1
|
Han M, Liu Z, Huang S, Zhang H, Yang H, Liu Y, Zhang K, Zeng Y. Application of Biochar-Based Materials for Effective Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1933. [PMID: 39683321 DOI: 10.3390/nano14231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
With the growth of the global population and the acceleration of industrialization, the problem of water pollution has become increasingly serious, posing a major threat to the ecosystem and human health. Traditional water treatment technologies make it difficult to cope with complex pollution, so the scientific community is actively exploring new and efficient treatment methods. Biochar (BC), as a low-cost, green carbon-based material, exhibits good adsorption and catalytic properties in water treatment due to its porous structure and abundant active functional groups. However, BC's pure adsorption or catalytic capacity is limited, and researchers have dramatically enhanced its performance through modification means, such as loading metals or heteroatoms. In this paper, we systematically review the recent applications of BC and its modified materials for water treatment in adsorption, Fenton-like, electrocatalytic, photocatalytic, and sonocatalytic systems, and discuss their adsorption/catalytic mechanisms. However, most of the research in this field is at the laboratory simulation stage and still needs much improvement before it can be applied in large-scale wastewater treatment. This review improves the understanding of the pollutant adsorption/catalytic properties and mechanisms of BC-based materials, analyzes the limitations of the current studies, and investigates future directions.
Collapse
Affiliation(s)
- Meiyao Han
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Ziyang Liu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Shiyue Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Huanxing Zhang
- Luoyang Petrochemical Engineering Design Co., Ltd., Luoyang 471003, China
| | - Huilin Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Yuan Liu
- Chengdu Tiantou Industry Co., Ltd., Chengdu 610000, China
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Yusheng Zeng
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| |
Collapse
|
2
|
Cai S, Zhang X, Chen S, Peng S, Sun T, Zhang Y, Yang P, Chai H, Wang D, Zhang W. Solid-liquid redistribution and degradation of antibiotics during hydrothermal treatment of sewage sludge: Interaction between biopolymers and antibiotics. WATER RESEARCH 2024; 258:121759. [PMID: 38754299 DOI: 10.1016/j.watres.2024.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shuaiyu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Sainan Peng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Makota O, Yankovych HB, Bondarchuk O, Saldan I, Melnyk I. Sphere-shaped ZnO photocatalyst synthesis for enhanced degradation of the Quinolone antibiotic, Ofloxacin, under UV irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33619-w. [PMID: 38772993 DOI: 10.1007/s11356-024-33619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
The sphere-shaped zinc oxide (ZnO) photocatalyst was synthesized by the homogeneous precipitation method, using Zn(CH3COO)2·2H2O as a zinc precursor and NH4OH as a precipitating agent. The morphology and crystal structure of the prepared ZnO sample were studied by XRD, SEM, FT-IR, XPS, zeta potential measurements, and a low-temperature nitrogen adsorption-desorption technique. The optical characteristics of ZnO were determined by UV - Vis diffuse reflectance spectroscopy. ZnO photocatalyst performance of up to 100% within 210 min was observed in the photodegradation of the ofloxacin antibiotic under ultraviolet (UV) irradiation. The effect of antibiotic concentration, heavy metal ions, and water sources on the photocatalytic activity of ZnO demonstrated both the potential of its application under different conditions, and a good adaptability of this photocatalyst. The photodegradation reaction correlated well with the first-order kinetics model, with a rate constant of 0.0173 min-1. The reusability of the photocatalyst was verified after three cycles of use. Admittedly, photogenerated electrons and holes played a key role in removal of the antibiotic. This work showed the suitability of prepared ZnO for antibiotic removal, and its potential use for environmental protection.
Collapse
Affiliation(s)
- Oksana Makota
- Department of Physical and Physico-Chemical Methods of Mineral Processing, Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovak Republic.
- Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Stepana Bandery 12, 79013, Lviv, Ukraine.
| | - Halyna Bodnar Yankovych
- Department of Physical and Physico-Chemical Methods of Mineral Processing, Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovak Republic
| | - Oleksandr Bondarchuk
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga S/N, 4715-330, Braga, Portugal
| | - Ivan Saldan
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Inna Melnyk
- Department of Physical and Physico-Chemical Methods of Mineral Processing, Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovak Republic
| |
Collapse
|
4
|
Chang H, Xu G, Huang X, Xu W, Luo F, Zang J, Lin X, Huang R, Yu H, Yu B. Photocatalytic Degradation of Quinolones by Magnetic MOFs Materials and Mechanism Study. Molecules 2024; 29:2294. [PMID: 38792155 PMCID: PMC11123774 DOI: 10.3390/molecules29102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
With the rising incidence of various diseases in China and the constant development of the pharmaceutical industry, there is a growing demand for floxacin-type antibiotics. Due to the large-scale production and high cost of waste treatment, the parent drug and its metabolites constantly enter the water environment through domestic sewage, production wastewater, and other pathways. In recent years, the pollution of the aquatic environment by floxacin has become increasingly serious, making the technology to degrade floxacin in the aquatic environment a research hotspot in the field of environmental science. Metal-organic frameworks (MOFs), as a new type of porous material, have attracted much attention in recent years. In this paper, four photocatalytic materials, MIL-53(Fe), NH2-MIL-53(Fe), MIL-100(Fe), and g-C3N4, were synthesised and applied to the study of the removal of ofloxacin and enrofloxacin. Among them, the MIL-100(Fe) material exhibited the best photocatalytic effect. The degradation efficiency of ofloxacin reached 95.1% after 3 h under visible light, while enrofloxacin was basically completely degraded. The effects of different materials on the visible photocatalytic degradation of the floxacin were investigated. Furthermore, the photocatalytic mechanism of enrofloxacin and ofloxacin was revealed by the use of three trappers (▪O2-, h+, and ▪OH), demonstrating that the role of ▪O2- promoted the degradation effect of the materials under photocatalysis.
Collapse
Affiliation(s)
- Hongchao Chang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| | - Guangyao Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| | - Xiantong Huang
- Ecological Environment Testing Centre, Zaozhuang 277300, China;
| | - Wei Xu
- Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310053, China;
| | - Fujuan Luo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| | - Jiarong Zang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| | - Xiaowei Lin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| | - Rong Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| | - Hua Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
- Taizhou Biomedical and Chemistry Industry Institute, Taizhou 318000, China
| | - Binbin Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China; (H.C.); (G.X.); (F.L.); (J.Z.); (X.L.); (R.H.)
| |
Collapse
|
5
|
Zhao R, Wang T, Wang Z, Cheng W, Li L, Wang Y, Xie X. Activation of peroxymonosulfate with natural pyrite-biochar composite for sulfamethoxazole degradation in soil: Organic matter effects and free radical conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133895. [PMID: 38432091 DOI: 10.1016/j.jhazmat.2024.133895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) represent an effective method for the remediation of antibiotic-contaminated soils. In this study, a natural pyrite-biochar composite material (FBCx) was developed, demonstrating superior activation performance and achieving a 76% removal rate of SMX from soil within 120 min. There existed different degradation mechanisms for SMX in aqueous and soil solutions, respectively. The production of 1O2 and inherent active species produced by soil slurry played an important role in the degradation process. The combination of electron paramagnetic resonance (EPR) and free radical probe experiments confirmed the presence of free radical transformation processes in soil. Wherein, the·OH and SO4·- generated in soil slurry did not directly involve in the degradation process, but rather preferentially reacted with soil organic matter (SOM) to form alkyl-like radicals (R·), thereby maintaining a high concentration of reactive species in the system. Furthermore, germination and growth promotion of mung bean seeds observed in the toxicity test indicated the environmental compatibility of this remediation method. This study revealed the influence mechanism of SOM in the remediation process of contaminated soil comprehensively, which possessed enormous potential for application in practical environments.
Collapse
Affiliation(s)
- Ranran Zhao
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Tianyu Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China.
| | - Wan Cheng
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Liangyu Li
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Yaodong Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Lanzhou 730000, Gansu, China
| |
Collapse
|
6
|
Yi H, Ma D, Huo X, Li L, Zhang M, Zhou X, Xu F, Yan H, Zeng G, Lai C. Facile introduction of coordinative Fe into oxygen-enriched graphite carbon nitride for efficient photo-Fenton degradation of tetracycline. J Colloid Interface Sci 2024; 660:692-702. [PMID: 38271805 DOI: 10.1016/j.jcis.2024.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Tetracycline (TC) antibiotics have been widely used over the past decades, and their massive discharge led to serious water pollution. Photo-Fenton process has gained ever-increasing attention for its excellent oxidizing ability and friendly solar energy utilization ability in TC polluted water treatment. This work introduced coordinative Fe into oxygen-enriched graphite carbon nitride (OCN) to form FeOCN composites for efficient photo-Fenton process. Hemin was chosen as the source to provide the source of coordinative Fe-Nx groups. The degradation efficiency of TC reached 82.1 % within 40 min of irradiation, and remained 76.9 % after five runs of reaction. The degradation intermediates of TC were detected and the possible degradation pathways were gained. It was found that h+, OH, and O2- played major roles in TC degradation. Notably, the photo-Fenton performance of FeOCN was stable in highly saline water or strong acid/base environment (pH 3.0-9.0). Besides, H2O2 can be generated in-situ in this photo-Fenton process, which is favorable for practical application. It can be anticipated that the coordinative FeOCN composites will promote the application of photo-Fenton oxidation process in TC polluted water treatment.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
7
|
Sun F, Lu T, Feng J, Kang Y. Dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped Fe 3O 4@FeOOH for cyanide-containing wastewater treatment: Preparation, performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123523. [PMID: 38331238 DOI: 10.1016/j.envpol.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
The dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped iron-based Fenton catalyst (Cu/Ti -Fe3O4@FeOOH, FCT) were successfully prepared by precipitation oxidation method and characterized by XRD, XPS and XAFS. The prepared Cu/Ti co-doped Fe3O4@FeOOH nanoparticles consisted of goethite nanorods and magnetite rod octahedral particles, with Cu and Ti replacing Fe in the catalyst crystal structure, leading to the formation of the goethite structure. The heterogeneous Fenton catalyst FCT exhibited excellent degradation activity for cyanide in wastewater and showed different reaction mechanisms at varying pH levels. When treating 100 mL of 12 mg L-1 NaCN solution, complete degradation occurred within 40 min at 30 °C and pH ranging from 6.5 to 12.5 without external energy. Compared to Fe3O4, FCT shows superior degradation activity for cyanide. The surface Cu(Ⅰ) facilitated the electron transfer and significantly improved the catalytic activity of the catalyst. Additionally, the magnetic properties of the Ti-doped catalyst samples were greatly enhanced compared to the Cu@FeOOH catalyst doped with Cu, making them favorable for recycling and reuse. FCT maintains 100% degradation of cyanogen after three cycles, indicating its excellent stability. Furthermore, electron spin resonance spectroscopy, free radical quenching experiments and fluorescence probe techniques using terephthalic acid (TA) and benzoic acid (BA) confirmed that the presence of •OH and FeⅣ=O reactive species was responsible for the catalysts exhibiting different mechanisms at different pH conditions. Compared with other heterogeneous Fenton catalysts, FCT exhibits intentional degradation activity for cyanide-containing wastewater under different acid-base conditions, which greatly broadened the pH range of the heterogeneous Fenton reaction.
Collapse
Affiliation(s)
- Fangkuan Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Fan Z, Zhou X, Lu Q, Gao ZF, Deng S, Peng Z, Han W, Chen X. Synthesis of sewage sludge biochar in molten salt environment for advanced wastewater treatment: Performance enhancement, carbon footprint and environmental impact reduction. WATER RESEARCH 2024; 250:121072. [PMID: 38150858 DOI: 10.1016/j.watres.2023.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Sewage sludge (SS) pyrolysis to produce biochar is a vital approach for treating and utilizing SS, while reducing the carbon footprint of SS disposal. However, the high inorganic content in SS results in low carbon content and underdeveloped pore structure of biochar prepared under inert atmospheres. There is a significant risk of secondary pollutant emissions, including CO2, SO2, and NOx. In this study, we propose an innovative approach that utilizes excess molten salts, specifically a Li-Na-K molten carbonate (MC) and a Li-Na-K molten chloride (MCH), to create a medium-temperature liquid phase reaction environment (500 °C) for SS pyrolysis. This environment promotes the functional enhancement of biochar (SSB-MC and SSB-MCH) and in-situ absorption of secondary pollutants. The pore structure of SSB-MC and SSB-MCH are greatly optimized. Thanks to the dissolution of calcium-silicon-aluminum-based minerals by molten salt, the carbon content is also significantly increased. The increased specific surface area and surface-enriched functional groups (O, N, P, etc.) of SSB-MC result in greatly enhanced adsorption performance for Rhodamine B (27.9 to 89.1 mg g-1). SSB-MCH, due to the increased iron and phosphorus doping, also exhibits enhanced Fenton oxidation capability. Life cycle assessments demonstrate that the molten salt processes effectively reduce the carbon footprint, energy consumption, and environmental impact.
Collapse
Affiliation(s)
- Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China.
| | - Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Qi Lu
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Zhuo Fan Gao
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Shanshan Deng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
| |
Collapse
|
9
|
Zhang M, Ruan J, Wang X, Shao W, Chen Z, Chen Z, Gu C, Qiao W, Li J. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: Degradation behavior and mechanism analysis. WATER RESEARCH 2023; 246:120697. [PMID: 37837899 DOI: 10.1016/j.watres.2023.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
10
|
Feng X, Li X, Su B. Photocatalytic degradation performance of antibiotics by peanut shell biochar anchored NiCr-LDH nanocomposites fabricated by one-pot hydrothermal protocol. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Zhou R, Wang T, Wang F, Zhang D, Hu Z, Li H, Huang N, Ban S, Kong C, Yang Z, Jia X, Zhu H. Enhanced activation of peroxymonosulfate for ofloxacin rapid degradation and inhibition of metal leaching on LaNi0.6Co0.4O3 stably anchored at ZnO. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Tang X, Jin H, Zou J, Liu S, Li F, Zhou Z. Activation of peroxymonosulfate by catalysts derived from water treatment plant sludge for the simultaneous removal of Disperse Blue 56 and phosphates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35683-35697. [PMID: 36538231 DOI: 10.1007/s11356-022-24792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, calcined water treatment plant sludge (C-WTPS) was used as a catalyst for peroxymonosulfate (PMS) activation to simultaneously remove Disperse Blue 56 (DB56) and phosphates. Firstly, the performance of the C-WTPS/PMS system was examined for the degradation of DB56. The results showed that 96.7% of DB56 (400 mg L-1) was removed within 60 min in the presence of 4.8 g L-1 PMS and 0.8 g L-1 C-WTPS at pH 3 and 50 °C. Hydroxyl radicals (·OH), sulfate radicals (SO4·-), and singlet oxygen (1O2) were generated during the oxidation process, and 1O2 was the main active species. The relatively high surface area, proper Fe content, and abundant ketone groups on the catalyst surface were responsible for PMS activation. Furthermore, the possible degradation pathways of DB56 were proposed based on the gas chromatography-mass spectrometry (GC-MS) results. Secondly, the simultaneous removal of DB56 and phosphates by the C-WTPS/PMS system was investigated. Due to the different removal mechanisms, the effects of the initial phosphate concentration and water matrix species on the removal of DB56 and phosphates showed different trends. Reusability tests results showed that C-WTPS had relatively high stability. In addition, the C-WTPS/PMS system exhibited a high decolorization ratio and phosphate removal efficiency in real wastewater tests. This article offers a value-added approach for reusing WTPS as a catalyst for treating organic contaminants and phosphates.
Collapse
Affiliation(s)
- Xing Tang
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Hongyi Jin
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Shupo Liu
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Fei Li
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China
| | - Zhenming Zhou
- College of Civil Engineering, Huaqiao University, Jimei Avenue 668, Xiamen, 361021, Jimei District, China.
| |
Collapse
|
13
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
14
|
Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts 2023. [DOI: 10.3390/catal13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For a large amount of spent lithium battery electrode materials (SLBEMs), direct recycling by traditional hydrometallurgy or pyrometallurgy technologies suffers from high cost and low efficiency and even serious secondary pollution. Therefore, aiming to maximize the benefits of both environmental protection and e-waste resource recovery, the applications of SLBEM containing redox-active transition metals (e.g., Ni, Co, Mn, and Fe) for catalytic decontamination before disposal and recycling has attracted extensive attention. More importantly, the positive effects of innate structural advantages (defects, oxygen vacancies, and metal vacancies) in SLBEMs on catalytic decontamination have gradually been unveiled. This review summarizes the pretreatment and utilization methods to achieve excellent catalytic performance of SLBEMs, the key factors (pH, reaction temperature, coexisting anions, and catalyst dosage) affecting the catalytic activity of SLBEM, the potential application and the outstanding characteristics (detection, reinforcement approaches, and effects of innate structural advantages) of SLBEMs in pollution treatment, and possible reaction mechanisms. In addition, this review proposes the possible problems of SLBEMs in practical decontamination and the future outlook, which can help to provide a broader reference for researchers to better promote the implementation of “treating waste to waste” strategy.
Collapse
|
15
|
Liu Y, Bian C, Li Y, Sun P, Xiao Y, Xiao X, Wang W, Dong X. Aminobenzaldehyde convelently modified graphitic carbon nitride photocatalyst through Schiff base reaction: Regulating electronic structure and improving visible-light-driven photocatalytic activity for moxifloxacin degradation. J Colloid Interface Sci 2023; 630:867-878. [DOI: 10.1016/j.jcis.2022.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
16
|
Alamgholiloo H, Noroozi Pesyan N, Poursattar Marjani A. Visible-light-responsive Z-scheme α-Fe2O3/SWCNT/NH2-MIL-125 heterojunction for boosted photodegradation of ofloxacin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Fu C, Yan M, Wang Z, Li J, Zhang X, Song W, Xu Z, Bhatt K, Wang Z, Zhu S. New insights into the degradation and detoxification of methylene blue using heterogeneous-Fenton catalyzed by sustainable siderite. ENVIRONMENTAL RESEARCH 2023; 216:114819. [PMID: 36395859 DOI: 10.1016/j.envres.2022.114819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The huge application of synthetic dyes caused a severe impact in the environment. In the present study, a physico-chemical strategy of heterogeneous-Fenton catalyzed by the natural ferrous ore has been established for toxic chemical degradation, of which the complex and high-expense repetitive pH adjustment procedures were escaping. And this natural heterogeneous catalyst also could be recycled and sustainable for toxic substances treatment involved in synergetic adsorption and oxidation. The siderite, served as an adsorbent and catalyst for the degradation of methylene blue (MB). Siderite exhibited a better adsorption capacity with a saturated adsorption capacity of ∼11.08 mg/g. Batch adsorption experiments have verified that adsorption rate and adsorption equilibrium followed pseudo-second-order rate model and Langmuir isotherm equation, respectively. The combination with H2O2, showed significant enhancement of MB degradation without any pH adjustment. The effect of siderite dosage, H2O2 dosage, MB concentration, initial pH, and reaction temperature on MB degradation was investigated, which also has indicated the excellent catalytic performance of siderite. About 99.71% of MB was degraded in 480 min with initial pH of 7.0, reaction temperature of 25 °C, siderite, and H2O2 dosage of 2.5 g/L and 122.38 mM, respectively. It was found that siderite could be reused and remained high degradation efficiency on MB after 5 times reutilization, which also could demonstrate the sustainable and effective process to degrade organic pollution. The generation of reactive species including ·OH and O2·- have been confirmed based on scavenger test and electron spin resonance (ESR) analysis, which was dominated by heterogeneous reaction. The possible degradation mechanisms of MB have been predicted based on spectrum scanning and GC-MS analysis. Moreover, acute toxicity assessment with marine photobacterium Vibrio fisheri was conducted to investigate the toxicity change in the adsorption/oxidation coupled process. This sustainable heterogeneous-Fenton technology has been verified as a promising and applicable process for toxic organic chemicals removal due to effective mineralization and detoxification assisted with the natural ore mineral through the simple operation and mild condtions.
Collapse
Affiliation(s)
- Caixia Fu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhuoyue Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China; School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Zhiliang Xu
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
18
|
Ren H, Bi Y, Liu F, Zhang C, Wei N, Fan L, Zhou R. Removal of ofloxacin from wastewater by chloride electrolyte electro-oxidation: Analysis of the role of active chlorine and operating costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157963. [PMID: 35952871 DOI: 10.1016/j.scitotenv.2022.157963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Electro-oxidation (EO) has received increasing attention as an efficient and green method for removing pollutants from wastewater. Chloride anions (Cl-), which commonly exist in wastewater, can act as an electrolyte for the EO process. However, the role of reactive chlorine species (RCS) generated near electrodes is often underestimated. In this study, we generated hydroxyl radicals (OH) and RCS in a boron-doped diamond (BDD) electrode system and investigated its degradation mechanism for ofloxacin (OFX) removal. The findings suggested that OFX degradation was dominated by OH existing near the anode in solution, with RCS playing a supporting role. Based on the produced intermediates, we proposed an OFX decomposition pathway. The biological toxicities of the intermediates were evaluated through the ECOSAR and T.E.S.T. procedure. Nearly half of the intermediates are less toxic than the parent compound. After optimizing the operating parameters by the response surface methodology, 20 mg/L OFX was almost completely degraded after 10 min of reaction in 1.45 g/L NaCl with a current density (j) of 18 mA/cm2, and the total organic carbon was decreased by 30.55 %. The energy consumption and current efficiency were 0.648 kW·h/gTOC and 8.65 %, respectively. Comparing the operating costs of the proposed and other EO methods, our method emerged as a viable new treatment scheme for similar polluted wastewaters. This study aims to comprehensively understand the potential application value of BDD electrodes in the treatment of Cl- containing organic wastewater.
Collapse
Affiliation(s)
- Hejun Ren
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Yuhang Bi
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Fangyuan Liu
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| | - Nan Wei
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Lujian Fan
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resource and Environment, Jilin University, Changchun 130021, China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resource and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
19
|
Mostafa EM, Amdeha E. Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69861-69874. [PMID: 35578081 PMCID: PMC9512746 DOI: 10.1007/s11356-022-20745-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
A novel visible-light-sensitive ZnVFeO4 photocatalyst has been fabricated by the precipitation method at different pH values for the enhanced photocatalytic degradation of malachite green (MG) dye as a representative pollutant under visible light irradiation at neutral pH conditions. The structure and optical characteristics of the prepared photocatalysts were investigated by XRD, FTIR, N2 adsorption-desorption, TEM, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) analyses. In addition, the photocatalytic activity of ZnVFeO4 photocatalysts superior the efficiency to be more than that of the mono and bi-metal oxides of iron and iron zinc oxides, respectively. The best sample, ZnVFeO4 at pH 3, significantly enhances the degradation rate under visible light to be 12.7 × 10-3 min-1 and can retain a stable photodegradation efficiency of 90.1% after five cycles. The effect of the catalyst dose and the initial dye concentration on the photodegradation process were studied. This promising behavior under visible light may be attributed to the low bandgap and the decreased electron-hole recombination rate of the ZnVFeO4 heterostructures. The scavenger experiment confirmed that the hydroxyl radicals induced the MG photodegradation process effectively. Hence, the ZnVFeO4 is a reliable visible-light-responsive heterostructure photocatalyst with excellent potential for the photodegradation of organic pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Eman M Mostafa
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Enas Amdeha
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| |
Collapse
|
20
|
Sun R, Yang J, Huang R, Wang C. Controlled carbonization of microplastics loaded nano zero-valent iron for catalytic degradation of tetracycline. CHEMOSPHERE 2022; 303:135123. [PMID: 35643161 DOI: 10.1016/j.chemosphere.2022.135123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nano zero-valent iron loaded porous carbon derived from microplastics was designed as heterogeneous catalyst for degradation of persistent organic pollutants. Controlled carbonization of microplastics with molten salt was conducted to tune the morphology of carbon product. Controlled carbonization induces higher carbon yield (from 17.73% to 52.24%) and larger surface area (from 403.72 m2/g to 601.82 m2/g). The catalyst (Fe/MMPC) was characterized by Raman, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. Loading nano zero-valent iron onto porous carbon are verified in the catalyst. The process factors including Fe/MMPC dosage, H2O2, pH, anions, and temperature were studied to estimate the catalytic performance. Tetracycline degradation (81.8% within 10 min) is effectively obtained in the Fe/MMPC and H2O2 system. The apparent rate constant is 0.1311-0.2999 min-1 under different temperature, and the activation energy of catalytic process is 22 kJ/mol. Pollutants including rhodamine B, p-nitrophenol, and butylxanthate are efficiently degraded in the catalytic system. The predominant species of catalytic reactions are hydroxyl radicals, which are mainly produced from H2O2 activation enhanced by zero-valent iron in Fe/MMPC. This work offers an innovative strategy for microplastic management and wastewater treatment.
Collapse
Affiliation(s)
- Ruirui Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiapeng Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Xie Y, Yu Y, Xie H, Huang F, Hughes TC. 3D-printed heterogeneous Cu 2O monoliths: Reusable supports for Antibiotic Treatmentantibiotic treatment of wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129170. [PMID: 35739707 DOI: 10.1016/j.jhazmat.2022.129170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, surfactant stabilized dispersions of the Cu2O microparticles in a commercially available photocurable resin were 3D printed into both porous and non-porous monoliths, and the heterogeneous Cu2O catalytic monolith with improved mass transfer characteristics was applied for antibiotic wastewater treatment. The physicochemical properties of catalytic monoliths were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermogravimetric. Ten intermediates were analyzed and identified by GC-MS, and the corresponding degradation pathways were proposed. Both numerical simulation and degradation experiments were used to explore the mass transfer mechanism and catalytic performance of the monoliths. The results showed that the 3D-printed monolith with a well-defined porous network exhibited a high ofloxacin degradation efficiency (100%) based on the sulfate radical-based advanced oxidation processes. In addition, the catalytic monolith showed sustained high activity over 7 reusable cycles demonstrating its feasibility in removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Yuxing Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; Manufacturing, CSIRO, Clayton, Victoria 3169, Australia.
| | - Haodong Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Huang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | | |
Collapse
|
22
|
Wu R, Zhai X, Dai K, Lian J, Cheng L, Wang G, Li J, Yang C, Yin Z, Li H, Yang X. Synthesis of acidified magnetic sludge-biochar and its role in ammonium nitrogen removal: Perception on effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154780. [PMID: 35390384 DOI: 10.1016/j.scitotenv.2022.154780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
An acidified magnetic sludge-biochar (MSB) was prepared to enhance ammonium nitrogen (AN) removal efficiency in eutrophic water, and MSB was obtained by secondary pyrolysis of sludge biochar powder. A series of MSB were prepared under 300, 400, 500, 600 °C and different valence states of iron ions by impregnation pyrolysis, which is based on the deposition of unstable iron minerals on biochar matrix. Physicochemical properties of pristine biochar and MSB were revealed through characterization analysis, suggesting that MSB prepared by ferric chloride at 400 °C presented the largest adsorption capacity, and the acid-modification enhanced the ammonium adsorption capacity by 10.7%. Electrostatic attraction and ion-exchange processes were identified as the main adsorption mechanisms of MSB on AN. As the most dominant mechanism, ion exchange of AN with functional groups containing -OH and CO on the surface of MSB resulted in the relative content of -OH (61.3%) and CO (11.5%) bonds reduced to 34.2% and 7.0% respectively. The novel magnetic sludge-biochar with acid-modification possessed enhanced electron transfer capacity, revealing a removal pathway of ammonium by nitrification. The findings above demonstrated that MSB is a promising adsorbent for ammonium removal and can be applied to the natural nitrogen-rich water regulation.
Collapse
Affiliation(s)
- Ruofan Wu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
| | - Xu Zhai
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
| | - Kuai Dai
- Yunnan Tobacco Company Yuxi Branch, Yuxi, Yunnan 653100, China
| | - Jiapan Lian
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
| | - Liping Cheng
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
| | - Gang Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
| | - Jiangzhou Li
- Yunnan Tobacco Company Yuxi Branch, Yuxi, Yunnan 653100, China
| | - Chuan Yang
- Yunnan Tobacco Company Yuxi Branch, Yuxi, Yunnan 653100, China
| | - Zhicheng Yin
- Yunnan Tobacco Company Yuxi Branch, Yuxi, Yunnan 653100, China
| | - Hongjuan Li
- Yunnan Tobacco Company Yuxi Branch, Yuxi, Yunnan 653100, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Zhao LX, Li MH, Jiang HL, Xie M, Zhao RS, Lin JM. Activation of peroxymonosulfate by a stable Co-Mg-Al LDO heterogeneous catalyst for the efficient degradation of ofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Feng X, Li X, Luo H, Su B, Ma J. Facile synthesis of Ni-based layered double hydroxides with superior photocatalytic performance for tetracycline antibiotic degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
MFO@NZVI/hydrogel for sulfasalazine degradation: Performance, mechanism and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Chen X, Zhang M, Qin H, Zhou J, Shen Q, Wang K, Chen W, Liu M, Li N. Synergy effect between adsorption and heterogeneous photo-Fenton-like catalysis on LaFeO3/lignin-biochar composites for high efficiency degradation of ofloxacin under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Xu J, Ma Q, Feng W, Zhang X, Lin Q, You C, Wang X. Removal of methyl orange from water by Fenton oxidation of magnetic coconut-clothed biochar. RSC Adv 2022; 12:24439-24446. [PMID: 36128399 PMCID: PMC9425830 DOI: 10.1039/d2ra03545f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Water pollution has become a serious environmental problem to date. Advanced oxidation processes (AOP) have been widely applied in water treatments.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qianhui Ma
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wen Feng
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaopeng Zhang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chenghang You
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xianghui Wang
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Soil Pollution Remediation and Resource Reuse of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
28
|
Recent Development in Sludge Biochar-Based Catalysts for Advanced Oxidation Processes of Wastewater. Catalysts 2021. [DOI: 10.3390/catal11111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sewage sludge as waste of the wastewater treatment process contains toxic substances, and its conversion into sludge biochar-based catalysts is a promising strategy that merges the merits of waste reutilization and environmental cleanup. This study aims to systematically recapitulate the published articles on the development of sludge biochar-based catalysts in different advanced oxidation processes of wastewater, including sulfate-based system, Fenton-like systems, photocatalysis, and ozonation systems. Due to abundant functional groups, metal phases and unique structures, sludge biochar-based catalysts exhibit excellent catalytic behavior for decontamination in advanced oxidation systems. In particular, the combination of sludge and pollutant dopants manifests a synergistic effect. The catalytic mechanisms of as-prepared catalysts in these systems are also investigated. Furthermore, initial solution pH, catalyst dosage, reaction temperature, and coexisting anions have a vital role in advanced oxidation processes, and these parameters are systematically summarized. In summary, this study could provide relatively comprehensive and up-to-date messages for the application of sludge biochar-based catalysts in the advanced oxidation processes of wastewater treatment.
Collapse
|
29
|
Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118773] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Xu S, Yang J, Hussein R, Liu G, Su B. Heterogeneous ozonation of ofloxacin using MnO x -CeO x /γ-Al 2 O 3 as a catalyst: Performances, degradation kinetics and possible degradation pathways. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1361-1369. [PMID: 33524187 DOI: 10.1002/wer.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
In this study, the performance of ofloxacin (OFX) degradation in synthetic wastewater using synthesized MnOx -CeOx /γ-Al2 O3 as a heterogeneous ozonation catalyst was evaluated. The removal rates of OFX and chemical oxygen demand (COD) during 15-day continuous-flow experiments were 98.2% and 76.7% on average, respectively. An ozone index (mgCOD/mgO3 ) of 1.09 with a high ozone utilization efficiency of 91.39% was achieved. The pseudo-first-order rate constant of ofloxacin degradation reached 15.216 × 10-2 min-1 , which was five times that (3.085 × 10-2 min-1 ) without catalysts. The results of gas chromatography-mass spectrometry (GC-MS) demonstrated that a variety of small-molecule organics occurred in the final oxidation products, such as 4-hydroxyl-4-methyl-2-pentanone and 2-oxoadipic acid in addition to homologs of OFX. The results of this study suggested that hydroxyl radicals played critical roles in the degradation and mineralization of OFX via four main pathways: (a) electrophilic addition of nitrogen; (b) breakdown of carbon-carbon double bonds; (c) hydrolysis of ether rings; and (d) halodecarboxylation of carboxyl groups. The biodegradability (BOD5 /COD) of OFX after catalytic ozonation reached 0.54. PRACTITIONER POINTS: Ofloxacin wastewater was treated using catalytic ozonation in a 15-day continuous experiment with MnOx -CeOx /γ-Al2 O3 as a catalyst. The ozone index reached 1.09 mgCOD/mgO3 during ozonation of ofloxacin. The presence of the catalyst increased the reaction rate constant by a factor of five. 4-hydroxy-4-methyl-2-pentanone was the primary ofloxacin oxidation product.
Collapse
Affiliation(s)
- Shengkai Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jiaxin Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Rafaat Hussein
- College of Environment Science and Forest, State University of New York, Syracuse, NY, USA
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Bensheng Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
31
|
Wang C, Sun R, Huang R, Cao Y. A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: Kinetics and mechanism. CHEMOSPHERE 2021; 272:129883. [PMID: 33581565 DOI: 10.1016/j.chemosphere.2021.129883] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen peroxide activation by pyrite for degradation of recalcitrant contaminants receives increasing attention. The improvement of catalytic efficiency of natural pyrite is still a challenging issue. This work provides a novel strategy of enhancing catalytic efficiency via pre-reaction between pyrite and hydrogen peroxide. Effects of process factors including pre-reaction time, hydrogen peroxide, solution pH and initial dye concentration were examined. Natural pyrite with low purity was characterized by Raman, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Reaction kinetic verifies tremendous improvement of the reaction rate through pre-reaction. Enhanced dye degradation is ascribed to hydroxyl radical production promoted by self-regulation of pH, Fe2+ releasing and Fe2+/Fe3+ cycle. The plausible mechanism was proposed based on multiple determinations. Dye degradation in different water matrix was efficiently obtained, as well as multicomponent dyes. Additionally, broad operation pH and good reusing performance make the developed process highly attractive for application. This work provides a solid step-forward of pyrite/hydrogen peroxide Fenton process for treatment of recalcitrant contaminants in wastewater.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruirui Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Yu Y, Sun Y, Zhou Y, Xu A, Xu Y, Huang F, Zhang Y. The behavior of surface acidity on photo-Fenton degradation of ciprofloxacin over sludge derived carbon: Performance and mechanism. J Colloid Interface Sci 2021; 597:84-93. [PMID: 33872889 DOI: 10.1016/j.jcis.2021.03.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 01/03/2023]
Abstract
Sludge derived carbon (SC) has been widely used in advanced oxidation processes as an effective and economic catalyst. In this study, we applied surface modified SC for the first time to catalyze the heterogeneous photo-Fenton process with ciprofloxacin, a highly concerned emerging contaminant, as a model substance. H2SO4 was used to acidify the SCs under varying acid dosages, temperatures, and reaction time lengths. The surface acidity of SCs was quantitatively characterized with NH3-TPD. A strong correlation between the surface acidity and the catalytic activity was clearly demonstrated. The highest catalytic activity was obtained with SC whose acidity was 0.149 mmol·g-1 after being modified with 6 mol·L-1 H2SO4 at -20 ℃ for 24 h. In addition, XRD, XRF, BET, XPS, and HRTEM were also used to characterize the obtained SC. ·OH radicals were found to be the main reactive species by EPR. Ten transformation products were identified by GC-MS, based on which three possible reaction pathways were proposed.
Collapse
Affiliation(s)
- Yang Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yifei Sun
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuanbo Zhou
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Anlin Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yongjun Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, PR China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
33
|
Liu L, Zhou L, Liu D, Yuan W, Chen S, Li H, Bian Z, Wang J, Wang ZL. Improved Degradation Efficiency of Levofloxacin by a Self-Powered Electrochemical System with Pulsed Direct-Current. ACS NANO 2021; 15:5478-5485. [PMID: 33599489 DOI: 10.1021/acsnano.1c00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the excellent structural design, rotary triboelectric nanogenerator (R-TENG) is suitable for harvesting mechanical energy such as wind energy and water energy to build a self-powered electrochemical system for environmental science. The electrochemical performance has been greatly improved by using the pulsed direct-current (PDC) output of a TENG; however, a full-wave PDC (FW-PDC) is hardly realized in R-TENG devices due to existence of phase superposition. Here, a R-TENG with FW-PDC output is reported to perform a self-powered electro-Fenton system for enhancing the removal efficiency of levofloxacin (OFL). By adjusting the rotation center angle ratio between each rotator and stator unit, the phase superposition of R-TENG caused by multiple parallel electrodes can be effectively eliminated, thus achieving the desired FW-PDC output. Because of the reduced electrode passivation effect, the removal efficiency of OFL is improved by 30% under equal electric charges through using the designed R-TENG with FW-PDC output compared to traditional R-TENG. This study provides a promising methodology to improve the performance of self-powered electrochemical process for treating environment pollutions.
Collapse
Affiliation(s)
- Li Liu
- Education Ministry Key and International Joint Lab of Resource Chemistry and Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyang Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hexing Li
- Education Ministry Key and International Joint Lab of Resource Chemistry and Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Zhenfeng Bian
- Education Ministry Key and International Joint Lab of Resource Chemistry and Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Wang J, Shen M, Wang H, Du Y, Zhou X, Liao Z, Wang H, Chen Z. Red mud modified sludge biochar for the activation of peroxymonosulfate: Singlet oxygen dominated mechanism and toxicity prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140388. [PMID: 32927556 DOI: 10.1016/j.scitotenv.2020.140388] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In this paper, red mud-sewage sludge derived biochar (RSDBC) was synthesized and employed as the heterogenous activator of peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. With the incorporation of red mud, 82.5% degradation of SMX was achieved by RSDBC/PMS system in a process dominated by 1O2, which was attributed to the participation of oxygen vacancy, ketone groups and graphitic carbon. On the other hand, in the absence of red mud, OH and SO4•- were dominantly accounted for SMX degradation in sewage sludge derived biochar (SDBC)/PMS system. In this case heterogeneous Fe species, ketone groups and graphitic carbon were responsible for PMS activation. Due to the different Reactive Oxygen Species (ROS), effects of reaction conditions including initial pH, common anions and natural organic matter (NOM) were not in full accord. Besides, Fe leaching from RSDBC (0.67 ppm) was much lower than that of SDBC (3.07 ppm), leading to a better reuse ability for RSDBC. Less degradation intermediates were disclosed in RSDBC/PMS system, along with lower residual toxicity. In addition, eco-toxicity of all the intermediates was predicted by ECOSAR program for the further understanding of the detoxification of SMX. Advantages of RSDBC/PMS system as disclosed in this paper further suggest its potential full-scale application of environmental remediation.
Collapse
Affiliation(s)
- Jia Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Min Shen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, PR China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yusheng Du
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xinquan Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuwei Liao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, Urban Construction Engineering Division, Wenhua College, Wuhan 430074, PR China
| | - Huabin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
35
|
Liu G, Zhang Y, Yu H, Jin R, Zhou J. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122783. [PMID: 32361143 DOI: 10.1016/j.jhazmat.2020.122783] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
While carbon materials have been well studied to stimulate the homogeneous Fenton-like processes, little was known about their impacts on iron mineral-catalyzed heterogeneous Fenton-like reactions. Here, it was found that biochar prepared at 300 °C or 600 °C (BC300 or BC600) greatly stimulated the degradation of ofloxacin (OFX) in a goethite (Gt)-mediated Fenton-like system. In 4 h, while only 38.4 % and 48.4 % OFX were removed in Gt/H2O2 and BC600/H2O2 systems, the removal efficiency reached over 94.0 % in Gt/BC600/H2O2 system. And the pseudo-first-order rate constant of Gt/H2O2, BC600/H2O2 and Gt/BC600/H2O2 systems were 0.12, 0.16 and 0.72 h-1, respectively, indicating the occurrence of synergistically catalytic degradation. •OH was identified as the major oxidant. Both the •OH yield and the H2O2 utilization efficiency of Gt/BC600/H2O2 system were higher than those of Gt/H2O2 and BC600/H2O2 systems. BC600 showed better stimulation effects than BC300. The persistent free radicals (PFRs) of BC could activate H2O2 and partly contribute to •OH production in the Gt/BC/H2O2 system. While BC could not directly reduce Fe(III) in Gt, it improved the cycling of Fe(III)/Fe(II) through complexing Fe(III) with its carboxyl group. Potential pathways were proposed for OFX degradation in the Gt/BC/H2O2 system.
Collapse
Affiliation(s)
- Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Yuanyuan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huali Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
36
|
Robles I, Moreno-Rubio G, García-Espinoza JD, Martínez-Sánchez C, Rodríguez A, Meas-Vong Y, Rodríguez-Valadez FJ, Godínez LA. Study of polarized activated carbon filters as simultaneous adsorbent and 3D-type electrode materials for electro-Fenton reactors. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104414. [PMID: 33014705 PMCID: PMC7511598 DOI: 10.1016/j.jece.2020.104414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electro-Fenton (EF) based water treatment processes using activated carbon (AC) packed beds constitute an attractive approach for the development of competitive degradation technology of persistent pollutants in aqueous effluents. In this work, the results of a study aimed to assess the effect on the EF performance of different parameters of the reactor's operation are presented. By means of a factorial experimental design, the influence of the AC source (lignitic or vegetal), AC acid pre-treatment, particle size distribution and the amount of Fe loaded resin in the reactor were analyzed. From the resulting data it was found that the most influential parameter in the EF performance of the reactor is the AC source. Modest effects were observed for AC acid pre-treatment, which limits Fe ion adsorption on the AC substrate. The use of a wide particle distribution of AC particles was also found to improve inter-particle electrical contact, thus favoring the electrochemical processes that take place inside the reactor. An investigation on the effect of the amount of Fe in the reactor as well as its distribution dynamics, also revealed that an excess of Fe ions in the reactor decreases the EF performance of the system since Fe ions efficiently adsorb on the AC substrate, particularly in non- acid treated samples. The best operation conditions consisted on using un-meshed vegetable AC, without acid pretreatment in an EF reactor loaded with 0.25 g of Fe, which allowed to reach full color removal of bright blue FCP model dye in 70 min.
Collapse
Affiliation(s)
- Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Gabriel Moreno-Rubio
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Josué D. García-Espinoza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | | | - A. Rodríguez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Yunny Meas-Vong
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Francisco J. Rodríguez-Valadez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Luis A. Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
- Corresponding author.
| |
Collapse
|
37
|
Wang X, Jin H, Wu D, Nie Y, Tian X, Yang C, Zhou Z, Li Y. Fe 3O 4@S-doped ZnO: A magnetic, recoverable, and reusable Fenton-like catalyst for efficient degradation of ofloxacin under alkaline conditions. ENVIRONMENTAL RESEARCH 2020; 186:109626. [PMID: 32668558 DOI: 10.1016/j.envres.2020.109626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, an efficient and reusable heterogeneous Fenton catalyst Fe3O4@S-doped ZnO magnetic composite was synthesized for the degradation of ofloxacin (OFX) under alkaline conditions without external energy input. The Fe3O4@S-doped ZnO exhibited excellent catalytic activity toward ofloxacin degradation within 120 min. Using 0.25 g/L of catalyst and 5.0 mL/L of H2O2 under optimized conditions, the catalyst was effective in pH values ranging from 5.2 to 9.0. The catalytic performance at optimal conditions was in accordance with a pseudo-first-order kinetics model. The reaction constant of Fe3O4@S-doped ZnO (0.0354 min-1) was three times than that of Fe3O4@ZnO (0.0124 min-1) under alkaline conditions (pH 8.2). The reactive oxygen species were the ·OH and O2·-, with ·OH dominating in the degradation of OFX. It is proposed that the catalyst acts as a Lewis acid, creating an acidic microenvironment on the catalyst's surface and widening the pH range of the Fenton reaction to alkaline conditions. Additionally, the catalyst was stable and reusable after six cycles of use. The Fenton-like Fe3O4@S-doped ZnO catalyst overcomes the problem of the narrow pH of the reaction system, thus providing promising environmental applications.
Collapse
Affiliation(s)
- Xiang Wang
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Hang Jin
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Di Wu
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Yulun Nie
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| | - Xike Tian
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Chao Yang
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Zhaoxin Zhou
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| | - Yong Li
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
38
|
Tian Y, He X, Chen W, Tian X, Nie Y, Han B, Lin HM, Yang C, Wang Y. Significant enhancement of photo-Fenton degradation of ofloxacin over Fe-Dis@Sep due to highly dispersed FeC 6 with electron deficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138144. [PMID: 32224407 DOI: 10.1016/j.scitotenv.2020.138144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
An efficient strategy for enhancing iron efficiency in heterogeneous Fenton reaction via the pyrolysis of ferrocene chemically modified sepiolite (Sep) was proposed in this study. Highly dispersed FeC6 on sepiolite (Fe-Dis@Sep) was synthesized as an efficient photo-Fenton catalyst for the visible light degradation of ofloxacin (OFX). It exhibits an excellent Fenton activity and stability towards OFX degradation. The pseudo-first order reaction rate constant of Fe-Dis@Sep was 5.1-fold higher than that of the supported catalyst with aggregated iron oxides prepared by traditional impregnation method (Fe-Agg@Sep). Based on TEM images and density functional theory (DFT) calculation, the enhanced Fenton activity of Fe-Dis@Sep was attributed to the unique incorporation of FeC6 on Sep via Si-O-C-Fe bond which not only favor the high dispersion of FeC6 with an electron deficiency but also promote Fe(III) to Fe(II) cycle via the formation of surface Fe-H2O2 complex. OH and O2- were identified as active species for OFX degradation in Fe-Dis@Sep-H2O2-Vis system. 98.7% of F and 97.0% of N in OFX was converted into F- and NO3- with a TOC removal efficiency of 89.35%. The possible degradation pathway of OFX was also proposed according to HPLC-MS results. Finally, the Fenton reaction mechanism over Fe-Dis@Sep was discussed.
Collapse
Affiliation(s)
- Yayang Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xiaoyu He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, PR China
| | - Wei Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Hong-Ming Lin
- Department Materials Engineering, Tatung University, 104 Taipei, PR China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
39
|
Wang K, Liang G, Waqas M, Yang B, Xiao K, Zhu C, Zhang J. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Zhu Y, Wei M, Pan Z, Li L, Liang J, Yu K, Zhang Y. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135960. [PMID: 31841917 DOI: 10.1016/j.scitotenv.2019.135960] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The ultraviolet/peroxydisulfate (UV/PDS) system was used to degrade ofloxacin (OFL) in fresh water, synthetic marine aquaculture water and synthetic seawater. The comparison of the reaction degradation rate constants proved that the order of reaction rate was the following: synthetic seawater (0.77 min-1) > synthetic marine aquaculture water (0.74 min-1) > freshwater (0.30 min-1). Bromide (Br-) and bicarbonate (HCO3-) promote the degradation of OFL, whereas chloride (Cl-) inhibits the degradation. The piperazine ring of OFL was the main reactive group, and atoms N1, C6, C7 and N2 were identified as the reaction sites. Based on the intermediate and final products, the possible degradation pathways of OFL in the three kinds of water were proposed. Additionally, during the UV/PDS treatment of synthetic marine aquaculture water containing Cl- and Br-, the oxidation products of OFL showed a slight toxicity to Chlorella pyrenoidosa (C. pyrenoidosa) and Priacanthus tayenus (P. tayenus). The maximum growth inhibition rate of the products to C. pyrenoidosa was 9.72%. The products also caused liver cells of P. tayenus to be damaged and reduced the species richness and diversity of intestinal microorganism. Nevertheless, compared with the products degraded by traditional disinfection methods using NaClO, the biological toxicities were much lower. UV/PDS can be used for seawater as a new alternative disinfection method.
Collapse
Affiliation(s)
- Yunjie Zhu
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Min Wei
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zihan Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Leiyun Li
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jiayuan Liang
- School of Marine Sciences, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China.
| |
Collapse
|
41
|
Li X, Li C, Gao G, Lv B, Xu L, Lu Y, Zhang G. In-situ self-assembly of robust Fe (III)-carboxyl functionalized polyacrylonitrile polymeric bead catalyst for efficient photo-Fenton oxidation of p-nitrophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134910. [PMID: 31710850 DOI: 10.1016/j.scitotenv.2019.134910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
From the view of channel confinement and functional site capture, we develop an in-situ self-assembly strategy to fabricate the carboxyl functionalized Fe-HPAN bead catalyst with highly stable and uniformly dispersed metallic sites for efficient photo-Fenton oxidation of p-nitrophenol (p-NP). BET and FTIR analysis reveal that numerous carboxyl groups and mesopores exist in Fe-HPAN beads, which acts to capture and immobilize iron ions. Catalytic results show that the degradation rate and TOC removal for p-NP were up to 99.78 and 91.68% under the optimal condition. Even at near neutral pH, the degradation rate almost keep the same and the TOC removal can still reach 73.05%. Due to the autocatalytic cycle of FeIII/FeII, the apparent rate constant of Fe-HPAN (0.2247 min-1) was 5.4 times as high as unmodified Fe-PAN (0.0415 min-1) in the presence of H2O2 and visible light irradiation, which was 2-3 orders of magnitude larger than that of other reaction systems. More importantly, Fe-HPAN bead catalyst exhibited little loss of activity even after 20 cycles of re-utilization. The possible degradation pathway of p-NP was also proposed based on GC/MS analysis. The present work may provide a new perspective for the use of synthetic polymer to prepare low-cost, efficient and robust photo-Fenton oxidation catalysts.
Collapse
Affiliation(s)
- Xiong Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Guanyu Gao
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Bosheng Lv
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Lusheng Xu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Shuren Street 8#, Hangzhou 310015, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China.
| |
Collapse
|
42
|
Sun F, Liu H, Wang H, Shu D, Chen T, Zou X, Huang F, Chen D. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134293. [PMID: 31514027 DOI: 10.1016/j.scitotenv.2019.134293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Natural iron-bearing minerals have been proven to be effective for activating H2O2 to produce OH, which can be used to degrade organic pollutants. In this study, the performance of siderite to degrade sodium sulfadiazine via catalytic H2O2 degradation was investigated at different solution pH values from 3 to 9. An interesting discovery was made: the performance of the siderite-H2O2 system was excellent under acidic, neutral, and even alkaline conditions. The influence of various factors (e.g. initial concentration, anions, natural organic matters, etc.) on the system under different pH conditions was investigated, which confirmed that siderite exhibited an excellent catalytic performance. By combining EPR characterization with scavenger research, it was proposed that dissolved iron (Fe2+) mainly initiated the homogenous Fenton reaction to degrade pollutants under acidic conditions, while structural Fe2+ species present in siderite triggered Fenton-like reactions under neutral or even alkaline conditions. From the SEM and XPS characterizations, oxidation and dissolution of Fe2+ on the surface were also observed, confirming our inference concerning the different reaction mechanisms. The experimental findings show that this siderite-H2O2 system can be used in solutions with pH values from 3 to 9 and that siderite plays a positive role in soil and groundwater remediation when H2O2 is used as an oxidant.
Collapse
Affiliation(s)
- Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Daobing Shu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangju Huang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
43
|
Bian C, Gao Q, Zhang J, Xu Y, Liu Q, Qian G. Impact of pyrone group on H 2S catalytic oxidization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133875. [PMID: 31421340 DOI: 10.1016/j.scitotenv.2019.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The surface functional group plays an important role in H2S catalytic oxidization. However, the specific effect of each group species has seldom been investigated. For the first time, we revealed by experimental and theoretical methods that the pyrone group was the most valuable group. An increase in the pyrone-group amount obviously decreased the kinetic reaction order of H2S catalytic oxidization. The catalyst with the largest amount of pyrone group (0.1321 mmol·g-1) showed the lowest reaction order (0.5896) and activation energy (16.25 kJ·mol-1). By comparison, a catalyst with 0.0008 mmol·g-1 of pyrone group had a reaction order of just 1.1852 and an activation energy of 81.22 kJ·mol-1. The contribution of pyrone content to the kinetic reaction order had a negative correlation coefficient of -8.0665, which was three and five times larger than that of the quinone (-2.5568) and acidic groups (-1.7454), respectively. Moreover, density functional theory calculations showed that the pyrone group had the lowest energy gap (0.156 eV), far less than that (1.921 eV) of the carboxyl group. After H2S was adsorbed, the pyrone group had a Mulliken atomic charge of 0.510, which was larger than that (0.236) of the carboxyl group. In other words, the pyrone group showed the best ability to facilitate electron transfer. As a result, the catalyst with 0.1321 mmol·g-1 of the pyrone group removed 100% of the H2S (450 ppm). This amount was 42% higher than a catalyst with 0.0008 mmol·g-1 of the pyrone group. The main results of this work help to explain the mechanism of carbon material in various types of catalysis.
Collapse
Affiliation(s)
- Chao Bian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Qi Gao
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China; Materials Genome Institute, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China.
| | - Yunfeng Xu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Qiang Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China.
| |
Collapse
|
44
|
The Occurrence and Risks of Selected Emerging Pollutants in Drinking Water Source Areas in Henan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214109. [PMID: 31731401 PMCID: PMC6862118 DOI: 10.3390/ijerph16214109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
The occurrence of organic micropollutants (OMPs) in aqueous environments has potential effects on ecological safety and human health. Three kinds of OMPs (namely, pharmaceuticals, ultraviolet (UV) filters and organophosphate esters (OPEs)) in four drinking water source areas in Henan Province of China were analyzed, and their potential risks were evaluated. Among 48 target chemicals, 37 pollutants with total concentrations ranging from 403.0 to 1751.6 ng/L were detected in water, and 13 contaminants with total concentrations from 326.0 to 1465.4 ng/g (dry weight) were observed in sediment. The aqueous pollution levels in Jiangang Reservoir and Shahe Water Source Area were higher than that in Nanwan Reservoir and Baiguishan Reservoir, while the highest total amount of pollutants in sediment was found in Baiguishan Reservoir. Compared with pharmaceuticals and UV filters, OPEs presented higher concentrations in all investigated drinking water source areas. The highest observed concentration was triphenylphosphine oxide (TPPO, 865.2 ng/L) in water and tripentyl phosphate (TPeP, 1289.8 ng/g) in sediment. Moreover, the risk quotient (RQ) analysis implies that the determined aqueous contaminants exhibited high risks to algae and invertebrates, whereas moderate risk to fish was exhibited. The health risk assessment of aqueous OMPs by means of the hazard index (HI) indicates that the risks to adults and children were negligible. These observations are expected to provide useful information for the assessment of water quality in drinking water sources in Henan, China.
Collapse
|
45
|
|
46
|
Núñez-Delgado A, Zhou Y, Necibi C, Xu Y, Fernández-Calviño D. Editorial of the VSI "Antibiotics and heavy metals in the environment: Facing the challenge". THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:30-32. [PMID: 31075596 DOI: 10.1016/j.scitotenv.2019.04.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Virtual Special Issue (VSI) "Antibiotics and Heavy Metals in the Environment: Facing the Challenge" received more than 100 submissions from research teams around the world. Finally, more than 50 papers were accepted and published. These very interesting research papers allow going ahead in the knowledge of different aspects which determine the fate of antibiotics and heavy metals in the environmental. The success of the VSI, as well as reports from scientific databases, indicate that this field of research is clearly growing, which is expected to continue, especially considering emerging pollutants as a whole.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Spain.
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Chaker Necibi
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Finland
| | - Yanbin Xu
- Guangdong University of Technology, School of Environmental Science and Engineering, Guangzhou, China
| | - David Fernández-Calviño
- Department of Plant Biology and Soil Science, Faculty of Sciences, Campus Univ. Ourense, University of Vigo, Spain
| |
Collapse
|
47
|
Yekan Motlagh P, Khataee A, Sadeghi Rad T, Hassani A, Joo SW. Fabrication of ZnFe-layered double hydroxides with graphene oxide for efficient visible light photocatalytic performance. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|