• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643727)   Today's Articles (3751)   Subscriber (50650)
For: Knoll L, Breuer L, Bach M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci Total Environ 2019;668:1317-1327. [PMID: 31018471 DOI: 10.1016/j.scitotenv.2019.03.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 05/22/2023]
Number Cited by Other Article(s)
1
Madrigal-Solís H, Vadillo-Pérez I, Jiménez-Gavilán P, Fonseca-Sánchez A, Quesada-Hernández L, Calderón-Sánchez H, Gómez-Cruz A, Murillo JH, Salazar RP. A multidisciplinary approach using hydrogeochemistry, δ15NNO3 isotopes, land use, and statistical tools in evaluating nitrate pollution sources and biochemical processes in Costa Rican volcanic aquifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;951:174996. [PMID: 39067595 DOI: 10.1016/j.scitotenv.2024.174996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
2
Torres-Martínez JA, Mahlknecht J, Kumar M, Loge FJ, Kaown D. Advancing groundwater quality predictions: Machine learning challenges and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;949:174973. [PMID: 39053524 DOI: 10.1016/j.scitotenv.2024.174973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
3
Li X, Liang G, Wang L, Yang Y, Li Y, Li Z, He B, Wang G. Identifying the spatial pattern and driving factors of nitrate in groundwater using a novel framework of interpretable stacking ensemble learning. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024;46:482. [PMID: 39470928 PMCID: PMC11522174 DOI: 10.1007/s10653-024-02201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024]
4
Koch J, Kim H, Tirado-Conde J, Hansen B, Møller I, Thorling L, Troldborg L, Voutchkova D, Højberg AL. Modeling groundwater redox conditions at national scale through integration of sediment color and water chemistry in a machine learning framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;947:174533. [PMID: 38972412 DOI: 10.1016/j.scitotenv.2024.174533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
5
Jalali R, Tishehzan P, Hashemi H. A machine learning framework for spatio-temporal vulnerability mapping of groundwaters to nitrate in a data scarce region in Lenjanat Plain, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024;31:42088-42110. [PMID: 38862797 DOI: 10.1007/s11356-024-33920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
6
Hu Y, Liu C, Wollheim WM, Jiao T, Ma M. A hybrid deep learning approach to predict hourly riverine nitrate concentrations using routine monitored data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024;360:121097. [PMID: 38733844 DOI: 10.1016/j.jenvman.2024.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
7
Serra J, Marques-Dos-Santos C, Marinheiro J, Cruz S, Cameira MR, de Vries W, Dalgaard T, Hutchings NJ, Graversgaard M, Giannini-Kurina F, Lassaletta L, Sanz-Cobeña A, Quemada M, Aguilera E, Medinets S, Einarsson R, Garnier J. Assessing nitrate groundwater hotspots in Europe reveals an inadequate designation of Nitrate Vulnerable Zones. CHEMOSPHERE 2024;355:141830. [PMID: 38552801 DOI: 10.1016/j.chemosphere.2024.141830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
8
Cooke AK, Willkommen S, Broda S. Analysing agricultural plant protection product concentrations in groundwater in Germany: Nationwide database with site and compound insights. ENVIRONMENTAL RESEARCH 2024;248:118231. [PMID: 38301764 DOI: 10.1016/j.envres.2024.118231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
9
Nam SH, Kwon S, Kim YD. Development of a basin-scale total nitrogen prediction model by integrating clustering and regression methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;920:170765. [PMID: 38340839 DOI: 10.1016/j.scitotenv.2024.170765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
10
Liang Y, Zhang X, Gan L, Chen S, Zhao S, Ding J, Kang W, Yang H. Mapping specific groundwater nitrate concentrations from spatial data using machine learning: A case study of chongqing, China. Heliyon 2024;10:e27867. [PMID: 38524545 PMCID: PMC10958364 DOI: 10.1016/j.heliyon.2024.e27867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/10/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]  Open
11
Chu Y, He B, He J, Zou H, Sun J, Wen D. Revealing the drivers and genesis of NO3-N pollution classification in shallow groundwater of the Shaying River Basin by explainable machine learning and pathway analysis method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;918:170742. [PMID: 38336062 DOI: 10.1016/j.scitotenv.2024.170742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
12
Sakizadeh M, Zhang C, Milewski A. Spatial distribution pattern and health risk of groundwater contamination by cadmium, manganese, lead and nitrate in groundwater of an arid area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024;46:80. [PMID: 38367130 DOI: 10.1007/s10653-023-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/21/2023] [Indexed: 02/19/2024]
13
Mahlknecht J, Torres-Martínez JA, Kumar M, Mora A, Kaown D, Loge FJ. Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;905:166863. [PMID: 37690767 DOI: 10.1016/j.scitotenv.2023.166863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
14
Dieser M, Zieseniß S, Mielenz H, Müller K, Greef JM, Stever-Schoo B. Nitrate leaching potential from arable land in Germany: Identifying most relevant factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;345:118664. [PMID: 37499418 DOI: 10.1016/j.jenvman.2023.118664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
15
Elsayed A, Rixon S, Levison J, Binns A, Goel P. Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;345:118924. [PMID: 37678017 DOI: 10.1016/j.jenvman.2023.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
16
Mahboobi H, Shakiba A, Mirbagheri B. Improving groundwater nitrate concentration prediction using local ensemble of machine learning models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;345:118782. [PMID: 37597371 DOI: 10.1016/j.jenvman.2023.118782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
17
Ahn SH, Jeong DH, Kim M, Lee TK, Kim HK. Prediction of groundwater quality index to assess suitability for drinking purpose using averaged neural network and geospatial analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023;265:115485. [PMID: 37729698 DOI: 10.1016/j.ecoenv.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
18
Haggerty R, Sun J, Yu H, Li Y. Application of machine learning in groundwater quality modeling - A comprehensive review. WATER RESEARCH 2023;233:119745. [PMID: 36812816 DOI: 10.1016/j.watres.2023.119745] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
19
Yang H, Wang P, Chen A, Ye Y, Chen Q, Cui R, Zhang D. Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning. CHEMOSPHERE 2023;313:137623. [PMID: 36565764 DOI: 10.1016/j.chemosphere.2022.137623] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
20
Agbasi JC, Egbueri JC. Intelligent soft computational models integrated for the prediction of potentially toxic elements and groundwater quality indicators: a case study. JOURNAL OF SEDIMENTARY ENVIRONMENTS 2023;8:57-79. [PMCID: PMC9849108 DOI: 10.1007/s43217-023-00124-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 10/21/2023]
21
Sarkar S, Mukherjee A, Senapati B, Duttagupta S. Predicting Potential Climate Change Impacts on Groundwater Nitrate Pollution and Risk in an Intensely Cultivated Area of South Asia. ACS ENVIRONMENTAL AU 2022;2:556-576. [PMID: 37101727 PMCID: PMC10125289 DOI: 10.1021/acsenvironau.2c00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
22
Liu D, Song C, Xin Z, Fang C, Liu Z. Spatial patterns and driving factor analysis of recommended nitrogen application rate for the trade-off between economy and environment for maize in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022;322:116099. [PMID: 36058069 DOI: 10.1016/j.jenvman.2022.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
23
Nölscher M, Mutz M, Broda S. Multiorder hydrologic Position for Europe - a Set of Features for Machine Learning and Analysis in Hydrology. Sci Data 2022;9:662. [PMID: 36309509 PMCID: PMC9617849 DOI: 10.1038/s41597-022-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/14/2022] [Indexed: 11/16/2022]  Open
24
Definition of hot-spots to reduce the nitrogen losses from agricultural land to groundwater in Slovakia. EKOLÓGIA (BRATISLAVA) 2022. [DOI: 10.2478/eko-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
25
Application and Research of Computer Intelligent Technology in Modern Agricultural Machinery Equipment. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022;2022:9978167. [PMID: 35983150 PMCID: PMC9381267 DOI: 10.1155/2022/9978167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
26
Fallatah O, Ahmed M, Gyawali B, Alhawsawi A. Factors controlling groundwater radioactivity in arid environments: An automated machine learning approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;830:154707. [PMID: 35331768 DOI: 10.1016/j.scitotenv.2022.154707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
27
Hybrid Machine Learning Models for Soil Saturated Conductivity Prediction. WATER 2022. [DOI: 10.3390/w14111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
28
Imputation of Ammonium Nitrogen Concentration in Groundwater Based on a Machine Learning Method. WATER 2022. [DOI: 10.3390/w14101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
29
Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System. REMOTE SENSING 2022. [DOI: 10.3390/rs14102379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
30
Modeling Groundwater Nitrate Contamination Using Artificial Neural Networks. WATER 2022. [DOI: 10.3390/w14071173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
31
He S, Li P, Su F, Wang D, Ren X. Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022;298:118852. [PMID: 35033617 DOI: 10.1016/j.envpol.2022.118852] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 05/12/2023]
32
He S, Wu J, Wang D, He X. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. CHEMOSPHERE 2022;290:133388. [PMID: 34952022 DOI: 10.1016/j.chemosphere.2021.133388] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 12/19/2021] [Indexed: 05/12/2023]
33
Alkindi KM, Mukherjee K, Pandey M, Arora A, Janizadeh S, Pham QB, Anh DT, Ahmadi K. Prediction of groundwater nitrate concentration in a semiarid region using hybrid Bayesian artificial intelligence approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;29:20421-20436. [PMID: 34735705 DOI: 10.1007/s11356-021-17224-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
34
Singh SK, Taylor RW, Pradhan B, Shirzadi A, Pham BT. Predicting sustainable arsenic mitigation using machine learning techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022;232:113271. [PMID: 35121252 DOI: 10.1016/j.ecoenv.2022.113271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
35
Ransom KM, Nolan BT, Stackelberg PE, Belitz K, Fram MS. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;807:151065. [PMID: 34673076 DOI: 10.1016/j.scitotenv.2021.151065] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
36
Rosecrans CZ, Belitz K, Ransom KM, Stackelberg PE, McMahon PB. Predicting regional fluoride concentrations at public and domestic supply depths in basin-fill aquifers of the western United States using a random forest model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;806:150960. [PMID: 34656592 DOI: 10.1016/j.scitotenv.2021.150960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
37
Zhang D, Wang P, Cui R, Yang H, Li G, Chen A, Wang H. Electrical conductivity and dissolved oxygen as predictors of nitrate concentrations in shallow groundwater in Erhai Lake region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;802:149879. [PMID: 34464801 DOI: 10.1016/j.scitotenv.2021.149879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
38
Islam ARMT, Pal SC, Chowdhuri I, Salam R, Islam MS, Rahman MM, Zahid A, Idris AM. Application of novel framework approach for prediction of nitrate concentration susceptibility in coastal multi-aquifers, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;801:149811. [PMID: 34467937 DOI: 10.1016/j.scitotenv.2021.149811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
39
Assessing Nitrate Contamination Risks in Groundwater: A Machine Learning Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
40
Allocca V, Di Napoli M, Coda S, Carotenuto F, Calcaterra D, Di Martire D, De Vita P. A novel methodology for Groundwater Flooding Susceptibility assessment through Machine Learning techniques in a mixed-land use aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;790:148067. [PMID: 34111794 DOI: 10.1016/j.scitotenv.2021.148067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
41
Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models. WATER 2021. [DOI: 10.3390/w13162273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
42
Serra J, Cameira MDR, Cordovil CMDS, Hutchings NJ. Development of a groundwater contamination index based on the agricultural hazard and aquifer vulnerability: Application to Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;772:145032. [PMID: 33581543 DOI: 10.1016/j.scitotenv.2021.145032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
43
White K, Dickson-Anderson S, Majury A, McDermott K, Hynds P, Brown RS, Schuster-Wallace C. Exploration of E. coli contamination drivers in private drinking water wells: An application of machine learning to a large, multivariable, geo-spatio-temporal dataset. WATER RESEARCH 2021;197:117089. [PMID: 33836295 DOI: 10.1016/j.watres.2021.117089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
44
In Situ Monitoring of Nitrate Content in Leafy Vegetables Using Attenuated Total Reflectance − Fourier-Transform Mid-infrared Spectroscopy Coupled with Machine Learning Algorithm. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02048-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
45
Stackelberg PE, Belitz K, Brown CJ, Erickson ML, Elliott SM, Kauffman LJ, Ransom KM, Reddy JE. Machine Learning Predictions of pH in the Glacial Aquifer System, Northern USA. GROUND WATER 2021;59:352-368. [PMID: 33314084 PMCID: PMC8246943 DOI: 10.1111/gwat.13063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/05/2023]
46
Lee S, Kaown D, Koh EH, Ko KS, Lee KK. Delineation of groundwater quality locations suitable for target end-use purposes through deep neural network models. JOURNAL OF ENVIRONMENTAL QUALITY 2021;50:416-428. [PMID: 33576503 DOI: 10.1002/jeq2.20206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
47
Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration. SENSORS 2020;20:s20205763. [PMID: 33053663 PMCID: PMC7599737 DOI: 10.3390/s20205763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
48
Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. WATER 2020. [DOI: 10.3390/w12102770] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
49
Optimised neural network model for river-nitrogen prediction utilizing a new training approach. PLoS One 2020;15:e0239509. [PMID: 32986717 PMCID: PMC7521719 DOI: 10.1371/journal.pone.0239509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/08/2020] [Indexed: 01/18/2023]  Open
50
Rostami AA, Karimi V, Khatibi R, Pradhan B. An investigation into seasonal variations of groundwater nitrate by spatial modelling strategies at two levels by kriging and co-kriging models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020;270:110843. [PMID: 32721304 DOI: 10.1016/j.jenvman.2020.110843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/21/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA