1
|
Guo Z, Tang X, Wang W, Luo Z, Zeng Y, Zhou N, Yu Z, Wang D, Song B, Zhou C, Xiong W. The photo-based treatment technology simultaneously removes resistant bacteria and resistant genes from wastewater. J Environ Sci (China) 2025; 148:243-262. [PMID: 39095161 DOI: 10.1016/j.jes.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
Collapse
Affiliation(s)
- Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhangxiong Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Zhao W, Hou Y, Wei L, Wei W, Zhang K, Duan H, Ni BJ. Chlorination-induced spread of antibiotic resistance genes in drinking water systems. WATER RESEARCH 2025; 274:123092. [PMID: 39787839 DOI: 10.1016/j.watres.2025.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process. The results indicated that chlorination could induce genetic mutations and promote horizontal gene transfer through multiple pathways, including increased reactive oxygen species, enhanced membrane permeability, stimulation of the SOS response, and activation of efflux pumps. In addition, this work delves into significant discoveries regarding the factors affecting ARG transmission in drinking water, such as chlorine concentration, reaction time, disinfection byproducts, pipe materials, biofilms, and the water matrix. A series of effective strategies from water source to point-of-use were proposed aimed at mitigating ARGs transmission risks in the drinking water system. Finally, we address existing challenges and outline future research directions to overcome these bottlenecks. Overall, this review aims to advance our understanding of the role of chlorination in the dissemination of ARGs and to inspire innovative research ideas for optimizing disinfection techniques, minimizing the risks of antibiotic resistance transmission, and enhancing the safety of drinking water.
Collapse
Affiliation(s)
- Weixin Zhao
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanan Hou
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
4
|
Imran M, Abdullah AZ, Khan ME, Mohammad A. A focused review on photocatalytic potential of graphitic carbon nitride (g-C 3N 4) based metal oxide-nanostructures for effective remediation of most overused antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123759. [PMID: 39708681 DOI: 10.1016/j.jenvman.2024.123759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Researchers in the field of photocatalysis are interested in finding a solution to the problem of charge transfer and recombination in photodegradation mechanisms. The ideal photoactive catalyst would be inexpensive, environmentally friendly, easily manufactured, and highly efficient. Graphitic carbon nitride (g-C3N4) and metal oxide (MOx) based nanocomposites (g-CN/MOx) are among the photocatalysts that provide the best results in terms of charge transfer capacity, redox capabilities, and charge recombination inhibition. This article provides a comprehensive overview of the latest research on antibiotic removal from wastewater using photocatalysts based on g-C3N4 and metal oxides nanocomposites. Amoxicillin (AMX), Azithromycin (AZM), Cefixime (CFM), Ciprofloxacin (CIP), and Tetracycline (TC) are some of the common antibiotics that are the focus of this review article's examination of the photocatalytic behavior of various g-C3N4/metal oxide-based photocatalysts. A research gap demonstrates that many studies are required to use these nanocomposites for photodegradation of antibiotics. By providing a better grasp of the photocatalysis process, this review encourages scientists and researchers to develop an accurate and appropriate photocatalyst to reduce environmental risks. The main findings of this review article suggest that the cost-effective g-C3N4/MOx-based nanocomposites exhibit excellent photodegradation properties, high charge transfer, broadening light response, and charge separation. They promote enhanced charge transportation, superior electron conductivity, high redox capability, and suppressing charge recombination rate. The photodegradation mechanism involves various reactive oxygen species (ROSs), including superoxide radicals, hydroxyl radicals, and holes which promotes the photocatalysis process. The exact transportation mechanism of electrons and holes is unclear, but a rapid charge-carrier transit can significantly increase and speed up the photooxidation process.
Collapse
Affiliation(s)
- Mohd Imran
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia.
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia.
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| |
Collapse
|
5
|
Meng Q, Zhang Y, He D, Xia Y, Fu J, Dang C. Metagenomic perspectives on antibiotic resistance genes in tap water: The environmental characteristic, potential mobility and health threat. J Environ Sci (China) 2025; 147:582-596. [PMID: 39003073 DOI: 10.1016/j.jes.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 07/15/2024]
Abstract
As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.
Collapse
Affiliation(s)
- Qiyue Meng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Federigi I, Bonetta S, Tesauro M, De Giglio O, Oliveri Conti G, Atomsa NT, Bagordo F, Bonetta S, Consonni M, Diella G, Ferrante M, Grasso A, Macrì M, Montagna MT, Verani M, Carducci A. A systematic scoping review of antibiotic-resistance in drinking tap water. ENVIRONMENTAL RESEARCH 2024; 263:120075. [PMID: 39341535 DOI: 10.1016/j.envres.2024.120075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.
Collapse
Affiliation(s)
- Ileana Federigi
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy; Coordinated Research Center "EpiSoMI", University of Milan, Via Carlo Pascal 36, 20133, Milan, Italy.
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Nebiyu Tariku Atomsa
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Francesco Bagordo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy, Italy.
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy.
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratories (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Section of Hygiene, University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Marco Verani
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno 35/39, 56127, Pisa, Italy.
| |
Collapse
|
7
|
Licznar-Fajardo P, Guillerez L, Zorgniotti I, Masnou A, Mimbielle M, Batiot-Guilhe C, Jumas-Bilak E. Can a regulatory control network be used for a territorial monitoring of antimicrobial resistance in water intended for human consumption? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176828. [PMID: 39396793 DOI: 10.1016/j.scitotenv.2024.176828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial resistance genes and resistant bacteria could be found in water intended for human consumption (WIHC). In France, although the microbiological quality of WIHC is strictly monitored, antimicrobial resistance is not. The aim of this study is to test the concept of the use of the regulatory surveillance of WIHC to monitor antimicrobial resistance in a French area. Based on 2211 Petri dishes seeded for regulatory enumeration of Escherichia coli, that corresponds to sanitary surveillance of 2 French departments from January to April 2021, we characterized phenotypic and genotypic resistance of isolated E. coli strains. blaTEM, blaSHV, blaCTX-M that are the most frequent beta-lactamases-encoding genes in human infections were also researched on cultivable Gram negative-community.
Collapse
Affiliation(s)
| | | | | | - Agnès Masnou
- HSM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Marion Mimbielle
- BIOFAQ Laboratoires SAS, CARSO Laboratoire santé, Vénissieux, France
| | | | | |
Collapse
|
8
|
Desye B, Woldetsadik Mawugatie T, Asmare L, Tsega Y, Melak D, Endawkie A, Daba C. Antimicrobial resistance profile of Escherichia coli in drinking water from one health perspective in low and middle income countries. Front Public Health 2024; 12:1440908. [PMID: 39697296 PMCID: PMC11653505 DOI: 10.3389/fpubh.2024.1440908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Antimicrobial resistance is a major global public health concern, especially in low-resource settings. In low- and middle-income countries, the existing evidence about antimicrobial resistance in drinking water is inconsistence and not comprehensive. Therefore, this study aimed to estimate the pooled prevalence of antimicrobial resistance profiles of Escherichia coli from drinking water in low- and middle-income countries. Methods This study was conducted using comprehensive literature searches using various databases such as PubMed, Scientific Direct, HINARI, and Google Scholar. Data extraction was performed using Microsoft Excel and exported to STATA 14/SE software for analysis. We used the Joanna Briggs Institute's quality appraisal tool to ensure the quality of the included studies. A random effects model was employed to estimate the pooled prevalence. Publication bias was evaluated using funnel plots and Egger's regression test. Subgroup and sensitivity analysis were also conducted in this study. Results The study found that the pooled prevalence of Escherichia coli isolates in drinking water was 37.94% (95% CI: 26.73-49.13). The prevalence of multidrug resistance was 43.65% (95% CI: 31.15-56.15). Regarding specific antimicrobials, the pooled resistance levels of Escherichia coli were 54.65% (95% CI: 41.35-67.96) against contrimoxazole, followed by 48.64% (95% CI: -3.6-101) against amoxicillin and 48% (95% CI: -18.1-114.2) against cefuroxime. Conclusion The findings indicated a significant prevalence of antimicrobial resistance of Escherichia coli isolated from drinking water and its multidrug resistance. To address this issue, it recommends focusing on improving basic hygiene and sanitation practices and enhancing water and wastewater treatment systems. Systematic review registration Identifier CRD42024533592.
Collapse
Affiliation(s)
- Belay Desye
- Department of Environmental Health College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | | | - Lakew Asmare
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yawkal Tsega
- Department of Health System and Management, School of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Dagnachew Melak
- National Center for Epidemiology and Population Health, The Australia National University, Dessie, Ethiopia
| | - Abel Endawkie
- National Center for Epidemiology and Population Health, The Australia National University, Dessie, Ethiopia
| | - Chala Daba
- Department of Environmental Health College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
- National Center for Epidemiology and Population Health, The Australia National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Wei L, Qi C, Wang T, Jin X, Zhou X, Luo M, Lu M, Chen H, Guo J, Wang H, Xu D. Prenatal amoxicillin exposure induces depressive-like behavior in offspring via gut microbiota and myristic acid-mediated modulation of the STING pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136750. [PMID: 39672059 DOI: 10.1016/j.jhazmat.2024.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Amoxicillin is a widely used antibiotic globally, and its pervasive environmental presence poses significant risks to human health and ecosystems. Notably, prenatal amoxicillin exposure (PAmE) may have long-term neurodevelopmental toxicity for offspring. In this study, we investigated the lasting effects of PAmE on depressive-like behaviors in offspring rats, emphasizing the biological mechanisms mediated by changes in gut microbiota and its metabolite, myristic acid. Our results showed that PAmE significantly disrupted the gut microbiota composition in offspring, particularly through the reduction of Lachnospiraceae, leading to decreased levels of myristic acid. This disruption hindered the N-myristoylation of ADP-ribosylation factor 1 (ARF1), impaired the normal degradation of the stimulator of interferon genes protein, inhibited autophagic processes, and promoted M1 polarization of microglia, ultimately leading to depressive-like behaviors in the offspring. Remarkably, supplementation with Lachnospira or myristic acid effectively reversed the PAmE-induced neurodevelopmental and behavioral abnormalities, alleviating depressive-like symptoms. This study reveals how PAmE affects offspring neurodevelopment and behavior through gut microbiota and myristic acid, highlighting the crucial role of the gut-brain axis in the modulation of depressive symptoms. Supplementing Lachnospira or myristic acid could represent a novel strategy to mitigate PAmE-induced fetal-originated depression, providing new biological evidence and potential therapeutic avenues.
Collapse
Affiliation(s)
- Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Cuiping Qi
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiuping Jin
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Huijun Chen
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Juanjuan Guo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
10
|
Lang H, Marschang RE, Bismarck D, Heusinger A, Müller E, Felten M. Antibiotic susceptibility situation of environmental Legionella pneumophila isolates in Southern Germany. JOURNAL OF WATER AND HEALTH 2024; 22:2414-2422. [PMID: 39733365 DOI: 10.2166/wh.2024.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/16/2024] [Indexed: 12/31/2024]
Abstract
Antimicrobial resistance is an emerging problem in hospitals and long-term healthcare facilities. Early detection of susceptibility pattern changes in pathogenic bacteria can prevent treatment failures. Therefore, this study chose to investigate the antibiotic susceptibility situation of Legionella pneumophila isolates from hospitals and long-term healthcare facilities in Southern Germany. Serogroups and minimal inhibitory concentrations (MICs) of nine antibiotics were determined from 41 L. pneumophila strains. In total, 28% of the collected strains belonged to the more pathogenic serogroup 1, whereas 72% belonged to serogroups 2-14. Among the tested antibiotics, rifampicin had the lowest MIC90 value. The MIC90 values can be summarized in the following order: rifampicin < levofloxacin < moxifloxacin < ciprofloxacin < clarithromycin < azithromycin < erythromycin < doxycycline < tigecycline.
Collapse
Affiliation(s)
- Hannah Lang
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany E-mail:
| | | | - Doris Bismarck
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - Anton Heusinger
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - Elisabeth Müller
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - Martin Felten
- Laboklin GmbH & Co KG, Steubenstraße 4, 97688 Bad Kissingen, Germany
| |
Collapse
|
11
|
Sun Z, Hong W, Xue C, Dong N. A comprehensive review of antibiotic resistance gene contamination in agriculture: Challenges and AI-driven solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175971. [PMID: 39236811 DOI: 10.1016/j.scitotenv.2024.175971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Since their discovery, the prolonged and widespread use of antibiotics in veterinary and agricultural production has led to numerous problems, particularly the emergence and spread of antibiotic-resistant bacteria (ARB). In addition, other anthropogenic factors accelerate the horizontal transfer of antibiotic resistance genes (ARGs) and amplify their impact. In agricultural environments, animals, manure, and wastewater are the vectors of ARGs that facilitate their spread to the environment and humans via animal products, water, and other environmental pathways. Therefore, this review comprehensively analyzed the current status, removal methods, and future directions of ARGs on farms. This article 1) investigates the origins of ARGs on farms, the pathways and mechanisms of their spread to surrounding environments, and various strategies to mitigate their spread; 2) determines the multiple factors influencing the abundance of ARGs on farms, the pathways through which ARGs spread from farms to the environment, and the effects and mechanisms of non-antibiotic factors on the spread of ARGs; 3) explores methods for controlling ARGs in farm wastes; and 4) provides a comprehensive summary and integration of research across various fields, proposing that in modern smart farms, emerging technologies can be integrated through artificial intelligence to control or even eliminate ARGs. Moreover, challenges and future research directions for controlling ARGs on farms are suggested.
Collapse
Affiliation(s)
- Zhendong Sun
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
12
|
Ghourichay SA, Agbolaghi S, Corpino R, Ricci PC. Carbon Nanotube-Phenyl Modified g-C 3N 4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B. Molecules 2024; 29:5439. [PMID: 39598827 PMCID: PMC11597868 DOI: 10.3390/molecules29225439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, we report the synthesis and characterization of a novel photocatalyst composite composed of functionalized carbon nanotubes (f-CNT) and phenyl-modified graphitic carbon nitride (PhCN). The incorporation of the phenyl group extends the absorption range into the visible spectrum compared to pure g-C3N4. Additionally, the formation of the heterostructure in the f-CNT/PhCN composite exhibits improved charge transfer efficiency, facilitating the separation and transfer of photogenerated electron-hole pairs and reducing recombination rates. The photocatalytic performance of this composite was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The f-CNT/PhCN composite exhibits remarkable efficiency in degrading RhB, achieving 60% degradation after 4 h, and 100% after 24 h under low-power white LED excitation. This represents a substantial improvement over the non-functionalized CNT/PhCN composite, which shows much lower performance. In contrast, pure PhCN demonstrates very little activity. Structural and optical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and UV-Vis spectroscopy. Time-resolved photoluminescence measurements were used to study the behavior of photoexcited carriers, confirming that the composite improves charge transfer efficiency for photogenerated carriers by approximately 30%. The results indicate that the functionalization of CNTs significantly enhances the photocatalytic properties of the composite, making f-CNT/PhCN a promising candidate for environmental remediation applications, particularly in the degradation of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Sahar Aghapour Ghourichay
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; (S.A.G.); (R.C.)
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran;
| | - Riccardo Corpino
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; (S.A.G.); (R.C.)
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; (S.A.G.); (R.C.)
| |
Collapse
|
13
|
Chen T, Wang Z, Ruan X. Antibiotic resistome dynamics in agricultural river systems: Elucidating transmission mechanisms and associated risk to water security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175580. [PMID: 39153612 DOI: 10.1016/j.scitotenv.2024.175580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Usage of antibiotics in agriculture has increased dramatically recently, significantly raising the influx of antibiotic resistance genes (ARGs) into river systems through organic manure runoff, seriously threatening water security. However, the dynamics, transmission mechanisms, and potential water security risk of ARGs, as well as their response to land use spatial scale and seasonal variations in agricultural river systems remain unclear. To address these challenges, this work employed metagenomic technique to systematically evaluate the pollution and dissemination of ARGs in overlying water and sediment within a typical agricultural catchment in China. The results demonstrated significant differences between overlying water and sediment ARGs. Overlying water dominated by multidrug ARGs exhibited higher diversity, whereas sediment predominantly containing sulfonamide ARGs had higher abundance. The dynamics of ARGs in overlying water were more responsive to seasonal variations compared to sediment due to greater changes in hydrodynamics and nutrient conditions. The profiles of ARGs in overlying water were largely regulated by microbiota, whereas mobile genetic elements (MGEs) were the main forces driving the dissemination of ARGs in sediment. The variation in dissemination mechanisms led to different resistance risks, with sediment presenting a higher resistance risk than overlying water. Furthermore, Mantel test was applied to discover the impact of land use spatial scale and composition on the transmission of ARGs in river systems. The findings showed that cultivated land within 5 km of the riverbank was the key influencing factor. Cultivated land exacerbated ARGs spread by increasing MGEs abundance and nutrient concentrations, resulting in the abundance of ARGs in high-cultivated sites being twice that in low-cultivated sites, and raising the regional water security risk, with a more pronounced effect in sediment. These findings contribute to a better understanding of ARGs dissemination in agricultural watersheds, providing a basis for implementing effective resistance control measures and ensuring water security.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, Nanjing 210023, China; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Ziwei Wang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, Nanjing 210023, China; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, Nanjing 210023, China; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Zhang Y, Zuo S, Zheng Q, Yu G, Wang Y. Removal of antibiotic resistant bacteria and antibiotic resistance genes by an electrochemically driven UV/chlorine process for decentralized water treatment. WATER RESEARCH 2024; 265:122298. [PMID: 39173362 DOI: 10.1016/j.watres.2024.122298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The UV/chlorine (UV/Cl2) process is a developing advanced oxidation process and can efficiently remove antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, the transportation and storage of chlorine solutions limit the application of the UV/Cl2 process, especially for decentralized water treatment. To overcome the limitation, an electrochemically driven UV/Cl2 process (E-UV/Cl2) where Cl2 can be electrochemically produced in situ from anodic oxidation of chloride (Cl-) ubiquitously present in various water matrices was evaluated in this study. >5-log inactivation of the ARB (E. coli) was achieved within 5 s of the E-UV/Cl2 process, and no photoreactivation of the ARB was observed after the treatment. In addition to the ARB, intracellular and extracellular ARGs (tetA, sul1, sul2, and ermB) could be effectively degraded (e.g., log(C0/C) > 4 for i-ARGs) within 5 min of the E-UV/Cl2 process. Atomic force microscopy showed that the most of the i-ARGs were interrupted into short fragments (< 30 nm) during the E-UV/Cl2 process, which can thus effectively prevent the self-repair of i-ARGs and the horizontal gene transfer. Modelling results showed that the abatement efficiencies of i-ARG correlated positively with the exposures of •OH, Cl2-•, and ClO• during the E-UV/Cl2 process. Due to the short treatment time (5 min) required for ARB and ARG removal, insignificant concentrations of trihalomethanes (THMs) were generated during of the E-UV/Cl2 process, and the energy consumption (EEO) of ARG removal was ∼0.20‒0.27 kWh/m3-log, which is generally comparable to that of the UV/Cl2 process (0.18-0.23 kWh/m3-log). These results demonstrate that the E-UV/Cl2 process can provide a feasible and attractive alternative to the UV/Cl2 process for ARB and ARG removal in decentralized water treatment system.
Collapse
Affiliation(s)
- Yinqiao Zhang
- State of Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing 211198, China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Sijin Zuo
- State of Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Quan Zheng
- China State Construction Hailong Technology Company Ltd., Shenzhen 518045, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Zhang J, Khu ST, Zhang Y. Which organic contaminants should be paid more attention: Based on an improved health risk assessment framework. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122323. [PMID: 39244922 DOI: 10.1016/j.jenvman.2024.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The increasing chemical pollution of the drinking water is widely concerned. Large number of organic contaminants cannot be removed by conventional water treatment technology due to their low concentration, and long-term exposure may pose significant risks to human health. Which organic contaminants in drinking water should be given more attention has been a topic of great concern in recent years. To identify the organic contaminants that need attention, this research proposes an improved health risk screening method to quantitatively analyze the risks of accumulation, persistence, toxicity, and antibiotic resistance. Compared with conventional method, 26 compounds were added to the improved screening list, including 9 DBPs (e.g., NDMA), 3 antibiotics (e.g., oxytetracycline), PFNA and other compounds. Overall, antibiotics and plasticizers rose in the risk rankings. From the perspective of the proportion of total risk value, a single risk plays a decisive role (more than 99%) in the ranking. This change suggests that antibiotic resistance and the accumulation of organic matter are as important as their toxic risks to humans. 58 compounds were recommended for the priority control organic contaminants list in drinking water. This list provides the necessary information for authoritative regulations to monitor, control, assess, and manage the risks of environmentally relevant compounds in drinking water in China.
Collapse
Affiliation(s)
- Jianing Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
16
|
Xie XJ, Zhang T, Yang J, Wang WF, Zhao ZQ, Barceló D, Zheng HB. Study on the biodegradation characteristics and mechanism of tetracycline by Serratia entomophila TC-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174414. [PMID: 38960187 DOI: 10.1016/j.scitotenv.2024.174414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Microbial degradation is an important solution for antibiotic pollution in livestock and poultry farming wastes. This study reports the isolation and identification of the novel bacterial strain Serratia entomophila TC-1, which can degrade 87.8 % of 200 mg/L tetracycline (TC) at 35 °C, pH 6.0, and an inoculation amount of 1 % (v/v). Based on the intermediate products, a possible biological transformation pathway was proposed, including dehydration, oxidation ring opening, decarbonylation, and deamination. Using Escherichia coli and Bacillus subtilis as biological indicators, TC degraded metabolites have shown low toxicity. Whole-genome sequencing showed that the TC-1 strain contained tet (d) and tet (34), which resist TC through multiple mechanisms. In addition, upon TC exposure, TC-1 participated in catalytic and energy supply activities by regulating gene expression, thereby playing a role in TC detoxification. We found that TC-1 showed less interference with changes in the bacterial community in swine wastewater. Thus, TC-1 provided new insights into the mechanisms responsible for TC biodegradation and can be used for TC pollution treatment.
Collapse
Affiliation(s)
- Xiao-Jie Xie
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Fan Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuo-Qun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120 Almería, Spain
| | - Hua-Bao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
17
|
Wang H, Tao X, Yin H, Xing X, Shi B. The perfluorooctanoic acid accumulation and release from pipelines promoted growth of bacterial communities and opportunistic pathogens with different antibiotic resistance genes in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135600. [PMID: 39180999 DOI: 10.1016/j.jhazmat.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 μg/L to 0.70 ± 0.01 μg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangkai Tao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueci Xing
- Key Laboratory for Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Beshiru A, Isokpehi NA, Igbinosa IH, Akinnibosun O, Ogofure AG, Igbinosa EO. Extended-spectrum beta-lactamase (ESBL)- and non-ESBL producing Escherichia coli surveillance in surface water sources in Edo State, Nigeria: a public health concern. Sci Rep 2024; 14:21658. [PMID: 39294326 PMCID: PMC11410956 DOI: 10.1038/s41598-024-72993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
This research explores the antimicrobial resistance (AMR) profiles and prevalence of extended-spectrum beta-lactamase (ESBL) and non-ESBL-producing Escherichia coli in Ojerame Dam and Ovokoto Spring, Edo State, Nigeria. Over 12 months, water was systematically sampled to accommodate seasonal variations and analyzed by employing an ESBL-selective medium for bacterial species. Additionally, bacterial isolates underwent identification and characterization using polymerase chain reaction (PCR) and disk diffusion methods to evaluate their susceptibility to antimicrobials. Results indicated significant prevalence of ESBL-producing E. coli, which exhibited complete resistance to common antimicrobials like ceftriaxone, ceftazidime, cefotaxime, and ampicillin while demonstrating 100% sensitivity to ertapenem, imipenem, meropenem, and nitrofurantoin. Non-ESBL-producing E. coli were resistant to ampicillin but sensitive to other antimicrobials mentioned earlier. Furthermore, both ESBL and non-ESBL-producing E. coli displayed multidrug resistance to varying degrees. Specific ESBL genes, including blaTEM, blaCTX-M-1, and blaCTX-M-15, were identified, alongside resistance genes like tetA, tetM, sul1, sul2, sul3, qnrA, qnrB, and qnrS in E. coli. This study pioneers the documentation of ESBL-producing E. coli in surface water in the region. This signals impending health risks associated with water being a reservoir of resistant genes while emphasizing the urgency for further research and public awareness concerning the quality of surface water.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria.
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, PMB 10, Oghara, 300104, Nigeria.
| | - Nnenna A Isokpehi
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Isoken H Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Olajide Akinnibosun
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
- Department of Microbiology, Faculty of Science, Federal University of Health Sciences, Private Mail Bag 145, Otukpo, 927101, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria
| | - Etinosa O Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, 300283, Nigeria.
| |
Collapse
|
19
|
Jiang P, Sun S, Goh SG, Tong X, Chen Y, Yu K, He Y, Gin KYH. A rapid approach with machine learning for quantifying the relative burden of antimicrobial resistance in natural aquatic environments. WATER RESEARCH 2024; 262:122079. [PMID: 39047454 DOI: 10.1016/j.watres.2024.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
The massive use and discharge of antibiotics have led to increasing concerns about antimicrobial resistance (AMR) in natural aquatic environments. Since the dose-response mechanisms of pathogens with AMR have not yet been fully understood, and the antibiotic resistance genes and bacteria-related data collection via field sampling and laboratory testing is time-consuming and expensive, designing a rapid approach to quantify the burden of AMR in the natural aquatic environment has become a challenge. To cope with such a challenge, a new approach involving an integrated machine-learning framework was developed by investigating the associations between the relative burden of AMR and easily accessible variables (i.e., relevant environmental variables and adjacent land-use patterns). The results, based on a real-world case analysis, demonstrate that the quantification speed has been reduced from 3-7 days, which is typical for traditional measurement procedures with field sampling and laboratory testing, to approximately 0.5 hours using the new approach. Moreover, all five metrics for AMR relative burden quantification exceed the threshold level of 85%, with F1-score surpassing 0.92. Compared to logistic regression, decision trees, and basic random forest, the adaptive random forest model within the framework significantly improves quantification accuracy without sacrificing model interpretability. Two environmental variables, dissolved oxygen and resistivity, along with the proportion of green areas were identified as three key feature variables for the rapid quantification. This study contributes to the enrichment of burden analyses and management practices for rapid quantification of the relative burden of AMR without dose-response information.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Industrial Engineering and Management, Business School, Sichuan University, Chengdu 610064, China; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Shuyi Sun
- Department of Industrial Engineering and Management, Business School, Sichuan University, Chengdu 610064, China; Department of Industrial Systems Engineering & Management, National University of Singapore, Singapore 119260, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Xuneng Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
20
|
Abebe TA, Gebreyes DS, Abebe BA, Yitayew B. Antibiotic-resistant bacteria and resistance-genes in drinking water source in north Shoa zone, Amhara region, Ethiopia. Front Public Health 2024; 12:1422137. [PMID: 39310913 PMCID: PMC11412880 DOI: 10.3389/fpubh.2024.1422137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Background The growing number of antimicrobial-resistant bacteria in a range of environments poses a serious challenge to infectious disease prevention. Good water quality is critical to human health and has a direct impact on a country's socio-economic growth. Therefore, assessing the bacteriological quality of drinking water provides benchmark data and provides insight into the development of further protection and treatment measures. Methods A cross-sectional study was conducted from February 1, 2022, to September 31, 2023, in the diarrhea hotspot areas of North Shewa Zone (Minjar-Shenkora and Mojana-Wedera districts). Water samples were collected from drinking water sources (hand-pumps, boreholes, wells, spring water and ponds) to assess the quality following WHO guidelines. The collected water samples were processed for bacterial isolation, antimicrobial susceptibility testing, and detection of antimicrobial resistance genes. Data were entered and analyzed using the Statistical Package for the Social Sciences (SPSS) version 25. Results A total of (49/138, 35.5%) bacteria were isolated from 138 drinking water samples, with a positive rate of (41/138, 29.7%). Among the isolates, (16/138, 11.6%) were Staphylococcus aureus while (33/138, 23.9%) were members of Enterobacteriaceae. Relatively high resistance rate among all isolates were observed for the most prescribed antibiotics in Ethiopia, including erythromycin, cotrimoxazole, doxycycline, ceftriaxone, gentamicin, and chloramphenicol. However, a low resistance was observed for early introduced antibiotics such as ciprofloxacin and recently introduced antibiotics such as cefotaxime, ceftazidime, imipenem, and meropenem. Among the 49 bacteria isolates, (32/49, 65.3%) were multidrug-resistant (MDR) pathogens while (12/49, 24.5%) were ESβL producers. Different ESβL genes were detected in most bacterial isolates. The predominant ESβL genes were blaCTX-M-gp8/25 (6/33, 18.2%), blaCTX-M-gp9 (5/33, 15.2%), and blaCTX-M-gp1 (5/33, 15.2%). Conclusion The result of this study suggests that most water sources in the study area were contaminated by various bacterial species that are resistant to different antibiotics. Various ESβL resistance genes have also been detected. Therefore, regular sanitary inspection and bacteriological analysis should be mandatory to protect drinking water sources from contamination and the persistence of resistant bacteria.
Collapse
Affiliation(s)
- Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, College of Health Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, College of Health Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Bizuneh Asfaw Abebe
- School of Civil Engineering, Ethiopian Institute of Technology-Mekelle, Mekelle University, Mekelle, Ethiopia
| | - Berhanu Yitayew
- Department of Medical Laboratory Science, College of Health Science, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
21
|
Rilievo G, Cencini A, Cecconello A, Currò S, Bortoletti M, Leszczyńska K, Górska S, Fasolato L, Tonolo F, de Almeida Roger J, Vianello F, Magro M. Interactions between prokaryotic polysaccharides and colloidal magnetic nanoparticles for bacteria removal: A strategy for circumventing antibiotic resistance. Int J Biol Macromol 2024; 274:133415. [PMID: 38925181 DOI: 10.1016/j.ijbiomac.2024.133415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Highly stable, colloidal iron oxide nanoparticles with an oxyhydroxide-like surface were used as bacteria-capturing nano-baits. Peptidoglycan isolated from Listeria spp was used as bacteria polysaccharide model, and the nanoparticle binding was characterized showing a Langmuir isotherm constant, KL, equal to 50 ± 3 mL mg-1. The chemical affinity was further supported by dynamic light scattering, transmission electron microscopy, and infrared and UV-Vis data, pointing at the occurrence of extended, coordinative multiple point bindings. The interaction with Gram (+) (Listeria spp) and Gram (-) (Aeromonas veronii) bacteria was shown to be effective and devoid of any toxic effect. Moreover, a real sample, containing a population of several oligotrophic bacteria strains, was incubated with 1 g L-1 of nanoparticle suspension, in the absence of agitation, showing a 100 % capture efficiency, according to plate count. A nanoparticle regeneration method was developed, despite the known irreversibility of such bacterial-nanosurface binding, restoring the bacteria capture capability. This nanomaterial represents a competitive option to eliminate microbiological contamination in water as an alternative strategy to antibiotics, aimed at reducing microbial resistance dissemination. Finally, beyond their excellent features in terms of colloidal stability, binding performances, and biocompatibility this nanoparticle synthesis is cost effective, scalable, and environmentally sustainable.
Collapse
Affiliation(s)
- Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy.
| | - Sarah Currò
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Katarzyna Leszczyńska
- Microbiome Immunobiology Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Poland
| | - Sabina Górska
- Microbiome Immunobiology Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Poland
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | | | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy.
| |
Collapse
|
22
|
Zhang S, Yao Z, Wang S, Zhang Y, Liu T, Zuo X. Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173210. [PMID: 38750753 DOI: 10.1016/j.scitotenv.2024.173210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H2O2, O2-, and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and blaTEM) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zheng Yao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shu Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaojun Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
23
|
Singh A, Pratap SG, Raj A. Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47505-47529. [PMID: 39028459 DOI: 10.1007/s11356-024-34355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.
Collapse
Affiliation(s)
- Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Shalini G Pratap
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
24
|
Jiang S, Xu W, Xia Q, Yi M, Zhou Y, Shang J, Cheng X. Application of machine learning in the study of cobalt-based oxide catalysts for antibiotic degradation: An innovative reverse synthesis strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134309. [PMID: 38653133 DOI: 10.1016/j.jhazmat.2024.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
This study addresses antibiotic pollution in global water bodies by integrating machine learning and optimization algorithms to develop a novel reverse synthesis strategy for inorganic catalysts. We meticulously analyzed data from 96 studies, ensuring quality through preprocessing steps. Employing the AdaBoost model, we achieved 90.57% accuracy in classification and an R²value of 0.93 in regression, showcasing strong predictive power. A key innovation is the Sparrow Search Algorithm (SSA), which optimizes catalyst selection and experimental setup tailored to specific antibiotics. Empirical experiments validated SSA's efficacy, with degradation rates of 94% for Levofloxacin and 97% for Norfloxacin, aligning closely with predictions within a 2% margin of error. This research advances theoretical understanding and offers practical applications in material science and environmental engineering, significantly enhancing catalyst design efficiency and accuracy through the fusion of advanced machine learning techniques and optimization algorithms.
Collapse
Affiliation(s)
- Siyuan Jiang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wen Xu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Qi Xia
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ming Yi
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jiangwei Shang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
25
|
Cheng ZH, Luo XY, Liu DF, Han J, Wang HD, Min D, Yu HQ. Optimized Antibiotic Resistance Genes Monitoring Scenarios Promote Sustainability of Urban Water Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9636-9645. [PMID: 38770702 DOI: 10.1021/acs.est.4c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xi-Yan Luo
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jing Han
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao-Da Wang
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Di Min
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Wang S, Nie W, Gu Q, Wang X, Yang D, Li H, Wang P, Liao W, Huang J, Yuan Q, Zhou S, Ahmad I, Kotaro K, Chen G, Zhu B. Spread of antibiotic resistance genes in drinking water reservoirs: Insights from a deep metagenomic study using a curated database. WATER RESEARCH 2024; 256:121572. [PMID: 38621316 DOI: 10.1016/j.watres.2024.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
The exploration of antibiotic resistance genes (ARGs) in drinking water reservoirs is an emerging field. Using a curated database, we enhanced the ARG detection and conducted a comprehensive analysis using 2.2 Tb of deep metagenomic sequencing data to determine the distribution of ARGs across 16 drinking water reservoirs and associated environments. Our findings reveal a greater diversity of ARGs in sediments than in water, underscoring the importance of extensive background surveys. Crucial ARG carriers-specifically Acinetobacter, Pseudomonas, and Mycobacterium were identified in drinking water reservoirs. Extensive analysis of the data uncovered a considerable concern for drinking water safety, particularly in regions reliant on river sources. Mobile genetic elements have been found to contribute markedly to the propagation of ARGs. The results of this research suggest that the establishment of drinking water reservoirs for supplying raw water may be an effective strategy for alleviating the spread of water-mediated ARGs.
Collapse
Affiliation(s)
- Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Qing Gu
- Zhejiang Province Ecological and Environmental Monitoring Centre, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou, 310012, China
| | - Xie Wang
- Southwest China Mountain Agricultural Environment Key Laboratory, Ministry of Agriculture and Rural Areas, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Shizishan Rd, Chengdu, 610066, China
| | - Danping Yang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources), Chongqing, 401120. China
| | - Hongyu Li
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Huang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Quan Yuan
- School of Energy and Power Engineering, Xihua University, Chengdu, 610039, China
| | - Shengli Zhou
- Zhejiang Province Ecological and Environmental Monitoring Centre, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou, 310012, China
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Kiga Kotaro
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Jeya Sri Lakshmi S, Joel C, Biju Bennie R, Nirmal Paul Raj A, Kumar YA, Khan MS. Synergistic adsorption and photocatalytic degradation of tetracycline using a Z-scheme kaolin/g-C 3N 4/MoO 3 nanocomposite: A sustainable approach for water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121086. [PMID: 38733841 DOI: 10.1016/j.jenvman.2024.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
This research focuses on the synthesis and application of a novel kaolin-supported g-C3N4/MoO3 nanocomposite for the degradation of tetracycline, an important antibiotic contaminant in water systems. The nanocomposite was prepared through a facile and environmentally friendly approach, leveraging the adsorption and photocatalytic properties of kaolin, g-C3N4 and MoO3 nanoparticles, respectively. Comprehensive characterization of the nanocomposite was conducted using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and optical spectra. The surface parameters were studied using N2 adsorption-desorption isotherm. The elemental composition was studied using X-ray photoelectron spectroscopy. The efficiency of the developed nanocomposite in tetracycline degradation was evaluated and the results revealed an efficient tetracycline degradation exhibiting the synergistic effects of adsorption and photocatalytic degradation in the removal process. The tetracycline degradation was achieved in 60 min. Kinetic studies and thermodynamic analyses provided insights into the degradation mechanism, suggesting potential applications for the nanocomposite in wastewater treatment. Additionally, the recyclability and stability of the nanocomposite were investigated, demonstrating its potential for sustainable and long-term application in water treatment.
Collapse
Affiliation(s)
- S Jeya Sri Lakshmi
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India; Department of Science and Humanities, SCAD College of Engineering and Technology, Cheranmahadevi, Tirunelveli, 627414, Tamil Nadu, India
| | - C Joel
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India.
| | - R Biju Bennie
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India
| | - A Nirmal Paul Raj
- Department of Chemistry, St. John's College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli, 627002, Tamil Nadu, India
| | - Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Sadare OO, Oke D, Olawuni OA, Olayiwola IA, Moothi K. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. Heliyon 2024; 10:e29864. [PMID: 38698993 PMCID: PMC11064141 DOI: 10.1016/j.heliyon.2024.e29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As one of the 17 sustainable development goals, the United Nations (UN) has prioritized "clean water and sanitation" (Goal 6) to reduce the discharge of emerging pollutants and disease-causing agents into the environment. Contamination of water by pathogenic microorganisms and their existence in treated water is a global public health concern. Under natural conditions, water is frequently prone to contamination by invasive microorganisms, such as bacteria, viruses, and protozoa. This circumstance has therefore highlighted the critical need for research techniques to prevent, treat, and get rid of pathogens in wastewater. Membrane systems have emerged as one of the effective ways of removing contaminants from water and wastewater However, few research studies have examined the synergistic or conflicting effects of operating conditions on newly developing contaminants found in wastewater. Therefore, the efficient, dependable, and expeditious examination of the pathogens in the intricate wastewater matrix remains a significant obstacle. As far as it can be ascertained, much attention has not recently been given to optimizing membrane processes to develop optimal operation design as related to pathogen removal from water and wastewater. Therefore, this state-of-the-art review aims to discuss the current trends in removing pathogens from wastewater by membrane techniques. In addition, conventional techniques of treating pathogenic-containing water and wastewater and their shortcomings were briefly discussed. Furthermore, derived mathematical models suitable for modelling, simulation, and control of membrane technologies for pathogens removal are highlighted. In conclusion, the challenges facing membrane technologies for removing pathogens were extensively discussed, and future outlooks/perspectives on optimizing and modelling membrane processes are recommended.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| | - Doris Oke
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Oluwagbenga A. Olawuni
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Idris A. Olayiwola
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
| | - Kapil Moothi
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
29
|
Zhang P, Lu G, Sun Y, Yan Z, Zhang L, Liu J. Effect of microplastics on oxytetracycline trophic transfer: Immune, gut microbiota and antibiotic resistance gene responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134147. [PMID: 38565017 DOI: 10.1016/j.jhazmat.2024.134147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
30
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
31
|
Rwigi D, Nyerere AK, Diakhate MM, Kariuki K, Tickell KD, Mutuma T, Tornberg SN, Soge OO, Walson JL, Singa B, Kariuki S, Pavlinac PB, Mogeni P. Phenotypic and molecular characterization of β-lactamase-producing Klebsiella species among children discharged from hospital in Western Kenya. BMC Microbiol 2024; 24:135. [PMID: 38654237 PMCID: PMC11040804 DOI: 10.1186/s12866-024-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The emergence and spread of β-lactamase-producing Klebsiella spp. has been associated with a substantial healthcare burden resulting in therapeutic failures. We sought to describe the proportion of phenotypic resistance to commonly used antibiotics, characterize β-lactamase genes among isolates with antimicrobial resistance (AMR), and assess the correlates of phenotypic AMR in Klebsiella spp. isolated from stool or rectal swab samples collected from children being discharged from hospital. METHODS We conducted a cross-sectional study involving 245 children aged 1-59 months who were being discharged from hospitals in western Kenya between June 2016 and November 2019. Whole stool or rectal swab samples were collected and Klebsiella spp. isolated by standard microbiological culture. β-lactamase genes were detected by PCR whilst phenotypic antimicrobial susceptibility was determined using the disc diffusion technique following standard microbiology protocols. Descriptive analyses were used to characterize phenotypic AMR and carriage of β-lactamase-producing genes. The modified Poisson regression models were used to assess correlates of phenotypic beta-lactam resistance. RESULTS The prevalence of β-lactamase carriage among Klebsiella spp. isolates at hospital discharge was 62.9% (154/245). Antibiotic use during hospitalization (adjusted prevalence ratio [aPR] = 4.51; 95%CI: 1.79-11.4, p < 0.001), longer duration of hospitalization (aPR = 1.42; 95%CI: 1.14-1.77, p < 0.002), and access to treated water (aPR = 1.38; 95%CI: 1.12-1.71, p < 0.003), were significant predictors of phenotypically determined β-lactamase. All the 154 β-lactamase-producing Klebsiella spp. isolates had at least one genetic marker of β-lactam/third-generation cephalosporin resistance. The most prevalent genes were blaCTX-M 142/154 (92.2%,) and blaSHV 142/154 (92.2%,) followed by blaTEM 88/154 (57.1%,) and blaOXA 48/154 (31.2%,) respectively. CONCLUSION Carriage of β-lactamase producing Klebsiella spp. in stool is common among children discharged from hospital in western Kenya and is associated with longer duration of hospitalization, antibiotic use, and access to treated water. The findings emphasize the need for continued monitoring of antimicrobial susceptibility patterns to inform the development and implementation of appropriate treatment guidelines. In addition, we recommend measures beyond antimicrobial stewardship and infection control within hospitals, improved sanitation, and access to safe drinking water to mitigate the spread of β-lactamase-producing Klebsiella pathogens in these and similar settings.
Collapse
Affiliation(s)
- Doreen Rwigi
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
- Center for Microbiology Research (CMR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
| | - Andrew K Nyerere
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mame M Diakhate
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Kevin Kariuki
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Center for Microbiology Research (CMR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Kirkby D Tickell
- Department of Global Health, University of Washington, Seattle, Washington, USA
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
| | - Timothy Mutuma
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Center for Microbiology Research (CMR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | | | - Olusegun O Soge
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Judd L Walson
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | - Benson Singa
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Samuel Kariuki
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
- Center for Microbiology Research (CMR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Patricia B Pavlinac
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Polycarp Mogeni
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
- Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
32
|
Liu F, Luo Y, Xu T, Lin H, Qiu Y, Li B. Current examining methods and mathematical models of horizontal transfer of antibiotic resistance genes in the environment. Front Microbiol 2024; 15:1371388. [PMID: 38638913 PMCID: PMC11025395 DOI: 10.3389/fmicb.2024.1371388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in the environment has garnered significant attention due to their health risk to human beings. Horizontal gene transfer (HGT) is considered as an important way for ARG dissemination. There are four general routes of HGT, including conjugation, transformation, transduction and vesiduction. Selection of appropriate examining methods is crucial for comprehensively understanding characteristics and mechanisms of different HGT ways. Moreover, combined with the results obtained from different experimental methods, mathematical models could be established and serve as a powerful tool for predicting ARG transfer dynamics and frequencies. However, current reviews of HGT for ARG spread mainly focus on its influencing factors and mechanisms, overlooking the important roles of examining methods and models. This review, therefore, delineated four pathways of HGT, summarized the strengths and limitations of current examining methods, and provided a comprehensive summing-up of mathematical models pertaining to three main HGT ways of conjugation, transformation and transduction. Finally, deficiencies in current studies were discussed, and proposed the future perspectives to better understand and assess the risks of ARG dissemination through HGT.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
33
|
Li J, Liao Q, Wang Y, Wang X, Liu J, Zha R, He JZ, Zhang M, Zhang W. Involvement of functional metabolism promotes the enrichment of antibiotic resistome in drinking water: Based on the PICRUSt2 functional prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120544. [PMID: 38471323 DOI: 10.1016/j.jenvman.2024.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and β-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.
Collapse
Affiliation(s)
- Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Qiuyu Liao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Yun Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Ruibo Zha
- School of Cultural Tourism and Public Administration, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| |
Collapse
|
34
|
Zhou Z, Lin Z, Shuai X, Achi C, Chen H. Antibiotic resistance genes alterations in murine guts microbiome are associated with different types of drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133422. [PMID: 38183944 DOI: 10.1016/j.jhazmat.2023.133422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants threatening public health and commonly found in drinking water. However, the effect of different types of drinking water on ARG alterations in the gut microbiome is unclear. This study examines this issue in murine models in three phases (phase I: acclimation using ddH2O; phase II: treatment using different types of water, i.e. river water (RW), tap water (TW) and commercial bottled water (CBW); and phase III: recovery using ddH2O) using high-throughput qPCR and 16S rRNA amplicon sequencing. Results reveal that exposure to different types of drinking water could lead to significant changes in the gut microbiome, mobile genetic elements (MGEs), and ARGs. In phase II, treatment of RW and TW significantly increased the abundance of aminoglycoside and tetracycline resistance genes in mice guts (P < 0.01). In the recovery phase, consuming distilled water was found to restore ARG profiles to a certain extent in mice guts. Procrustes, network, redundancy and variation partitioning analysis indicated that ARG alterations in mice guts might relate to MGEs and bacterial communities. Our work suggests that the type of drinking water consumed may play a crucial role in shaping ARGs in gut microbiomes, emphasizing the urgent need for access to clean drinking water to mitigate the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China.
| |
Collapse
|
35
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
36
|
Zhang J, Li W, Zhang X, Wang X, Lv L. Combined applications of UV and chlorine on antibiotic resistance control: A critical review. ENVIRONMENTAL RESEARCH 2024; 243:117884. [PMID: 38072103 DOI: 10.1016/j.envres.2023.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl2 process, the UV-Cl2 process, and the Cl2-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl2 process and the Cl2-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuhui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
37
|
Pan F, Altenried S, Scheibler S, Ren Q. A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters. NANOSCALE 2024; 16:3011-3023. [PMID: 38230693 DOI: 10.1039/d3nr05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Drinking water contamination, often caused by bacteria, leads to substantial numbers of diarrhea deaths each year, especially in developing regions. Human urine as a source of fertilizer, when handled improperly, can contaminate drinking water. One dominant bacterial pathogen in urine is Escherichia coli, which can trigger serious waterborne/foodborne diseases. Considering the prevalence of the multi-drug resistant extended-spectrum beta-lactamase (ESBL) producing E. coli, a rapid detection method for resistance is highly desired. In this work, we developed a method for quick identification of E. coli and, at the same time, capable of removal of general bacterial pathogens from human urine. A specific peptide GRHIFWRRGGGHKVAPR, reported to have a strong affinity to E. coli, was utilized to modify the PEGylated magnetic nanoclusters, resulting in a specific capture and enrichment of E. coli from the bacteria-spiked artificial urine. Subsequently, a novel luminescent probe was applied to rapidly identify the antimicrobial resistance of the collected E. coli within 30 min. These functionalized magnetic nanoclusters demonstrate a promising prospect to rapidly detect ESBL E. coli in urine and contribute to reducing drinking water contamination.
Collapse
Affiliation(s)
- Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Subas Scheibler
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092 Zürich, Switzerland
- Laboratory for Particles Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
38
|
Jia S, Wang S, Zhuang Y, Gao L, Zhang X, Ye L, Zhang XX, Shi P. Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. WATER RESEARCH 2024; 249:120922. [PMID: 38043346 DOI: 10.1016/j.watres.2023.120922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.
Collapse
Affiliation(s)
- Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
39
|
Musiyiwa K, Simbanegavi TT, Marumure J, Makuvara Z, Chaukura N, Gwenzi W. The soil-microbe-plant resistome: A focus on the source-pathway-receptor continuum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12666-12682. [PMID: 38253827 DOI: 10.1007/s11356-023-31788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
The One World, One Health concept implies that antibiotic resistance (AR) in the soil-microbe-plant resistome is intricately linked to the human resistome. However, the literature is mainly confined to sources and types of AR in soils or microbes, but comprehensive reviews tracking AR in the soil-microbe-plant resistome are limited. The present review applies the source-pathway-receptor concept to understand the sources, behaviour, and health hazards of the soil-microbe-plant resistome. The results showed that the soil-microbe-plant system harbours various antibiotic-resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and mobile genetic elements (MGEs). Anthropogenic sources and drivers include soil application of solid waste, wastewater, biosolids, and industrial waste. Water-, wind-, and human-driven processes and horizontal gene transfer circulate AR in the soil-microbe-plant resistome. The AR in bulk soil, soil components that include soil microorganisms, soil meso- and macro-organisms, and possible mechanisms of AR transfer to soil components and ultimately to plants are discussed. The health risks of the soil-microbe-plant resistome are less studied, but potential impacts include (1) the transfer of AR to previously susceptible organisms and other resistomes, including the human resistome. Overall, the study tracks the behaviour and health risks of AR in the soil-plant system. Future research should focus on (1) ecological risks of AR at different levels of biological organization, (2) partitioning of AR among various phases of the soil-plant system, (3) physico-chemical parameters controlling the fate of AR, and (4) increasing research from low-income regions particularly Africa as most of the available literature is from developed countries.
Collapse
Affiliation(s)
- Kumbirai Musiyiwa
- Department of Crop Science and Post-Harvest Technology, School of Agricultural Science and Technology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mt. Pleasant, P.O. Box MP167, Harare, Zimbabwe
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, P.O. Box 1235, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, P.O. Box 1235, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Universitat Kassel, Steinstraβe 19, 37213, Witzenhausen, Germany.
| |
Collapse
|
40
|
Zhang T, Liao P, Fang L, Zhang D. Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122902. [PMID: 37949160 DOI: 10.1016/j.envpol.2023.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (rs = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.
Collapse
Affiliation(s)
- Tuqiao Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Pubin Liao
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Lei Fang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Dongyang Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Tkalec V, Lindic P, Jursa T, Ivanusa Sket H, Maric L, Cimerman M, Rupnik M, Golle A. Carbapenemase and extended-spectrum beta-lactamase-producing bacteria in waters originating from a single landfill in Slovenia. FEMS Microbiol Lett 2024; 371:fnae070. [PMID: 39227167 DOI: 10.1093/femsle/fnae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024] Open
Abstract
Groundwater, rainwater, and leachate associated with a single landfill were analysed to detect extended-spectrum beta-lactamase (ESBL)-producing and carbapenemase (CP)-producing bacteria. After cultivation on three commercial selective-differential media, 240 bacterial isolates were obtained and identified by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Isolates from clinically relevant species were further genotyped by enterobacterial repetitive intergenic consensus polymerase chain reaction, and tested for antibiotic susceptibility and presence of CPs and ESBL enzymes. Two ESBL-producing isolates and two isolates producing CPs were detected in rainwater, groundwater, and leachate: Klebsiella oxytoca complex with the gene for the ESBL enzyme CTX-M-1 and the gene for the CP OXA-48, Serratia fonticola with the gene for the ESBL enzyme FONA-2, and Pseudomonas aeruginosa with the gene coding Verona integron-encoded Metallo-beta-lactamases (VIM) metallo-beta-lactamase. Our study indicates that bacteria with ESBL and CP genes can be present in landfill-associated waters.
Collapse
Affiliation(s)
- Valerija Tkalec
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Department of microbiology, 2000 Maribor, Slovenia
| | - Polona Lindic
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Tatjana Jursa
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | | | - Leon Maric
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Mojca Cimerman
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Department of microbiology, 2000 Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, 2000 Maribor, Slovenia
| |
Collapse
|
42
|
Saibu S, Uhanie Perera I, Suzuki S, Rodó X, Fujiyoshi S, Maruyama F. Resistomes in freshwater bioaerosols and their impact on drinking and recreational water safety: A perspective. ENVIRONMENT INTERNATIONAL 2024; 183:108377. [PMID: 38103344 DOI: 10.1016/j.envint.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Lagos State University of Ojo, Lagos, Nigeria
| | - Ishara Uhanie Perera
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Japan
| | - Xavier Rodó
- ICREA and CLIMA Program, Barcelona Institute for Global Health (-ISGlobal), Barcelona, Spain
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan.
| |
Collapse
|
43
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
44
|
Martins NCT, Fateixa S, Nogueira HIS, Trindade T. Surface-enhanced Raman scattering detection of thiram and ciprofloxacin using chitosan-silver coated paper substrates. Analyst 2023; 149:244-253. [PMID: 38032357 DOI: 10.1039/d3an01449e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Fast detection of contaminants of emerging concern (CECs) in water resources is of great environmental interest. Ideally, sustainable materials should be used in water quality monitoring technologies implemented for such purposes. In this regard, the application of bio-based materials aimed at the fabrication of analytical platforms has become of great importance. This research merges both endeavors by exploring the application of chitosan-coated paper, decorated with silver nanoparticles (AgNPs), on surface-enhanced Raman scattering (SERS) spectroscopy studies of two distinct types of CECs dissolved in aqueous samples: an antibiotic (ciprofloxacin) and a pesticide (thiram). Our results indicate the superior SERS performance of biocoated substrates compared to their non-coated paper counterparts. The detection limits achieved for thiram and ciprofloxacin using the biocoated substrates were 0.024 ppm and 7.7 ppm, respectively. The efficient detection of both analytes is interpreted in terms of the role of the biopolymer in promoting AgNPs assemblies that result in local regions of enhanced SERS activity. Taking advantage of these observations, we use confocal Raman microscopy to obtain Raman images of the substrates using ciprofloxacin and thiram as molecular probes. We also demonstrate that these biobased substrates can be promising for on-site analysis when used in conjunction with portable Raman instruments.
Collapse
Affiliation(s)
- Natércia C T Martins
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara Fateixa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Helena I S Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
45
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
46
|
Zheng J, Zhang P, Li X, Ge L, Niu J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: Mechanisms and research gaps. CHEMOSPHERE 2023; 343:140211. [PMID: 37739134 DOI: 10.1016/j.chemosphere.2023.140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Due to the incomplete elimination by traditional wastewater treatment, antibiotics are becoming emerging contaminants, which are proved to be ubiquitous and promote bacterial resistance in the aquatic systems. Antibiotic pollution has raised particular concerns, calling for improved methods to clean wastewater and water. Photo-assisted advanced oxidation processes (AOPs) have attracted increasing attention because of the fast reaction rate, high oxidation capacity and low selectivity to remove antibiotics from wastewater. On the basis of latest literature, we found some new breakthroughs in the degradation mechanisms of antibiotic micropollutants with respect to the AOPs. Therefore, this paper summarizes and highlights the degradation kinetics, pathways and mechanisms of antibiotics degraded by the photo-assisted AOPs, including the UV/O3 process, photo-Fenton technology, and photocatalysis. In the processes, functional groups are attacked by hydroxyl radicals, and major structures are destroyed subsequently, which depends on the classes of antibiotics. Meanwhile, their basic principles, current applications and influencing factors are briefly discussed. The main challenges, prospects, and recommendations for the improvement of photo-assisted AOPs are proposed to better remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
47
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Pruden A, Edwards MA. Influence of pipe materials on in-building disinfection of P. aeruginosa and A. baumannii in simulated hot water plumbing. WATER RESEARCH X 2023; 21:100189. [PMID: 38098877 PMCID: PMC10719577 DOI: 10.1016/j.wroa.2023.100189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 12/17/2023]
Abstract
A framework is needed to account for interactive effects of plumbing materials and disinfectants on opportunistic pathogens (OPs) in building water systems. Here we evaluated free chlorine, monochloramine, chlorine dioxide, and copper-silver ionization (CSI) for controlling Pseudomonas aeruginosa and Acinetobacter baumannii as two representative OPs that colonize hot water plumbing, in tests using polyvinylchloride (PVC), copper-PVC, and iron-PVC convectively-mixed pipe reactors (CMPRs). Pipe materials vulnerable to corrosion (i.e., iron and copper) altered the pH, dissolved oxygen, and disinfectant levels in a manner that influenced growth trends of the two OPs and total bacteria. P. aeruginosa grew well in PVC CMPRs, poorly in iron-PVC CMPRs, and was best controlled by CSI disinfection, whereas A. baumannii showed the opposite trend for pipe material and was better controlled by chlorine and chlorine dioxide. Various scenarios were identified in which pipe material and disinfectant can interact to either hinder or accelerate growth of OPs, illustrating the difficulties of controlling OPs in portions of plumbing systems experiencing warm, stagnant water.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Mattheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Myra D. Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| |
Collapse
|
48
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
49
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
50
|
Wamyil JF, Chukwuanugo Nkemakonam O, Adewale OS, Nabona J, Ntulume I, Wamyil FB. Microbiological quality of water samples obtained from water sources in Ishaka, Uganda. SAGE Open Med 2023; 11:20503121231194239. [PMID: 38020800 PMCID: PMC10664418 DOI: 10.1177/20503121231194239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives This study aimed to evaluate the microbiological quality of water sources in Ishaka division, Bushenyi district. Methods Water from taps, wells and springs were sampled for the cross-sectional investigation. The enumeration and identification of microbes (Escherichia coli, Salmonella, Shigella, Proteus, Staphylococcus aureus and total coliforms) in water samples were carried out using a variety of methods. Escherichia coli was enumerated using the membrane filtration method; Salmonella, Shigella and Proteus using a two-step enrichment method; Staphylococcus aureus using the surface spread method and total coliforms using the most probable number technique. Mannitol salt agar was used for enumeration of Staphylococcus Aureus and violet red bile agar was used for enumeration of total coliforms and Escherichia coli; xylose lysine deoxycholate agar was used for both Salmonella spp. and Shigella spp. API-20E was used to phenotypically identify the Enterobacteriaceae contaminants in water. These included Escherichia coli, Proteus mirabilis, Proteus vulgaris, Salmonella spp. and Staphylococcus aureus. Results Escherichia coli counts in the water from springs and wells ranged from 0 to 314 cfu/mL (p = 0.173) and 0 to 3 cfu/mL (p = 0.269), respectively, while tap water had no incidence of Escherichia coli. Highest level of bacterial contamination in water sources, beyond acceptable WHO (0 cfu/100 mL) limits for drinking water, was reported: Proteus spp., 34 (54.8%), followed by total coliforms, 24 (38.7%), Shigella spp., 22 (35.5%) and least were Salmonella spp. (8.1%) and Staphylococcus aureus spp. (8.1%). Conclusion It is therefore concluded that spring and well community water sources in Ishaka division, Uganda, are significantly contaminated with pathogenic bacteria and thus unsafe for drinking without adequate water treatment (disinfection and filtration).
Collapse
Affiliation(s)
| | | | - Oyebadejo Samson Adewale
- Department of Medical Laboratory Sciences, SAHS, Kampala International University-WC, Bushenyi, Uganda
| | - Jackim Nabona
- Department of Microbiology and Immunology, FBS, Kampala International University-WC, Bushenyi, Uganda
| | - Ibrahim Ntulume
- Department of Microbiology and Immunology, FBS, Kampala International University-WC, Bushenyi, Uganda
| | - Fwangmun Benard Wamyil
- Department of Civil Engineering, SEAS, Kampala International University-WC, Bushenyi, Uganda
| |
Collapse
|