disordered; meanwhile the gill lamellae were twisted and broken, the epidermis was detached and aneurysm appeared. In addition, the expression of antioxidant, glucose metabolism and immune-related enzymes in the liver and gill of black porgy also changed significantly after low temperature stress. By analyzing the transcriptome and metabolome dates of black porgy liver, 3474 differentially expressed genes (DEGs) and 689 differentially expressed metabolites (DEMs) involved in low temperature stress were identified, respectively. The results of the transcriptome and metabolome combined analysis showed that individuals in the CS group mainly supplied energy to the body through lipid metabolism and amino acid metabolism, and meanwhile the apoptosis pathway was activated. While, individuals in the CT group mainly through glucose metabolism and steroid hormone biosynthesis to supply energy for the body. The validation results of qPCR on eight functional genes further demonstrated the reliability of RNA-Seq data. In summary, the results provide molecular information about adaptation to climate change and genetic selection of black porgy.
Collapse
Affiliation(s)
- Yue Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Mingjun Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Guangping Xu
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Han Yu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Qian Meng
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Shuran Du
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Dianchang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences Guangzhou 510300, China
| | - Zhiwei Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China.
| |
Collapse
|
10
|
Zhang J, Wang QH, Miao BB, Wu RX, Li QQ, Tang BG, Liang ZB, Niu SF. Liver transcriptome analysis reveal the metabolic and apoptotic responses of Trachinotus ovatus under acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109476. [PMID: 38447780 DOI: 10.1016/j.fsi.2024.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.
Collapse
Affiliation(s)
- Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
11
|
Liu R, Deng M, Zhang N, Li Y, Jia L, Niu D. NADK-mediated proline synthesis enhances high-salinity tolerance in the razor clam. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111610. [PMID: 38408517 DOI: 10.1016/j.cbpa.2024.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Euryhaline organisms can accumulate organic osmolytes to maintain osmotic balance between their internal and external environments. Proline is a pivotal organic small molecule and plays an important role in osmoregulation that enables marine shellfish to tolerate high-salinity conditions. During high-salinity challenge, NAD kinase (NADK) is involved in de novo synthesis of NADP(H) in living organisms, which serves as a reducing agent for the biosynthetic reactions. However, the role of shellfish NADK in proline biosynthesis remains elusive. In this study, we show the modulation of NADK on proline synthesis in the razor clam (Sinonovacula constricta) in response to osmotic stress. Under acute hypersaline conditions, gill tissues exhibited a significant increase in the expression of ScNADK. To elucidate the role of ScNADK in proline biosynthesis, we performed dsRNA interference in the expression of ScNADK in gill tissues to assess proline content and the expression levels of key enzyme genes involved in proline biosynthesis. The results indicate that the knock-down of ScNADK led to a significant decrease in proline content (P<0.01), as well as the expression levels of two proline synthetase genes P5CS and P5CR involved in the glutamate pathway. Razor clams preferred to use ornithine as substrate for proline synthesis when the glutamate pathway is blocked. Exogenous administration of proline greatly improved cell viability and mitigated cell apoptosis in gills. In conclusion, our results demonstrate the important role of ScNADK in augmenting proline production under high-salinity stress, by which the razor clam is able to accommodate salinity variations in the ecological niche.
Collapse
Affiliation(s)
- Ruiqi Liu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Min Deng
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Na Zhang
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Jia
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Vicentini M, Pessatti JBK, Perussolo MC, Lirola JR, Marcondes FR, Nascimento N, Mela M, Cestari MM, Prodocimo V, Simmons D, Silva de Assis HC. Different response of females and males Neotropical catfish (Rhamdia quelen) upon short-term temperature increase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:477-494. [PMID: 38112904 DOI: 10.1007/s10695-023-01278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Climate change has been one of the most discussed topics in the world. Global warming is characterized by an increase in global temperature, also in aquatic environments. The increased temperature can affect aquatic organisms with lethal and sublethal effects. Thus, it is necessary to understand how different species respond to temperature. This study aimed to evaluate how the Neotropical catfish species Rhamdia quelen responds to temperature increases. The fish were exposed to temperatures of 25 °C (control) and 30 °C after gradual temperature increase for 7 days. After 96 h in each temperature, the fish were anesthetized, blood was collected, and after euthanasia, brain, liver, posterior kidney, gills, muscle, and gonads were collected. The gonads were used for sexing, while other tissues were used for the hematological, biochemical, genotoxic, and histopathological biomarkers analysis. Hepatic proteomic analysis with a focus on energy production was also carried out. Blood parameter changes in both sexes, including an increase in glucose in males, leukopenia in females, and genotoxicity in both sexes. Hepatic proteins related to energy production were altered in both sexes, but mainly in males. Others biomarker alterations, such as histopathological, were not observed in other tissues; however, the antioxidant system was affected differently between sexes. These showed that R. quelen juveniles, at temperatures higher than its optimum temperature such as 30 °C, has several sublethal changes, such as hematological alterations, antioxidant system activation, and energetic metabolism alteration, especially in males. Thus, short-term temperature rise can affect females and males of R. quelen differently.
Collapse
Affiliation(s)
- Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Pharmacology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | | | - Maiara Carolina Perussolo
- Pharmacology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Pelé Pequeno Príncipe Research Institute, Curitiba, PR, 80250-200, Brazil
| | - Juliana Roratto Lirola
- Genetics Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | | | - Natalia Nascimento
- Physiology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Maritana Mela
- Cell Biology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Marta Margarete Cestari
- Genetics Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Viviane Prodocimo
- Physiology Department, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Denina Simmons
- Faculty of Science, OntarioTech University, Oshawa, ON, L1G 0C5, Canada
| | | |
Collapse
|
13
|
Schleger IC, Pereira DMC, Resende AC, Romão S, Herrerias T, Neundorf AKA, de Souza MRDP, Donatti L. Metabolic responses in the gills of Yellowtail Lambari Astyanax lacustris under low- and high-temperature thermal stress. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:16-31. [PMID: 38217492 DOI: 10.1002/aah.10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Ectothermic fish are directly affected by temperature changes in the environment. The aim of this study was to evaluate the metabolic responses in the gills of Yellowtail Lambari Astyanax lacustris under thermal stress. METHODS To this end, we used spectrophotometry to evaluate the biomarkers of carbohydrate and protein metabolism, antioxidant defense, and oxidative damage in fish subjected to low (15°C) and high (31°C) temperatures, with control groups held at 23°C, for 2, 6, 12, 24, 48, and 96 h. RESULT The results showed that cold thermal stress did not change the energy demand, and the antioxidant defense was reduced; therefore, the gills were vulnerable to the action of reactive oxygen species (ROS), presenting increased protein carbonylation at 12 h. With heat thermal stress, a higher energy demand was observed, which was verified by an increase in aerobic metabolism by glycolysis and the citric acid cycle. High-temperature stress also increased the antioxidant defenses, as verified by the increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase. However, the antioxidant defense system could not protect tissues from the action of ROS, as protein carbonylation increased at 6 and 24 h, indicating oxidative stress. CONCLUSION The results showed that (1) temperature variations caused metabolic adjustments in the gills of Yellowtail Lambari, (2) the adaptive responses were different for winter and summer temperatures, and (3) Yellowtail Lambari recovered homeostasis when subjected to thermal stress, even with the occurrence of oxidative stress.
Collapse
Affiliation(s)
- Ieda Cristina Schleger
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Anna Carolina Resende
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul, Paraná, Brazil
| | | | - Ananda Karla Alves Neundorf
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Lucélia Donatti
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
14
|
Ranasinghe N, Chen WZ, Hu YC, Gamage L, Lee TH, Ho CW. Regulation of PGC-1α of the Mitochondrial Energy Metabolism Pathway in the Gills of Indian Medaka ( Oryzias dancena) under Hypothermal Stress. Int J Mol Sci 2023; 24:16187. [PMID: 38003377 PMCID: PMC10671116 DOI: 10.3390/ijms242216187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ectothermic fish exposure to hypothermal stress requires adjusting their metabolic molecular machinery, which was investigated using Indian medaka (Oryzias dancena; 10 weeks old, 2.5 ± 0.5 cm) cultured in fresh water (FW) and seawater (SW; 35‱) at room temperature (28 ± 1 °C). The fish were fed twice a day, once in the morning and once in the evening, and the photoperiod was 12 h:12 h light: dark. In this study, we applied two hypothermal treatments to reveal the mechanisms of energy metabolism via pgc-1α regulation in the gills of Indian medaka; cold-stress (18 °C) and cold-tolerance (extreme cold; 15 °C). The branchial ATP content was significantly higher in the cold-stress group, but not in the cold-tolerance group. In FW- and SW-acclimated medaka, the expression of genes related to mitochondrial energy metabolism, including pgc-1α, prc, Nrf2, tfam, and nd5, was analyzed to illustrate differential responses of mitochondrial energy metabolism to cold-stress and cold-tolerance environments. When exposed to cold-stress, the relative mRNA expression of pgc-1α, prc, and Nrf2 increased from 2 h, whereas that of tfam and nd5 increased significantly from 168 h. When exposed to a cold-tolerant environment, prc was significantly upregulated at 2 h post-cooling in the FW and SW groups, and pgc-1α was significantly upregulated at 2 and 12 h post-cooling in the FW group, while tfam and nd5 were downregulated in both FW and SW fish. Hierarchical clustering revealed gene interactions in the cold-stress group, which promoted diverse mitochondrial energy adaptations, causing an increase in ATP production. However, the cold-tolerant group demonstrated limitations in enhancing ATP levels through mitochondrial regulation via the PGC-1α energy metabolism pathway. These findings suggest that ectothermic fish may develop varying degrees of thermal tolerance over time in response to climate change. This study provides insights into the complex ways in which fish adjust their metabolism when exposed to cold stress, contributing to our knowledge of how they adapt.
Collapse
Affiliation(s)
- Naveen Ranasinghe
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Zhu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Lahiru Gamage
- International Master’s Program of Biomedical Sciences, College of Medicine, China Medical University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chuan-Wen Ho
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
| |
Collapse
|
15
|
Liu S, Tian F, Qi D, Qi H, Wang Y, Xu S, Zhao K. Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure. BMC Genomics 2023; 24:545. [PMID: 37710165 PMCID: PMC10500822 DOI: 10.1186/s12864-023-09587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Teleost fish have evolved various adaptations that allow them to tolerate cold water conditions. However, the underlying mechanism of this adaptation is poorly understood in Tibetan Plateau fish. RNA-seq combined with liquid chromatography‒mass spectrometry (LC‒MS/MS) metabolomics was used to investigate the physiological responses of a Tibetan Plateau-specific teleost, Gymnocypris przewalskii, under cold conditions. The 8-month G. przewalskii juvenile fish were exposed to cold (4 ℃, cold acclimation, CA) and warm (17 ℃, normal temperature, NT) temperature water for 15 days. Then, the transcript profiles of eight tissues, including the brain, gill, heart, intestine, hepatopancreas, kidney, muscle, and skin, were evaluated by transcriptome sequencing. The metabolites of the intestine, hepatopancreas, and muscle were identified by LC‒MS/MS. A total of 5,745 differentially expressed genes (DEGs) were obtained in the CA group. The key DEGs were annotated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The DEGs from the eight tissues were significantly enriched in spliceosome pathways, indicating that activated alternative splicing is a critical biological process that occurs in the tissues to help fish cope with cold stress. Additionally, 82, 97, and 66 differentially expressed metabolites were identified in the intestine, hepatopancreas, and muscle, respectively. Glutathione metabolism was the only overlapping significant pathway between the transcriptome and metabolome analyses in these three tissues, indicating that an activated antioxidative process was triggered during cold stress. In combination with the multitissue transcriptome and metabolome, we established a physiology-gene‒metabolite interaction network related to energy metabolism during cold stress and found that gluconeogenesis and long-chain fatty acid metabolism played critical roles in glucose homeostasis and energy supply.
Collapse
Affiliation(s)
- Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Qinghai Naked Carp Rescue Center, Xining, Qinghai, China
| | - Shixiao Xu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| |
Collapse
|
16
|
Effects of Saline-Alkaline Stress on Metabolome, Biochemical Parameters, and Histopathology in the Kidney of Crucian Carp ( Carassius auratus). Metabolites 2023; 13:metabo13020159. [PMID: 36837778 PMCID: PMC9966543 DOI: 10.3390/metabo13020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The salinization of the water environment caused by human activities and global warming has increased which has brought great survival challenges to aquatic animals. Crucian carp (Carassius auratus) is an essential freshwater economic fish with superior adaptability to saline-alkali water. However, the physiological regulation mechanism of crucian carp adapting to saline-alkali stress remains still unclear. In this study, crucian carp were exposed to freshwater or 20, 40, and 60 mmol/L NaHCO3 water environments for 30 days, the effects of saline-alkali stress on the kidney were evaluated by histopathology, biochemical assays and metabolomics analysis from renal function, antioxidant capacity and metabolites level. Our results showed different degrees of kidney damage at different exposure concentrations, which were characterized by glomerular atrophy and swelling, renal tubular degranulation, obstruction and degeneration, renal interstitial edema, renal cell proliferation and necrosis. Saline-alkali stress could change the levels of several physiological parameters with renal function and antioxidant capacity, including creatinine (CREA), urea nitrogen (BUN), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA). In addition, metabolomics analysis showed that differential metabolites (DMs) were involved in various metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, purine metabolism, glycerophospholipid metabolism, sphingolipid metabolism, glycolysis/gluconeogenesis and the TCA cycle. In general, our study revealed that saline-alkaline stress could cause significant changes in renal function and metabolic profiles, and induce severe damage in the crucian carp kidney through destroying the anti-oxidant system and energy homeostasis, inhibiting protein and amino acid catabolism, as well as disordering purine metabolism and lipid metabolism. This study could contribute to a deeper understanding the adverse effects of saline-alkali stress on crucian carp kidney and the regulatory mechanism in the crucian carp of saline-alkali adaptation at the metabolic level.
Collapse
|
17
|
Ratko J, Gonçalves da Silva N, Ortiz da Silva D, Paula Nascimento Corrêa A, Mauro Carneiro Pereira D, Cristina Schleger I, Karla Alves Neundorf A, Herrerias T, Rita Corso C, Rosa Dmengeon Pedreiro de Souza M, Donatti L. Can high- and low-temperature thermal stress modulate the antioxidant defense response of Astyanax lacustris brain? Brain Res 2022; 1797:148118. [PMID: 36240883 DOI: 10.1016/j.brainres.2022.148118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022]
Abstract
Change in temperature of aquatic environment have impacts on the physiology of fish, especially in the brain, which is a vital organ and prone to oxidative damage. Astyanax lacustris is a freshwater fish that play an important role in the food market and has been increasingly used in fish farms, besides environmental monitoring studies. Therefore, this study aimed to evaluate the responses of antioxidant biomarkers and products of the oxidative process in the brains A. lacustris subjected to thermal shock. The specimens were obtained from artificial farming lakes and subjected to shock induced by exposure to high (31 °C ± 0.5) and low (15 °C ± 0.5) temperature for 2, 6, 12, 24, 48, 72 and 96 h; control group were maintained at 23 °C ± 0.5. At 31 °C, glutathione-related enzymes were more responsive, suggested by the change activity of GPx and G6PDH enzymes, in addition to GSH levels. At 15 °C, enzymes of the first line of defense were more active, evidenced by the change CAT activity. No significant changes were detected in the levels of ROS, LPO and PCO. These results indicate that the brains of A. lacustris have an efficient antioxidant defense system with the ability to acclimatize to the temperatures tested.
Collapse
Affiliation(s)
- Jonathan Ratko
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Niumaique Gonçalves da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Diego Ortiz da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | - Ana Paula Nascimento Corrêa
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | - Diego Mauro Carneiro Pereira
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Ieda Cristina Schleger
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Ananda Karla Alves Neundorf
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Lucélia Donatti
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Postgraduate Program on Cellular and Molecular Biology, Federal University of Paraná, Curitiba, Brazil; Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
18
|
Liu Y, Chen Z, Li S, Ding L, Wei X, Han S, Wang P, Sun Y. Multi-omics profiling and biochemical assays reveal the acute toxicity of environmental related concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on the gill of crucian carp (Carassius auratus). CHEMOSPHERE 2022; 307:135814. [PMID: 35921887 DOI: 10.1016/j.chemosphere.2022.135814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most extensively utilized plasticizers in the plastic manufacturing process. It is widely used in various fields due to its low cost and excellent effect. Although there is evidence that DEHP is harmful to animal and human health, DEHP-induced gill toxicity in aquatic organisms is inconclusive, and its mechanism has not been fully elucidated. Here, we investigated the effects of DEHP acute exposure on crucian carp gills at environmentally relevant concentrations of 20, 100, and 500 μg/L. Multi-omics profiling and biochemical assays were employed to characterize the potential toxicological mechanisms. The results showed that acute exposure to 100 and 500 μg/L of DEHP leads to oxidative stress in gills, as evidenced by overproduction of reactive oxygen species (ROS), increased antioxidant enzyme activity, and the transformation of glutathione from reduced to oxidized form, resulting in lipid peroxidation. Integrative analysis of transcriptomics and metabolomics indicated that increased purine metabolism was the potential source of increased ROS. Moreover, lipid metabolism disorder, including arachidonic acid metabolism, induces inflammation. Further, DEHP causes the imbalance of the CYP enzyme system in the gill, and DEHP-induced gill toxicity in crucian carp was associated with interference with CYP450 homeostasis. Taken together, this study broadens the molecular understanding of the DEHP-induced gill toxicity in aquatic organisms and provides novel perspectives for assessing the effects of DEHP on target and non-target aquatic organisms in the environment.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Shanwei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaofeng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
19
|
Liu R, Long Y, Liu R, Song G, Li Q, Yan H, Cui Z. Understanding the Function and Mechanism of Zebrafish Tmem39b in Regulating Cold Resistance. Int J Mol Sci 2022; 23:ijms231911442. [PMID: 36232766 PMCID: PMC9569763 DOI: 10.3390/ijms231911442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022] Open
Abstract
Autophagy and endoplasmic reticulum (ER) stress response are among the key pathways regulating cold resistance of fish through eliminating damaged cellular components and facilitating the restoration of cell homeostasis upon exposure to acute cold stress. The transmembrane protein 39A (TMEM39A) was reported to regulate both autophagy and ER stress response, but its vertebrate-specific paralog, the transmembrane protein 39B (TMEM39B), has not been characterized. In the current study, we generate tmem39b-knockout zebrafish lines and characterize their survival ability under acute cold stress. We observed that the dysfunction of Tmem39b remarkably decreased the cold resilience of both the larval and adult zebrafish. Gene transcription in the larvae exposed to cold stress and rewarming were characterized by RNA sequencing (RNA-seq) to explore the mechanisms underlying functions of Tmem39b in regulating cold resistance. The results indicate that the deficiency of Tmem39b attenuates the up-regulation of both cold- and rewarming-induced genes. The cold-induced transcription factor genes bif1.2, fosab, and egr1, and the rewarming-activated immune genes c3a.3, il11a, and sting1 are the representatives influenced by Tmem39b dysfunction. However, the loss of tmem39b has little effect on the transcription of the ER stress response- and autophagy-related genes. The measurements of the phosphorylated H2A histone family member X (at Ser 139, abbreviated as γH2AX) demonstrate that zebrafish Tmem39b protects the cells against DNA damage caused by exposure to the cold-warming stress and facilitates tissue damage repair during the recovery phase. The gene modules underlying the functions of Tmem39b in zebrafish are highly enriched in biological processes associated with immune response. The dysfunction of Tmem39b also attenuates the up-regulation of tissue C-reactive protein (CRP) content upon rewarming. Together, our data shed new light on the function and mechanism of Tmem39b in regulating the cold resistance of fish.
Collapse
Affiliation(s)
- Renyan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| | - Ran Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huawei Yan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| |
Collapse
|
20
|
Gao M, Heng X, Jin J, Chu W. Gypenoside XLIX Ameliorate High-Fat Diet-Induced Atherosclerosis via Regulating Intestinal Microbiota, Alleviating Inflammatory Response and Restraining Oxidative Stress in ApoE−/− Mice. Pharmaceuticals (Basel) 2022; 15:ph15091056. [PMID: 36145277 PMCID: PMC9501270 DOI: 10.3390/ph15091056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
A high-fat choline diet (HFCD)-induced atherosclerosis model in ApoE−/− mice was established to explore the anti-atherosclerotic effects of gypenoside XLIX (GPE). It was found that HFCD-induced atherosclerotic index such as dyslipidemia, atherosclerotic plaque, inflammation, and gut microbiota dysfunction could be reduced by GPE treatment. GPE treatment could decrease Verrucomicrobia, Proteobacteria, and Actinobacteria abundance, and increase Firmicutes and Bacteroidetes population. Moreover, the Firmicutes/Bacteroidetes ratio increased significantly after treatment with GPE. After treatment with GPE, the relative abundance of trimethylamine-producing intestinal bacteria Clostridioides and Desulfovibrionaceae decreased while butyrate-producing bacteria such as Eubacterium, Roseburia, Bifidobacterium, Lactobacillus, and Prevotella increased significantly. The GPE group demonstrated higher SCFAs concentrations in the fecal sample, such as Acetic Acid, Propionic Acid, and Butyric Acid. Further pathway analysis showed that 29 metabolic pathways were appreciably disturbed during GPE treatment, including citrate cycle (TCA cycle); galactose and glycero-lipid-metabolism biosynthesis of unsaturated fatty acids, fatty acid biosynthesis. This study suggests that the anti-atherosclerotic effect of GPE is related to the substantial changes in intestinal microbiota and anti-inflammatory activity.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- Nanjing Zhiyi Biotechnology Co., Ltd., Nanjing 210014, China
| | - Xing Heng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Jin
- The People’s Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui 323050, China
| | - Weihua Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- Correspondence:
| |
Collapse
|
21
|
Zhang J, An H, Zhang X, Xu F, Zhou B. Transcriptomic Analysis Reveals Potential Gene Regulatory Networks Under Cold Stress of Loquat ( Eriobotrya japonica Lindl.). FRONTIERS IN PLANT SCIENCE 2022; 13:944269. [PMID: 35937353 PMCID: PMC9354853 DOI: 10.3389/fpls.2022.944269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 05/02/2023]
Abstract
Loquat (Eriobotrya japonica Lindl. ) is one of the most economically important evergreen fruit crops in China, while it often suffered the injury of cold stress in winter and earlier spring, and the annual yield loss of loquat fruits caused by cold or freezing stress was immeasurable. However, knowledge about the physiological response and molecular mechanism under cold stress is still limited. To investigate the potential regulation mechanism pre- and post-cold stress in loquat and the changes in physiological indicators, a comparative transcriptome analysis was performed against a cold-resistant cv. "Huoju" and a cold-sensitive cv. "Ninghaibai". The results of physiological indicators related to cold resistance indicated that rachis was most sensitive to cold stress and was considered as the representative organ to directly evaluate cold resistance of loquat based on subordinate function analysis. Here, we compared the transcriptome profiles of rachis pre- and under cold stress in "Huoju" and "Ninghaibai". A total of 4,347 and 3,513 differentially expressed genes (DEGs) were detected in "Ninghaibai" and "Huoju", among which 223 and 166 were newly identified genes, respectively, most of them were functionally enriched in plant hormone signal transduction (Huoju: 142; Ninghaibai: 200), and there were higher plant hormone content and related DEG expression levels in "Huoju" than that of "Ninghaibai". Moreover, a total of 3,309 differentially expressed transcription factors (DETFs) were identified, and some DEGs and DETFs were screened to be subjected to co-expression network analysis based on the gene expression profile data. Some candidate DEGs, including UDP-glycosyltransferase (UGT), glycosyltransferase (GT), sugar phosphate/phosphate translocator (SPT), sugar transport protein (STP), proline-rich receptor-like protein kinase (PERK), and peroxidise (POD), were significantly affected by cold stress, and the expression level of these genes obtained from real-time quantitative RT-PCR was consistent with the pattern of transcriptome profile, which suggested that these genes might play the vital roles in cold resistance of loquat. Our results provide an invaluable resource for the identification of specific genes and TFs and help to clarify gene transcription during the cold stress response of loquat.
Collapse
Affiliation(s)
- Jiaying Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haishan An
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueying Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Fangjie Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Boqiang Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Liu Y, Yao M, Li S, Wei X, Ding L, Han S, Wang P, Lv B, Chen Z, Sun Y. Integrated application of multi-omics approach and biochemical assays provides insights into physiological responses to saline-alkaline stress in the gills of crucian carp (Carassius auratus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153622. [PMID: 35124035 DOI: 10.1016/j.scitotenv.2022.153622] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Given the decline of freshwater resources in recent years, the accessible space for freshwater aquaculture is rapidly shrinking, and aquaculture in saline-alkaline water has become a critical approach to meet the rising demand. However, the molecular mechanism behind the adverse effects of saline-alkaline water on fish and the regulatory mechanism in fish tolerance remains unclear. Here, adult crucian carp (Carassius auratus) were exposed to 60 mmol/L NaHCO3 for 30 days. It was observed that long-term carbonate alkalinity (CA) exposure not only caused gill oxidative stress but also changed the levels of several physiological parameters associated with ammonia transport, including blood ammonia, urea nitrogen (BUN), glutamine (Gln), and glutamine synthetase (GS). According to the metabolomics study, differential metabolites (DMs) engaged in various metabolic pathways, such as glycerophospholipid metabolism, sphingolipid metabolism, and arachidonic acid metabolism. In addition, transcriptomics data showed that differentially expressed genes (DEGs) were closely related to ammonia transport, apoptosis, and immunological response. In general, comprehensive multi-omics and biochemical analysis revealed that crucian carp might adopt Rh glycoprotein as a carrier to mediate ammonia transport and increase glutamine and urea synthesis under long-term high saline-alkaline stress to mitigate the adverse effects of blocked ammonia excretion. Simultaneously, saline-alkaline stress caused the destruction of the antioxidant system and the disorder of lipid metabolism in the crucian carp gills, which induced apoptosis and immunological response. To our knowledge, this is the first study to investigate fish's molecular and metabolic mechanisms under saline-alkaline stress using integrated metabolomics, transcriptomics, and biochemical assays. Overall, the results of this study provided new insights into the molecular mechanism behind the adverse effects of saline-alkaline water on fish and the regulatory mechanism in fish tolerance.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingzhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanwei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaofeng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; Department of Food Science and Engineering, School of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Bochuan Lv
- First of Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
23
|
Reid CH, Patrick PH, Rytwinski T, Taylor JJ, Willmore WG, Reesor B, Cooke SJ. An updated review of cold shock and cold stress in fish. JOURNAL OF FISH BIOLOGY 2022; 100:1102-1137. [PMID: 35285021 DOI: 10.1111/jfb.15037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Temperature is critical in regulating virtually all biological functions in fish. Low temperature stress (cold shock/stress) is an often-overlooked challenge that many fish face as a result of both natural events and anthropogenic activities. In this study, we present an updated review of the cold shock literature based on a comprehensive literature search, following an initial review on the subject by M.R. Donaldson and colleagues, published in a 2008 volume of this journal. We focus on how knowledge on cold shock and fish has evolved over the past decade, describing advances in the understanding of the generalized stress response in fish under cold stress, what metrics may be used to quantify cold stress and what knowledge gaps remain to be addressed in future research. We also describe the relevance of cold shock as it pertains to environmental managers, policymakers and industry professionals, including practical applications of cold shock. Although substantial progress has been made in addressing some of the knowledge gaps identified a decade ago, other topics (e.g., population-level effects and interactions between primary, secondary and tertiary stress responses) have received little or no attention despite their significance to fish biology and thermal stress. Approaches using combinations of primary, secondary and tertiary stress responses are crucial as a research priority to better understand the mechanisms underlying cold shock responses, from short-term physiological changes to individual- and population-level effects, thereby providing researchers with better means of quantifying cold shock in laboratory and field settings.
Collapse
Affiliation(s)
- Connor H Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Trina Rytwinski
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jessica J Taylor
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Resende AC, Mauro Carneiro Pereira D, Cristina Schleger I, Dmengeon Pedreiro de Souza MR, Alvez Neundorf AK, Romão S, Herrerias T, Donatti L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. JOURNAL OF FISH BIOLOGY 2022; 100:1245-1263. [PMID: 35266159 DOI: 10.1111/jfb.15036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Predictions about global warming have raised interest in assessing whether ectothermic organisms will be able to adapt to these changes. Understanding the physiological mechanisms and metabolic adjustment capacity of fish subjected to heat stress can provide subsidies that may contribute to decision-making in relation to ecosystems and organisms subjected to global climate change. This study investigated the antioxidant defence system and energy metabolism of carbohydrate and protein responses in the gill, liver and kidney tissues of Psalidodon bifasciatus (Garavello & Sampaio 2010), a Brazilian freshwater fish used in aquaculture and in biological studies, following exposure to heat shock at 31°C for 2, 6, 12, 24 and 48 h. The fish presented signs of stress in all tissues tested, as evidenced by increased lipid peroxidation concentration at 2 h and phosphofructokinase, hexokinase and malate dehydrogenase activity at 48 h in the gills; increased glutathione-S-transferase activity at 12 h, citrate synthase activity at 24 h and concentration of reduced glutathione (GSH) concentration at 12 and 48 h in the liver; and through increased activity of superoxide dismutase at 48 h, glutathione reductase at 24 h, glucose-6-phosphate dehydrogenase at 48 h and concentration of GSH at 24 h in the kidney. In the kidneys, changes in the antioxidant system were more prominent, whereas in the gills, there were greater changes in the carbohydrate metabolism. These results indicated the importance of glycolysis and aerobic metabolism in the gills, aerobic metabolism in the liver and pentose-phosphate pathway in the kidneys during homeostasis. The biomarker response was tissue specific, with the greatest number of biomarkers altered in the gills, followed by those in the kidneys and liver.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Silvia Romão
- Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Curitiba, Brazil
| | - Tatiana Herrerias
- Department of Health Promotion, Uniguairacá University Center, Curitiba, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
25
|
Huang Q, Ma Q, Li F, Zhu-Salzman K, Cheng W. Metabolomics Reveals Changes in Metabolite Profiles among Pre-Diapause, Diapause and Post-Diapause Larvae of Sitodiplosis mosellana (Diptera: Cecidomyiidae). INSECTS 2022; 13:insects13040339. [PMID: 35447781 PMCID: PMC9032936 DOI: 10.3390/insects13040339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Diapause is a programmed developmental arrest coupled with an evident reduction in metabolic rate and a dramatic increase in stress tolerance. Sitodiplosis mosellana, a periodic but devastating wheat pest, spends the hot summer and cold winter as diapausing larvae. However, little is known about the metabolic changes underlying this obligatory diapause. The objective of this study was to identify significantly altered metabolites and pathways in diapausing S. mosellana at stages of pre-diapause, diapause, post-diapause quiescence and post-diapause development using gas chromatography/time-of-flight mass spectrometry and the orthogonal partial least squares discriminant analysis. Pairwise comparisons of the four groups showed that 54 metabolites significantly changed. Of which, 37 decreased in response to diapause, including four TCA cycle intermediates and most amino acids, whereas 12 increased. Three metabolites were significantly higher in the cold quiescence stage than in other stages. The elevated metabolites included the well-known cryoprotectants trehalose, glycerol, proline and alanine. In conclusion, the low metabolic rate and cold tolerance S. mosellana displayed during diapause may be closely correlated with its reduced TCA cycle activity or/and the increased biosynthesis of cryoprotectants. The results have contributed to our understanding of the biochemical mechanism underlying diapause and the related stress tolerance in this key pest. Abstract Sitodiplosis mosellana, a notorious pest of wheat worldwide, copes with temperature extremes during harsh summers and winters by entering obligatory diapause as larvae. However, the metabolic adaptive mechanism underlying this process is largely unknown. In this study, we performed a comparative metabolomics analysis on S. mosellana larvae at four programmed developmental stages, i.e., pre-diapause, diapause, low temperature quiescence and post-diapause development. In total, we identified 54 differential metabolites based on pairwise comparisons of the four groups. Of these metabolites, 37 decreased in response to diapause, including 4 TCA cycle intermediates (malic acid, citric acid, fumaric acid, α-ketoglutaric acid), 2 saturated fatty acids (palmitic acid, stearic acid) and most amino acids. In contrast, nine metabolites, including trehalose, glycerol, mannitol, proline, alanine, oleic acid and linoleic acid were significantly higher in both the diapause and quiescent stages than the other two stages. In addition to two of them (trehalose, proline), glutamine was also significantly highest in the cold quiescence stage. These elevated metabolites could function as cryoprotectants and/or energy reserves. These findings suggest that the reduced TCA cycle activity and elevated biosynthesis of functional metabolites are most likely responsible for maintaining low metabolic activity and cold tolerance during diapause, which is crucial for the survival and post-diapause development of this pest.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
| | - Qian Ma
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
| | - Fangxiang Li
- Xi’an Agricultural Technology Extension Centre, Xi’an 710061, China;
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (K.Z.-S.); (W.C.)
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Q.H.); (Q.M.)
- Correspondence: (K.Z.-S.); (W.C.)
| |
Collapse
|
26
|
Zhang M, Hu J, Zhu J, Wang Y, Zhang Y, Li Y, Xu S, Yan X, Zhang D. Transcriptome, antioxidant enzymes and histological analysis reveal molecular mechanisms responsive to long-term cold stress in silver pomfret (Pampus argenteus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:351-361. [PMID: 35033668 DOI: 10.1016/j.fsi.2022.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 05/14/2023]
Abstract
Temperature is a major environmental factor influence fish growth, development, metabolism and physiological performance. Silver pomfret (Pampus argenteus) is an economically important fishery species, however, the molecular mechanisms responsive to long-term cold stress are still unclear. Hence, we altered water temperature from 13 °C to 8 °C, a logistic fit curve for the survival rate of P. argenteus under a gradient cold stress were thus achieved, 50% survival rate at a measured temperature of 7 °C-7.5 °C. After stimulation, the gill, liver and muscle tissues were investigated through transcriptome, antioxidant enzymes and histological observation. The results showed that antioxidant enzyme and Na+-k+ ATPase activity in gill tissue was significantly increased, tissue damage and apoptosis were observed in multi-tissues. By high-throughput sequencing, a total of 618,097,404 reads of raw data and 598,855,490 reads of clean data were obtained, containing 12,489 differently expressed genes (DEGs). KEGG pathway enrichment analysis showed that DNA replication, protein digestion and absorption, cardiac muscle contraction, adrenergic signaling in cardiomyocytes, and metabolic pathways were significantly enriched in multi-tissues. Fifteen DEGs were selected for real-time PCR (RT-qPCR) analysis, and the results were consistent with transcriptome profiling. Based on the results, we inferred that P. argenteus survived at low temperatures may be achieved by improving the ability to scavenge oxyradical substance and enhancing cell fluidity. This present study indicated that the effects of long-term cold stress on P. argenteus, which is valuable for breeding cold-tolerant P. argenteus stocks for cultivation.
Collapse
Affiliation(s)
- Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China.
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiajie Zhu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China.
| | - Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Dingyuan Zhang
- Key Laboratory of Mariculture & Enhancement, Marine Fisheries Research Institute of Zhejiang Province, China
| |
Collapse
|
27
|
Guo K, Zhao Z, Luo L, Wang S, Zhang R, Xu W, Qiao G. Untargeted GC-MS metabolomics reveals the metabolic responses in the gills of Chinese mitten crab (Eriocheir sinensis) subjected to air-exposure stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113159. [PMID: 35032728 DOI: 10.1016/j.ecoenv.2021.113159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Desiccation is a common stress experienced by crabs during aquaculture and transportation. In China, the crustacean, Chinese mitten crab (Eriocheir sinensis), is economically important. However, little is known about the molecular pathways underlying physiological stress. Here, by using untargeted gas chromatography-mass spectrometry metabolomics, we investigated the metabolic responses of the gills of E. sinensis subjected to air-exposure stress by six biological replicates of the control group (CG) and the air-exposure stress group (AG). Metabolomic analysis identified 43 differential metabolites in the AG versus the CG that could be potential biomarkers of desiccation stress. In addition, integrated analysis of key metabolic pathways revealed the involvement of histidine metabolism; glycine, serine and threonine metabolism; the pentose phosphate pathway; the citrate cycle (TCA cycle); and nicotinate and nicotinamide metabolism. These findings indicated the special physiological responses to air-exposure stresses in this species.
Collapse
Affiliation(s)
- Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wei Xu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
28
|
Yu Y, Lyu W, Fu Z, Fan Q, Xiao Y, Ren Y, Yang H. Metabolic Profiling Analysis of Liver in Landes Geese During the Formation of Fatty Liver via GC-TOF/MS. Front Physiol 2022; 12:783498. [PMID: 35046836 PMCID: PMC8761942 DOI: 10.3389/fphys.2021.783498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Fatty liver production results from the process of overfeeding geese, inducing a dramatic increase in de novo liver lipogenesis. To investigate the alteration of liver metabolites by overfeeding, especially lipid metabolites, and the potential pathways causing these changes, 60 Landes geese at 65 days old were raised in three groups with 20 geese per group, namely, the D0 group (free from gavage), D7 group (overfeeding for 7 days), and D25 group (overfeeding for 25 days). At 90 days old, segments of liver tissue were collected from 10 geese of each group for gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) analysis. A large number of endogenous molecules in the livers of geese were altered dramatically by overfeeding. In the livers of overfed geese, the level of oleic acid was observed to continuously increase, while the levels of phenylalanine, methyl phosphate, sulfuric acid, and 3-hydroxybenzaldehyde were decreased. The most significantly different metabolites were enriched in amino acid, lipid, and nucleotide metabolism pathways. The present study further supports the idea that Landes geese efficiently produce fatty liver, and potential biomarkers and disturbed metabolic pathways during the process of forming fatty liver were identified. In conclusion, this study might provide some insights into the underlying mechanisms of fatty liver formation.
Collapse
Affiliation(s)
- Yuzhu Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zixian Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Xu D, Zheng X, Li C, Wu J, Sun L, Qin X, Fan X. Insights into the response mechanism of Litopenaeus vannamei exposed to cold stress during live transport combining untargeted metabolomics and biochemical assays. J Therm Biol 2022; 104:103200. [DOI: 10.1016/j.jtherbio.2022.103200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023]
|
30
|
Gou N, Ji H, Wu W, Zhong M, Zhang B. Transcriptional response to cold and fasting acclimation in Onychostoma macrolepis during the overwintering stage. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100901. [PMID: 34418784 DOI: 10.1016/j.cbd.2021.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the transcriptome responses of the liver of Onychostoma macrolepis in by RNA sequencing. The sampling process involved three groups: 1G (0 week, 10 °C), 2G (12 weeks, 0 °C) and 3G (24 weeks, 10 °C). The body weight, viscera index, hepatopancreas index and intraperitoneal fat index of O. macrolepis showed a decreasing trend with the prolonging of overwintering time. The crude fat contents of whole fish, muscle and liver in O. macrolepis after overwintering were significantly lower than those of the fish before overwintering (p < 0.05). In 1G versus 2G group, 2G versus 3G group and 1G versus 3G group, the differently expressed genes (DEGs) were 4630, 3976 and 2311, respectively. These results indicated that different stages of overwintering period had significant effects on gene expression of O. macrolepis, and the influence degree gradually decreased with the extension of overwintering period. The results of Gene ontology (GO) enrichment showed that these DEGs were mainly related to metabolism and immunity, and most of them were down-regulated. In this study, the KEGG pathway classification results showed that signal transduction was the most representative. In addition, KOG enrichment results showed that many DEGs associated with lipid transport and metabolism were down-regulated during the overwintering period. These observations suggested that slowing metabolism and delaying immunity may be the strategies for overwintering adaptation of O. macrolepis.
Collapse
Affiliation(s)
- Nina Gou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wenyi Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mingzhi Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Binxin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
31
|
Huang MY, Zhao Q, Duan RY, Liu Y, Wan YY. The effect of atrazine on intestinal histology, microbial community and short chain fatty acids in Pelophylax nigromaculatus tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117702. [PMID: 34246997 DOI: 10.1016/j.envpol.2021.117702] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The intestine is the main organ for nutrient absorption in amphibians. It is sensitive to atrazine, which is a herbicide widely used in agricultural areas. At present, there is a lack of systematic research on the effect of atrazine on the amphibian intestine. In this study, we evaluated the effects of atrazine exposure (0, 50 μg/L, 100 μg/L, and 500 μg/L) for 20 days on intestinal histology, microbiota and short chain fatty acids in Pelophylax nigromaculatus tadpoles. Our research showed that 500 μg/L atrazine exposure significantly decreased the height of microvilli and epithelial cells, and altered the composition and diversity of intestinal microbiota in P. nigromaculatus tadpoles compared to the control. At the phylum level, the abundance of Bacteroidetes and Fusobacteria increased significantly, while that of Verrucomicrobia and Firmicutes decreased significantly in the 500 μg/L atrazine treatment group. At the genus level, Akkermansia and Lactococcus had significantly lower abundance in the 100 μg/L and 500 μg/L atrazine exposure group, while Cetobacterium was only detected in the 100 μg/L and 500 μg/L atrazine treated group. Also, function prediction of intestinal microbiota showed that atrazine treatment significantly changed the metabolism pathways of P. nigromaculatus tadpoles. In addition, 500 μg/L atrazine exposure changed the content of short chain fatty acids by significantly increasing the content of total SFCAs, butyric acid, and valeric acid, and decreasing the content of isovaleric acid in the intestine. Taken together, atrazine exposure could affect the intestinal histology and induce intestinal microbiota imbalance and metabolic disorder in amphibian tadpoles.
Collapse
Affiliation(s)
- Min-Yi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Ren-Yan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yu-Yue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
32
|
Xu R, Zheng R, Wang Y, Ma R, Tong G, Wei X, Feng D, Hu K. Transcriptome analysis to elucidate the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil on the hepatopancreas of Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2021; 116:140-149. [PMID: 34256134 DOI: 10.1016/j.fsi.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Most antibiotics, insecticides, and other chemicals used in agricultural and fishery production tend to persist in the environment. Fenvalerate, sulfide gatifloxacin, and ridomil are widely used in aquaculture as antibacterial, antifungal, and antiparasitic drugs; however, their toxicity mechanism remains unclear. Thus, we herein analyzed the effects of these three drugs on the hepatopancreas of Procambarus clarkii at the transcriptome level. Twelve normalized cDNA libraries were constructed using RNA extracted from P. clarkii after treatment with fenvalerate, sulfide gatifloxacin, or ridomil and from an untreated control group, followed by Kyoto Encyclopedia of Genes and Genomes pathway analysis. In the control vs fenvalerate and control vs sulfide gatifloxacin groups, 14 and seven pathways were significantly enriched, respectively. Further, the effects of fenvalerate and sulfide gatifloxacin were similar on the hepatopancreas of P. clarkii. We also found that the expression level of genes encoding senescence marker protein-30 and arylsulfatase A was downregulated in the sulfide gatifloxacin group, indicating that sulfide gatifloxacin accelerated the apoptosis of hepatopancreatocytes. The expression level of major facilitator superfamily domain containing 10 was downregulated, implying that it interferes with the ability of the hepatopancreas to metabolize drugs. Interestingly, we found that Niemann pick type C1 and glucosylceramidase-β potentially interact with each other, consequently decreasing the antioxidant capacity of P. clarkii hepatopancreas. In the fenvalerate group, the downregulation of the expression level of xanthine dehydrogenase indicated that fenvalerate affected the immune system of P. clarkii; moreover, the upregulation of the expression level of pancreatitis-associated protein-2 and cathepsin C indicated that fenvalerate caused possible inflammatory pathological injury to P. clarkii hepatopancreas. In the ridomil group, no pathway was significantly enriched. In total, 21 genes showed significant differences in all three groups. To conclude, although there appears to be some overlap in the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil, further studies are warranted.
Collapse
Affiliation(s)
- Ruze Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| | - Ruizhou Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Yali Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Rongrong Ma
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, PR China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, PR China
| | - Dongyue Feng
- National Fisheries Technical Extension Center, Beijing, 100125, PR China.
| | - Kun Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China; National Fisheries Technical Extension Center, Beijing, 100125, PR China; Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| |
Collapse
|
33
|
Niu Y, Zhang X, Zhang H, Xu T, Zhu L, Storey KB, Chen Q. Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis. Front Zool 2021; 18:41. [PMID: 34454525 PMCID: PMC8403389 DOI: 10.1186/s12983-021-00428-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Many animals lower their metabolic rate in response to low temperatures and scarcity of food in the winter in phenomena called hibernation or overwintering. Living at high altitude on the Tibetan Plateau where winters are very cold, the frog Nanorana parkeri, survives in one of the most hostile environments on Earth but, to date, relatively little is known about the biochemical and physiological adjustments for overwintering by this species. The present study profiled changes in plasma metabolites of N. parkeri between winter and summer using UHPLC-QE-MS non-target metabolomics in order to explore metabolic adaptations that support winter survival. The analysis showed that, in total, 11 metabolites accumulated and 95 were reduced in overwintering frogs compared with summer-active animals. Metabolites that increased included some that may have antioxidant functions (canthaxanthin, galactinol), act as a metabolic inhibitor (mono-ethylhexylphthalate), or accumulate as a product of anaerobic metabolism (lactate). Most other metabolites in plasma showed reduced levels in winter and were generally involved in energy metabolism including 11 amino acids (proline, isoleucine, leucine, valine, phenylalanine, tyrosine, arginine, tryptophan, methionine, threonine and histidine) and 4 carbohydrates (glucose, citrate, succinate, and malate). Pathway analysis indicated that aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and nitrogen metabolism were potentially the most prominently altered pathways in overwintering frogs. Changes to these pathways are likely due to fasting and global metabolic depression in overwintering frogs. Concentrations of glucose and urea, commonly used as cryoprotectants by amphibians that winter on land, were significantly reduced during underwater hibernation in N. parkeri. In conclusion, winter survival of the high-altitude frog, N. parkeri was accompanied by substantial changes in metabolomic profiles and this study provides valuable information towards understanding the special adaptive mechanisms of N. parkeri to winter stresses.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China. .,School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xuejing Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, 253023, Shandong, China
| | - Lifeng Zhu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
34
|
Zhang Z, Zhou C, Fan K, Zhang L, Liu Y, Liu PF. Metabolomics analysis of the effects of temperature on the growth and development of juvenile European seabass (Dicentrarchus labrax). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145155. [PMID: 33485208 DOI: 10.1016/j.scitotenv.2021.145155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Temperature variations have significant impacts on the growth and development of fish. In this study, the effects of temperature on the growth and development of European seabass (Dicentrarchus labrax) were investigated using ultra-performance liquid chromatography-tandem mass spectrometry-based metabolomics. Three groups of fish were exposed to various temperatures for 60 days: T1-E (10 °C), T2-E (15 °C), and T3-E (20 °C). Afterward, the temperature of all groups was increased to 20 °C and maintained for 62 days (T1-S, T2-S, T3-S). The livers were extracted for subsequent analysis. In the first stage of the experiment, the growth rate was highest in the T3-E group, followed by the T1-E and T2-E groups. The following metabolites identified by comparative analysis were found to be elevated: L-thyroxine, cysteamine, uridine diphosphate (UDP)-glucose, α-ketoglutaric acid, carbamoyl phosphate, and guanidine acetic acid of the T1-E group. Pathway analysis of the altered metabolites suggested changes in glucose metabolism, arginine and proline metabolism, the tricarboxylic acid cycle, the ornithine cycle, histidine metabolism, and taurine metabolism, which were involved with growth and development. Meanwhile, partial compensatory growth was observed in fish in the T1-S and T2-S groups. Metabolites identified as potential markers of growth included L-cysteine, taurocholic acid, UDP-glucose, and L-thyroxine. The significantly changed metabolic pathways were cysteine and methionine metabolism, bile secretion, tyrosine metabolism, and hypotaurine metabolism. We screened out the marker metabolites and metabolic pathway could provide important insights into the potential mechanisms of temperature affects the growth and development of European seabass. All in all, our research can provide theoretical basis and technical guidance for efficiently culturing European seabass.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Cheng Zhou
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Kunpeng Fan
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
35
|
GC-TOF-MS-Based Metabolomics Analyses of Liver and Intestinal Contents in the Overfed vs. Normally-Fed Geese. Animals (Basel) 2020; 10:ani10122375. [PMID: 33322323 PMCID: PMC7763799 DOI: 10.3390/ani10122375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-alcoholic fatty liver disease has been considered as one of the most important causes of liver disease, and it is a threat to human and animal health worldwide. Interestingly, goose fatty liver can reach 8–10 times the weight of normal liver with no overt pathological symptoms, suggesting that there are some protective mechanisms. Scientists have indicated that gut microbiota participate in the formation of non-alcoholic fatty liver disease in human and mammalian animals. However, it is unclear whether gut microbiota and their metabolites contribute to goose fatty liver. The aim of the present study was to investigate the metabolomic analyses of liver and intestinal contents in overfed vs. normally fed geese. The results showed that the formation of goose fatty liver is accompanied by obvious changes in the metabolic profiles of liver and intestinal contents. The intestinal metabolites can affect the formation of goose fatty liver by affecting the metabolisms of glucose and fatty acid, oxidative stress, and inflammatory reactions. These findings provide a basis for future work addressing the relationship between intestinal metabolites and the development of non-alcoholic fatty liver disease. Abstract No overt pathological symptoms are observed in the goose liver with severe steatosis, suggesting that geese may host unique protective mechanisms. Gas chromatography time-of-flight mass spectrometry-based metabolomics analyses of liver and intestinal contents in overfed vs. normally fed geese (26 geese in each treatment) were investigated. We found that overfeeding significantly changed the metabolic profiles of liver and intestinal contents. The differential metabolites mainly belong to fatty acids, amino acids, organic acids, and amines. The differential metabolites were involved in glycolysis/gluconeogenesis, glycerolipid metabolism, the pentose phosphate pathway, fatty acid degradation, the sphingolipid signaling pathway, and the biosynthesis of unsaturated fatty acids. Moreover, we determined the biological effects of arachidonic acid (ARA) and tetrahydrocorticosterone (TD) in goose primary hepatocytes and intestinal cells. Data showed that the mRNA expression of arachidonate 5-lipoxygenase (ALOX5) in goose primary intestinal cells was significantly induced by 0.50 mM ARA treatment. Cytochrome P-450 27A1 (CYP27A1) mRNA expression was significantly inhibited in goose primary hepatocytes by 1 µM TD treatment. In conclusion, the formation of goose fatty liver is accompanied by significant changes in the metabolic profiles of liver and intestinal contents, and the changes are closely related to the metabolisms of glucose and fatty acids, oxidative stress, and inflammatory reactions.
Collapse
|
36
|
Sun YC, Han SC, Yao MZ, Wang YM, Geng LW, Wang P, Lu WH, Liu HB. High-throughput metabolomics method based on liquid chromatography-mass spectrometry: Insights into the underlying mechanisms of salinity-alkalinity exposure-induced metabolites changes in Barbus capito. J Sep Sci 2020; 44:497-512. [PMID: 33164302 DOI: 10.1002/jssc.202000861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
It is critical to investigate the adaptive development and the physiological mechanism of fish in external stimulation. In this study, the response of Barbus capito to salinity-alkalinity exposure was explored by high-throughput nontargeted and liquid chromatography-mass spectrometry-based metabolomics to investigate metabolic biomarker and pathway changes. Meanwhile, the biochemical indexes of Barbus capito were measured to discover the chronic impairment response to salinity-alkalinity exposures. A total of 29 tissue metabolites were determined to deciphering the endogenous metabolic changes of fishes during the different concentration salinity-alkalinity exposures environment, which were mainly involved in the key metabolism including the phenylalanine, tyrosine, and tryptophan biosynthesis, arachidonic acid metabolism, pyruvate metabolism, citrate cycle, and glycerophospholipid metabolism. Finally, we found the amino acid metabolism as key target was associated with the endogenous metabolites and metabolic pathways of Barbus capito to salinity-alkalinity exposures. In conclusion, metabolomics is a potentially powerful tool to reveal the mechanism information of fish in various exposure environments.
Collapse
Affiliation(s)
- Yan-Chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Shi-Cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Ming-Zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China.,Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Yu-Mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Long-Wu Geng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Wei-Hong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Hong-Bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| |
Collapse
|
37
|
Liu L, Zhang R, Wang X, Zhu H, Tian Z. Transcriptome analysis reveals molecular mechanisms responsive to acute cold stress in the tropical stenothermal fish tiger barb (Puntius tetrazona). BMC Genomics 2020; 21:737. [PMID: 33096997 PMCID: PMC7584086 DOI: 10.1186/s12864-020-07139-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 10/11/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tropical stenothermal fish exhibit special tolerance and response to cold stress. However current knowledge of the molecular mechanisms response to cold stress in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. The tiger barb Puntius tetrazona is a tropical stenothermal fish, with great popularity in aquarium trade and research. RESULTS To investigate the response mechanism of P. tetrazona to low temperature, fish were exposed to increasing levels of acute cold stress. Histopathological analysis showed that the brain, gill, liver and muscle tissues appeared serious damage after cold stress (13 °C). Brain, gill, liver and muscle tissues from control (CTRL) groups (27 °C) and COLD stress groups (13 °C) of eight-month fish (gender-neutral) were sampled and assessed for transcriptomic profiling by high-throughput sequencing. 83.0 Gb of raw data were generated, filtered and assembled for de novo transcriptome assembly. According to the transcriptome reference, we obtained 392,878 transcripts and 238,878 unigenes, of which 89.29% of the latter were annotated. There were 23,743 differently expressed genes (DEGs) been filtered from four pairs of tissues (brain, gill, liver and muscle) between these cold stress and control groups. These DEGs were mainly involved in circadian entrainment, circadian rhythm, biosynthesis of steroid and fatty acid. There were 64 shared DEGs between the four pairs of groups, and five were related to ubiquitylation/deubiquitylation. Our results suggested that ubiquitin-mediated protein degradation might be necessary for tropical stenothermal fish coping with acute cold stress. Also, the significant cold-induced expression of heat shock 70 kDa protein (HSP70) and cold-induced RNA-binding protein (CIRBP) was verified. These results suggested that the expression of the molecular chaperones HSP70 and CIRBP in P. tetrazona might play a critical role in coping with acute cold stress. CONCLUSIONS This is the first transcriptome analysis of P. tetrazona using RNA-Seq technology. Novel findings about tropical stenothermal fish under cold stress (such as HSP70 and CIRBP genes) are presented here. This study contributes new insights into the molecular mechanisms of tropical stenothermal species response to acute cold stress.
Collapse
Affiliation(s)
- Lili Liu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, 100068 China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, 100068 China
| | - Xiaowen Wang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, 100068 China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, 100068 China
| | - Zhaohui Tian
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, 100068 China
| |
Collapse
|
38
|
Zhuo X, Qin Y, He P, Wei P, Zhang B, Chen X, Peng J. Transcriptomic analysis of Litopenaeus vannamei hepatopancreas under cold stress in cold-tolerant and cold-sensitive cultivars. Gene 2020; 764:145090. [PMID: 32861880 DOI: 10.1016/j.gene.2020.145090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023]
Abstract
Litopenaeus vannamei (L. vannamei) is one of the most widely cultured shrimp species in the world. The species often suffers from cold stress. To understand the molecular mechanism of cold tolerance, we performed transcriptomic analysis on two contrasting cultivars of L. vannamei, namely, cold-tolerant Guihai 2 (GH2) and cold-sensitive Guihai1 (GH1), under a control temperature (28 °C), cold stress (16 °C), and recovery to 28 °C. A total of 84.5 Gb of sequences were generated from 12 L. vannamei hepatopancreas libraries. The de-novo assembly generated a total of 143,029 unigenes with a mean size of 1,052 bp and an N50 of 2,604 bp, of which 34.08% were annotated in the Nr database. We analyzed the differentially expressed genes (DEGs) between nine comparison groups and detected a total of 21,026 DEGs. KEGG pathways, including lysosome, sphingolipid metabolism and nitrogen metabolism, were significantly enriched by DEGs between different temperatures in GH2. Furthermore, eight of the most significantly DEGs under cold stress from the transcriptomic analysis were selected for quantitative real-time PCR (qPCR) validation. Overall, we compared gene expression changes under cold stress in cold-tolerant and cold-sensitive L. vannamei for the first time. The results may further extend our understanding of the cold stress-response mechanism in L. vannamei.
Collapse
Affiliation(s)
- Xiaofei Zhuo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yibin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| |
Collapse
|
39
|
Yang S, Zhao T, Ma A, Huang Z, Liu Z, Cui W, Zhang J, Zhu C, Guo X, Yuan C. Metabolic responses in Scophthalmus maximus kidney subjected to thermal stress. FISH & SHELLFISH IMMUNOLOGY 2020; 103:37-46. [PMID: 32278112 DOI: 10.1016/j.fsi.2020.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Turbot (Scophthalmus maximus) is an economically important marine fish cultured in China. In this study, fish in the experimental group were exposed to four temperatures: 15, 20, 25 and 28 °C. Metabolomics analysis and quantitative real-time PCR were used to assess changes in metabolic profiling and gene expression associated with thermal stress. The results showed the levels of heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), blood creatinine and cortisol in S. maximus were all significantly upregulated (P < 0.05), indicating a stress response at 25 °C or higher. Challenge with thermal stress significantly increased expression levels of succinate dehydrogenase (SDH), fructose-1, 6-bisphosphatase (FBPase), malate dehydrogenase (MDH), cytosolic phosphoenolpyruvate carboxykinase (cPEPCK), glucose-6-phosphatase (G6Pase) and aspartate aminotransferase (AST) (P < 0.05). However, there was no effect on the expression levels of lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and mitochondrial phosphoenolpyruvate carboxykinase (mPEPCK). Moreover, high temperature decreased levels of glycogenic amino acids, including histidine, threonine, glutamine, phenylalanine, arginine, serine, tyrosine, methionine and isoleucine. These findings suggest a significant correlation between gene expression and regulation of carbohydrate and amino acid metabolism in heat-stressed S. maximus kidney. In addition, the maintenance of aerobic metabolism and activation of gluconeogenesis appeared to be a critical metabolic strategy in combating heat stress in turbot kidney.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Tingting Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Zhihui Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhifeng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Wenxiao Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinsheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunyue Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoli Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chenhao Yuan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|
40
|
Lee HK, Kim K, Lee J, Lee J, Lee J, Kim S, Lee SE, Kim JH. Targeted toxicometabolomics of endosulfan sulfate in adult zebrafish (Danio rerio) using GC-MS/MS in multiple reaction monitoring mode. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122056. [PMID: 32000124 DOI: 10.1016/j.jhazmat.2020.122056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Endosulfan sulfate is a major oxidative metabolite of the chlorinated insecticide endosulfan. In this study, a targeted metabolomics approach was used to investigate the toxic mechanisms of endosulfan sulfate in adult zebrafish using the multiple reaction monitoring mode of a GC-MS/MS. The LC50 of endosulfan sulfate in adult zebrafish was determined and then zebrafish were exposed to endosulfan sulfate at one-tenth the LC50 (0.1LC50) or the LC50 for 24 and 48 h. After exposure, the fish were extracted, derivatized and analyzed by GC-MS/MS for 379 metabolites to identify 170 metabolites. Three experimental groups (control, 0.1LC50 and LC50) were clearly separated in PLS-DA score plots. Based on the VIP, ANOVA, and fold change results, 40 metabolites were selected as biomarkers. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 4.0 as follows: aminoacyl-tRNA biosynthesis, valine/leucine/isoleucine biosynthesis, citrate cycle, glycerolipid metabolism, and arginine/proline metabolism. Gene expression studies confirmed the activation of citrate cycle and glycerolipids metabolism. MDA levels of the exposed group significantly increased in oxidative toxicity assay tests. Such significant perturbations of important metabolites within key biochemical pathways must result in biologically hazardous effects in zebrafish.
Collapse
Affiliation(s)
- Hwa-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jonghwa Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jiho Lee
- Environmental Medical Center, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Sooyeon Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Gyeongsangnam-do, 52834, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Jiao S, Nie M, Song H, Xu D, You F. Physiological responses to cold and starvation stresses in the liver of yellow drum (Nibea albiflora) revealed by LC-MS metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136940. [PMID: 32014771 DOI: 10.1016/j.scitotenv.2020.136940] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
As global climate changes, mass mortality in farmed fish associated with the severely cold weather has aroused growing concerns. Yellow drum (Nibea albiflora) is an important maricultured fish in China, whereby its aquaculture suffered from overwinter mortality associated with cold and cold-induced-fasting stresses. Here, by using LC-MS metabolomics combined with transcriptomics, we investigated the physiological responses of yellow drum liver to cold and starvation stresses. The experiment involved four groups: 16 °C fed group (CG1), 16 °C unfed group (CG2), 8 °C fed group (EG1), and 8 °C unfed group (EG2). Under cold stress, a total of 308 and 257 differential metabolites were identified in EG1 vs. CG1 and EG2 vs. CG2, respectively, showing 5 overlapping significant pathways: glutathione metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, arginine and proline metabolism, and ABC transporters. Intersection analysis identified that glutamate, oxidized glutathione (GSSG), and eicosenoic acid were the common metabolites induced by cold stress. Under starvation stress, a total of 300 and 215 differential metabolites were identified in CG2 vs. CG1 and EG2 vs. EG1, respectively, showing 2 overlapping significant pathways: glutathione metabolism and galactose metabolism. Intersection analysis revealed that glutamate and GSSG were the common metabolites caused by fasting. Under cold and starvation combined stresses, 286 differential metabolites were identified in EG2 vs. CG1, showing 7 influenced pathways: glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, glutathione metabolism, sphingolipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, autophagy, and purine metabolism. Interestingly, the glutamate and GSSG were induced by both single and combined stresses of cold and starvation treatments. These findings suggest that glutathione metabolism and its related metabolites (glutamate and GSSG) could be potential biomarkers of cold and starvation stresses in yellow drum. Overall, the results of this study provided insights into the physiological regulation in response to cold and starvation stresses in this fish.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| | - Miaomiao Nie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Hongbin Song
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, PR China.
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
42
|
Effects of cold stress on juvenile Piaractus mesopotamicus and the mitigation by β-carotene. J Therm Biol 2019; 88:102497. [PMID: 32125985 DOI: 10.1016/j.jtherbio.2019.102497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of cold stress on morphometrical and hematological biomarkers, energy metabolism, and oxidative stress in different tissues of P. mesopotamicus, and the protective role of β-carotene. Fish were fed with a control diet (CD) and the same diet supplemented with 105 mg/kg β-carotene (BD) for 60 days. After the feeding trial, fish fed CD or BD diets were exposed to control (24 °C) and low temperature (14 °C) for 24 h. Fish (CD and BD) exposed to thermal stress showed lower hepatosomatic index. The hemoglobin increased only in CD-fed fish exposed to 14 °C. Increased glycemia, plasmatic protein depletion, and decreased hepatic glycogen were observed in fish fed the CD, while only the lipid levels in liver were augmented in BD-fed fish exposed at 14 °C. Regarding the oxidative stress, increased antioxidant enzymes activity and lipid peroxidation were observed in CD-fed fish exposed to cold. The two-way ANOVA showed an interaction between dietary treatment and temperature for glucose and oxidative stress biomarkers, with the highest values recorded in 14 °C-exposed fish fed with the CD. Our study demonstrated that cold stress had the greatest impact on fish oxidative status, and β-carotene reduces harmful effects induced by cold in P. mesopotamicus.
Collapse
|
43
|
Glutathione Injection Alleviates the Fluctuation of Metabolic Response under Thermal Stress in Olive Flounder, Paralichthys olivaceus. Metabolites 2019; 10:metabo10010003. [PMID: 31861341 PMCID: PMC7022829 DOI: 10.3390/metabo10010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/14/2019] [Indexed: 11/21/2022] Open
Abstract
Continuous increases in water temperature disturb homeostasis and increase oxidative stress in fish. Glutathione (GSH) is an intracellular antioxidant that helps to relieve stress in animals. In this study, we observed the effect of GSH on olive flounder exposed to high temperature using serum parameters and NMR-based metabolomics. Based on the results from the first experiment, 20 mg of GSH was chosen as an effective dose with lower infection rates and mortality. Then, fish were divided into Control, Temp (PS injection), and GSH (glutathione injection) groups, and fish in Temp and GSH groups were exposed to temperature fluctuations (20 °C→24 °C→27 °C). In OPLS-DA score plots, Temp group was clearly distinguished from the other groups in the kidney. In the liver, the metabolic patterns of GSH group were close to the Temp group on day 4 and became similar to Control group from day 7. Serum parameters did not change significantly, but the deviation in Temp group was greater than that in GSH group. Metabolite levels that were significantly altered included GSH, lactate, O-phosphocholine, and betaine in the kidney and taurine, glucose, and several amino acids in the liver, which were related to antioxidant activity and energy system. Therefore, GSH supplements could relieve thermal stress influencing metabolic mechanisms in fish.
Collapse
|
44
|
Shi C, Han X, Mao X, Fan C, Jin M. Metabolic profiling of liver tissues in mice after instillation of fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133974. [PMID: 31470317 DOI: 10.1016/j.scitotenv.2019.133974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Human exposure to fine particulate matter (PM2.5) in various environment could lead to a number of adverse health effects. Little is known about the toxic mechanism and the further response caused by PM2.5 exposure. In this study, a metabolomics approach using gas chromatography-mass spectrometry (GC-MS) was adopted to evaluate the liver toxicity induced by different gradient concentrations of PM2.5. A multivariate statistical analysis had shown, a total of 12 endogenous metabolites including amino acids and organic acids were identified as potential biomarkers of PM2.5 and most of them were down-regulated. By analyzing the metabolic pathways using the identified biomarkers, the significantly interfered metabolic pathways when mice were exposed to PM2.5 were found as: glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate and glutamate metabolism, methane metabolism, linoleic acid metabolism and valine, and leucine and isoleucine biosynthesis, all of which were closely related to liver metabolism. The findings of this study reveal detailed toxic metabolic effects of PM2.5 in liver tissues, provide ways for assessing the health risk of PM2.5 at molecular level, and further offer insights on the potential mechanism of its toxicity.
Collapse
Affiliation(s)
- Chunzhen Shi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xi Han
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xu Mao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chong Fan
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Meng Jin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
45
|
Yang C, Du X, Hao R, Wang Q, Deng Y, Sun R. Effect of vitamin D3 on immunity and antioxidant capacity of pearl oyster Pinctada fucata martensii after transplantation: Insights from LC-MS-based metabolomics analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 94:271-279. [PMID: 31499202 DOI: 10.1016/j.fsi.2019.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Postoperative care is a critical step of pearl culture that ultimately determines culture success. To determine the effect of dietary vitamin D3 (VD3) levels on immunity and antioxidant capacity of pearl oyster Pinctada fucata martensii during postoperative care and explore the mechanisms behind this phenomenon, five isonitrogenous and isolipidic experimental diets were formulated by adding different levels of dietary VD3 (0, 500, 1000, 3000, and 10000 IU/kg), and the diets were fed to five experimental groups (EG1, EG2, EG3, EG4, and EG5) in turn and cultured indoors. The control group (CG) was cultured in the natural sea. Pearl oysters that were 1.5 years old were subjected to nucleus insertion. After culturing for 30 days, EG3 exhibited significantly higher survival rates than those in CG and EG5 (P < 0.05). Moreover, EG3 exhibited the highest activities of alkaline phosphatase, acid phosphatase, catalase, superoxide dismutase, and lysozyme. However, EG5 achieved the highest activities of glutathione peroxidase. Metabolomics-based profiling of pearl oysters fed with high levels of dietary VD3 (EG5) and optimum levels of dietary VD3 (EG3) revealed 76 significantly differential metabolites (SDMs) (VIP > 1 and P < 0.05). Pathway analysis indicated that SDMs were involved in 21 pathways. Furthermore, integrated key metabolic pathway analysis suggested that pearl oysters in EG5 regulated the pentose phosphate pathway, glutathione metabolism, sphingolipid metabolism, and arachidonic acid metabolism in response to stress generated from excessive VD3. These findings had significant implications on strengthening the future development and application of VD3 in aquaculture of pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| | - Ruijiao Sun
- Zhejiang Hengxing Food Co., Ltd, Jiaxing, 314100, China
| |
Collapse
|
46
|
Mabuchi R, Adachi M, Ishimaru A, Zhao H, Kikutani H, Tanimoto S. Changes in Metabolic Profiles of Yellowtail ( Seriola quinqueradiata) Muscle during Cold Storage as a Freshness Evaluation Tool Based on GC-MS Metabolomics. Foods 2019; 8:foods8100511. [PMID: 31635314 PMCID: PMC6835414 DOI: 10.3390/foods8100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
We applied metabolomics to the evaluation of yellowtail muscle as a new freshness evaluation method for fish meat. Metabolites from yellowtail ordinary and dark muscle (DM) stored at 0 °C and 5 °C were subjected to metabolomics for primary metabolites based on gas chromatography-mass spectrometry (GC-MS). For the annotated metabolites, we created statistically significant models for storage time prediction for all storage conditions by orthogonal partial least squares analysis, using storage time as the y-variable. DM is difficult to evaluate using the K value method, the predominant existing freshness evaluation method. However, in the proposed method, the metabolic component profiles of DM changed depending on storage time. Important metabolites determined from variables important for prediction (VIP) values included various metabolites, such as amino acids and sugars, in addition to nucleic-acid-related substances, especially inosine and hypoxanthine. Therefore, metabolomics, which comprehensively analyses different molecular species, has potential as a new freshness evaluation method that can objectively evaluate conditions of stored fish meat.
Collapse
Affiliation(s)
- Ryota Mabuchi
- Faculty of Human Culture and Science, Prefectural University of Hiroshima, 1-1-71, Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan.
| | - Miwako Adachi
- Faculty of Human Culture and Science, Prefectural University of Hiroshima, 1-1-71, Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan.
| | - Ayaka Ishimaru
- Faculty of Human Culture and Science, Prefectural University of Hiroshima, 1-1-71, Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan.
| | - Huiqing Zhao
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 1-1-71, Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan.
| | - Haruka Kikutani
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 1-1-71, Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan.
| | - Shota Tanimoto
- Faculty of Human Culture and Science, Prefectural University of Hiroshima, 1-1-71, Ujina-Higashi, Minami-ku, Hiroshima 734-8558, Japan.
| |
Collapse
|
47
|
Su Y, Li H, Xie J, Xu C, Dong Y, Han F, Qin JG, Chen L, Li E. Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:708-716. [PMID: 31108304 DOI: 10.1016/j.envpol.2019.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main component of SeaNine-211, a new antifouling agent that replaces tributyltin to prevent the growth of undesirable organisms on ships. There have been some studies on the toxicity of DCOIT, but the mechanism of DCOIT's toxicity to crustaceans still requires elucidation. This study examined the chronic toxicity (4 weeks) of 0, 3, 15, and 30 μg/L DCOIT to the Pacific white shrimp (Litopenaeus vannamei) from the aspects of growth and physiological and histological changes in the hepatopancreas and gills. A transcriptomic analysis was performed on the hepatopancreas to reveal the underlying mechanism of DCOIT in shrimp. The exposure to 30 μg/L DCOIT significantly reduced the survival and weight gain of L. vannamei. High Na+/K+-ATPase activity and melanin deposition were found in the gills after 4 weeks of 15 μg/L or 30 μg/L DCOIT exposure. The highest concentration of DCOIT (30 μg/L) induced changes in hepatopancreatic morphology and metabolism, including high anaerobic respiration and the accumulation of triglycerides. Compared with the exposure to 3 μg/L DCOIT, shrimp exposed to 15 μg/L DCOIT showed more differentially expressed genes (DEGs) than those in the control, and these DEGs were involved in biological processes such as starch and sucrose metabolism and choline metabolism in cancer. The findings of this study indicate that L. vannamei is sensitive to the antifouling agent DCOIT and that DCOIT can induce altered gene expression at a concentration of 15 μg/L and can interfere with shrimp metabolism, growth and survival at 30 μg/L.
Collapse
Affiliation(s)
- Yujie Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifeng Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jia Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Yangfan Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Fenglu Han
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
48
|
Hao R, Du X, Yang C, Deng Y, Zheng Z, Wang Q. Integrated application of transcriptomics and metabolomics provides insights into unsynchronized growth in pearl oyster Pinctada fucata martensii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:46-56. [PMID: 30784822 DOI: 10.1016/j.scitotenv.2019.02.221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Similar to other marine bivalves, Pinctada fucata martensii presents unsynchronized growth, which is one of the problems farmers currently face. However, the underlying mechanisms have not been studied. In the present study, pearl oyster P. f. martensii from cultured stocks were selected to produce a progeny stock. At 180 days, the stock was sorted by size, and fast- and slow-growing individuals were separately sampled. Then, metabolomic and transcriptomic approaches were applied to assess the metabolic and transcript changes between the fast- and slow-growing P. f. martensii groups and understand the mechanism underlying their unsynchronized growth. In the metabolomics assay, 30 metabolites were considered significantly different metabolites (SDMs) between the fast- and slow-growing groups and pathway analysis indicated that these SDMs were involved in 20 pathways, including glutathione metabolism; sulfur metabolism; valine, leucine, and isoleucine biosynthesis; and tryptophan metabolism. The transcriptome analysis of different growth groups showed 168 differentially expressed genes (DEGs) and pathway enrichment analysis indicated that DEGs were involved in extracellular matrix-receptor interaction, pentose phosphate pathway, aromatic compound degradation. Integrated transcriptome and metabolome analyses showed that fast-growing individuals exhibited higher biomineralization activity than the slow-growing group, which consumed more energy than the fast-growing group in response to environmental stress. Fast-growing group also exhibited higher digestion, anabolic ability, and osmotic regulation ability than the slow-growing group. This study is the first work involving the integrated metabolomic and transcriptomic analyses to identify the key pathways to understand the molecular and metabolic mechanisms underlying unsynchronized bivalve growth.
Collapse
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China.
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
49
|
Jiang W, Tian X, Fang Z, Li L, Dong S, Li H, Zhao K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:465-474. [PMID: 30412891 DOI: 10.1016/j.scitotenv.2018.10.404] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Salinity is an important environmental factor affecting fish physiology. Tongue sole (Cynoglossus semilaevis) is a euryhaline species that can survive in a wide range of salinity, and might be used as a promising model animal for environmental science. In this study, by using the nuclear magnetic resonance (1H NMR)-based metabolomics, amino acids analysis and real-time quantitative PCR assay, we investigated the metabolic responses in the gills and plasma of tongue sole subjected to hypo- (0 ppt, S0) and hyper-osmotic stress (50 ppt, S50) from isosmotic environment (30 ppt, S30). The results showed that the metabolic profiles of S50 were significantly different from those of S0 and S30 groups, and a clear overlap was found between the latter two groups. Ten metabolites were significantly different between the salt stress groups and the isosmotic group. Taurine and creatine elevated in both S0 and S50 groups. Choline decreased in S50 group while increased in S0 group. Amino acids and energy compounds were higher in the gills of S50 group. The metabolic network showed that ten metabolic pathways were all found in S50 group, while seven pathways were observed in S0 group. Meanwhile, the transcript levels of the Tau-T and ATP synthase in the gills increased with increasing salinity. Aspartate and methionine exhibited significant differences in the plasma among the groups, but did not show differences in the gills. Comparatively, glutamate exhibited significant differences both in the plasma and the gills. Overall, these findings provide a preliminary profile of osmotic regulation in euryhaline fish.
Collapse
Affiliation(s)
- Wenwen Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China.
| | - Ziheng Fang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Li Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| |
Collapse
|
50
|
Abstract
The skin, gills, and gut are the most extensively studied mucosal organs in fish. These mucosal structures provide the intimate interface between the internal and external milieus and serve as the indispensable first line of defense. They have highly diverse physiological functions. Their role in defense can be highlighted in three shared similarities: their microanatomical structures that serve as the physical barrier and hold the immune cells and the effector molecules; the mucus layer, also a physical barrier, contains an array of potent bioactive molecules; and the resident microbiota. Mucosal surfaces are responsive and plastic to the different changes in the aquatic environment. The direct interaction of the mucosa with the environment offers some important information on both the physiological status of the host and the conditions of the aquatic environment. Increasing attention has been directed to these features in the last year, particularly on how to improve the overall health of the fish through manipulation of mucosal functions and on how the changes in the mucosa, in response to varying environmental factors, can be harnessed to improve husbandry. In this short review, we highlight the current knowledge on how mucosal surfaces respond to various environmental factors relevant to aquaculture and how they may be exploited in fostering sustainable fish farming practices, especially in controlled aquaculture environments.
Collapse
|