1
|
Pawar PV, Mahajan AS, Ghude SD. HONO chemistry and its impact on the atmospheric oxidizing capacity over the Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174604. [PMID: 38981538 DOI: 10.1016/j.scitotenv.2024.174604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Chemical processes involving nitrous acid (HONO) play a pivotal role as it is a notable source of hydroxyl (∙OH) radicals, influencing the oxidation capacity of the atmosphere. We conduct a comprehensive investigation into the temporal dynamics of HONO, other gases (nitrogen oxides (NOx), ozone (O3), ammonia (NH3), sulphur dioxide (SO2), and nitric acid (HNO3)), particulate matter (PM2.5), and meteorological parameters using measurements that took place during the Winter Fog Experiment (WiFEx) campaign in Delhi, India, during the winter of 2017-2018. Remarkable day-to-day variations in HONO concentrations are observed, with the peak value reaching 54.5 μg m-3 during a fog event. This coincides with elevated levels of sulfate and nitrate in aerosols, underscoring the significant role of heterogeneous fog chemistry in HONO production. We investigated HONO sources and sinks during fog periods by using a photochemical box model. The model shows that the gas-phased chemistry of HONO predicts concentrations lower by an order of magnitude compared to observations (peaking at 0.60 μg m-3 compared to the average observed value of 7.00 μg m-3). The calculated production rates of HONO from observations for daytime to nighttime peaks are 3.10 μg m-3 h-1 (1.1 × 107 molecules cm3 s-1) and 2.00 μg m-3 h-1 (7.1 × 106 molecules cm3 s-1), respectively. This shows the existence of an undefined heterogeneous reaction pathway for HONO production. At the peak of HONO concentration, we estimated an ∙OH formation rate of 9.4 × 107 molecules cm3 s-1 due to the photolysis of HONO, which is much higher than the production of HONO from the reaction of O1D with H2O. This underscores the predominant role of HONO photolysis as the primary source of ∙OH radicals compared to other pathways and highlights the significant role of HONO chemistry in influencing atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Pooja V Pawar
- Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India; Department of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneshwar, India
| | - Anoop S Mahajan
- Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India.
| | - Sachin D Ghude
- Indian Institute of Tropical Meteorology (IITM), Ministry of Earth Sciences, Pune, India.
| |
Collapse
|
2
|
Acharja P, Ghude SD, Sinha B, Barth M, Govardhan G, Kulkarni R, Sinha V, Kumar R, Ali K, Gultepe I, Petit JE, Rajeevan MN. Thermodynamical framework for effective mitigation of high aerosol loading in the Indo-Gangetic Plain during winter. Sci Rep 2023; 13:13667. [PMID: 37608151 PMCID: PMC10444748 DOI: 10.1038/s41598-023-40657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
The Indo-Gangetic Plain (IGP) experiences severe air pollution every winter, with ammonium chloride and ammonium nitrate as the major inorganic fractions of fine aerosols. Many past attempts to tackle air pollution in the IGP were inadequate, as they targeted a subset of the primary pollutants in an environment where the majority of the particulate matter burden is secondary in nature. Here, we provide new mechanistic insight into aerosol mitigation by integrating the ISORROPIA-II thermodynamical model with high-resolution simultaneous measurements of precursor gases and aerosols. A mathematical framework is explored to investigate the complex interaction between hydrochloric acid (HCl), nitrogen oxides (NOx), ammonia (NH3), and aerosol liquid water content (ALWC). Aerosol acidity (pH) and ALWC emerge as governing factors that modulate the gas-to-particle phase partitioning and mass loading of fine aerosols. Six "sensitivity regimes" were defined, where PM1 and PM2.5 fall in the "HCl and HNO3 sensitive regime", emphasizing that HCl and HNO3 reductions would be the most effective pathway for aerosol mitigation in the IGP, which is ammonia-rich during winter. This study provides evidence that precursor abatement for aerosol mitigation should not be based on their descending mass concentrations but instead on their sensitivity to high aerosol loading.
Collapse
Affiliation(s)
- Prodip Acharja
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CNRS, Gif-sur-Yvette, France
| | - Sachin D Ghude
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India.
| | - Baerbel Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, Punjab, India.
| | - Mary Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Gaurav Govardhan
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | | | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rajesh Kumar
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Kaushar Ali
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Ismail Gultepe
- Engineering and Applied Science, Ontario Technical University, Oshawa, ON, Canada
- Civil and Environment Eng and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
3
|
Rangel-Alvarado R, Pal D, Ariya P. PM 2.5 decadal data in cold vs. mild climate airports: COVID-19 era and a call for sustainable air quality policy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58133-58148. [PMID: 35364791 PMCID: PMC8975444 DOI: 10.1007/s11356-022-19708-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/10/2022] [Indexed: 05/21/2023]
Abstract
Airports are identified hotspots for air pollution, notably for fine particles (PM2.5) that are pivotal in aerosol-cloud interaction processes of climate change and human health. We herein studied the field observation and statistical analysis of 10-year data of PM2.5 and selected emitted co-pollutants (CO, NOx, and O3), in the vicinity of three major Canadian airports, with moderate to cold climates. The decadal data analysis indicated that in colder climate airports, pollutants like PM2.5 and CO accumulate disproportionally to their emissions in fall and winter, in comparison to airports in milder climates. Decadal daily averages and standard errors of PM2.5 concentrations were as follows: Vancouver, 5.31 ± 0.017; Toronto, 6.71 ± 0.199; and Montreal, 7.52 ± 0.023 μg/m3. The smallest and the coldest airport with the least flights/passengers had the highest PM2.5 concentration. QQQ-ICP-MS/MS and HR-S/TEM analysis of aerosols near Montreal Airport indicated a wide range of emerging contaminants (Cd, Mo, Co, As, Ni, Cr, and Pb) ranging from 0.90 to 622 μg/L, which were also observed in the atmosphere. During the lockdown, a pronounced decrease in the concentrations of PM2.5 and submicron particles, including nanoparticles, in residential areas close to airports was observed, conforming with the recommended workplace health thresholds (~ 2 × 104 cm-3), while before the lockdown, condensable particles were up to ~ 1 × 105 cm-3. Targeted reduction of PM2.5 emission is recommended for cold climate regions.
Collapse
Affiliation(s)
| | - Devendra Pal
- Department of Atmospheric & Oceanic Sciences, McGill University, Montréal, QC, H3A 2K6, Canada
| | - Parisa Ariya
- Department of Chemistry, McGill University, Montréal, QC, H3A 2K6, Canada.
- Department of Atmospheric & Oceanic Sciences, McGill University, Montréal, QC, H3A 2K6, Canada.
| |
Collapse
|
4
|
Bamotra S, Kaushal D, Yadav S, Tandon A. Variations in the concentration, source activity, and atmospheric processing of PM 2.5-associated water-soluble ionic species over Jammu, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:601. [PMID: 35864231 DOI: 10.1007/s10661-022-10249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Concentrations, sources, and atmospheric processing of water-soluble ionic species associated with PM2.5 collected from 2015 to 2017 were studied in Jammu, an urban location in the North-Western Himalayan Region (NWHR). Being ecologically sensitive and sparsely studied for dynamics in PM2.5 and associated WSIS, the present study is important for developing robust air pollution abatement strategies for the air-shed of NWHR. Twenty-four hourly PM2.5 samples were collected on weekly basis at a receptor site and analyzed for WSIS using ion chromatography system. On annual basis, total sum of WSIS (ΣWSIS) contributed about 28.5% of PM2.5, where the contribution of sulfate-nitrate-ammonium, a proxy for secondary inorganic aerosols (SIA), was found to be 18.7% of PM2.5. The ΣWSIS and PM2.5 concentration showed a seasonal cycle with the maximum concentration during winters and the minimum in summers. Mass fraction of ΣWSIS in PM2.5 showed an anti-phase seasonal pattern indicating more source activity during summers. Season-wise, dominant WSIS constituting PM2.5 were NO3-, SO42-, NH4+, and K+ during winters; whereas summer was marked with dominant contributions from SO42-, NH4+, Ca2+, and K+. Seasonal variability exhibited among SIA constituents underscored the crucial role of air temperature and relative humidity regime. It was observed that nss-K+ + NH4+ were sufficient to neutralize most of the acidic species arising from precursor gases (NOx and SOx). Using principal component analysis, five major sources and processes, viz. (a) biomass burning activities, (b) secondary inorganic aerosol formation, (c) input from re-suspended dust, (d) transported dust, and (e) fertilizer residue, were identified for the emissions of PM2.5-associated WSIS over Jammu. In future studies, impacts of dry and/or wet deposition of aerosol-associated WSIS on the crop productivity in the region should be studied.
Collapse
Affiliation(s)
- Sarita Bamotra
- Department of Environmental Sciences, Central University of Jammu, Bagla (Rahya Suchani), Samba, Jammu, J&K, 181143, India
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, H.P, 176215, India
| | - Deepika Kaushal
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, H.P, 176215, India
| | - Shweta Yadav
- Department of Environmental Sciences, Central University of Jammu, Bagla (Rahya Suchani), Samba, Jammu, J&K, 181143, India.
| | - Ankit Tandon
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, H.P, 176215, India.
| |
Collapse
|
5
|
Niu Z, Huang Z, Wang S, Feng X, Wu S, Zhao H, Lu X. Characteristics and source apportionment of particulate carbon in precipitation based on dual-carbon isotopes ( 13C and 14C) in Xi'an, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118908. [PMID: 35091020 DOI: 10.1016/j.envpol.2022.118908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Wet deposition is a dominant removal pathway of carbonaceous particles from the atmosphere, but few studies have assessed the particulate carbon in precipitation in Chinese cities. To assess the characteristics and sources of particulate carbon, we measured the concentrations, fluxes, stable carbon isotopes, and radiocarbon of particulate carbon, and some cations concentrations in precipitation in Xi'an, China, in 2019. In contrast to rainfall samples, particulate carbon in snowfall samples in Xi'an showed extremely high concentrations and wet deposition fluxes. The concentrations as well as wet deposition fluxes showed no significant (p > 0.05) differences between urban and suburban sites, and they also exhibited low seasonality in rainfall samples. Water-insoluble organic carbon (WIOC) accounted for the majority (∼90%) of the concentrations and wet deposition fluxes of water-insoluble total carbon (WITC) in precipitation. The best estimates of source apportionment of WITC in precipitation showed that biological sources were the main contributor (80.0% ± 10.5%) in summer, and their contributions decreased to 47.3% ± 12.8% in winter. The contribution of vehicle exhaust emissions accounted for 11.7% ± 3.5% in summer and 39.0% ± 4.3% in winter, while the contributions of coal combustion were relatively small in summer (8.3% ± 7.0%) and winter (13.8% ± 8.5%). Biomass burning accounted for 25.7% ± 9.3% and 89.9% ± 0.7% of the biological sources in summer and winter, respectively, with the remainder comprising other sources of contemporary carbon. These results highlight the nonnegligible contributions of biogenic emissions and biomass burning to particulate carbon in precipitation in this city in summer and winter, respectively.
Collapse
Affiliation(s)
- Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China; Shaanxi Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China.
| | - Zhipu Huang
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Sen Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Xue Feng
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Shugang Wu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| | - Huiyizhe Zhao
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Yadav R, Sugha A, Bhatti MS, Kansal SK, Sharma SK, Mandal TK. The role of particulate matter in reduced visibility and anionic composition of winter fog: a case study for Amritsar city. RSC Adv 2022; 12:11104-11112. [PMID: 35425065 PMCID: PMC8996368 DOI: 10.1039/d2ra00424k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Severe fog events during winter months in India are a serious concern due to the higher incidence of road accidents, flight delays and increased occurrence of respiratory diseases. The present paper is an attempt to study the twenty fog samples collected from the rooftop of an academic building of Guru Nanak Dev University, Amritsar, India from November 2017 to January 2018. Fog samples were analysed for various parameters viz. pH, electrical conductivity (EC), chloride (Cl-), nitrate (NO3 -) and sulphate (SO4 2-) levels. The pH, EC, and Cl-, NO3 - and SO4 2- levels in the fog samples were estimated as 6.3-7.9, 240-790 μS cm-1, 108-2025 μeq L-1, 105-836 μeq L-1 and 822-5642 μeq L-1, respectively. It was noticed that sulphate was the dominant anion in fog samples. The SO4 2- to NO3 - molar ratio in the fog was estimated as 7.6 which suggests the burning of fossil fuel as the major pollutant from vehicular exhausts. Multiple regression analysis was performed to evaluate the effect of PM2.5/PM10 ratio and relative humidity (RH) on visibility. A box-cox plot of power transformation produced better model fitting, employing a square root transformation of the visibility which indicated that the PM2.5/PM10 and RH have an exponential effect on visibility.
Collapse
Affiliation(s)
- Rekha Yadav
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab India +91-9417107598
| | - Aditi Sugha
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab India +91-9417107598
| | - Manpreet S Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab India +91-9417107598
| | - Sushil K Kansal
- Dr SSB University Institute of Chemical Engineering and Technology, Panjab University Chandigarh India
| | - Sudhir K Sharma
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory Dr K S Krishnan Road New Delhi India +91-9818479956
| | - Tuhin K Mandal
- Environmental Sciences and Biomedical Metrology Division, CSIR-National Physical Laboratory Dr K S Krishnan Road New Delhi India +91-9818479956
| |
Collapse
|
7
|
Verma S, Ramana MV, Kumar R. Atmospheric rivers fueling the intensification of fog and haze over Indo-Gangetic Plains. Sci Rep 2022; 12:5139. [PMID: 35332243 PMCID: PMC8948212 DOI: 10.1038/s41598-022-09206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Indo-Gangetic Plains (IGP) experiences persistent and widespread rise of fog and haze during the winter season. This has been attributed to the rise in pollution levels and water vapor, but the reason for enhancement in latter is not clear yet. We detect moisture incursion from Arabian Sea, a phenomenon called atmospheric rivers (AR), land-falling intermittently along 12-25° N corridor of the west-coast of India during winter; using satellite and reanalysis data. The total vertically integrated horizontal water vapor transport in AR-landfalls ranging from 0.7 × 108 to 2.2 × 108 kg/s; nearly five-orders of magnitude larger than the average discharge of liquid water from Indus River into Arabian Sea. These AR events are playing prominent role in enhancing water vapor over IGP region by 19 ± 5%; in turn fueling the intensification of fog and haze through aerosol-water vapor interaction. We found that AR events enhanced aerosol optical depths over IGP by about 29 ± 13%. The progression of moist-laden winds in ARs onto Himalayan Mountains contributes to the precipitation that explains the observed rise in the extreme flow of western Himalayan Rivers in winter. We conclude that these ARs likely contribute to the decline of snow albedo as pollution-mixed-ARs encounter Hindukush-Karakoram-Himalayan mountain region.
Collapse
Affiliation(s)
- Shivali Verma
- Land and Atmospheric Physics Division, Earth and Climate Science Area (ECSA), National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Balanagar, Hyderabad, 500 037, India.
| | - Muvva V Ramana
- Land and Atmospheric Physics Division, Earth and Climate Science Area (ECSA), National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Balanagar, Hyderabad, 500 037, India
| | - Raj Kumar
- Land and Atmospheric Physics Division, Earth and Climate Science Area (ECSA), National Remote Sensing Centre (NRSC), Indian Space Research Organization (ISRO), Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
8
|
Gupta T, Rajeev P, Rajput R. Emerging Major Role of Organic Aerosols in Explaining the Occurrence, Frequency, and Magnitude of Haze and Fog Episodes during Wintertime in the Indo Gangetic Plain. ACS OMEGA 2022; 7:1575-1584. [PMID: 35071853 PMCID: PMC8771687 DOI: 10.1021/acsomega.1c05467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 06/02/2023]
Abstract
Aerosols are an important part of Earth's atmosphere. They can absorb, scatter, or reflect the incoming solar radiation, which results in heating or cooling of Earth, thus impacting its climate. It affects the health of exposed human population adversely, reduces visibility, disturbs environmental systems, and causes material damage. This study summarizes the research carried out to understand the role of aerosol load and its physicochemical characteristics on occurrence, frequency, and magnitude of haze and fog events during wintertime within the Indo Gangetic Plain (IGP) in the past decade. For most species, the highest concentration was measured during foggy events at night-time over the winter season. A few species such as water-soluble organic and inorganic carbon (WSOC and WSIC), K+, SO4 2-, and NO3 -, owing to their hygroscopic nature, were efficiently scavenged, resulting in their lower concentration within the interstitial aerosol during fog episodes. Oligomerization with hydroxy and carbonyl functional groups during AFP (activating fog period) and DFP (dissipating fog period), respectively, accompanied by acidic aerosol (having catalytic ability) and high aerosol liquid water content conditions was found to be significant. Whereas the fragmentation process was dominant along with functionalization of -RCOOH or carbonyl (aldehyde/ketone) and -RCOOH moieties during FP (fog period) and PoFP (post-fog period), respectively. Transition metals play an important role in aqueous production of secondary organic aerosol (SOA) especially during the night-time. Crustal sources had the highest scavenging efficiency along with WSOC playing an important role in nucleation scavenging. Fine droplets had a higher concentration of species with a larger fraction of highly oxidized organic matter (OM) as compared to coarse or medium size droplets. Also, a new approach to calculate absorption by black carbon (BC) and brown carbon (BrC) was proposed, which found the water-soluble brown carbon (WSBrC) absorption value in aerosol to be up to 1.8 times higher than that measured in their corresponding aqueous extracts. Organic aerosol plays a vital role in facilitating fog formation and is responsible for the longer residence time in the ambient atmosphere. Ammonia plays an important role in stabilizing organic aerosol and aids to this recurring haze-fog-haze cycle that is dominant during wintertime in the IGP. Therefore, controlling the major anthropogenic sources of organic aerosol and ammonia should be our top priority in this part of the world.
Collapse
|
9
|
Assessing Health Impacts of Winter Smog in Lahore for Exposed Occupational Groups. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The goal of this research was to investigate the health effects of winter pollution on various occupations in Lahore and its neighboring peri-urban areas. A questionnaire survey, key informants, and focused group discussions were employed to collect data, which included demographic, socioeconomic, and health-related information. Descriptive statistics and the multivariate logistic regression model (MLRM) were used to examine the effects of pollution on exposed occupational groups who experienced symptoms such as coughing, shortness of breath, and eye discomfort. According to data from interviews, MLRM revealed that individuals working in various occupations with outdoor and indoor environments are equally affected by winter smog, but being middle-aged (odds ratio OR = 5.73), having a history of a respiratory ailment (OR = 4.06), and location (OR = 2.26) all play important roles in determining health. However, less educated people, elders, and people who already live in polluted areas are more likely to develop respiratory health symptoms. During the smog incident, it was determined that diverse health and socioeconomic factors exacerbate an individual’s negative health impact more than others.
Collapse
|
10
|
Diao L, Zhang H, Liu B, Dai C, Zhang Y, Dai Q, Bi X, Zhang L, Song C, Feng Y. Health risks of inhaled selected toxic elements during the haze episodes in Shijiazhuang, China: Insight into critical risk sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116664. [PMID: 33609903 DOI: 10.1016/j.envpol.2021.116664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 in Shijiazhuang was collected from October 15, 2018 to January 31, 2019, and selected toxic elements were measured. Five typical haze episodes were chosen to analyze the health risks and critical risk sources. Toxic elements during the haze episodes accounted for 0.33% of PM2.5 mass. Non-cancer risk of toxic elements for children was 1.8 times higher than that for adults during the haze episodes, while cancer risk for adults was 2.5 times higher than that for children; cancer and non-cancer risks were primarily attributable to As and Mn, respectively. Health risks of toxic elements increased during the growth and stable periods of haze episodes. Non-cancer and cancer risks of toxic elements during the haze stable periods were higher than other haze stages, and higher for children than for adults during the stable period. Mn was the largest contributor to non-cancer risk during different haze stages, while As was the largest contributor to cancer risk. Crustal dust, vehicle emissions, and industrial emissions were critical sources of cancer risk during the clean-air periods; while vehicle emissions, coal combustion, and crustal dust were key sources of cancer risk during the haze episodes. Cancer risks of crustal dust and vehicle emissions during the haze episodes were 2.0 and 1.7 times higher than those in the clean-air periods. Non-cancer risks from emission sources were not found during different periods. Cancer risks of biomass burning and coal combustion increased rapidly during the haze growth period, while that of coal combustion decreased sharply during the dissipation period. Vehicle emissions, crustal dust, and coal combustion were significant cancer risk sources during different haze stages, cancer risk of each source was the highest during the stable period. Southern Hebei, Northern and central Shaanxi were potential risk regions that affected the health of both adults and children in Shijiazhuang.
Collapse
Affiliation(s)
- Liuli Diao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Huitao Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Chunling Dai
- Shijiazhuang Ecological and Environmental Monitoring Center of Hebei Province, Shijiazhuang, 050022, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohui Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lingzhi Zhang
- Shijiazhuang Ecological and Environmental Monitoring Center of Hebei Province, Shijiazhuang, 050022, China
| | - Congbo Song
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
11
|
Singh V, Singh S, Biswal A. Exceedances and trends of particulate matter (PM 2.5) in five Indian megacities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141461. [PMID: 32882489 PMCID: PMC7417276 DOI: 10.1016/j.scitotenv.2020.141461] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 05/04/2023]
Abstract
Fine particulate matter (PM2.5) is the leading environmental risk factor that requires regular monitoring and analysis for effective air quality management. This work presents the variability, trend, and exceedance analysis of PM2.5 measured at US Embassy and Consulate in five Indian megacities (Chennai, Kolkata, Hyderabad, Mumbai, and New Delhi) for six years (2014-2019). Among all cities, Delhi is found to be the most polluted city followed by Kolkata, Mumbai, Hyderabad, and Chennai. The trend analysis for six years for five megacities suggests a statistically significant decreasing trend ranging from 1.5 to 4.19 μg/m3 (2%-8%) per year. Distinct diurnal, seasonal, and monthly variations are observed in the five cities due to the different site locations and local meteorology. All cities show the highest and lowest concentrations in the winter and monsoon months respectively except for Chennai which observed the lowest levels in April. All the cities consistently show morning peaks (~08: 00-10:00 h) and the lowest level in late afternoon hours (~15:00-16:00 h). We found that the PM2.5 levels in the cities exceed WHO standards and Indian NAAQS for 50% and 33% of days in a year except for Chennai. Delhi is found to have more than 200 days of exceedances in a year and experiences an average 15 number of episodes per year when the level exceeds the Indian NAAQS. The trends in the exceedance with a varying threshold (20-380 μg/m3) suggest that not only is the annual mean PM2.5 decreasing in Delhi but also the number of exceedances is decreasing. This decrease can be attributed to the recent policies and regulations implemented in Delhi and other cities for the abatement of air pollution. However, stricter compliance of the National Clean Air Program (NCAP) policies can further accelerate the reduction of the pollution levels.
Collapse
Affiliation(s)
- Vikas Singh
- National Atmospheric Research Laboratory, Gadanki, AP, India.
| | - Shweta Singh
- National Atmospheric Research Laboratory, Gadanki, AP, India
| | - Akash Biswal
- National Atmospheric Research Laboratory, Gadanki, AP, India
| |
Collapse
|
12
|
Liu B, Wu J, Wang J, Shi L, Meng H, Dai Q, Wang J, Song C, Zhang Y, Feng Y, Hopke PK. Chemical characteristics and sources of ambient PM 2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115926. [PMID: 33153802 DOI: 10.1016/j.envpol.2020.115926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Samples of ambient PM2.5 were collected in the Qingdao harbor area between 21 March and May 25, 2016, and analyzed to investigate the compositions and sources of PM2.5 and to assess source-specific selected toxic element health risks to workers via a combination of positive matrix factorization (PMF) and health risk (HR) assessment models. The mean concentration of PM2.5 in harbor area was 48 μg m-3 with organic matter (OM) dominating its mass. Zn and V concentrations were significantly higher than the other selected toxic elements. The hazard index (HI) and cancer risk (Ri) of all selected toxic elements were lower than the United States Environmental Protection Agency (USEPA) limits. There were no non-cancer and cancer risks for workers in harbor area. The contributions from industrial emissions (IE), ship emissions (SE), vehicle emissions (VE), and crustal dust and coal combustion (CDCC) to selected toxic elements were 39.0%, 12.8%, 24.0%, and 23.0%, respectively. The HI values of selected toxic elements from IE, CDCC, SE, and VE were 1.85 × 10-1, 7.08 × 10-2, 6.36 × 10-2, and 3.37 × 10-2, respectively; these are lower than the USEPA limits. The total cancer risk (Rt) value from selected toxic elements in CDCC was 2.04 × 10-7, followed by IE (6.40 × 10-8), SE (2.26 × 10-8), and VE (2.18 × 10-8). CDCC and IE were the likely sources of cancer risk in harbor area. The Bo Sea and coast were identified as the likely source areas for health risks from IE via potential source contribution function (PSCF) analysis based on the results of PMF-HR modelling. Although the source-specific health risks were below the recommended limit values, this work illustrates how toxic species in PM2.5 health risks can be associated with sources such that control measures could be undertaken if the risks warranted it.
Collapse
Affiliation(s)
- Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianhui Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Jing Wang
- Qingdao Ecological and Environmental Monitoring Centre of Shandong Province, Qingdao, 266003, China
| | - Laiyuan Shi
- Qingdao Ecological and Environmental Monitoring Centre of Shandong Province, Qingdao, 266003, China
| | - He Meng
- Qingdao Ecological and Environmental Monitoring Centre of Shandong Province, Qingdao, 266003, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jiao Wang
- College of Environmental Science and Engineering, Key Laboratory of Marine Environmental Science and Ecology (Ministry of Education), Ocean University of China, Qingdao, Shandong, 266100, China
| | - Congbo Song
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| |
Collapse
|
13
|
Banerjee S, Padmakumari B. Spatiotemporal variability and evolution of day and night winter fog over the Indo Gangetic Basin using INSAT-3D and comparison with surface visibility and aerosol optical depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140962. [PMID: 32738683 DOI: 10.1016/j.scitotenv.2020.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Every year during the peak winter months (December-January), dense and prolonged fog envelops the Indo-Gangetic Basin (IGB) over the Indian sub-continent leading to economic loss. Many efforts are being made to understand its characteristics to improve forecasting skills. In the present work Indian National SATellite (INSAT-3D), a geostationary satellite, retrieved fog data available at every 30 min interval throughout the day and night is used to study its evolution, spatial and temporal variability for the winter months of December 2016 and January 2017 in conjunction with surface measurements. Fog data when compared with ground-based horizontal visibility over different stations in IGB showed good relationship, also depicted similar temporal variability in tune with the favorable meteorological parameters of temperature, relative humidity, and wind speed. It is observed that INSAT-3D captured fog very well for visibility ranging from 0 to 500 m representing very dense, dense, and moderate fog, while, the shallow fog with visibility >600 m is captured occasionally. From the maps of spatial and temporal variability of fog, the regions most affected are identified based on fog duration. The intense fog events covering the entire IGB for long duration are observed mostly in the midnight (00:00-04:00) and early morning (04:00-08:00) hours (local time) of December as compared to January. While in January, moderate intense fog spans the entire IGB during day time also. Due to increase in pollution levels, including biomass burning as inferred from MODIS fire counts, and stable atmosphere, high aerosol optical depths (AOD) are observed across IGB. The high AOD regions (> 0.8) covering central and west IGB, are also the hotspot regions of fog/smog onset and slowly expand over a larger area and intensify.
Collapse
Affiliation(s)
- Shravani Banerjee
- Department of Geoinformatics, Central University of Jharkhand, Ranchi 834205, India
| | - B Padmakumari
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India.
| |
Collapse
|
14
|
Comparison of ambient air pollution levels of Amritsar during foggy conditions with that of five major north Indian cities: multivariate analysis and air mass back trajectories. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03569-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Acharja P, Ali K, Trivedi DK, Safai PD, Ghude S, Prabhakaran T, Rajeevan M. Characterization of atmospheric trace gases and water soluble inorganic chemical ions of PM 1 and PM 2.5 at Indira Gandhi International Airport, New Delhi during 2017-18 winter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138800. [PMID: 32361437 DOI: 10.1016/j.scitotenv.2020.138800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Water soluble inorganic chemical ions of PM1 and PM2.5 and atmospheric trace gases were monitored simultaneously on hourly resolution at Indira Gandhi International Airport (IGIA), Delhi during 8 December 2017-10 February 2018. Monitoring was made by MARGA (Monitoring AeRosol and Gases in ambient Air) under winter fog experiment (WIFEX) program of the Ministry of Earth Sciences (MoES), Government of India. The result based on the analysis of the data so generated reveals that Cl-, NH4+, NO3- and SO42- were dominant ions in order which collectively constituted 96.8 and 97.3% of the of the total measured ionic mass in PM1 and PM2.5 respectively. Their overall average concentrations in PM1 were 19.5 ± 19.7, 18.4 ± 10.5, 16.6 ± 8.7 and 10.3 ± 5.7 μg/m3 and in PM2.5 were 36.0 ± 33.9, 32.7 ± 17.2, 28.5 ± 13.6 and 19.9 ± 13.9 μg/m3. Average concentrations of HCl, HNO3, HNO2, SO2 and NH3 trace gases were 0.7 ± 0.3, 2.7 ± 1.1, 6.6 ± 4.7, 22.0 ± 12.3 and 25.7 ± 9.1 μg/m3 respectively. Weather parameters along with low mixing height played significant role in the occurrence of high concentration of these chemical species. NH4+ was the prime neutralizer of the acidic components and mostly occurred in (NH4)2SO4/NH4HSO4, NH4NO3 and NH4Cl molecular forms. Major sources of these chemical species were fossil fuel combustion in aviation activity and transportation, coal burning in thermal power plants, industrial processes and emissions from biomass burning and agro-based activity. The quality of air with respect to PM2.5 always remained deteriorated. It became alarming during low visibility period mainly due to high concentration of Cl-, NO3-, SO42- and NH4+. Both meteorological and chemical processes interactively fed each other which occasionally resulted in fog development and visibility degradation. The knowledge gained by this study will help in simulation of atmospheric processes which lead to fog development and dispersal in the Delhi region.
Collapse
Affiliation(s)
- Prodip Acharja
- Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Kaushar Ali
- Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Dinesh Kumar Trivedi
- Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - P D Safai
- Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sachin Ghude
- Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Thara Prabhakaran
- Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - M Rajeevan
- Ministry of Earth Sciences, Prithvi Bhavan, Lodhi Road, New Delhi 110003, India
| |
Collapse
|
16
|
Cui Y, Yin Y, Chen K, Zhang X, Kuang X, Jiang H, Wang H, Zhen Z, He C. Characteristics and sources of WSI in North China Plain: A simultaneous measurement at the summit and foot of Mount Tai. J Environ Sci (China) 2020; 92:264-277. [PMID: 32430129 DOI: 10.1016/j.jes.2020.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
To better understand the characteristics and sources of water soluble ions (WSI) in North China Plain (NCP), fine particles (PM2.5) were simultaneously sampled at the summit (SM) and foot (FT) of Mount Tai during May 12th to June 24th, 2017. Ion chromatography analysis showed that concentration of WSI was lower at SM (22.26 ± 16.53 μg/m3) than that at FT (31.02 ± 21.92 μg/m3). The concentration and proportion of SO42- in total WSI were both lower than the values reported in previous studies. Daytime WSI concentrations were higher than that at nighttime at SM, while the opposite results were obtained at FT, possibly associated with more anthropogenic activities and higher boundary layer height (BLH) during daytimes. A severe pollution event occurred during June 14th - June 16th was documented at both FT and SM. Regional transport and topography-forced vertical transport along the slope of the mountain could explain the higher concentrations of pollutants at SM. The analyses also indicated that NH4+ existed mainly in the form of NH4HSO4 and NH4NO3, but (NH4)2SO4 could also exist, especially when emissions of NH4+ and NH3 were increased during daytime at FT. The results of principal component analysis (PCA) illustrated that secondary aerosols, coal/biomass burnings, sea-salts and crustal/soil dusts were the main sources at SM, and secondary aerosols and crustal/soil dusts contributed most at FT. Backward air-mass trajectories were classified into four clusters, of which air masses with the highest frequency and WSI concentrations were originated from the southwest with secondary ions (SO42-, NO3- and NH4+) as major pollutants.
Collapse
Affiliation(s)
- Yi Cui
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Kui Chen
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Zhang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiang Kuang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hui Jiang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Honglei Wang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhongxiu Zhen
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuan He
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|