1
|
Sharifi Y, Sobhani S, Ramezanghorbani N, Payab M, Ghoreshi B, Djalalinia S, Nouri Ghonbalani Z, Ebrahimpur M, Eslami M, Qorbani M. Association of greenspaces exposure with cardiometabolic risk factors: a systematic review and meta-analysis. BMC Cardiovasc Disord 2024; 24:170. [PMID: 38509487 PMCID: PMC10953288 DOI: 10.1186/s12872-024-03830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Cardiometabolic conditions are major contributors to the global burden of disease. An emerging body of evidence has associated access to and surrounding public open spaces (POS) and greenspace with cardiometabolic risk factors, including obesity, body mass index (BMI), hypertension (HTN), blood glucose (BG), and lipid profiles. This systematic review aimed to synthesize this evidence. METHODS This systematic review was conducted based on the PRISMA guidelines. Four electronic databases including Web of Science, PubMed, Scopus, and Google Scholar were searched for eligible articles published until July 2023. All observational studies which assessed the association of greenspace and POS with cardiometabolic risk factors including obesity, BMI, HTN, BG, and lipid profiles were included and reviewed by two authors independently. Heterogeneity between studies was assessed using the I2 index and Cochrane's Q test. Random/fixed effect meta-analyses were used to combine the association between greenspace exposure with cardiometabolic risk factors. RESULTS Overall, 118 relevant articles were included in our review. The majority of the articles were conducted in North America or Europe. In qualitative synthesis, access or proximity to greenspaces or POS impacts BMI and blood pressure or HTN, BG, and lipid profiles via various mechanisms. According to the random effect meta-analysis, more access to greenspace was significantly associated with lower odds of HTN (odds ratio (OR): 0.81, 95% confidence intervals (CIs): 0.61-0.99), obesity (OR: 0.83, 95% CIs: 0.77-0.90), and diabetes (OR:0.79, 95% CI: 0.67,0.90). CONCLUSIONS Findings of this systematic review and meta-analysis suggested that greenspace accessibility is associated with some cardiometabolic risk factors. Improving greenspace accessibility could be considered as one of the main strategies to reduce cardiometabolic risk factors at population level.
Collapse
Affiliation(s)
- Yasaman Sharifi
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Sobhani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nahid Ramezanghorbani
- Department of Development and Coordination Scientific Information and Publications, Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ghoreshi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shirin Djalalinia
- Development of Research & Technology Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Zahra Nouri Ghonbalani
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahbube Ebrahimpur
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maysa Eslami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Zang P, Chen K, Zhang H, Qiu H, Yu Y, Huang J. Effect of built environment on BMI of older adults in regions of different socio-economic statuses. Front Public Health 2023; 11:1207975. [PMID: 37483934 PMCID: PMC10361068 DOI: 10.3389/fpubh.2023.1207975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Numerous studies have ignored the influence of underdeveloped urban surroundings on the physical health of China's ageing population. Lanzhou is a typical representative of a less developed city in China. Methods This study investigated the relationship between body mass index (BMI) and built environment amongst older adults in regions of different socio-economic statuses (SES) using data from medical examinations of older adults in Lanzhou, as well as calculating community built environment indicators for regions of different SES based on multiple linear regression models. Results Results showed that age and underlying disease were negatively associated with overall older adult BMI in the study buffer zone. Land use mix, number of parks and streetscape greenery were positively associated with older adult BMI. Street design and distance to bus stops were negatively connected in low SES regions, but population density and street design were negatively correlated in high SES areas. Conclusion These findings indicate that the built environment of SES regions has varying impacts on the BMI of older persons and that planners may establish strategies to lower the incidence of obesity amongst older adults in different SES locations.
Collapse
|
3
|
Wirtz Baker JM, Pou SA, Niclis C, Haluszka E, Aballay LR. Non-traditional data sources in obesity research: a systematic review of their use in the study of obesogenic environments. Int J Obes (Lond) 2023:10.1038/s41366-023-01331-3. [PMID: 37393408 DOI: 10.1038/s41366-023-01331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The complex nature of obesity increasingly requires a comprehensive approach that includes the role of environmental factors. For understanding contextual determinants, the resources provided by technological advances could become a key factor in obesogenic environment research. This study aims to identify different sources of non-traditional data and their applications, considering the domains of obesogenic environments: physical, sociocultural, political and economic. METHODS We conducted a systematic search in PubMed, Scopus and LILACS databases by two independent groups of reviewers, from September to December 2021. We included those studies oriented to adult obesity research using non-traditional data sources, published in the last 5 years in English, Spanish or Portuguese. The overall reporting followed the PRISMA guidelines. RESULTS The initial search yielded 1583 articles, 94 articles were kept for full-text screening, and 53 studies met the eligibility criteria and were included. We extracted information about countries of origin, study design, observation units, obesity-related outcomes, environment variables, and non-traditional data sources used. Our results revealed that most of the studies originated from high-income countries (86.54%) and used geospatial data within a GIS (76.67%), social networks (16.67%), and digital devices (11.66%) as data sources. Geospatial data were the most utilised data source and mainly contributed to the study of the physical domains of obesogenic environments, followed by social networks providing data to the analysis of the sociocultural domain. A gap in the literature exploring the political domain of environments was also evident. CONCLUSION The disparities between countries are noticeable. Geospatial and social network data sources contributed to studying the physical and sociocultural environments, which could be a valuable complement to those traditionally used in obesity research. We propose the use of information available on the Internet, addressed by artificial intelligence-based tools, to increase the knowledge on political and economic dimensions of the obesogenic environment.
Collapse
Affiliation(s)
- Julia Mariel Wirtz Baker
- Health Sciences Research Institute (INICSA), National Council of Scientific and Technical Research (CONICET), Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
- Human Nutrition Research Centre (CenINH), School of Nutrition, Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
| | - Sonia Alejandra Pou
- Health Sciences Research Institute (INICSA), National Council of Scientific and Technical Research (CONICET), Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
- Human Nutrition Research Centre (CenINH), School of Nutrition, Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
| | - Camila Niclis
- Health Sciences Research Institute (INICSA), National Council of Scientific and Technical Research (CONICET), Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
- Human Nutrition Research Centre (CenINH), School of Nutrition, Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
| | - Eugenia Haluszka
- Health Sciences Research Institute (INICSA), National Council of Scientific and Technical Research (CONICET), Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
- Human Nutrition Research Centre (CenINH), School of Nutrition, Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina
| | - Laura Rosana Aballay
- Human Nutrition Research Centre (CenINH), School of Nutrition, Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina.
| |
Collapse
|
4
|
Guo Q, Zhang K, Wang B, Cao S, Xue T, Zhang Q, Tian H, Fu P, Zhang JJ, Duan X. Chemical constituents of ambient fine particulate matter and obesity among school-aged children: A representative national study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157742. [PMID: 35917963 DOI: 10.1016/j.scitotenv.2022.157742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies show that fine particulate matter (PM2.5) contributes to childhood obesity. However, evidence on the effects of its constituents on obesity has not been explored. METHODS Using multistage stratified cluster sampling, we enrolled 41,439 school-age children (aged 6-17 years) from a representative nationwide survey of 30 provinces in China (mean age ± standard deviation: 12.0 ± 3.3 years). Weight and height were measured using a physician beam scale with a height rod, and covariates were determined using a standard questionnaire. The concentration of PM2.5 chemical constituents was estimated by a chemical transport (GEOS-Chem) model using input satellite data and ground-based observations. The constituents included black carbon, ammonium, nitrate, organic matter, sulfate, and soil dust. Generalized linear models were used to estimate the association between the chemical constituents of PM2.5 and obesity. RESULTS A positive association between the constituents of PM2.5 and obesity were observed. Children were more susceptible to black carbon than other species. A 1-μg/m3 increase in black carbon led to a 0.079 (95 % confidence interval [CI]:0.028, 0.130)-kg/m2 increase in body mass index (BMI). This also increased the odds of being obese and overweight to 1.174 (95 % CI: 1.111, 1.240) and 1.165 (95 % CI: 1.116, 1.216), respectively. Stratified analyses showed that the effects were stronger in girls and older children, as well as in urban and Northeast regions. The effect of the PM2.5 constituents on obese and overweight children from urban areas significantly interacted with that of rural areas. CONCLUSIONS The PM2.5 constituents were associated with an increased BMI and childhood obesity. Further studies are warranted to validate these results and clarify their potential mechanisms. We suggest focusing on black carbon and Northeast regions.
Collapse
Affiliation(s)
- Qian Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12144, USA
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100083, China
| | - Qian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Peng Fu
- Center for Environment, Energy, and Economy, Harrisburg University, Harrisburg PA17101, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Emeny RT, Zhang K, Goodman D, Dev A, Lewinson T, Wolff K, Kerrigan CL, Kraft S. Inclusion of Social and Structural Determinants of Health to Advance Understanding of their Influence on the Biology of Chronic Disease. Curr Protoc 2022; 2:e556. [PMID: 36200800 DOI: 10.1002/cpz1.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Social Determinants of Health (SDOH) consider social, political, and economic factors that contribute to health disparities in patients and populations. The most common health-related SDOH exposures are food and housing insecurity, financial instability, transportation needs, low levels of education, and psychosocial stress. These domains describe risks that can impact health outcomes more than health care. Epidemiologic and translational research demonstrates that SDOH factors represent exposures that predict harm and impact the health of individuals. International and national guidelines urge health professionals to address SDOH in clinical practice and public health. The further implementation of these recommendations into basic and translational research, however, is lagging. Herein, we consider a precision health framework to describe how SDOH contributes to the exposome and exacerbates physiologic pathways that lead to chronic disease. SDOH factors are associated with various forms of stressors that impact physiological processes through epigenetic, inflammatory, and redox regulation. Many SDOH exposures may add to or potentiate the pathologic effects of additional environmental exposures. This overview aims to inform basic life science and translational researchers about SDOH exposures that can confound associations between classic biomedical determinants of disease and health outcomes. To advance the study of toxicology through either qualitative or quantitative assessment of exposures to chemical and biological substances, a more complete environmental evaluation should include SDOH exposures. We discuss common approaches to measure SDOH factors at individual and population levels and review the associations between SDOH risk factors and physiologic mechanisms that influence chronic disease. We provide clinical and policy-based motivation to encourage researchers to consider the impact of SDOH exposures on study results and data interpretation. With valid measures of SDOH factors incorporated into study design and analyses, future toxicological research may contribute to an evidence base that can better inform prevention and treatment options, to improve equitable clinical care and population health. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Rebecca T Emeny
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York
| | - Daisy Goodman
- Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Alka Dev
- The Dartmouth Institute of Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Terri Lewinson
- The Dartmouth Institute of Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Kristina Wolff
- The Dartmouth Institute of Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Carolyn L Kerrigan
- Medical Director, Patient Reported Outcomes, Dartmouth-Hitchcock, Professor of Surgery, Active Emerita, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Sally Kraft
- Vice President of Population Health, Dartmouth Health, Lebanon, New Hampshire
| |
Collapse
|
6
|
Land use mix and leukocyte telomere length in Mexican Americans. Sci Rep 2021; 11:19742. [PMID: 34611226 PMCID: PMC8492751 DOI: 10.1038/s41598-021-99171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
It has been well-known that built environment features influence the risk of chronic diseases. However, the existing data of its relationship with telomere length, a biomarker of biological aging, is still limited, with no study available for Mexican Americans. This study investigates the relationship between several factors of the built environment with leukocyte telomere length among 5508 Mexican American adults enrolled in Mano-A-Mano, the Mexican American Cohort Study (MACS). Based on the quartile levels of telomere length, the study population was categorized into four groups, from the lowest (1st quartile) to the highest telomere length group (4th quartile). For individual built environment factors, their levels did not differ significantly across four groups. However, in the multinominal logistic regression analysis, increased Rundle’s land use mixture (LUM) and Frank’s LUM were found statistically significantly associated with increased odds of having high levels of telomere length (Rundle’s LUM: 2nd quartile: Odds ratio (OR) 1.26, 95% Confidence interval (CI) 1.07, 1.48; 3rd quartile: OR 1.25, 95% CI 1.06, 1.46; 4th quartile: OR 1.19, 95% CI 1.01, 1.41; Frank’s LUM: 2nd quartile: OR 1.34, 95% CI 1.02, 2.63; 3rd quartile: OR 1.55, 95% CI 1.04, 2.91; 4th quartile: OR 1.36, 95% CI 1.05, 2.72, respectively). The associations for Rundle’s LUM remained significant after further adjusting other non-redundant built environment factors. Finally, in stratified analysis, we found the association between Rundle’s LUM and telomere length was more evident among younger individuals (< 38 years old), women, and those with obesity, born in Mexico, having low levels of physical activity, and having low levels of acculturation than their relative counterparts. In summary, our results indicate that land use mixture may impact telomere length in leukocytes in Mexican Americans.
Collapse
|
7
|
Luo YN, Huang WZ, Liu XX, Markevych I, Bloom MS, Zhao T, Heinrich J, Yang BY, Dong GH. Greenspace with overweight and obesity: A systematic review and meta-analysis of epidemiological studies up to 2020. Obes Rev 2020; 21:e13078. [PMID: 32677149 DOI: 10.1111/obr.13078] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Several reviews have been conducted to assess the association between greenspace and overweight or obesity, but the conclusions were inconsistent. However, an updated comprehensive review and meta-analysis is warranted, because several high-quality papers have been published more recently. The objectives of this study are to systematically and quantitatively assess the evidence for a link between greenspace with overweight/obesity and to make specific recommendations for further research. We searched three English language databases, four Chinese language databases and the reference lists of previously published reviews for epidemiological studies on greenspace and overweight/obesity published before January 2020. We developed inclusion criteria, screened the literature and extracted key data from selected papers. We assessed methodological quality and risk of bias, and we graded the credibility of the pooled evidence. We also performed sensitivity analyses. Fifty-seven records met our inclusion criteria and were included in the study. Most studies were cross-sectional designs (81%) and were from developed nations (88%). More than half (55%) of the included studies found beneficial associations between greenspace and overweight/obesity in overall or subpopulations. Our meta-analytical results showed that greater normalized difference vegetation index was associated with lower odds of overweight/obesity in a statistically significant fashion (odds ratio [OR]: 0.88; 95% CI: 0.84, 0.91) but not residential proximity to greenspace (OR: 0.99; 95% CI: 0.99, 1.00), proportion of greenspace (OR: 0.96; 95% CI: 0.85, 1.08) or number of parks in an area (OR: 0.99; 95% CI: 0.97, 1.01). However, we detected high between-study heterogeneity in two of the four meta-analyses, which reduced the credibility of the pooled evidence. Current evidence indicates that there might be an association between greater access to greenspace and lower odds of overweight/obesity. However, additional high-quality studies are needed to more definitively assess the evidence for a causal association.
Collapse
Affiliation(s)
- Ya-Na Luo
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen-Zhong Huang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xuan Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research, Munich, Germany.,Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, German Center for Lung Research, Munich, Germany.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Leukocyte mitochondrial DNA copy number and built environment in Mexican Americans: a cross-sectional study. Sci Rep 2020; 10:14988. [PMID: 32917938 PMCID: PMC7486918 DOI: 10.1038/s41598-020-72083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial DNA (mtDNA) copy number in leukocytes has been regarded as a biomarker for various environmental exposures and chronic diseases. Our previous study showed that certain demographic factors (e.g. age, gender, BMI, etc.) significantly affect levels of leukocyte mtDNA copy number in Mexican Americans. However, the effect of the built environment on leukocyte mtDNA copy number has not been studied previously. In this cross-sectional study, we examined the association between multiple components of the built environment with leukocyte mtDNA copy number among 5,502 Mexican American adults enrolled in Mano-A-Mano, the Mexican American Cohort Study (MACS). Based on the median levels of mtDNA copy number, the study population was stratified into low mtDNA copy number group (< median) and high mtDNA copy number group (≥ median). Among all built environment exposure variables, household density and road/intersection ratio were found to be statistically significant between groups with low and high mtDNA copy number (P < 0.001 and 0.002, respectively). In the multivariate logistic regression analysis, individuals living in areas with elevated levels of household density had 1.24-fold increased odds of having high levels of mtDNA copy number [Odds ratio (OR) = 1.24, 95% confidence interval (CIs) 1.08, 1.36]. Similarly, those living in areas with elevated levels of road/intersection ratio had 1.12-fold increased odds of having high levels of mtDNA copy number (OR = 1.12, 95% CI 1.01, 1.27). In further analysis, when both variables were analyzed together in a multivariate logistic regression model, the significant associations remained. In summary, our results suggest that selected built environment variables (e.g. population density and road/intersection ratio) may influence levels of mtDNA copy number in leukocytes in Mexican Americans.
Collapse
|
9
|
Zhang X, Zhao H, Chow WH, Bixby M, Durand C, Markham C, Zhang K. Population-Based Study of Traffic-Related Air Pollution and Obesity in Mexican Americans. Obesity (Silver Spring) 2020; 28:412-420. [PMID: 31797571 DOI: 10.1002/oby.22697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/01/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the cross-sectional association between residential exposure to traffic-related air pollution and obesity in Mexican American adults. METHODS A total of 7,826 self-reported Mexican Americans aged 20 to 60 years old were selected from the baseline survey of the MD Anderson Mano-a-Mano Mexican American Cohort. Concentrations of traffic-related particulate matter with aerodynamic diameter < 2.5 μm were modeled at geocoded residential addresses using a dispersion models. The residential proximity to the nearest major road was calculated using a Geographic Information System. Linear and logistic regression models were used to estimate the adjusted associations between exposure and obesity, defined as BMI ≥ 30. RESULTS More than half (53.6%) of the study participants had BMI ≥ 30, with a higher prevalence in women (55.0%) than in men (48.8%). Overall higher traffic-related air pollution exposures were associated with lower BMI in men but higher BMI in women. By stratifying for those who lived in a 0- to 1,500-m road buffer, the one-interquartile-range (685.1 m) increase of distance to a major road had a significant association with a 0.58-kg/m2 lower BMI (95% CI: -0.92 to -0.24) in women. CONCLUSIONS Exposure to intensive traffic is associated with increased risk of obesity in Mexican American women.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hua Zhao
- Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University Richmond, Virgnia, USA
| | - Wong-Ho Chow
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Moira Bixby
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Casey Durand
- Department of Health Promotion and Behavioral Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christine Markham
- Department of Health Promotion and Behavioral Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kai Zhang
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Southwest Center for Occupational and Environmental Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|