1
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Xiong B, Cheng H, Deng Y, Imanaka T, Igarashi Y, Ma M, Du H, Wang D. Role of Methanosarcina in mercuric mercury transportation and methylation in sulfate-driven anaerobic oxidation of methane with municipal wastewater sludge. ENVIRONMENTAL RESEARCH 2025; 267:120689. [PMID: 39716678 DOI: 10.1016/j.envres.2024.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing. Results showed that methylmercury (MeHg) concentrations and MeHg/total Hg ratios increased significantly, implying mercuric Hg [Hg(II)] methylation predominated MeHg demethylation. Desulfovibrio, Desulfobulbus and Methanosarcina dominated and thus likely played important roles in Hg(II) methylation, while Methanosarcina dominated and functioned in methane metabolism. In the presence of sulfate, differentially-expressed genes (DEGs) related to Hg transporting ATPase increased significantly, indicating Methanosarcina absorbed a large amount of Hg(II) and likely further methylated it to MeHg. No Hg response DEGs were found in the absence of sulfate, further confirming sulfate played an essential role in Hg cycle. Overall, these results suggest that controlling sulfate levels and Methanosarcina abundances in municipal wastewater could potentially mitigate MeHg risks to humans.
Collapse
Affiliation(s)
- Bingcai Xiong
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hao Cheng
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tadayuki Imanaka
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Wang S, Wang T, Gao L, Du H, Wang D, Ma M, Rennenberg H. Iron addition promotes mercury removal from soil by Robinia pseudoacacia-rhizobia symbiosis. TREE PHYSIOLOGY 2025; 45:tpae166. [PMID: 39699123 DOI: 10.1093/treephys/tpae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
Iron plaques on the root surface can promote or inhibit the absorption and accumulation of heavy metals by plants. However, the mechanism by which iron regulates the response of Robinia pseudoacacia to mercury (Hg) has not been elucidated, which hinders its application in divalent Hg (Hg2+) removal from Hg-contaminated soil. In this study, association analyses between transcriptome and metabolome were used to investigate effects of iron on the rhizosphere microenvironment and performance of R. pseudoacacia to assess its potential for Hg2+ removal. The results showed that the addition of 10 mg kg-1 iron significantly increased the development of iron plaques on the root surface and reduced the secretion of low-molecular-weight organic acids by roots, thereby changing rhizosphere soil characteristics and decreasing total Hg in roots. In addition, the secretion of choline supported signal transduction and enhanced the interaction between R. pseudoacacia and rhizobia, thereby inducing resistance to Hg2+. Anti-oxidative enzyme activities were increased and Hg2+ exposure of plants was reduced. Enhanced Hg2+ resistance was indicated by improved photosynthesis and growth, despite promoted xylem loading and transport of Hg2+, resulting in its accumulation in aboveground tissues, which is essential for Hg2+ removal. These results indicate that iron addition has a great potential to improve the growth of R. pseudoacacia in Hg-contaminated soil and promote the accumulation of Hg2+ in aboveground tissues for phytoremediation approaches.
Collapse
Affiliation(s)
- Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
4
|
Zhang Z, Ren X, Liu Y, Song S, Ren Y, Li L, Pang H, Yang J, Lu J. Enhancing sulfide mitigation via the synergistic dosing of calcium peroxide and ferrous ions in gravity sewers: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137285. [PMID: 39847929 DOI: 10.1016/j.jhazmat.2025.137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO2) and ferrous ions (Fe2+) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO2-Fe2+ improves the effect of sulfide control. When the ratio of the agent to the sewage (w/v) was 0.30 %, the RT50 of sulfide production rate was 8.34 days. The analysis of microbial communities in sewage biofilm revealed that the relative abundances of sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) demonstrated an overall downward tendency, suggesting that the potent oxidizing •OH generated by the synergism of CaO2 and Fe2+ could indiscriminately restrain the growth of microorganisms. Additionally, intracellular metabolic pathways, along with enzyme activities and the relative abundances of genes associated with sulfide metabolism, were significantly impaired. The cost of CaO2-Fe2+ synergistic dosing is 31.3 % of CaO2 and 63.4 % of Fe2+ alone addition. It can be reasonably proposed that the addition of CaO2-Fe2+ may provide an efficacious and cost-effective method for the mitigation of sulfide in sewer systems.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaowei Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxin Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shanshan Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yating Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linjun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China.
| |
Collapse
|
5
|
Gao W, Chen X, He J, Sha A, Ren Y, Wu P, Li Q. The impact of kaolin mining activities on bacterial diversity and community structure in the rhizosphere soil of three local plants. Front Microbiol 2024; 15:1424687. [PMID: 39314884 PMCID: PMC11417686 DOI: 10.3389/fmicb.2024.1424687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Thus far, the impact of kaolin mining activities on the surrounding native plants and rhizosphere microecology has not been fully understood. Methods In this study, we used 16S rRNA high-throughput sequencing to examine the impact of kaolin mining on the rhizosphere bacterial communities and functions of three local plant species: Conyza bonariensis, Artemisia annua, and Dodonaea viscosa. Results The results showed that kaolin mining significantly reduced the diversity of rhizosphere bacteria in these plants, as indicated by the Shannon, Simpson, Chao1, and observed species indices (p < 0.05). Kaolin mining had an impact on the recruitment of three rhizosphere bacteria native to the area: Actinoplanes, RB41, and Mycobacterium. These bacteria were found to be more abundant in the rhizosphere soil of three local plants than in bulk soil, yet the mining of kaolin caused a decrease in their abundance (p < 0.05). Interestingly, Ralstonia was enriched in the rhizosphere of these plants found in kaolin mining areas, suggesting its resilience to environmental stress. Furthermore, the three plants had different dominant rhizosphere bacterial populations in kaolin mining areas, such as Nocardioides, Pseudarthrobacter, and Sphingomonas, likely due to the unique microecology of the plant rhizosphere. Kaolin mining activities also caused a shift in the functional diversity of rhizosphere bacteria in the three local plants, with each plant displaying different functions to cope with kaolin mining-induced stress, such as increased abundance of the GlpM family and glucan-binding domain. Discussion This study is the first to investigate the effects of kaolin mining on the rhizosphere microecology of local plants, thus contributing to the establishment of soil microecological health monitoring indicators to better control soil pollution in kaolin mining areas.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Yuanhang Ren
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Tang Y, Chen X, Hou L, He J, Sha A, Zou L, Peng L, Li Q. Effects of uranium mining on the rhizospheric bacterial communities of three local plants on the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34335-1. [PMID: 39044055 DOI: 10.1007/s11356-024-34335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
In this study, we used 16S high-throughput sequencing to investigate the effects of uranium mining on the rhizospheric bacterial communities and functions of three local plant species, namely, Artemisia frigida, Acorus tatarionwii Schott., and Salix oritrepha Schneid. The results showed that uranium mining significantly reduced the diversity of rhizospheric bacteria in the three local plant species, including the Shannon index and Simpson index (P < 0.05). Interestingly, we found that Sphingomonas and Pseudotrichobacter were enriched in the rhizosphere soil of the three local plants from uranium mining areas, indicating their important ecological role. The three plants were enriched in various dominant rhizospheric bacterial populations in the uranium mining area, including Vicinamidobacteriaceae, Nocardioides, and Gaiella, which may be related to the unique microecological environment of the plant rhizosphere. The rhizospheric bacterial community of A. tatarionwii plants from tailings and open-pit mines also showed a certain degree of differentiation, indicating that uranium mining is the main factor driving the differentiation of plant rhizosphere soil communities on the plateau. Functional prediction revealed that rhizospheric bacteria from different plants have developed different functions to cope with stress caused by uranium mining activities, including enhancing the translational antagonist Rof, the translation initiation factor 2B subunit, etc. This study explores for the first time the impact of plateau uranium mining activities on the rhizosphere microecology of local plants, promoting the establishment of effective soil microecological health monitoring indicators, and providing a reference for further soil pollution remediation in plateau uranium mining areas.
Collapse
Affiliation(s)
- Yuanmou Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liming Hou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
7
|
Zhong H, Su Y, Wu X, Nunes L, Li C, Hao Y, Liu YR, Tang W. Mercury supply limits methylmercury production in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172335. [PMID: 38604369 DOI: 10.1016/j.scitotenv.2024.172335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The neurotoxic methylmercury (MeHg) is a product of inorganic mercury (IHg) after microbial transformation. Yet it remains unclear whether microbial activity or IHg supply dominates Hg methylation in paddies, hotspots of MeHg formation. Here, we quantified the response of MeHg production to changes in microbial activity and Hg supply using 63 paddy soils under the common scenario of straw amendment, a globally prevalent agricultural practice. We demonstrate that the IHg supply is the limiting factor for Hg methylation in paddies. This is because IHg supply is generally low in soils and can largely be facilitated (by 336-747 %) by straw amendment. The generally high activities of sulfate-reducing bacteria (SRB) do not limit Hg methylation, even though SRB have been validated as the predominant microbial Hg methylators in paddies in this study. These findings caution against the mobilization of legacy Hg triggered by human activities and climate change, resulting in increased MeHg production and the subsequent flux of this potent neurotoxin to our dining tables.
Collapse
Affiliation(s)
- Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Yao Su
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Xinda Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Yunyun Hao
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wenli Tang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Wang X, Chi Y, Song S. Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review. Front Microbiol 2024; 15:1347745. [PMID: 38591030 PMCID: PMC10999704 DOI: 10.3389/fmicb.2024.1347745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Clarifying the relationship between soil microorganisms and the plant-soil system is crucial for encouraging the sustainable development of ecosystems, as soil microorganisms serve a variety of functional roles in the plant-soil system. In this work, the influence mechanisms of significant soil microbial groups on the plant-soil system and their applications in environmental remediation over the previous 30 years were reviewed using a systematic literature review (SLR) methodology. The findings demonstrated that: (1) There has been a general upward trend in the number of publications on significant microorganisms, including bacteria, fungi, and archaea. (2) Bacteria and fungi influence soil development and plant growth through organic matter decomposition, nitrogen, phosphorus, and potassium element dissolution, symbiotic relationships, plant growth hormone production, pathogen inhibition, and plant resistance induction. Archaea aid in the growth of plants by breaking down low-molecular-weight organic matter, participating in element cycles, producing plant growth hormones, and suppressing infections. (3) Microorganism principles are utilized in soil remediation, biofertilizer production, denitrification, and phosphorus removal, effectively reducing environmental pollution, preventing soil pathogen invasion, protecting vegetation health, and promoting plant growth. The three important microbial groups collectively regulate the plant-soil ecosystem and help maintain its relative stability. This work systematically summarizes the principles of important microbial groups influence plant-soil systems, providing a theoretical reference for how to control soil microbes in order to restore damaged ecosystems and enhance ecosystem resilience in the future.
Collapse
Affiliation(s)
| | - Yongkuan Chi
- School of Karst Science, State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | | |
Collapse
|
9
|
Guo P, Du H, Zhao W, Xiong B, Wang M, He M, Flemetakis E, Hänsch R, Ma M, Rennenberg H, Wang D. Selenium- and chitosan-modified biochars reduce methylmercury contents in rice seeds with recruiting Bacillus to inhibit methylmercury production. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133236. [PMID: 38141298 DOI: 10.1016/j.jhazmat.2023.133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.
Collapse
Affiliation(s)
- Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Wancang Zhao
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Bingcai Xiong
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Mingxing Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, PR China
| | - Mingyan He
- Chongqing Ecological Environment Monitoring Center, Chongqing 401147, PR China
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Robert Hänsch
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, PR China
| |
Collapse
|
10
|
Liu R, Hu B, Flemetakis E, Dannenmann M, Geilfus CM, Haensch R, Wang D, Rennenberg H. Antagonistic effect of mercury and excess nitrogen exposure reveals provenance-specific phytoremediation potential of black locust-rhizobia symbiosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123050. [PMID: 38042473 DOI: 10.1016/j.envpol.2023.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.
Collapse
Affiliation(s)
- Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China; College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing, 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China.
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - Robert Haensch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China; Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Dingyong Wang
- College of Resources and Environment, Academy of Agriculture Sciences, Southwest University, Chongqing, 400715, PR China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| |
Collapse
|
11
|
Luo XF, Liu MY, Tian ZX, Xiao Y, Zeng P, Han ZY, Zhou H, Gu JF, Liao BH. Physiological tolerance of black locust (Robinia pseudoacacia L.) and changes of rhizospheric bacterial communities in response to Cd and Pb in the contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2987-3003. [PMID: 38079046 DOI: 10.1007/s11356-023-31260-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Woody plants possess great potential for phytoremediation of heavy metal-contaminated soil. A pot trial was conducted to study growth, physiological response, and Cd and Pb uptake and distribution in black locust (Robinia pseudoacacia L.), as well as the rhizosphere bacterial communities in Cd and Pb co-contaminated soil. The results showed that R. pseudoacacia L. had strong physiological regulation ability in response to Cd and Pb stress in contaminated soil. The total chlorophyll, malondialdehyde (MDA), soluble protein, and sulfhydryl contents, as well as antioxidant enzymes (superoxide dismutase, peroxidase, catalase) activities in R. pseudoacacia L. leaves under the 40 mg·kg-1 Cd and 1000 mg·kg-1 Pb co-contaminated soil were slightly altered. Cd uptake in R. pseudoacacia L. roots and stems increased, while the Pb content in the shoots of R. pseudoacacia L. under the combined Cd and Pb treatments decreased in relative to that in the single Pb treatments. The bacterial α-diversity indices (e.g., Sobs, Shannon, Simpson, Ace, and Chao) of R. pseudoacacia L. rhizosphere soil under Cd and Pb stress were changed slightly relative to the CK treatment. However, Cd and Pb stress could significantly (p < 0.05) alter the rhizosphere soil microbial communities. According to heat map and LEfSe (Linear discriminant analysis Effect Size) analysis, Bacillus, Sphingomonas, Terrabacter, Roseiflexaceae, Paenibacillus, and Myxococcaceae at the genus level were notably (p < 0.05) accumulated in the Cd- and/or Pb-contaminated soil. Furthermore, the MDA content was notably (p < 0.05) negatively correlated with the relative abundances of Isosphaeraceae, Gaiellales, and Gemmatimonas. The total biomass of R. pseudoacacia L. was positively (p < 0.05) correlated with the relative abundances of Xanthobacteraceae and Vicinamibacreraceae. Network analysis showed that Cd and Pb combined stress might enhance the modularization of bacterial networks in the R. pseudoacacia L. rhizosphere soil. Thus, the assembly of the soil bacterial communities in R. pseudoacacia L. rhizosphere may improve the tolerance of plants in response to Cd and/or Pb stress.
Collapse
Affiliation(s)
- Xu-Feng Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meng-Yu Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zi-Xi Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yue Xiao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zi-Yu Han
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiao-Feng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
12
|
Gao Y, Cheng H, Xiong B, Du H, Liu L, Imanaka T, Igarashi Y, Ma M, Wang D, Luo F. Biogeochemical transformation of mercury driven by microbes involved in anaerobic digestion of municipal wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118640. [PMID: 37478720 DOI: 10.1016/j.jenvman.2023.118640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Anaerobic digestion (AD) with municipal wastewater contained heavy metal mercury (Hg) highly affects the utilization of activated sludge, and poses severe threat to the health of human beings. However, the biogeochemical transformation of Hg during AD remains unclear. Here, we investigated the biogeochemical transformation and environmental characteristics of Hg and the variations of dominant microbes during AD. The results showed that Hg(II) methylation is dominant in the early stage of AD, while methylmercury (MeHg) demethylation dominates in the later stage. Dissolved total Hg (DTHg) in the effluent sludge decreased with time, while THg levels enhanced to varying degrees at the final stage. Sulfate significant inhibits MeHg formation, reduces bioavailability of Hg(II) by microbes and thus inhibits Hg(II) methylation. Microbial community analysis reveals that strains in Methanosarcina and Aminobacterium from the class of Methanomicrobia, rather than Deltaproteobacteria, may be directly related to Hg(II) methylation and MeHg demethylation. Overall, this research provide insights into the biogeochemical transformation of Hg in the anaerobic digestion of municipal wastewater treatment. This work is beneficial for scientific treatment of municipal wastewater and effluent sludge, thus reducing the risk of MeHg to human beings.
Collapse
Affiliation(s)
- Yuanqin Gao
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hao Cheng
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Bingcai Xiong
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| | - Lei Liu
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Tadayuki Imanaka
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| | - Dinyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Feng Luo
- Chongqing Key Laboratory of Biogenetics and Anaerobic Microecology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
13
|
Singh D, Kaushik R, Chakdar H, Saxena AK. Unveiling novel insights into haloarchaea (Halolamina pelagica CDK2) for alleviation of drought stress in wheat. World J Microbiol Biotechnol 2023; 39:328. [PMID: 37792124 DOI: 10.1007/s11274-023-03781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Plant growth promoting microorganisms have various implications for plant growth and drought stress alleviation; however, the roles of archaea have not been explored in detail. Herein, present study was aimed for elucidating potential of haloarchaea (Halolamina pelagica CDK2) on plant growth under drought stress. Results showed that haloarchaea inoculated wheat plants exhibited significant improvement in total chlorophyll (100%) and relative water content (30.66%) compared to the uninoculated water-stressed control (30% FC). The total root length (2.20-fold), projected area (1.60-fold), surface area (1.52-fold), number of root tips (3.03-fold), number of forks (2.76-fold) and number of links (1.45-fold) were significantly higher in the inoculated plants than in the uninoculated water stressed control. Additionally, the haloarchaea inoculation resulted in increased sugar (1.50-fold), protein (2.40-fold) and activity of antioxidant enzymes such as superoxide dismutase (1.93- fold), ascorbate peroxidase (1.58-fold), catalase (2.30-fold), peroxidase (1.77-fold) and glutathione reductase (4.70-fold), while reducing the accumulation of proline (46.45%), glycine betaine (35.36%), lipid peroxidation (50%), peroxide and superoxide radicals in wheat leaves under water stress. Furthermore, the inoculation of haloarchaea significantly enhanced the expression of stress-responsive genes (DHN, DREB, L15, and TaABA-8OH) and wheat vegetative growth under drought stress over the uninoculated water stressed control. These results provide novel insights into the plant-archaea interaction for plant growth and stress tolerance in wheat and pave the way for future research in this area.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR- Central Arid Zone Research Institute, 342003, Jodhpur, Rajasthan, India
- ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Kushmaur, Mau, Uttar Pradesh, India
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Kushmaur, Mau, Uttar Pradesh, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Kushmaur, Mau, Uttar Pradesh, India.
| |
Collapse
|
14
|
Liu C, Ning Y, Liu J. Geochemical mercury pools regulate diverse communities of hgcA microbes and MeHg levels in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122172. [PMID: 37437760 DOI: 10.1016/j.envpol.2023.122172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Rice paddies are unique artificial wetlands generating methylmercury (MeHg), a highly potent neurotoxin. However, the impact of diverse mercury (Hg) pools on the Hg-methylating communities during rice growth is unclear. This study investigates soil treated with five mercury forms (HgCl2, α-HgS, β-HgS, nano-HgS, and Hg-DOM) at two levels (5 mg/kg and 50 mg/kg). The results showed a varying abundance of sulphate-reducing bacteria, Geobacteraceae, methanogens, and hgcA microbes in the soils across rice grown under different mercury treatments and concentrations. Soils treated with HgCl2, nano-HgS and β-HgS had higher than average levels of hgcA-methanogen abundance, and the abundance significantly and positively correlated with MeHg concentration in all samples (p < 0.05). The shifting trends in Hg-methylating microbial structure following treatment with α-HgS, β-HgS, nano-HgS and Hg-DOM at both 5 and 50 mg/kg Hg levels were diverse compared with the control group. HgCl2 treatment showed contrasting trends in community distribution of Hg methylators at 5 and 50 mg/kg Hg levels during rice growth. Dissolved organic carbon, redox potential and sulphate levels significantly correlated with variation in the Hg-methylating microbial community structure and MeHg production in soils.
Collapse
Affiliation(s)
- Chutong Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
15
|
Guo P, Rennenberg H, Du H, Wang T, Gao L, Flemetakis E, Hänsch R, Ma M, Wang D. Bacterial assemblages imply methylmercury production at the rice-soil system. ENVIRONMENT INTERNATIONAL 2023; 178:108066. [PMID: 37399771 DOI: 10.1016/j.envint.2023.108066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.
Collapse
Affiliation(s)
- Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Robert Hänsch
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing, China
| |
Collapse
|
16
|
Wang S, Yao H, Li L, Du H, Guo P, Wang D, Rennenberg H, Ma M. Differentially-expressed genes related to glutathione metabolism and heavy metal transport reveals an adaptive, genotype-specific mechanism to Hg 2+ exposure in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121340. [PMID: 36828354 DOI: 10.1016/j.envpol.2023.121340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rice consumption is an essential cause of mercury (Hg) exposure for humans in Asia. However, the mechanism of Hg transport and accumulation in rice plants (Oryza sativa L.) remains unclear. Here, rice genotypes with contrasting Hg uptake and translocation abilities, i.e. H655 (high Hg-accumulator) and H767 (low Hg-accumulator), were selected from 261 genotypes. Through comparative physiological and transcriptome analyses, we investigated the processes responsible for the relationship between Hg accumulation, transport and tolerance. The results showed significant stimulation of antioxidative metabolism, particularly glutathione (GSH) accumulation, and up-regulated expression of regulatory genes of glutathione metabolism for H655, but not for H767. In addition, up-regulated expression of GSH S-transferase (GST) and OsPCS1 in H655 that catalyzes the binding of Hg and GSH, enhances the Hg detoxification capacity, while high-level expression of YSL2 in H655 enhances the transport ability for Hg. Conclusively, Hg accumulation in rice is a consequence of enhanced expression of genes related to Hg binding with GSH and Hg transport. With these results, the present study contributes to the selection of rice genotypes with limited Hg accumulation and to the mitigation of Hg migration in food chains thereby enhancing nutritional safety of Hg-polluted rice fields.
Collapse
Affiliation(s)
- Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hesheng Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lingyi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Hu H, Gao Y, Yu H, Xiao H, Chen S, Tan W, Tang J, Xi B. Mechanisms and biological effects of organic amendments on mercury speciation in soil-rice systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114516. [PMID: 36628877 DOI: 10.1016/j.ecoenv.2023.114516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) pollution is a well-recognized global environmental and health issue and exhibits distinctive persistence, neurotoxicity, bioaccumulation, and biomagnification effects. As the largest global Hg reservoir, the Hg cumulatively stored in soils has reached as high as 250-1000 Gg. Even more concerning is that global soil-rice systems distributed in many countries have become central to the global Hg cycle because they are both a major food source for more than 3 billion people worldwide and the central bridge linking atmospheric and soil Hg circulation. In this review, we discuss the form distribution, transformation, and bioavailability of Hg in soil-rice systems by focusing on the Hg methylation and demethylation pathways and distribution, uptake, and accumulation in rice plants and the effects of Hg on the community structure and ecological functions of microorganisms in soil-rice systems. In addition, we clarify the mechanisms through which commonly used humus and biochar organic amendments influence Hg and its environmental effects in soil-rice systems. The review also elaborates on the advantages of sulfur-modified biochars and their critical role in controlling Hg migration and bioavailability in soils. Finally, we provide key information about Hg pollution in soil-rice systems, which is of great significance for developing appropriate strategies and mitigation planning to limit Hg bioconcentration in rice crops and achieving key global sustainable development goals, such as the guarantee of food security and the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Hualing Hu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Shuhe Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Prudence Dlamini S, Olalekan Akanmu A, Emmanuel Fadiji A, Oluranti Babalola O. Maize rhizosphere modulates the microbiome diversity and community structure to enhance plant health. Saudi J Biol Sci 2022; 30:103499. [DOI: 10.1016/j.sjbs.2022.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
19
|
Zhang Y, Zhou X, Ma W, Yin D, Wang Y, Zhang C, Wang D. Distribution of Mercury and Methylmercury in Farmland Soils Affected by Manganese Mining and Smelting Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610288. [PMID: 36011929 PMCID: PMC9408302 DOI: 10.3390/ijerph191610288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/01/2023]
Abstract
Manganese (Mn)-related activities would affect the mercury (Hg) cycling in farmlands, whereas this was not well understood. Here, one of the largest Mn ores in China was selected to study the effects of Mn-related activities on the accumulation and distribution of total Hg (THg) and methylmercury (MeHg) in farmland soils. The soil THg concentrations in the mining area were 0.56 ± 0.45, 0.56 ± 0.45, 0.53 ± 0.44, and 0.50 ± 0.46 mg kg−1 in the 0−10, 10−20, 20−30, and 30−40 cm layers, respectively, while they were increased to 0.75 ± 0.75, 0.72 ± 0.60, 0.62 ± 0.46, and 0.52 ± 0.38 mg kg−1 in the smelting area. Similarly, the soil MeHg concentrations in the smelting area were also elevated by 1.04−1.34 times as compared to those in the mining area. Concentrations of THg (0.59 ± 0.50 mg kg−1) and MeHg (0.64 ± 0.82 μg kg−1) in soils were higher than the regional background value but lower than in vicinal Hg-mining areas, while they were largely elevated at the intersection of two rivers in the smelting area. Significant positive Mn-THg relationship (p < 0.01) and negative Mn-MeHg relationship (p < 0.01) favored the conclusion that soil Mn could promote Hg accumulation while inhibiting MeHg production. Approximately 70% of soil Hg was distributed in the residual phase, and the environmental hazard was not elevated according to a geochemical model. Overall, mining and smelting activities of Mn ores have resulted in obvious and distinct effects on the accumulation and methylation of Hg in farmland soils, but the environmental hazards are currently manageable.
Collapse
Affiliation(s)
- Yongjiang Zhang
- Department of Environment and Quality Test, Chongqing Chemical Industry Vocational College, Chongqing 401220, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weibin Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
21
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Zhang Z, Chang N, Wang S, Lu J, Li K, Zheng C. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152203. [PMID: 34890666 DOI: 10.1016/j.scitotenv.2021.152203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Traditional air or oxygen injection is an effective and economical mitigation strategy for sulfide control in pressure sewers, but it is not suitable for gravity sewers due to the low solubility of oxygen in water under normal atmospheric conditions. Herein, an air-nanobubble (ANB) injection method was proposed for sulfide mitigation in gravity sewers, and its sulfide control efficiency was evaluated by long-term laboratory gravity sewer reactors. The results showed that an average inhibition rate of 45.36% for sulfide was obtained when ANBs were implemented, which was 3.75 times higher than that of the traditional air injection method, revealing the effectiveness and feasibility of the ANB injection method. As suggested by microbial community analysis of sewer biofilms, the relative abundance of sulfate-reducing bacteria (SRB) decreased 40.57% while that of sulfur oxidizing bacteria (SOB) increased 215.27% in the presence of ANBs, indicating that sulfide mitigation by ANB injection included both the inhibition of sulfide production and the oxidation of dissolved sulfide. The specific cost consumption of ANB injection was 1.7 $/kg-S, which was only 6.85% of that of traditional air injection (24.8 $/kg-S), suggesting that the sustainable supply of oxygen based on ANB injection is not only environmentally but also economically beneficial for sulfide mitigation. The findings of this study may provide an efficient sulfide mitigation strategy for the management of corrosion and malodour issues in the poorly ventilated gravity sewers.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Na Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Sheping Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Xi'an Municipal Design and Research Institute, No.100 Zhuque Road, Xi'an 710068, People's Republic of China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, People's Republic of China; Key Laboratory of Environmental Engineering, Shaanxi Province, People's Republic of China.
| | - Kexin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Cailin Zheng
- Ankang Municipal Facilities Management, House and Urban Rural Development Department of Ankang, NO.1 Bingjiang Road, Ankang 725000, Shaanxi Province, People's Republic of China
| |
Collapse
|
23
|
Sun T, Wang Y, Li C, Huang J, Hua Y, Yue C, Chao H, Zhang D, Zhang Y, Wang D. Use smaller size of straw to alleviate mercury methylation and accumulation induced by straw incorporation in paddy field. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127002. [PMID: 34474359 DOI: 10.1016/j.jhazmat.2021.127002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Straw sizes were found to affect the methylmercury (MeHg) accumulation in rice grains induced by straw incorporation. The mechanism behind, however, still remains unclear. Here, we incorporated rice straw in different sizes (powder, 2 cm and 5 cm) into a Hg-contaminated paddy soil. Our results showed that straw sizes regulated the release of different fractions of organic matter (OM) in straw residues and further Hg methylation in paddy soil. The easily degradable OM (EDOM) was a key driving factor that facilitated net Hg methylation, though it only occupied a small fraction (1.12-3.12%) of the soil OM. Powdered straw reduced the duration of net Hg methylation by 74.39% compared to 5 cm straw, resulting in a strong and rapid net Hg methylation in paddy soil before the rice flowering. After the release of EDOM, the humified OM dominated in paddy soil and bound to MeHg, leading to less MeHg being transported to rice grains during the grain filling. Powdered straw decreased MeHg accumulation by 25.32% in the mature rice grains compared with 5 cm straw. Our study suggests that straw powdering before incorporation provides a feasible pathway for reducing MeHg accumulation in rice grains induced by straw incorporation.
Collapse
Affiliation(s)
- Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Chuxian Li
- Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå 90136, Sweden
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dingxi Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjiang Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Department of Environment and Quality Test, Chongqing Chemical Industry Vocational College, Chongqing 401220, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Senevirathna STMLD, Krishna KCB, Mahinroosta R, Sathasivan A. Comparative characterization of microbial communities that inhabit PFAS-rich contaminated sites: A case-control study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126941. [PMID: 34474371 DOI: 10.1016/j.jhazmat.2021.126941] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The historic usage and discharge of per- and polyfluoroalkyl substances (PFAS) containing chemicals have produced many contaminated sites and PFAS contamination has become a global concern due to their persistence, widespread distribution, and potential adverse impacts for human and environmental health. However, there have been limited investigations on the specific behavior of bacterial communities in PFAS contaminated soils. In this study, a quantitative PCR assay and Illumina MiSeq sequencing were used to investigate the variations of bacterial communities in a regional Australian airport contaminated with PFAS. The dominate PFAS detected in soil samples was Perfluorooctanesulfonic acid (PFOS), which accounted for 82% of total PFAS and the maximum PFOS level was noted (20,947±1824 ng.PFOS/mg.Soil) at the top soil. Irrespective of the degree of PFAS contamination at different depths, the comparable percentile contribution of each PFAS was observed in soil samples. Significantly higher bacteria amplicon sequence variant (ASV) and diversity were noted in uncontaminated soil than PFAS contaminated soil. Bacterial genera Rhodanobacter and Chujaibacter were dominant in the PFAS contaminated soil. Three different bacterial genera of Alphaproteobacteria, Ambiguous taxa of Acidobacteriia, and genus Chujaibacter of Gammaproteobacteria showed a significant positive correlation and RB41, Gaiella showed a significant negative correlation with 11 different PFAS concentrations. Overall, the results presented in this study suggest that the counts and species diversity of soil microorganisms are adversely influenced by PFAS contamination.
Collapse
Affiliation(s)
- S T M L D Senevirathna
- CSU Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, Panorama Avenue, Bathurst, NSW, Australia; Institute of Land, Water and Society, Charles Sturt University, Australia.
| | - K C Bal Krishna
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith NSW 2750, Australia
| | - Reza Mahinroosta
- CSU Engineering, Faculty of Business, Justice and Behavioural Sciences, Charles Sturt University, Panorama Avenue, Bathurst, NSW, Australia; Institute of Land, Water and Society, Charles Sturt University, Australia
| | - Arumugam Sathasivan
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith NSW 2750, Australia
| |
Collapse
|
25
|
Strickman RJ, Larson S, Huang H, Kakouros E, Marvin-DiPasquale M, Mitchell CPJ, Neumann RB. The relative importance of mercury methylation and demethylation in rice paddy soil varies depending on the presence of rice plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113143. [PMID: 34998262 DOI: 10.1016/j.ecoenv.2021.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Neurotoxic methylmercury (MeHg) accumulates in rice grain from paddy soil, where its concentration is controlled by microbial mercury methylation and demethylation. Both up- and down-regulation of methylation is known to occur in the presence of rice plants in comparison to non-vegetated paddy soils; the influence of rice plant presence/absence on demethylation is unknown. To assess the concurrent influence of rice plant presence/absence on methylation and demethylation, and to determine which process was more dominant in controlling soil MeHg concentrations, we maintained six rhizoboxes of paddy soil with and without rice plants. At the peak of plant growth, we simultaneously measured ambient MeHg, ambient inorganic mercury (IHg), and potential rate constants of methylation and demethylation (Kmeth and Kdemeth) in soil using stable isotope tracers and ID-GC-ICPMS. We also measured organic matter content, elemental S, and water-extractable sulfate. We found MeHg concentrations were differentially controlled by MeHg production and degradation processes, depending on whether plants were present. In non-vegetated boxes, MeHg concentration was controlled by Kmeth, as evidenced by a strong and positive correlation, while Kdemeth had no relation to MeHg concentration. These results indicate methylation was the dominant driver of MeHg concentration in non-vegetated soil. In vegetated boxes, Kdemeth strongly and negatively predicted MeHg concentration, indicating that demethylation was the dominant control in soil with plants. MeHg concentration, Kmeth, and % MeHg all had significantly less variance in vegetated than in non-vegetated soils due to a consistent elimination of greater values. This pattern suggests that reduced MeHg production capacity was a secondary control on MeHg concentrations in vegetated soils. We observed no difference in the magnitude or variance of Kdemeth between treatments, suggesting that demethylation was robust to soil chemical conditions influenced by the plant, perhaps because of a wider taxonomic diversity of demethylators. Our results suggest that methylation and demethylation processes could both be leveraged to alter MeHg concentrations in rice paddy soil.
Collapse
Affiliation(s)
- R J Strickman
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA.
| | - S Larson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
| | - H Huang
- University of Toronto Scarborough, Ontario, Canada
| | - E Kakouros
- US Geological Survey, Menlo Park, Palo Alto, CA, USA
| | | | | | - R B Neumann
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
| |
Collapse
|
26
|
Deng Y, Fu S, Sarkodie EK, Zhang S, Jiang L, Liang Y, Yin H, Bai L, Liu X, Liu H, Jiang H. Ecological responses of bacterial assembly and functions to steep Cd gradient in a typical Cd-contaminated farmland ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113067. [PMID: 34890983 DOI: 10.1016/j.ecoenv.2021.113067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
The response of soil bacterial communities from farmland ecosystems to cadmium (Cd) pollution, in which a steep concentration gradient of more than 100 mg/kg has naturally formed, has not previously been fully reported. In this study, a field investigation was conducted in a typical severe Cd-polluted farmland ecosystem, and the bacterial community response to the steep Cd gradient was analyzed. The results showed that Cd concentration sharply decreased from 159.2 mg/kg to 4.18 mg/kg among four sampling sites alongside an irrigation canal over a distance of 150 m. Bacterial diversity and richness were significantly lower in highly polluted sites, and random forest analysis indicated that Cd gradient played a decisive role in reducing alpha diversity. Redundancy analysis (RDA) and co-occurrence network indicated that the synergistic effects of pH, Cd, and phosphorus were the main drivers shaping community structure. The functional results predicted by BugBase suggested that the bacterial community may adapt to the harsh environment by recruiting Cd-resistant microbes and improving oxidative stress tolerance of the whole community. Cd-resistant microorganisms such as Burkholderia, Bradyrhizobium, and Sulfurifustis, which directly or indirectly participate in diminishing oxidative damage of Cd, may play essential roles in maintaining community stability and might be potential bacterial resources for the bioremediation of Cd pollution.
Collapse
Affiliation(s)
- Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmannuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Lianyang Bai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
27
|
Guo P, Du H, Wang D, Ma M. Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142682. [PMID: 33572042 DOI: 10.1016/j.scitotenv.2020.142682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) in rice is presumed to be derived from MeHg formed in the soil, although it is still controversial. Moderate soil mercury (Hg) concentration can affect the diversity of soil microorganisms and may also impact the physiological changes and MeHg absorption of rice. In this study, the pot experiment was conducted to explore the effects of Hg concentration gradients (0, 0.3, 3, and 30 mg kg-1) stress on Hg transformation in the rhizosphere, Hg translocation in rice, and physiological changes in rice leaves during the whole rice growing season. Moderate soil Hg concentration (3 mg kg-1) greatly increased the MeHg/THg (1.69%) of rhizosphere, while 30 mg kg-1 soil Hg concentration sharply reduced the MeHg/THg (0.29%) of rhizosphere. Highest MeHg/THg of the four groups all appeared at the blooming or filling stage. There was a significant positive correlation between Fe2+ in rhizosphere and MeHg/THg, but no significant correlation between SO42- and MeHg/THg was observed. Although the 3 mg kg-1 soil Hg concentration significantly enhanced MeHg concentrations in seeds, it considerably reduced the bioaccumulation factors of MeHg in roots, stalks, old leaves and young leaves. Soil Hg concentration of 30 mg kg-1, to a certain extent, curtailed MeHg concentrations in seeds, while MeHg concentrations in the husk were significantly increased. Consistent with the result that there was no significant difference for THg concentrations in old and young leaves among the four Hg treatment groups, the content of chlorophyll, H2O2, malondialdehyde and antioxidant substances, and the activities of antioxidant enzyme in old and young leaves varied indistinctly among groups. MAIN FINDING: Moderate soil mercury concentration (3 mg kg-1) could extremely enhance MeHg production in the rhizosphere soil and its accumulation in rice; MeHg production in the rhizosphere soil increased greatly at the blooming or filling stage, whereas little effect on antioxidant systems in leaves was observed.
Collapse
Affiliation(s)
- Pan Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Ammonia-oxidizing archaea in biological interactions. J Microbiol 2021; 59:298-310. [DOI: 10.1007/s12275-021-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
|
29
|
Liu J, Liu W, Zhang Y, Chen C, Wu W, Zhang TC. Microbial communities in rare earth mining soil after in-situ leaching mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142521. [PMID: 33035989 DOI: 10.1016/j.scitotenv.2020.142521] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
In-situ leaching technology is now widely used to exploit ion adsorption rare earth ore, which has caused serious environmental problems and deterioration of mining soil ecosystems. However, our knowledge about the influences of mining operation on the microbiota in these ecosystems is currently very limited. In this study, diversity and composition of prokaryote and ammonia-oxidizing microorganisms in rare earth mining soil after in-situ leaching practice were examined using quantitative Polymerase Chain Reaction (qPCR) and Illumina high-throughput sequencing. Results showed that in-situ leaching mining considerably impacted microbial communities of the mining soils. The abundances of bacterial, archaeal, and ammonia-oxidizing archaea (AOA) were significantly and negatively correlated with ionic rare earth elements (REEs), while their diversities were relatively stable. Total rare earth elements (TREEs) and ammonium were the strongest predictors of the bacterial community structure, and organic matter was the key factor predicting the variation in the archaeal community. Chloroflexi, Proteobacteria, Acidobacteria, and Actinobacteria were the most abundant bacterial phyla, and archaeal communities were dominated by Thaumarchaeota. Phylogenetic analysis indicated that unclassified Thaumarchaeota and Crenarchaeota were the predominant AOA groups. The non-detection of ammonia-oxidizing bacteria (AOB) and the abundance of AOA indicated that archaea rather than bacteria were predominantly responsible for ammonia oxidation in the mining soil. Network analysis demonstrated that positive interactions among microorganisms could increase their adaptability or resistance to this harsh environment. This study provides a comprehensive analysis of the prokaryotic communities and functional groups in rare earth mining soil after mining operation, as well as insight into the potential interactive mechanisms among soil microbes.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, China.
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Yingbin Zhang
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Omaha, USA
| |
Collapse
|
30
|
Song W, Xiong H, Qi R, Wang S, Yang Y. Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116141. [PMID: 33290948 DOI: 10.1016/j.envpol.2020.116141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g-1) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L-1) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g-1) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L-1), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.
Collapse
Affiliation(s)
- Wenjuan Song
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Heigang Xiong
- College of Applied Arts and Science of Beijing Union University, Beijing, 100191, China
| | - Ran Qi
- Command Center of Comprehensive Natural Resources Survey, China Geological Survey, Beijing, 100055, China; Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China
| | - Shuzhi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
31
|
Mao Q, Tang L, Ji W, Rennenberg H, Hu B, Ma M. Elevated CO 2 and soil mercury stress affect photosynthetic characteristics and mercury accumulation of rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111605. [PMID: 33396125 DOI: 10.1016/j.ecoenv.2020.111605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
This is a novel study about responses of leaf photosynthetic traits and plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll content, soluble sugar and Malondialdehyde (MDA) of rice leaves were measured at flowering. Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and methylmercury (MeHg) contents were determined after harvest. Our results showed that Hg polluted soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in seeds, husks and roots.
Collapse
Affiliation(s)
- Qiaozhi Mao
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Lingzhi Tang
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Wenwen Ji
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Heinz Rennenberg
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Bin Hu
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| | - Ming Ma
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| |
Collapse
|
32
|
Du H, Guo P, Wang T, Ma M, Wang D. Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116431. [PMID: 33453697 DOI: 10.1016/j.envpol.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/13/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Rice has been confirmed as one of the principal intake pathways for methylmercury (MeHg) in human, however, the impact of edible organisms, such as snails, loaches and eels, living in the rice-based ecosystem to the overall MeHg intake has been overlooked. Here, we conducted a cross-sectional ecological study, and the results showed that bioaccumulation of MeHg in these edible organisms was significantly higher than in paddy soils and rice roots (p < 0.001), even though rice roots and grains have significantly higher total Hg (THg) (p < 0.001). The MeHg/THg ratios were consistently and significantly higher in those edible organisms than in rice grains, suggesting a potential elevated MeHg exposure risk through consumption. Based on results of bioaccumulation factors (BAFs) for MeHg, it was clear that MeHg was bioaccumulated and biotransformed from paddy soils to earthworms and then to eels, as well as from paddy soils to snails and then to eels and loaches, potentially indicating that the consumption of eels and loaches was absolutely pernicious to people regularly feeding on them. Overall, MeHg was biomagnified along the food chain of the paddy ecosystem from soil to the organisms, and it was of potential higher risks for local residents to eat them, especially eels and loaches. Therefore, it is intensely indispensable for people fond of such diets to attenuate their consumption of rice, eels and loaches, thus mitigating their MeHg exposure risks.
Collapse
Affiliation(s)
- Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
33
|
Zhang X, Bian F, Zhong Z, Gai X, Yang C. Deciphering the rhizosphere microbiome of a bamboo plant in response to different chromium contamination levels. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123107. [PMID: 32937721 DOI: 10.1016/j.jhazmat.2020.123107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Bamboo has been considered a potential plant species for phytoremediation due to its high biomass and heavy metal (HM) resistance. However, little is known about the interactions between bamboo and soil microbial activities in HM-contaminated soils. Here, we investigated the characteristics of microbial communities in the rhizosphere soil of Lei bamboo (Phyllostachys praecox) along a chromium (Cr) gradient. We found that the soil Cr content was positively correlated with the total organic carbon (TOC) and HCl-extractable Cr but negatively correlated with the pH and bacterial and fungal Shannon indices. Proteobacteria and Ascomycota predominated in the bamboo rhizosphere under Cr pollution. A co-occurrence network showed that two of the most Cr-sensitive bacterial genera and keystone taxa were from the Acidobacteria, indicating that this phylum can be as an indicator for the studied Cr-polluted soils. Redundancy analysis revealed that both the soil bacterial and fungal community compositions were significantly correlated (p < 0.05) with Cr, pH, TOC, alkali-hydrolysable N (AN), and available phosphorus (AP). The increase in TOC as the Cr content increased can be ascribed to an adverse Cr effect on the soil microflora, probably because the microbial biomass was less effective in mineralizing soil C under Cr-polluted conditions.
Collapse
Affiliation(s)
- Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China.
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| | - Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| |
Collapse
|
34
|
Gao R, Zhang Z, Zhang T, Liu J, Lu J. Upstream Natural Pulsed Ventilation: A simple measure to control the sulfide and methane production in gravity sewer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140579. [PMID: 32629266 DOI: 10.1016/j.scitotenv.2020.140579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Production of sulfide and methane due to anaerobic biological transformations in sewer pipes causes serious problems to sewer maintenance. For gravity sewers, enhancing ventilation is a practical method that reduces the production of both sulfide and methane. This study aimed to determine the effectiveness of a new method, Upstream Natural Pulsed Ventilation (UNPV), to control sulfide and methane production in gravity sewers. Two lab-scale reactors simulating the gravity sewer pipe with and without ventilation were set up to assess the effectiveness. The results show that compared with the gravity sewer pipe without ventilation, under the UNPV condition, the total sulfide concentration reduced by 39.08% and 58.74%, and the methane concentration reduced by 42.29% and 35.70% in the upstream and downstream sewer pipe, respectively. High-throughput sequencing analysis showed that the UNPV method could inhibit the proliferation of sulfate-reducing bacteria and stimulate the proliferation of sulfur-oxidizing bacteria within the whole sewer pipe. The composition of methanogenic archaea that are responsible for methane production was changed by ventilation. The increased oxidation-reduction potential and organic carbon transportation in wastewater under ventilation may be responsible for the microbial community changes. The findings of this study may provide new insight to reduce sulfide and methane production in gravity sewers.
Collapse
Affiliation(s)
- Ruyue Gao
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Zhiqiang Zhang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Tingwei Zhang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Junzhuo Liu
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Jinsuo Lu
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, PR China.
| |
Collapse
|
35
|
Jung J, Kim JS, Taffner J, Berg G, Ryu CM. Archaea, tiny helpers of land plants. Comput Struct Biotechnol J 2020; 18:2494-2500. [PMID: 33005311 PMCID: PMC7516179 DOI: 10.1016/j.csbj.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023] Open
Abstract
Archaea are members of most microbiomes. While archaea are highly abundant in extreme environments, they are less abundant and diverse in association with eukaryotic hosts. Nevertheless, archaea are a substantial constituent of plant-associated ecosystems in the aboveground and belowground phytobiome. Only a few studies have investigated the role of archaea in plant health and its potential symbiosis in ecosystems. This review discusses recent progress in identifying how archaea contribute to plant traits such as growth, adaptation to abiotic stresses, and immune activation. We synthesized the most recent functional and molecular data on archaea, including root colonization and the volatile emission to activate plant systemic immunity. These data represent a paradigm shift in our understanding of plant-microbiota interactions.
Collapse
Affiliation(s)
- Jihye Jung
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Jun-Seob Kim
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
| |
Collapse
|
36
|
Zhang M, Chai L, Huang M, Jia W, Guo J, Huang Y. Deciphering the archaeal communities in tree rhizosphere of the Qinghai-Tibetan plateau. BMC Microbiol 2020; 20:235. [PMID: 32738877 PMCID: PMC7395985 DOI: 10.1186/s12866-020-01913-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Qinghai-Tibetan Plateau represents one of the most important component of the terrestrial ecosystem and a particularly vulnerable region, which harbouring complex and diverse microbiota. The knowledge about their underground microorganisms have largely been studied, but the characteristics of rhizosphere microbiota, particularly archaeal communities remains unclear. RESULTS High-throughput Illumina sequencing was used to investigate the rhizosphere archaeal communities of two native alpine trees (Picea crassifolia and Populus szechuanica) living on the Qinghai-Tibetan Plateau. The archaeal community structure in rhizospheres significantly differed from that in bulk soil. Thaumarchaeota was the dominant archaeal phylum in all soils tested (92.46-98.01%), while its relative abundance in rhizospheres were significantly higher than that in bulk soil. Ammonium nitrogen, soil organic matter, available phosphorus and pH were significantly correlated with the archaeal community structure, and the deterministic processes dominated the assembly of archaeal communities across all soils. In addition, the network structures of the archaeal community in the rhizosphere were less complex than they were in the bulk soil, and an unclassified archaeal group (Unclassified_k_norank) was identified as the keystone species in all archaeal networks. CONCLUSIONS Overall, the structure, assembly and co-occurrence patterns of archaeal communities are significantly affected by the presence of roots of alpine trees living on the Qinghai-Tibetan Plateau. This study provides new insights into our understanding of archaeal communities in vulnerable ecosystems.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Liwei Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Muke Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Jiabao Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, P.R. China, 10087.
| |
Collapse
|
37
|
Du H, Sun T, Wang D, Ming M. Bacterial and archaeal compositions and influencing factors in soils under different submergence time in a mercury-sensitive reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110155. [PMID: 31972452 DOI: 10.1016/j.ecoenv.2019.110155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Soils in the water-level-fluctuating zone (WLFZ) of Three Gorges Reservoir (TGR) inundated by water for different periods of time are confirmed to have disparate characteristics to mercury (Hg), and thus it is of great significance to further investigate microbial compositions and influencing factors. The objective of this study was to compare bacterial and archaeal richness, α-diversities and compositions, as well as affecting variables, especially Hg concentrations, among soils under different submergence time-SI (inundated soil), SS (semi-inundated soil), SN(non-inundated soil) and SSe (sediment)-based on high throughput sequencing. Results showed that sediment had significantly higher bacterial and archaeal richness and α-diversities than the other soil types. Anaerolinea and Aeromonas, as well as Altiarchaeales, Nitrosoarchaeum, and Methanosarta were dominant in SSe, while sharply decreasing in the other soil types, with significant difference among groups. An unclassified genus in SCG critically predominating in SI, SS and SN, drastically reduced in SSe, with extremely significant difference among groups. Bathyarchaeota and Nitrososphaera, both dominating in SSe, decreased dramatically and almost vanished in SI and SN. All the variables except pH posed a significant positive effect on bacterial and archaeal compositions in SSe, while opposite effect in the other three soil types. MeHg and THg concentrations had relatively weaker effects on microbial compositions comparing to variables like NH4+, CEC, OM and SO42+.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Bioresource for Bioenergy, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ma Ming
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Bioresource for Bioenergy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
38
|
Xu X, Han J, Abeysinghe KS, Atapattu AJ, De Silva PMCS, Xu Z, Long S, Qiu G. Dietary exposure assessment of total mercury and methylmercury in commercial rice in Sri Lanka. CHEMOSPHERE 2020; 239:124749. [PMID: 31505443 DOI: 10.1016/j.chemosphere.2019.124749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) in rice has attracted growing health concern over the past decade, due to the accumulation of high MeHg levels, which may pose potential health risk to humans. Rice is the staple food in Sri Lanka; nevertheless, the presence of micro pollutants, such as MeHg has been not investigated. Therefore, commercial rice samples from the Sri Lankan market (n = 163) were measured to reveal the total mercury (THg) and MeHg levels. THg (mean: 1.73 ± 0.89 ng/g, range: 0.21-6.13 ng/g) and MeHg concentrations (mean: 0.51 ± 0.37 ng/g; range: 0.03-3.81 ng/g) were low. Compared to the fish MeHg exposure, the rice MeHg exposure was generally lower in different consumption groups, suggesting that rice plays a less role than fish in MeHg exposure in Sri Lanka. Babies (infants and toddlers) at one year old may face fish MeHg exposure (0.17 μg/kg bw/day) higher than the reference dose for MeHg (RfD)-0.1 μg/kg bw/day, which was more than 5 times that of rice MeHg exposure (0.031 μg/kg bw/day). Future studies in Sri Lanka should focus on health impacts under long-term overexposure of MeHg, especially in vulnerable populations. Some diet changes should be made to mitigate MeHg exposure levels in Sri Lankans.
Collapse
Affiliation(s)
- Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anjana J Atapattu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China; Agronomy Division, Coconut Research Institute, Lunuwila, 61150, Sri Lanka
| | | | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
39
|
Liu YR, Yang Z, Zhou X, Qu X, Li Z, Zhong H. Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12330-12338. [PMID: 31603332 DOI: 10.1021/acs.est.9b03013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice ingestion has been recognized as an important route of dietary exposure to neurotoxic methylmercury (MeHg) that is commonly synthesized in rice paddy soils. Although Hg methylators are known to regulate soil MeHg formation, the effect of non-Hg methylating communities on MeHg production remains unclear. Here, we collected 141 paddy soil samples from main rice-producing areas across China to identify associations between bacterial community composition (including both Hg and putative non-Hg methylators) and MeHg production. Results showed that the MeHg content in the paddy soils varied from 0.11 to 8.36 ng g-1 at a national spatial scale, which could be due to the shifts of soil microbial community composition across different areas. Our structure equation modeling suggested a strong link between bacterial community composition and MeHg content and %MeHg. More importantly, random forest analyses suggested a more significant role of putative non-Hg methylators than Hg methylators in predicting variations of soil MeHg content. The relative abundance of putative non-Hg methylators such as unclassified Xanthomonadales and Chitinophagaceae were strongly correlated with soil MeHg contents. Further, microbial network analysis revealed strong co-occurrence patterns between the putative non-Hg and Hg methylators. These findings highlight an overlooked role of non-Hg methylating communities in predicting MeHg production in paddy soils.
Collapse
Affiliation(s)
| | - Ziming Yang
- Department of Chemistry , Oakland University , Rochester , Michigan 48309 , United States
| | | | | | - Zizhu Li
- School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Huan Zhong
- School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|