1
|
Hao J, Liu S, Wang M, Hu W, Zhao J. Effects of swine manure mixed with circulating fluidized bed fly ash on black soldier fly (Diptera: Stratiomyidae) larvae and larval frass. INSECT SCIENCE 2025. [PMID: 39910903 DOI: 10.1111/1744-7917.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/30/2024] [Accepted: 12/24/2024] [Indexed: 02/07/2025]
Abstract
Black soldier fly larvae (BSFL) were reared on mixtures of swine manure and circulating fluidized bed fly ash (CFA) in different ratios. The aim was to evaluate the impacts of insoluble inorganic matter on BSFL and larval frass. The growth performance and nutrient composition of the BSFL were measured under different treatments. The intestinal microbiota structure, morphological characteristics, and total proteolytic activity of the gut were analyzed. The larval frass was tested for nutrients and analyzed using energy-dispersive spectroscopy and scanning electron micrographs. In particular, the surface areas of microparticles from the larval frass (diameter < 0.0074 mm) were measured using Brunauer-Emmett-Teller method. It was found that CFA addition prolonged larval development and reduced the maximum larval weights. The mean larval length, crude protein, and highest larval weight showed negative regression with an increase in the CFA ratio (P < 0.05). Morphological images indicated that physical clogging might be the main influencing factor on larval growth. Moreover, the microbial diversity and complexity in the larval gut increased with CFA addition, but CFA addition had little effect on the composition of dominant phyla or genera (P > 0.05). Finally, the nutrient composition revealed that the frass met the organic fertilizer standard when the CFA addition ratio was less than 7.5%. The optimal addition ratio was 5%, at which the larvae had a more stable and healthier gut environment, but there was less of an effect on larval growth and nutrient composition. Moreover, particles from 5% CFA mixture had the highest surface area.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi Province, China
| | - Shuang Liu
- Key Laboratory of Ecological Restoration on Loess Plateau, Shanxi Province, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | | | - Wenfeng Hu
- College of Food Science, South China Agriculture University, Guangzhou, China
| | - Jia Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi Province, China
| |
Collapse
|
2
|
Li R, Liu Q, Luo R, Wang J, Li L, Chen C, Pang X. Challenges in alpine meadow recovery: The minor effect of grass restoration on microbial resource limitation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124086. [PMID: 39788055 DOI: 10.1016/j.jenvman.2025.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Microorganisms play a vital role in restoring soil multifunctionality and rejuvenating degraded meadows. The availability of microbial resources, such as carbon, nitrogen, and phosphorus, often hinders this process. However, there is limited information on whether grass restoration can alleviate microbial resource limitations in damaged slopes of high-altitude regions. This study focused on alpine bare land impacted by engineering activities, with the goal of using grass seeds to improve soil resource availability and multifunctionality. High-throughput sequencing and enzyme stoichiometry (vector analyses) were employed to analyze microbial community composition and assess resource limitations. Our findings suggested that soil carbon, nitrogen, and phosphorus contents were low, ranging from 7.67 to 12.6 g kg-1for carbon, 0.61 to 0.98 g kg-1,for nitrogen, and 0.65 to 0.78 g kg-1for phosphorus. Nevertheless, the standardized scores for high yield and resource acquisition strategies remained at 0.26 and 1.36 in the four groups, which were lower than those of the stress tolerance strategy. Microorganisms primarily employed the stress tolerance strategy, focusing on repairing injured cells rather than promoting cell growth, which suggests that microbial growth and metabolism were only marginally enhanced. Because of this strategy's limited impact on enhancing microbial community diversity and fostering a co-occurrence network, the resultant levels remained comparable to those observed in degraded meadows. In this case, microbial resource limitations persisted, with phosphorus remaining a constraint. Consequently, grass restoration alone offered limited relief for microbial resource limitations in alpine meadows, underscoring the challenges of solely relying on grass seeds to recover damaged alpine ecosystems.
Collapse
Affiliation(s)
- Ruixuan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China
| | - Ruyi Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China
| | - Jianfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqun Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; Maoxian Mountain Ecosystem Research Station, Chinese Academy of Sciences, China.
| |
Collapse
|
3
|
Li K, Rahman SU, Rehman A, Li H, Hui N, Khalid M. Shaping rhizocompartments and phyllosphere microbiomes and antibiotic resistance genes: The influence of different fertilizer regimes and biochar application. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137148. [PMID: 39799673 DOI: 10.1016/j.jhazmat.2025.137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups. The presence of ARGs varied significantly across groups, with manure-treated samples exhibiting the greatest diversity and abundance, raising concerns about ARGs dissemination. Soil enzyme activities responded differently to treatments; manure significantly enhanced catalase, acid phosphatase, and urease activities, whereas saccharase was most responsive to chemical fertilizer. These differences are possibly responsible for the distinct microbiome structure associated with the plant's root system. The analysis of bacterial diversity and richness across rhizocompartments and the phyllosphere highlighted that manure-treated rhizospheres and phyllospheres displayed the highest species richness and diversity. Notably, Proteobacteria dominated across most treatments, with distinct shifts in bacterial phyla and genera influenced by manure and biochar applications. The LEfSe analysis identified key indicator genera specific to each group, indicating that both fertilizer type and biochar application significantly shape microbial community composition. Co-occurrence network analysis further demonstrated that manure and biochar treatments created unique microbial networks in the rhizosphere, rhizoplane, phyllosphere, and endosphere, highlighting the role of these amendments in modulating microbial interactions in plant-associated environments. These findings suggest that manure, while enhancing microbial diversity and soil enzyme activities, also increases ARGs, whereas biochar may not contribute to the spread of ARGs and fosters distinct microbial communities, offering valuable insights for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedi Li
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoxiang Li
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Yang W, Jiang H, Zhang L, Gu J, Wang X. SiO 2 nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. BIORESOURCE TECHNOLOGY 2024; 414:131577. [PMID: 39374833 DOI: 10.1016/j.biortech.2024.131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
SiO2 nanoparticles (SiO2 NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO2 NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg-1 SiO2 NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO2 NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg-1 SiO2 NPs. In summary, 0.5 g kg-1 SiO2 NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.
Collapse
Affiliation(s)
- Wenshan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China.
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
He L, Wang Y, Xi B, Zhao X, Cai D, Sun Y, Du Y, Zhang C. Synergistic removal of total petroleum hydrocarbons and antibiotic resistance genes in Yellow River Delta wetlands contaminated soil composting regulated by biogas slurry addition. ENVIRONMENTAL RESEARCH 2024; 252:118724. [PMID: 38518917 DOI: 10.1016/j.envres.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| |
Collapse
|
6
|
Escobar M, Ji J, Wang Y, Feng M, Bao C, Ma J, Cui S, Zang S, Zhang J, Zhang W, Chen G, Chen H. Effect of thermal treatment of illite on the bioavailability of copper and zinc in the aerobic composting of pig manure with corn straw. Front Microbiol 2024; 15:1411251. [PMID: 38903784 PMCID: PMC11187081 DOI: 10.3389/fmicb.2024.1411251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
The large amount of various types of heavy metals in animal manure applied to agricultural field has caused severe threat to the ecosystems of soil environments. In this study, the effect of thermal treatment of illite on the bioavailability of copper (Cu) and zinc (Zn) in the aerobic composting of pig manure with corn straw biochar was investigated. The objectives of this study were to characterize the variations in the bioavailability of Cu and Zn in the aerobic composting of pig manure added with illite treated with high temperatures and to identify the relatively dominant microbes involved in the formation of humus and passivation of heavy metals in pig manure composting based on 16S rRNA high-throughput sequencing analysis. The results showed that in comparison with the raw materials of pig manure, the bioavailability of Zn and Cu in the control and three experimental composting groups, i.e., group I (with untreated illite), group I-2 (with illite treated under 200°C), and group I-5 (with illite treated under 500°C), was decreased by 27.66 and 71.54%, 47.05 and 79.80%, 51.56 and 81.93%, and 58.15 and 86.60%, respectively. The results of 16S rRNA sequencing analysis revealed that in the I-5 group, the highest relative abundance was detected in Fermentimonas, which was associated with the degradation of glucose and fructose, and the increased relative abundances were revealed in the microbes associated with the formation of humus, which chelated with Zn and Cu to ultimately reduce the bioavailability of heavy metals and their biotoxicity in the compost. This study provided strong experimental evidence to support the application of illite in pig manure composting and novel insights into the selection of appropriate additives (i.e., illite) to promote humification and passivation of different heavy metals in pig manure composting.
Collapse
Affiliation(s)
- Maia Escobar
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiaoyang Ji
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yueru Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Meiqin Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Changjie Bao
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jianxun Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shijia Cui
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Sihan Zang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jinpeng Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Wei Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Huan Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Chen Z, Ding Q, Ning X, Song Z, Gu J, Wang X, Sun W, Qian X, Hu T, Wei S, Xu L, Li Y, Zhou Z, Wei Y. Fe-Mn binary oxides improve the methanogenic performance and reduce the environmental health risks associated with antibiotic resistance genes during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133921. [PMID: 38452670 DOI: 10.1016/j.jhazmat.2024.133921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Increasing evidence indicates that metal oxides can improve the methanogenic performance during anaerobic digestion (AD) of piggery wastewater. However, the impacts of composite metal oxides on the methanogenic performance and risk of antibiotic resistance gene (ARG) transmission during AD are not fully understood. In this study, different concentrations of Fe-Mn binary oxides (FMBO at 0, 250, 500, and 1000 mg/L) were added to AD to explore the effects of FMBO on the process. The methane yield was 7825.1 mL under FMBO at 250 mg/L, 35.2% higher than that with FMBO at 0 mg/L. PICRUSt2 functional predictions showed that FMBO promoted the oxidation of acetate and propionate, and the production of methane from the substrate, as well as increasing the abundances of most methanogens and genes encoding related enzymes. Furthermore, under FMBO at 250 mg/L, the relative abundances of 14 ARGs (excluding tetC and sul2) and four mobile gene elements (MGEs) decreased by 24.7% and 55.8%, respectively. Most of the changes in the abundances of ARGs were explained by microorganisms, especially Bacteroidetes (51.20%), followed by MGEs (11.98%). Thus, the methanogenic performance of AD improved and the risk of horizontal ARG transfer decreased with FMBO, especially at 250 mg/L.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Ning
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumei Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhipeng Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Yu X, Lv Y, Wang Q, Wang W, Wang Z, Wu N, Liu X, Wang X, Xu X. Deciphering and predicting changes in antibiotic resistance genes during pig manure aerobic composting via machine learning model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33610-33622. [PMID: 38689043 DOI: 10.1007/s11356-024-33087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Livestock manure is one of the most important pools of antibiotic resistance genes (ARGs) in the environment. Aerobic composting can effectively reduce the spread of antibiotic resistance risk in livestock manure. Understanding the effect of aerobic composting process parameters on manure-sourced ARGs is important to control their spreading risk. In this study, the effects of process parameters on ARGs during aerobic composting of pig manure were explored through data mining based on 191 valid data collected from literature. Machine learning (ML) models (XGBoost and Random Forest) were utilized to predict the rate of ARGs changes during pig manure composting. The model evaluation index of the XGBoost model (R2 = 0.651) was higher than that of the Random Forest (R2 = 0.490), indicating that XGBoost had better prediction performance. Feature importance was further calculated for the XGBoost model, and the XGBoost black box model was interpreted by Shapley additive explanations analysis. Results indicated that the influencing factors on the ARGs variation in pig manure were sequentially divided into thermophilic period, total composting period, composting real time, and thermophilic stage average temperature. The findings gave an insight into the application of ML models to predict and decipher the ARG changes during manure composting and provided suggestions for better composting manipulation and optimization of process parameters.
Collapse
Affiliation(s)
- Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yang Lv
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Wenhao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiqiang Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China.
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| |
Collapse
|
9
|
Fang Q, Pan X. A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170080. [PMID: 38220012 DOI: 10.1016/j.scitotenv.2024.170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Elevations in antibiotic resistance genes (ARGs) are due not only to the antibiotic burden, but also to numerous environmental pressures (e.g., pesticides, metal ions, or psychotropic pharmaceuticals), which have led to an international public health emergency. Metal-based nanoparticles (MNPs) poison bacteria while propelling nanoresistance at ambient or sub-lethal concentrations, acting as a wide spectrum germicidal agent. Awareness of MNPs driven antibiotic resistance has created a surge of investigation into the molecule mechanisms of evolving and spreading environmental antibiotic resistome. Co-occurrence of MNPs resistance and antibiotic resistance emerge in environmental pathogens and benign microbes may entail a crucial outcome for human health. In this review we expound on the systematic mechanism of ARGs proliferation under the stress of MNPs, including reactive oxygen species (ROS) induced mutation, horizontal gene transfer (HGT) relevant genes regulation, nano-property, quorum sensing, and biofilm formation and highlighting on the momentous contribution of nanoparticle released ion. As antibiotic resistance pattern alteration is closely knit with the mediate activation of nanoparticle in water, soil, manure, or sludge habitats, we have proposed a virulence and evolution based antibiotic resistance risk assessment strategy for MNP contaminated areas and discussed practicable approaches that call for risk management in critical environmental compartments.
Collapse
Affiliation(s)
- Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Li H, Zhao Z, Shi M, Luo B, Wang G, Wang X, Gu J, Song Z, Sun Y, Zhang L, Wang J. Metagenomic binning analyses of swine manure composting reveal mechanism of nitrogen cycle amendment using kaolin. BIORESOURCE TECHNOLOGY 2024; 393:130156. [PMID: 38056679 DOI: 10.1016/j.biortech.2023.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The efficient control of nitrogen loss in composting and the enhancement of product quality have become prominent concerns in current research. The positive role of varying concentrations kaolin in reducing nitrogen loss during composting was revealed using metagenomic binning combined with reverse transcription quantitative polymerase chain reaction. The results indicated that the addition of 0.5 % kaolin significantly (P < 0.05) up-regulated the expression of nosZ and nifH on day 35, while concurrently reducing norB abundance, resulting in a reduction of NH3 and N2O emissions by 61.4 % and 17.5 %, respectively. Notably, this study represents the first investigation into the co-occurrence of nitrogen functional genes and heavy metal resistance genes within metagenomic assembly genomes during composting. Emerging evidence indicates that kaolin effectively impedes the binding of Cu/Zn to nirK and nosZ gene reductases through passivation. This study offers a novel approach to enhance compost quality and waste material utilization.
Collapse
Affiliation(s)
- Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; China Construction Sixth Division Construction & Development Co., Ltd., Tianjin 300450, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Water Conservancy and Architectural Engineering, Tarim University, Alar 843300, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangdong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Li B, Zhang Y, Du Y, Li D, Zhou A, Shao X, Cao L, Yang J. Robust PbO 2 modified by co-deposition of ZrO 2 nanoparticles for efficient degradation of ceftriaxone sodium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5158-5172. [PMID: 38110683 DOI: 10.1007/s11356-023-31390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
In recent years, PbO2 electrodes have received widespread attention due to their high oxygen evolution reaction (OER) activity. However, due to the brittle nature of the plating layer, it is easy to cause the active layer to fall off. Pb2+ will leach out with the electrochemical process causing secondary pollution. The starting point of this study is established to improve the stability and adhesion of the electrode coating. Electrochemical oxidation technology has the characteristics of high treatment efficiency, wide range of applications, and non-polluting environment. In this study, conventional PbO2 electrodes were modified by using co-deposition of ZrO2 nanoparticles. In addition, α-PbO2 was added to increase the stability of the electrodes. At a high current density of 1 A/cm2, the accelerated life of the pure PbO2 electrode is 648 h, the accelerated life of the PbO2-ZrO2 electrode is 1.37 times that of the pure PbO2, and the electrode with an added α-PbO2 layer is 1.69 times that of the pure PbO2 electrode. The amount of dissolved Pb2+ was only 29% of that of pure PbO2. The electrochemical performance of the electrode is evaluated by studying the degradation effect of ceftriaxone sodium (CXM). The addition of ZrO2 nanoparticles alters the particle size and deposition content of PbO2, leading to a unique crystal structure distinct from pure PbO2. Compared to conventional PbO2 electrodes, the PbO2-ZrO2 can remove chemical oxygen demand (COD) and pollutants more efficiently, removing for 59% increased by 38.47%. Therefore, PbO2-ZrO2 is of great value in the field of electrochemical degradation of industrial pollutants.
Collapse
Affiliation(s)
- Binbin Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yuting Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yan Du
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Danni Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Anhui Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiang Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
12
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
13
|
Shen C, He M, Zhang J, Liu J, Wang Y. Response of soil antibiotic resistance genes and bacterial communities to fresh cattle manure and organic fertilizer application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119453. [PMID: 39492397 DOI: 10.1016/j.jenvman.2023.119453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Livestock manure use in agriculture contributes to pollutants like antibiotic resistance genes (ARGs) and resistant bacteria. This practice could potentially facilitate ARGs development in soil ecosystems. Our study aimed to explore ARGs and bacterial communities in cattle manure from Ningxia beef cattle farms with varying breeding periods. We also assessed the impact of different application rates of cattle manure compost, created by mixing manure with different growing periods, on soil's physicochemical and heavy metal properties. High-throughput PCR and sequencing were used to analyze ARGs and bacterial communities. We aimed to understand ARGs dynamics in cattle manure during breeding stages and the impact of different fertilizer application rates on soil bacteria and resistance genes. We found 212 ARGs from cattle manure, spanning tetracycline, aminoglycoside, multidrug, and MLSB categories. Relative ARGs abundance was presented across breeding stages: lactation (C1), breeding (C3), pre-fattening (C4), calving (C2), and late fattening (C5). pH, total nitrogen (TN), electrical conductivity (EC), arsenic (As) and cadmium (Cd) presence significantly impacted ARGs quantity and microbial community structure in manure. Mobile genetic elements (MGEs) were the primary factor altering ARGs in manure (65.56%). Heavy metals contributed to 18.60% of ARGs changes. Manure application changed soil ARGs abundance, notably in soils with high application rates, primarily associated with aminoglycoside, multidrug and sulfonamide resistance. Soils with higher manure rates had elevated MGEs, positively correlated with most ARGs, suggesting MGEs' role in ARGs dissemination. Soil microbial community structure was influenced by fertilization, particularly with the highest application rate. Heavy metals (specifically Cd, contributing to 23.12%), microbial community changes (17.42%), and MGEs (17.38%) were the main factors affecting soil antibiotic resistance. Our study establishes a framework for understanding ARGs emergence in manure and treated soils. This informs strategies to mitigate environmental ARGs transmission and guides diverse livestock manure application and management.
Collapse
Affiliation(s)
- Cong Shen
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Mengyuan He
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Junhua Zhang
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, 750021, Ningxia, China.
| | - Jili Liu
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan, 750021, Ningxia, China
| | - Yuanduo Wang
- School of Life Sciences, Ningxia University, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
14
|
Mei Z, Fu Y, Wang F, Xiang L, Hu F, Harindintwali JD, Wang M, Virta M, Hashsham SA, Jiang X, Tiedje JM. Magnetic biochar/quaternary phosphonium salt reduced antibiotic resistome and pathobiome on pakchoi leaves. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132388. [PMID: 37639796 DOI: 10.1016/j.jhazmat.2023.132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables.
Collapse
Affiliation(s)
- Zhi Mei
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Yuhao Fu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Leilei Xiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Geographical Sciences, Nantong University, Nantong 226001, China
| | - Marko Virta
- Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Xin Jiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
15
|
Pereira AR, de Ávila Barbosa Fonseca L, Paranhos AGDO, da Cunha CCRF, de Aquino SF, de Queiroz Silva S. Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91803-91817. [PMID: 37477815 DOI: 10.1007/s11356-023-28823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L-1), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | | | | | | | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
16
|
Li Y, Kumar Awasthi M, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Biochar preparation and evaluation of its effect in composting mechanism: A review. BIORESOURCE TECHNOLOGY 2023; 384:129329. [PMID: 37329992 DOI: 10.1016/j.biortech.2023.129329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
This article provides an overview of biochar application for organic waste co-composting and its biochemical transformation mechanism. As a composting amendment, biochar work in the adsorption of nutrients, the retention of oxygen and water, and the promotion of electron transfer. These functions serve the micro-organisms (physical support of niche) and determine changes in community structure beyond the succession of composing primary microorganisms. Biochar mediates resistance genes, mobile gene elements, and biochemical metabolic activities of organic matter degrading. The participation of biochar enriched the α-diversity of microbial communities at all stages of composting, and ultimately reflects the high γ-diversity. Finally, easy and convincing biochar preparation methods and characteristic need to be explored, in turn, the mechanism of biochar on composting microbes at the microscopic level can be studied in depth.
Collapse
Affiliation(s)
- Yui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | | |
Collapse
|
17
|
Shan G, Liu J, Zhu B, Tan W, Li W, Tang Z, Hu X, Zhu L, Xi B. Effect of hydrochar on antibiotic-resistance genes and relevant mechanisms during chicken manure composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131459. [PMID: 37094443 DOI: 10.1016/j.jhazmat.2023.131459] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The reduction of enhanced antibiotic resistance genes (ARGs) in compost is important to mitigate the risk of ARG transmission in agricultural production. Hydrochar is used in many applications as a functional carbon material with adsorption and catalytic properties. This study investigated the effects of hydrochar addition on bacterial communities, mobile genetic elements (MGEs), and ARGs in chicken manure composting. The addition of 2%, 5%, and 10% hydrochar (dry weight) reduced the total numbers of target ARGs and MGEs in the compost products by 40.13-55.33% and 23.63-37.23%, respectively. Hydrochar changed the succession of the bacterial population during composting, lowering the abundance of potential pathogens and promoting microbial activity in amino acid and carbohydrate metabolism. A significant possible microbial host for ARGs was found to be Firmicutes. Hydrochar was found to affect the host microorganisms and MGEs directly by altering environmental factors that indirectly impacted the ARG profiles, as shown by partial least squares pathway modeling analysis. In conclusion, the addition of hydrochar to compost is a simple and effective method to promote the removal of ARGs.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Zhu
- Shenergy Environmental Technologies Co., LTD, Hangzhou 311100, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xinhao Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Wang C, Jia Y, Li J, Wang Y, Niu H, Qiu H, Li X, Fang W, Qiu Z. Effect of bioaugmentation on tetracyclines influenced chicken manure composting and antibiotics resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161457. [PMID: 36623656 DOI: 10.1016/j.scitotenv.2023.161457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Antibiotic residue in husbandry waste has become a serious concern. In this study, contaminated chicken manure composting was conducted to reveal the bioaugmentation effect on tetracyclines residue and antibiotics resistance genes (ARGs). The bioaugmented composting removed most of the antibiotics in 7 days. Under bioaugmentation, 96.88 % of tetracycline and 92.31 % of oxytetracycline were removed, 6.32 % and 20.93 % higher than the control (P < 0.05). The high-temperature period was the most effective phase for eliminating antibiotics. The treatment showed a long high-temperature period (7 days), while no high-temperature period was in control. After composting, the treatment showed 13.87 % higher TN (26.51 g/kg) and 13.42 % higher NO3--N (2.45 g/kg) than control (23.28 and 2.16 g/kg, respectively) but 12.72 % lower C/N, indicating fast decomposition and less nutrient loss. Exogenous microorganisms from bioaugmentation significantly reshaped the microbial community structure and facilitated the enrichment of genera such as Truepera and Fermentimonas, whose abundance increased by 71.10 % and 75.37 % than the control, respectively. Remarkably, ARGs, including tetC, tetG, and tetW, were enhanced by 198.77 %, 846.77 %, and 62.63 % compared with the control, while the integron gene (intl1) was elevated by 700.26 %, indicating horizontal gene transfer of ARGs. Eventually, bioaugmentation was efficient in regulating microbial metabolism, relieving antibiotic stress, and eliminating antibiotics in composting. However, the ability to remove ARGs should be further investigated. Such an approach should be further considered for treating pollutants-influenced organic waste to eliminate environmental concerns.
Collapse
Affiliation(s)
- Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China..
| | - Yinxue Jia
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jianpeng Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Huan Niu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Hang Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Weizhen Fang
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China..
| |
Collapse
|
19
|
Zhou L, Xue J, Xu Y, Tian W, Huang G, Liu L, Zhang Y. Effect of biochar addition on copper and zinc passivation pathways mediated by humification and microbial community evolution during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 370:128575. [PMID: 36603753 DOI: 10.1016/j.biortech.2023.128575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The mobility and bioavailability of Cu and Zn are the main threats associated with the land application of pig manure (PM) compost products. This study investigated the impacts of biochar (BC) concentration on passivation of Cu and Zn associated with the compost maturity. The results indicated that 15% and 10% BC favoured the passivation of Cu and Zn, respectively. BC promoted passivation of Cu by accelerating HA production and optimized the abundance of Firmicutes. BC promoted the passivation of Zn by increasing the high temperature peak and the corresponding pH (8-8.5). A higher level (15% and 20%) of BC altered the dominant bacterial phylum from Firmicutes to Proteobacteria. 20% BC inhibited the passivation of Cu and Zn by reducing the highest temperature and lowering the alkalinity of substrate. These results offer new insights into understanding how the addition of BC could reduce the risk of hazardous products during PM composting.
Collapse
Affiliation(s)
- Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Departmentof Xinjiang Uygur Autonomous Region, and School of Mechanical Electrification Engineering, Tarim University, Alaer 843300, China
| | - Jiao Xue
- Modern Agricultural Engineering Key Laboratory at Universities of Education Departmentof Xinjiang Uygur Autonomous Region, and School of Mechanical Electrification Engineering, Tarim University, Alaer 843300, China
| | - Yang Xu
- Modern Agricultural Engineering Key Laboratory at Universities of Education Departmentof Xinjiang Uygur Autonomous Region, and School of Mechanical Electrification Engineering, Tarim University, Alaer 843300, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Wenxin Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guowei Huang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liqian Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yingchao Zhang
- Modern Agricultural Engineering Key Laboratory at Universities of Education Departmentof Xinjiang Uygur Autonomous Region, and School of Mechanical Electrification Engineering, Tarim University, Alaer 843300, China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
20
|
Huang Y, Wen X, Li J, Niu Q, Tang A, Li Q. Metagenomic insights into role of red mud in regulating fate of compost antibiotic resistance genes mediated by both direct and indirect ways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120795. [PMID: 36462475 DOI: 10.1016/j.envpol.2022.120795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, the amendment of red mud (RM) in dairy manure composting on the fate of antibiotic resistance genes (ARGs) by both direct (bacteria community, mobile genetic elements and quorum sensing) and indirect ways (environmental factors and antibiotics) was analyzed. The results showed that RM reduced the total relative abundances of 10 ARGs and 4 mobile genetic elements (MGEs). And the relative abundances of total ARGs and MGEs decreased by 53.48% and 22.30% in T (with RM added) on day 47 compared with day 0. Meanwhile, the modification of RM significantly increased the abundance of lsrK, pvdQ and ahlD in quorum quenching (QQ) and decreased the abundance of luxS in quorum sensing (QS) (P < 0.05), thereby attenuating the intercellular genes frequency of communication. The microbial community and network analysis showed that 25 potential hosts of ARGs were mainly related to Firmicutes, Proteobacteria and Actinobacteria. Redundancy analysis (RDA) and structural equation model (SEM) further indicated that RM altered microbial community structure by regulating antibiotic content and environmental factors (temperature, pH, moisture content and organic matter content), which then affected horizontal gene transfer (HGT) in ARGs mediated by QS and MGEs. These results provide new insights into the dissemination mechanism and removal of ARGs in composting process.
Collapse
Affiliation(s)
- Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
21
|
Zhou Y, Zhang Z, Awasthi MK. Exploring the impact of biochar supplement on the dynamics of antibiotic resistant fungi during pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120235. [PMID: 36165829 DOI: 10.1016/j.envpol.2022.120235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to investigate antibiotic resistant fungal (ARF) communities in pig manure (PM) composting employing two different biochar (coconut shell-CSB and bamboo biochar-BB) as amendment. Three treatments (Control, 10% CSB and 10% BB) were designed and indicated with T1 to T3. Experimental results declared that the fungal abundance significantly reduced among the both biochar applied treatments but three dominant phyla Ascomycota, Basidiomycota and Mucoromycota were still relatively greater abundance present. There were significant differences (p < 0.05) in the relative abundance and diversity of fungi among all three treatments. Interestingly, biochar addition regulated the overall fungal community in final compost. Compared with the control group, the abundance of fungi was positively mobilized, and especially CSB showed a better effect. Conclusively, biochar has potential to inhibit and reduce the ARGs population and mobility in compost. Thus, these findings offer new insight to understand the succession of ARFs during PM composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
22
|
Wang M, Wu Y, Zhao J, Liu Y, Gao L, Jiang Z, Zhang J, Tian W. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting. BIORESOURCE TECHNOLOGY 2022; 363:127872. [PMID: 36084764 DOI: 10.1016/j.biortech.2022.127872] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Composting is an efficient way of disposing agricultural solid wastes as well as passivating heavy metals (HMs). Herein, equivalent (3%) biochar (BC) or lime (LM) were applied in rice straw and swine manure composting, with no additives applied as control group (CK). The results indicated that both the additives increased NO3--N content, organic matter degradation, humus formation, and HM immobilization in composting, and the overall improvement of lime was more significant. In addition, the additives optimized the bacterial community of compost, especially for thermophilic and mature phase. Lime stimulated the growth of Bacillus, Peptostreptococcus, Clostridium, Turicibacter, Clostridiaceae and Pseudomonas, which functioned well in HM passivation via biosorption, bioleaching, or promoting HM-humus formation by secreting hydrolases. Lime (3%) as additive is recommended in swine manure composting to promote composting maturity and reduce HM risk. The study present theoretical guidance in improving composting products quality for civil and industrial composting.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
23
|
Wang C, Jia Y, Wang Q, Yan F, Wu M, Li X, Fang W, Xu F, Liu H, Qiu Z. Responsive change of crop-specific soil bacterial community to cadmium in farmlands surrounding mine area of Southeast China. ENVIRONMENTAL RESEARCH 2022; 214:113748. [PMID: 35750128 DOI: 10.1016/j.envres.2022.113748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 05/27/2023]
Abstract
In arable soils co-influenced by mining and farming, soil bacteria significantly affect metal (Cadmium, Cd) bioavailability and accumulation. To reveal the soil microecology response under this co-influence, three intersection areas (cornfield, vegetable field, and paddy field) were investigated. With a similar nutrient condition, the soils showed varied Cd levels (0.31-7.70 mg/kg), which was negatively related to the distance from mining water flow. Different soils showed varied microbial community structures, which were dominated by Chloroflexi (19.64-24.82%), Actinobacteria (15.49-31.96%), Acidobacteriota (9.46-20.31%), and Proteobacteria (11.88-14.57%) phyla. A strong correlation was observed between functional microbial taxon (e. g. Acidobacteriota), soil physicochemical properties, and Cd contents. The relative abundance of tolerant bacteria including Vicinamibacteraceae, Knoellia, Ardenticatenales, Lysobacter, etc. elevated with the increase of Cd, which contributed to the enrichment of heavy metal resistance genes (HRGs) and integration genes (intlI), thus enhancing the resistance to heavy metal pollution. Cd content rather than crop species was identified as the dominant factor that influenced the bacterial community. Nevertheless, the peculiar agrotype of the paddy field contributed to its higher HRGs and intlI abundance. These results provided fundamental information about the crop-specific physiochemical-bacterial interaction, which was helpful to evaluate agricultural environmental risk around the intersection of farmland and pollution sources.
Collapse
Affiliation(s)
- Can Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution, PR China
| | - Yinxue Jia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Qiqi Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, 617000, Sichuan, PR China
| | - Minghui Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Xing Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Weizhen Fang
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| | - Zhongping Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| |
Collapse
|
24
|
Wang K, Yin D, Sun Z, Wang Z, You S. Distribution, horizontal transfer and influencing factors of antibiotic resistance genes and antimicrobial mechanism of compost tea. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129395. [PMID: 35803190 DOI: 10.1016/j.jhazmat.2022.129395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Compost tea was alternatives of chemical pesticide for green agriculture, but there were no reports about antibiotic resistance genes (ARGs) in compost tea. This study investigated the effect of livestock manures, sewage sludge, their composting products and liquid fermentation on ARGs, mobile genetic elements (MGEs), metal resistance genes (MRGs) and antimicrobial properties of various compost tea. The results showed aerobic liquid fermentation reduced ARGs by 65.93 % and 45.20 % in the compost tea of chicken manure and sludge, enriched ARGs by 8.57 % and 37.41 % in the compost tea of pig manure and bovine manure, and increased MGEs and MRGs by 1.25 × 10-5-5.53 × 10-3 and 2.03 × 10-5-2.03 × 10-3 in the four compost tea. The correlation coefficient of tetracycline and sulfonamide resistance genes between compost product and compost tea were 0.98 and 0.91. aadA2-02, sul2 and tetX abundant in the compost tea were positively correlated with MGEs and MRGs. Furthermore, liquid fermentation enriched the potential host of tetracycline and vancomycin resistance genes. Tetracycline resistance genes occupied 62.7 % of total ARGs in the compost tea. Alcaligenes and Bacillus enriched by 0.78-39.31 % in the four compost tea, which metabolites had high antimicrobial activity. The potential host of ARGs accounted for 42.1 % bacteria abundance in the four compost tea.
Collapse
Affiliation(s)
- Ke Wang
- National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China.
| | - Dan Yin
- National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Shao B, Liu Z, Tang L, Liu Y, Liang Q, Wu T, Pan Y, Zhang X, Tan X, Yu J. The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129067. [PMID: 35650729 DOI: 10.1016/j.jhazmat.2022.129067] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 05/01/2022] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance genes (ARGs) pollution has been considered as one of the most significant emerging environmental and health challenges in the 21st century, many efforts have been paid to control the proliferation and dissemination of ARGs in the environment. Among them, the biochar performs a positive effect in reducing the abundance of ARGs during different environmental governance processes and has shown great application prospects in controlling the ARGs. Although there are increasing studies on employing biochar to control ARGs, there is still a lack of review paper on this hotspot. In this review, firstly, the applications of biochar to control ARGs in different environmental governance processes were summarized. Secondly, the processes and mechanisms of ARGs removal promoted by biochar were proposed and discussed. Then, the effects of biochar properties on ARGs removal were highlighted. Finally, the future prospects and challenges of using biochar to control ARGs were proposed. It is hoped that this review could provide some new guidance for the further research of this field.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
26
|
Zhang X, Gong Z, Allinson G, Li X, Jia C. Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. CHEMOSPHERE 2022; 299:134333. [PMID: 35304205 DOI: 10.1016/j.chemosphere.2022.134333] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Soils containing both veterinary antibiotics (VAs) and heavy metals necessitate effective remediation approaches, and microbial and molecular levels of the results should be further examined. Here, a novel material combining waste fungus chaff-based biochar (WFCB) and Herbaspirillum huttiense (HHS1) was established to immobilize copper (Cu) and zinc (Zn) and degrade oxytetracycline (OTC) and enrofloxacin (ENR). Results showed that the combined material exhibited high immobilization of Cu (85.5%) and Zn (64.4%) and great removals of OTC (41.9%) and ENR (40.7%). Resistance genes including tet(PB), tetH, tetR, tetS, tetT, tetM, aacA/aphD, aacC, aadA9, and czcA were reduced. Abundances of potential hosts of antibiotic resistance genes (ARGs) including phylum Proteobacteria and genera Brevundimonas and Rhodanobacter were altered. Total phosphorus and pH were the factors driving the VA degrading microorganisms and potential hosts of ARGs. The combination of WFCB and HHS1 can serve as an important bioresource for immobilizing heavy metals and removing VAs in the contaminated soil.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
27
|
Wei Y, Gu J, Wang X, Song Z, Sun W, Hu T, Guo H, Xie J, Lei L, Xu L, Li Y. Elucidating the beneficial effects of diatomite for reducing abundances of antibiotic resistance genes during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153199. [PMID: 35063512 DOI: 10.1016/j.scitotenv.2022.153199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Diatomite (DE) has been used for nitrogen conservation during the composting of feces but its effects on antibiotic resistance genes (ARGs) and the associated mechanisms are still unclear. In this study, DE was added at three different proportions (0%, 4%, and 8%) to swine manure during composting. The results showed that adding DE helped to reduce the abundances of ARGs and the maximum decrease (88.99%) occurred with the highest dose. DE amendment promoted the transformation of reducible copper into a more stable form, i.e., the residual fraction, which reduced the selective pressure imposed by copper and further decreased the abundances of ARGs. Tn916/1545 and intI1 were critical genetic components related to ARGs, and thus the reductions in the abundances of ARGs may be attributed to the suppression of horizontal transfer due to the decreased abundances of mobile genetic elements (MGEs). The microbial community structure (bacterial abundance and diversity) played key role in the evolution of ARGs. DE could enhance the competition between hosts and non-hosts of ARGs by increasing the bacterial community diversity. Compared with CK, DE amendment optimized the bacterial community by reducing the abundances of the potential hosts of ARGs and pathogens such as Corynebacterium, thereby improving the safety of the compost product. In addition, KEGG function predictions revealed that adding DE inhibited the metabolic pathway and genes related to ARGs. Thus, composting with 8% DE can reduce the risk of ARG transmission and improve the practical value for agronomic applications.
Collapse
Affiliation(s)
- Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
29
|
Zhang H, Wang Y, Liu P, Sun Y, Dong X, Hu X. Unveiling the occurrence, hosts and mobility potential of antibiotic resistance genes in the deep ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151539. [PMID: 34762954 DOI: 10.1016/j.scitotenv.2021.151539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
As emerging microbial contaminants, antibiotic resistance genes (ARGs) are widely reported in the neritic zone. However, the profiles of ARGs in the deep ocean have not yet been fully resolved. In this study, the distribution, hosts, and mobility potential of ARGs at different water depths in the Western Pacific (WP) were investigated and compared to those in Bohai Sea (BH) waters using environmental parameter measurements, amplicon sequencing, metagenomic assembly and binning approaches. Our results showed that the top eight most abundant known ARG types in WP and BH waters were multidrug (39.85%), peptide (14.98%), aminoglycoside (11.33%), macrolide-lincosamide-streptogramin (MLS, 4.06%), tetracycline (3.74%), beta-lactam (3.12%), fluoroquinolone (1.79%) and rifamycin (1.24%). The ARGs observed in mesopelagic and bathypelagic waters were abundant and diverse as those observed in neritic waters, indicating that deep-sea water could be another environmental reservoir for ARGs. For deep-sea ARGs, members from classes Gammaproteobacteria (70%) and Alphaproteobacteria (21.1%) were the most important potential hosts. In addition, mobile genetic element analysis suggested that the ARG migration potential in dee sea water (> 1000 m) was relatively high. Overall, our findings expanded the understanding of ARGs in deep seawater and provided guidance for ARG pollution control and risk prediction.
Collapse
Affiliation(s)
- Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yibo Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Pengyuan Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanyu Sun
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Xiaoke Hu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
30
|
Zou C, Ma C, Chen F, Shao X, Cao L, Yang J. Crystal Facet Controlled Stable PbO2 Electrode for Efficient Degradation of Tetracycline. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Zhao W, Gu J, Wang X, Song Z, Hu T, Dai X, Wang J. Insights into the associations of copper and zinc with nitrogen metabolism during manure composting with shrimp shell powder. BIORESOURCE TECHNOLOGY 2022; 349:126431. [PMID: 34861387 DOI: 10.1016/j.biortech.2021.126431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The application of shrimp shell powder (SSP) in manure composting can promote the maturation of compost and reduce the associated environmental risk. This study investigated the response of adding SSP at different levels (CK: 0, L: 5%, M: 10%, and H: 15%) on heavy metal resistance genes (MRGs), nitrogen functional genes, enzymes, and microorganisms. SSP inhibited nitrification and denitrification via decreasing the abundances of functional genes and key enzymes related to Cu, Zn, and MRGs. The nitrate reductase and nitrous-oxide reductase in the denitrification pathway were lower under H. Phylogenetic trees indicated that Burkholderiales sp. had strong relationships with OTU396 and OTU333, with important roles in the nitrogen cycle and plant growth. Redundancy analysis and structural equation modeling showed the complex response between heavy metal and nitrogen that bio-Cu and bio-Zn had positive significantly relationships with nirK-type and amoA-type bacteria, and amoA-type bacteria might be hotspot of cueO.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
32
|
Kong L, Shi X. Effect of antibiotic mixtures on the characteristics of soluble microbial products and microbial communities in upflow anaerobic sludge blanket. CHEMOSPHERE 2022; 292:133531. [PMID: 34995635 DOI: 10.1016/j.chemosphere.2022.133531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Two upflow anaerobic sludge blanket reactors (UASBs) were used to investigate the effects of three antibiotic mixtures (erythromycin, sulfamethoxazole, and tetracycline) on reactor performance, soluble microbial products (SMPs) composition and microbial community. One reactor (UASBantibiotics) was fed with antibiotic mixtures, whereas another reactor (UASBcontrol) was used as a control without the addition of antibiotic mixtures. Compared with those in UASBcontrol, UASBantibiotics show lower chemical oxygen demand removal efficiency and biogas content. A higher removal efficiency of antibiotic mixtures was obtained in first few stages in UASBantibiotics. The SMPs composition of effluent from the two reactors did not differ significantly, and the main components were protein-like substances, which produced higher fluorescence intensity in UASBantibiotics. Gas chromatography-mass spectrometry analysis revealed that the main compounds identified as SMPs (<580 Da) were alkanes, aromatics and esters, with only 20% similarity of SMPs between UASBantibiotics and UASBcontrol. Antibiotics had a significant effect on the microbial community structure. Notably, in UASBcontrol, hydrogenotrophic methanogens, key microorganisms in anaerobic digestion, had an obvious advantage at all stages compared with UASBantibiotics, whereas acetoclastic methanogen exhibited the opposite pattern. The above results demonstrated that antibiotic mixtures influenced the effluent quality during anaerobic treatment of synthetic wastewater, resulting in changes in the microbial community structure. This study clarified the effect of antibiotic mixtures on the operation of UASBs. It could contribute to identifying potential strategies for improving effluent quality in anaerobic treatment.
Collapse
Affiliation(s)
- Lingjiao Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xianyang Shi
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
33
|
Awasthi MK, Liu H, Liu T, Awasthi SK, Zhang Z. Effect of biochar addition on the dynamics of antibiotic resistant bacteria during the pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152688. [PMID: 34974024 DOI: 10.1016/j.scitotenv.2021.152688] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In present study, the taxonomic variation of antibiotic resistant bacteria (ARB) in pig manure (PM) composting with coconut shell biochar (CSB) and bamboo biochar (BB) addition was investigated. The experiment was divided into three treatments: T1 (as control or without biochar amendment), T2 was added 10% coconut shell biochar and T3 supplemented with 10% bamboo biochar. The initial feed stock were properly homogenized using a mechanical crusher. PM and wheat straw (WS) were mixed in a 5: 1 dry weight ratio to adjust the initial carbon/nitrogen ratio 25:1, bulk density to ~0.5 (kg/L) and ~60% moisture content, respectively. This experiment was lasted for 42 days. The results indicated the bacterial communities in the three treatments were more different in terms of relative abundance and diversity of dominant bacteria. The control group had the highest abundance of Kingdome bacteria. The changes in ARB was noticed by variation in the relative abundances of Actinobacteria, Proteobacteria, Firmicutes and Bacteroidota. At the end of composting (on day 42), the total RAs of ARB at the class, order, and family levels were considerably reduced in T2 and T3 by ~35.78-38.75%, 36.42-40.63% and 45.82-47.70%, respectively. But in T1 was decreased by 6.16-8.62%, 7.93-8.72% and 8.70-10.15%, as compared with the day 0 sample. However, the CSB was much more effective to reduce 55 to 60% of ARB than T3 or BB applied treatment has 40 to 42% ARB reduction, while control has certainly very less RAa of ARB reduction. Finally, the biochar amendment was significant approach to mitigate the total ARB abundance in compost and it's further used for organic farming purposes.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
34
|
Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150647. [PMID: 34597560 DOI: 10.1016/j.scitotenv.2021.150647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Landfill are important reservoirs of antibiotics and antibiotic resistance genes (ARGs). They harbor diverse contaminants, such as heavy metals and persistent organic chemicals, complex microbial consortia, and anaerobic degradation processes, which facilitate the occurrence, development, and transfer of ARGs and antibiotic resistant bacteria (ARB). The main concern is that antibiotics and developed ARGs and ARB may transfer to the local environment via leachate and landfill leakage. In this paper, we provide an overview of established studies on antibiotics and ARGs in landfills, summarize the origins and distribution of antibiotics and ARGs, discuss the linkages among various antibiotics, ARGs, and bacterial communities as well as the influencing factors of ARGs, and evaluate the current treatment processes of antibiotics and ARGs. Finally, future research is proposed to fill the current knowledge gaps, which include mechanisms for the development and transmission of antibiotic resistance, as well as efficient treatment approaches for antibiotic resistance.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 101407, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yuwei An
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Yu Lei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Liyan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714, China; School of resources and environmental engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
35
|
Chen Z, Bao H, Wen Q, Wu Y, Fu Q. Effects of H 3PO 4 modified biochar on heavy metal mobility and resistance genes removal during swine manure composting. BIORESOURCE TECHNOLOGY 2022; 346:126632. [PMID: 34971775 DOI: 10.1016/j.biortech.2021.126632] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this research, static composting treatments of swine manure with forced ventilation were conducted to study the effects of biochar (BC) and H3PO4 modified biochar (BP) addition on heavy metals (HMs) stabilization, profiles of antibiotic resistance genes (ARGs), heavy metals resistance genes (MRGs) and bacterial communities during swine manure composting. After 42 days of the composting, compared to control (CK), BC and BP decreased the concentration of diethylenetriamine pentaacetic acid extractable Cu and Zn by 12.04%, 15.15% and 26.91%, 36.50%, respectively. Furthermore, BC and BP treatments reduced the total abundances of nine ARGs by 4.02% and 66.21%, and five MRGs by 53.66% and 58.81%, compared to CK in the compost product. Network analysis and square structural equation model analysis revealed that the decrease of ARGs and MRGs in BP treatment was related tothe change in bacterial community during the composting, rather than differences in co-selection pressure.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
36
|
Qiu X, Feng M, Zhou G, Wang H. Effects of mineral additives on antibiotic resistance genes and related mechanisms during chicken manure composting. BIORESOURCE TECHNOLOGY 2022; 346:126631. [PMID: 34971779 DOI: 10.1016/j.biortech.2021.126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this study, two typical minerals (diatomite and bentonite) were applied during composting, and their influences on antibiotics, antibiotic resistance genes (ARGs), intI1 and the bacterial communities were investigated. The relative abundance of total ARGs decreased by 53.72% and 59.54% in diatomite and bentonite addition compared with control on day 42. The minerals addition also reduced the relative abundance of intI1, as much as 41.41% and 59.81% in diatomite and bentonite treatments. Proteobacteria and Firmicutes were the dominant candidate hosts of the major ARGs. There was a significant correlation between total ARGs and intI1 during the composting. Structural equation models further demonstrated that intI1 and antibiotics were the predominant direct factors responsible for ARG variations, and composting properties and bacterial community composition also shifted the variation of ARG profiles by influencing intI1. Overall, these findings suggest that diatomite and bentonite could decrease the potential proliferation of ARGs in chicken manure.
Collapse
Affiliation(s)
- Xiuwen Qiu
- Jiangxi Yangtze River Economic Zone Research Institute, Jiujiang University, Jiujiang 332005, PR China; Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, PR China
| | - Mengting Feng
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, PR China; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huijuan Wang
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, PR China
| |
Collapse
|
37
|
Wu Y, Wen Q, Chen Z, Fu Q, Bao H. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150086. [PMID: 34537705 DOI: 10.1016/j.scitotenv.2021.150086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.
Collapse
Affiliation(s)
- Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
38
|
Tang Z, Huang C, Tian Y, Xi B, Guo W, Tan W. Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118155. [PMID: 34530239 DOI: 10.1016/j.envpol.2021.118155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Collapse
Affiliation(s)
- Zhurui Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Wei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
39
|
Dai X, Wang X, Gu J, Bao J, Wang J, Guo H, Yu J, Zhao W, Lei L. Responses of bacterial communities and antibiotic resistance genes to nano-cellulose addition during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113734. [PMID: 34649327 DOI: 10.1016/j.jenvman.2021.113734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment with exogenous additives during composting can help to alleviate the accumulation of antibiotic resistance genes (ARGs) caused by the direct application of pig manure to farmland. In addition, nano-cellulose has an excellent capacity for adsorbing pollutants. Thus, the effects of adding 300, 600, and 900 mg/kg nano-cellulose to compost on the bacterial communities, mobile genetic elements (MGEs), and ARGs were determined in this study. After composting, treatment with nano-cellulose significantly reduced the relative abundance of ARGs, which was lowest in the compost product with 600 mg/kg added nano-cellulose. Nano-cellulose inhibited the rebound in ARGs from the cooling period to the maturity period, and weakened the selective pressure of heavy metals on microorganisms by passivating bio-Cu. The results also showed that MGEs explained most of the changes in the abundances of ARGs, and MGEs had direct effects on ARGs. The addition of 600 mg/kg nano-cellulose reduced the abundances of bacterial genera associated with ermQ, tetG, and other genes, and the number of links (16) between ARGs and MGEs was lowest in the treatment with 600 mg/kg added nano-cellulose. Therefore, adding 600 mg/kg nano-cellulose reduced the abundances of ARGs by affecting host bacteria and MGEs. The results obtained in this study demonstrate the positive effect of nano-cellulose on ARG pollution in poultry manure, where adding 600 mg/kg nano-cellulose was most effective at reducing the abundances of ARGs.
Collapse
Affiliation(s)
- Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianfeng Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
40
|
Zhao X, Wang Z, Xu T, Feng Z, Liu J, Luo L, He Y, Xiao Y, Peng H, Zhang Y, Deng O, Zhou W. The fate of antibiotic resistance genes and their influential factors during excess sludge composting in a full-scale plant. BIORESOURCE TECHNOLOGY 2021; 342:126049. [PMID: 34592456 DOI: 10.1016/j.biortech.2021.126049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The alteration of antibiotic resistance genes (ARGs) during sludge composting has been less studied in a full-scale plant, causing the miss of practical implications for understanding/managing ARGs. Therefore, this study tracked the changes of ARGs and microbial communities in a full-scale plant engaged in excess sludge composting and then explored the key factors regulating ARGs through a series of analyses. After composting, the absolute and relative abundance of ARGs decreased by 91.90% and 66.57%, respectively. Additionally, pathway analysis showed that MGEs, composting physicochemical properties were the most vital factors directly influencing ARGs. Finally, network analysis indicated that Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the main hosts of ARGs. Based on these findings, it can be known that full-scale composting could reduce ARGs risk to an extent.
Collapse
Affiliation(s)
- Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Tao Xu
- Hangzhou Chunlai Technology Co., Ltd., Hangzhou 310052, PR China
| | - Zhihan Feng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Liu
- Chengdu Lvshan Biotechnology Co., Ltd., Chengdu 611139, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
41
|
Zhang Q, Xu J, Wang X, Zhu T, Liu J, Qin S. Performance of full-scale aerobic composting and anaerobic digestion on the changes of antibiotic resistance genes in dairy manure. BIORESOURCE TECHNOLOGY 2021; 342:125898. [PMID: 34530251 DOI: 10.1016/j.biortech.2021.125898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Understanding the different performances of full-scale active composting (AC) and anaerobic digestion (AD) on the changes of antibiotic resistance genes (ARGs) in dairy manure is crucial to uncover the dissemination risks of ARGs in post-biotreated manure. In this regard, metagenomic sequencing was deployed to reveal the variations of ARGs in dairy manure in an intensive dairy farm. Results showed that the total abundance of ARGs increased from 150.64 reads/ng DNA to 204.06 reads/ng DNA in dairy manure, and it is mainly attributed to the contributions of AC (85.49%) rather than AD (14.51%). In AC, more ARG subtypes were induced and the dominant ARG subtypes were shifted completely, probably due to the enrichment of Proteobacteria and Actinobacteria which could be the hosts of multiple ARGs. These results inspire us to further evaluate the dissemination risks of ARGs along the route from composted manure to soil and to plants.
Collapse
Affiliation(s)
- Qiuping Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Inner Mongolia University, Hohhot 010021, China.
| | - Xiujun Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianjiao Zhu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jianguo Liu
- College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Shuai Qin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
42
|
Wang C, Zhu W, Strong PJ, Zhu F, Han X, Hong C, Wang W, Yao Y. Disentangling the Effects of Physicochemical, Genetic, and Microbial Properties on Phase-Driven Resistome Dynamics during Multiple Manure Composting Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14732-14745. [PMID: 34689552 DOI: 10.1021/acs.est.1c03933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Composting alters manure-derived antibiotic resistance genes (ARGs) to a certain extent, which is largely dependent upon the composting phase, manure type, microbial phylogeny, and physicochemical properties. However, little is known about how these determinants influence the fate and dynamics of ARGs as well as the mechanisms underlying the ecological process of ARGs during composting. Here, we investigated the temporal patterns of ARGs and their correlations with a series of physicochemical, genetic, and microbial properties during pilot-scale composting of chicken, maggot, bovine, and swine manure. We detected 237 ARGs, 71 of which were co-occurring across all four composting processes and accounted for >80% of the sum of resistome abundance. In support of this ARG co-occurrence, variance partition analyses demonstrated that the manure type explained less resistome variations (5.6%) than the composting phase (21.6%). During the phase-driven resistome dynamics, ARGs showed divergent variations in abundance, and certain beta-lactams and multidrug ARGs were consistently enriched across multiple manure composting processes. Correlation analyses all led to the conclusion that the divergent ARG variations during composting were attributable to the unequal effects of physicochemical properties, mobile elements, and succession of indigenous microbiota, whereas antibiotic residues' effects were marginal. Ultimately, this study determines the relative importance of various key determinants in the phase-driven divergence of ARGs during multiple manure composting processes and demonstrates a clear need to evaluate risks posed by enriched ARGs toward their receiving environments.
Collapse
Affiliation(s)
- Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Weijing Zhu
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane, QLD 4001, Australia
| | - Fengxiang Zhu
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingguo Han
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Chunlai Hong
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiping Wang
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanlai Yao
- Institute of Environmental Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
43
|
Zhu T, Chen T, Cao Z, Zhong S, Wen X, Mi J, Ma B, Zou Y, Zhang N, Liao X, Wang Y, Wu Y. Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poult Sci 2021; 100:101485. [PMID: 34695626 PMCID: PMC8554274 DOI: 10.1016/j.psj.2021.101485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 10/28/2022] Open
Abstract
Livestock farms are generally considered to be the important source of antibiotic resistance genes (ARGs). It is important to explore the spread of ARGs to reduce their harm. This study analyzed 13 resistance genes belonging to 7 types in 68 samples of layer manure including different stages of layer breeding, layer manure fertilizer, and soil from 9 laying hen farms in Guangdong Province. The detection rate of antibiotic resistance genes was extremely high at the layer farm in manure (100%), layer manure fertilizer (100%), and soil (> 95%). The log counts of antibiotic resistance genes in layer manure (3.34-11.83 log copies/g) were significantly higher than those in layer manure fertilizer (3.45-9.80 log copies/g) and soil (0-7.69 log copies/g). In layer manure, ermB was the most abundant antibiotic resistance gene, with a concentration of 3.19 × 109- 6.82 × 1011 copies/g. The average abundances of 5 antibiotic resistance genes were above 1010 copies/g in the descending order ermB, sul2, tetA, sul1, and strB. The relative abundances of ARGs in layer manure samples from different breeding stages ranked as follows: brooding period (BP), late laying period (LL), growing period (GP), early laying period (EL), and peak laying period (PL). There was no significant correlation between the farm scale and the abundance of antibiotic resistance genes. Moreover, the farther away from the layer farm, the lower the abundance of antibiotic resistance genes in the soil. We also found that compost increases the correlation between antibiotic resistance genes, and the antibiotic resistance genes in soil may be directly derived from layer manure fertilizer instead of manure. Therefore, when applying layer manure fertilizer to cultivated land, the risk of antibiotic resistance genes pollution should be acknowledged, and in-depth research should be conducted on how to remove antibiotic resistance genes from layer manure fertilizer to control the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Ting Zhu
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Chen
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Shan Zhong
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China
| | - Yan Wang
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China
| | - Yinbao Wu
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Disposal and Resource Utilization of Animal Wastes, Yunfu, Xinxing 527400, China.
| |
Collapse
|
44
|
Liu H, Ye X, Chen S, Sun A, Duan X, Zhang Y, Zou H, Zhang Y. Chitosan as additive affects the bacterial community, accelerates the removals of antibiotics and related resistance genes during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148381. [PMID: 34146805 DOI: 10.1016/j.scitotenv.2021.148381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.
Collapse
Affiliation(s)
- Hongdou Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Xuhong Ye
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Songling Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Aobo Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Xinying Duan
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Yanqing Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China.
| | - Yulong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| |
Collapse
|
45
|
Liu B, Yu K, Ahmed I, Gin K, Xi B, Wei Z, He Y, Zhang B. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148372. [PMID: 34139488 DOI: 10.1016/j.scitotenv.2021.148372] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Occurrence of antibiotic resistance genes (ARGs) in animal manure impedes the reutilization of manure resources. Aerobic composting is potentially effective method for resource disposal of animal manure, but the fate of ARGs during composting is complicated due to the various material sources and different operating conditions. This review concentrates on the biotic and abiotic factors influencing the variation of ARGs in composting and their potential mechanisms. The dynamic variations of biotic factors, including bacterial community, mobile genetic elements (MGEs) and existence forms of ARGs, are the direct driving factors of the fate of ARGs during composting. However, most key abiotic indicators, including pH, moisture content, antibiotics and heavy metals, interfere with the richness of ARGs indirectly by influencing the succession of bacterial community and abundance of MGEs. The effect of temperature on ARGs depends on whether the ARGs are intracellular or extracellular, which should be paid more attention. The emergence of various controlling strategies renders the composting products safer. Four potential removal mechanisms of ARGs in different controlling strategies have been concluded, encompassing the attenuation of selective/co-selective pressure on ARGs, killing the potential host bacteria of ARGs, reshaping the structure of bacterial community and reducing the cell-to-cell contact of bacteria. With the effective control of ARGs, aerobic composting is suggested to be a sustainable and promising approach to treat animal manure.
Collapse
Affiliation(s)
- Botao Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
46
|
Qiu X, Zhou G, Chen L, Wang H. Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112413. [PMID: 34139628 DOI: 10.1016/j.ecoenv.2021.112413] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Aerobic composting is commonly used to dispose livestock manure and is an efficient way to reduce antibiotic resistance genes (ARGs). Here, the effects of different quality substrates on the fate of ARGs were assessed during manure composting. Results showed that the total relative abundances of ARGs and intI1 in additive treatments were lower than that in control, and high quality treatment with low C/N ratio and lignin significantly decreased the relative abundance of tetW, ermB, ermC, sul1 and sul2 at the end of composting. Additionally, higher quality treatment reduced the relative abundances of some pathogens such as Actinomadura and Pusillimonas, and some thermotolerant degrading-related bacteria comprising Pseudogracilibacillus and Sinibacillus on day 42, probably owing to the change of composting properties in piles. Structural equation models (SEMs) further verified that the physiochemical properties of composting were the dominant contributor to the variations in ARGs and they could also indirectly impact ARGs by influencing bacterial community and the abundance of intI1. Overall, these findings indicated that additives with high quality reduced the reservoir of antibiotic resistance genes of livestock manure compost.
Collapse
Affiliation(s)
- Xiuwen Qiu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangxi Province Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China; College of Resource and Environmental Sciences, Jiujiang University, Jiujiang 332005, China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangxi Province Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China.
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huijuan Wang
- College of Resource and Environmental Sciences, Jiujiang University, Jiujiang 332005, China
| |
Collapse
|
47
|
Pereira AR, Paranhos AGDO, de Aquino SF, Silva SDQ. Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26380-26403. [PMID: 33835340 DOI: 10.1007/s11356-021-13784-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil.
| |
Collapse
|
48
|
Shen Q, Tang J, Wang X, Li Y, Yao X, Sun H, Wu Y. Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:111981. [PMID: 33592372 DOI: 10.1016/j.ecoenv.2021.111981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollution due to resistance genes from livestock manure has become a serious issue that needs to be resolved. However, little studies focused on the removal of resistance genes in simultaneous processing of livestock feces and urine. This study investigated the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and class 1 integron-integrase gene (intI1) during thermophilic fermentation of swine manure in an ectopic fermentation system (EFS), which has been regarded as a novel system for efficiently treating both feces and urine. The abundances of MRGs and tetracycline resistance genes were 34.44-97.71% lower in the EFS. The supplementation of heavy metals significantly increased the abundance of intI1, with the enhancement effect of copper being more prominent than that of zinc. The highest abundances of resistance genes and intI1 were observed at high Cu levels (A2), indicating that Cu can increase the spreading of resistance genes through integrons. Network analysis revealed the co-occurrence of ARGs, MRGs, and intI1, and these genes potentially shared the same host bacteria. Redundancy analysis showed that the bacterial community explained most of the variations in ARGs, and environmental factors had influences on ARGs abundances by modulating the bacterial community composition. The decreased Sphingomonas, Comamonas, Acinetobacter, Lactobacillus, Bartonella, Rhizobium, and Bacteroides were mainly responsible for the reduced resistance genes. These results demonstrate that EFS can reduce resistance genes in simultaneous processing of livestock feces and urine.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China.
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Yuancheng Li
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| |
Collapse
|
49
|
Sardar MF, Zhu C, Geng B, Huang Y, Abbasi B, Zhang Z, Song T, Li H. Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116587. [PMID: 33582626 DOI: 10.1016/j.envpol.2021.116587] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Traditional composting has already shown a certain effect in eliminating antibiotic residues, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). It is worth noting that the rebounding of ARGs and the succession of the bacterial community during conventional aerobic composting are still serious threats. Considering the probable risk, improved and adaptable technologies are urgently needed to control antibiotic resistance efficiently. This study monitored how thermophilic aerobic composting affected the ARGs, as well as the bacterial diversity during the composting of cow manure spiked with sulfamethoxazole (SMX) at different concentrations. Results showed that the degradation of SMX was enhanced during thermophilic aerobic composting (control > SMX25 > SMX50 > SMX100) and was no longer detected after 20 days of composting. High temperature or heat significantly stimulated the rebounding of certain genes. After 35 days, the abundance of detected genes (sul2, sulA, dfrA7, and dfrA1) significantly decreased (p < 0.05) in control and antibiotic-spiked treatments, except for sul1. The addition of three concentrations of SMX elicited a sharp effect on bacterial diversity, and microbial structure in SMX25 led to significant differences with others (p < 0.05). The network analysis revealed more rigorous interactions among ARGs and abundant genera, suggesting that the host of ARGs potentially increased at low concentrations of SMX. Especially, genera g_norank_f__Beggiatoaceae, Ruminiclostridium, Caldicoprobacter, g_norank_o_MBA03, Hydrogenispora, and Ruminiclostridium_1 were major potential hosts for sul1. In conclusion, the rebounding of ARGs could be intermitted partially, and more efficient control of antibiotic resistance could be achieved in the thermophilic composting compared to conventional methods.
Collapse
Affiliation(s)
- Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changxiong Zhu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bing Geng
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yali Huang
- College of Environment Science and Engineering, Hebei University of Science and Technology, Hebei, 050000, PR China
| | - Bilawal Abbasi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiguo Zhang
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Tingting Song
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
50
|
Guo J, Huang M, Meng L, Jiang N, Zheng S, Shao M, Luo X. Synergistic impacts of Cu 2+ on simultaneous removal of tetracycline and tetracycline resistance genes by PSF/TPU/UiO forward osmosis membrane. ENVIRONMENTAL RESEARCH 2021; 195:110791. [PMID: 33539834 DOI: 10.1016/j.envres.2021.110791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Cu2+, tetracycline (TC), and corresponding tetracycline resistance genes (TRGs) are common micropollutants in aquaculture wastewater, which have great impact on environment and human health. In this study, we developed a thin-film nanocomposite (TFN) forward osmosis (FO) membrane with an electrospinning thermoplastic polyurethane/polysulfone (PSF/TPU) substrate and a UiO-66-NH2 particle interlayer modified active layer. The effects of Cu2+ concentration on the synergetic removal of TC and TRGs (e.g., tetA/M/X/O/C, int1, and 16 S rRNA gene) were analyzed to determine the role of Cu2+ in FO process. The rejection mechanism was also analyzed in depth. Results demonstrated that the rejection of TC and Cu2+ was 99.53% and 97.99%. The rejection of TRGs exceeded 90% (specifically, over 99% for tetC) at a Cu2+ concentration of 500 μg/L when 0.5 M (NH4)2HPO4 was used as draw solution. Complexation reaction between Cu2+ and TC, electrostatic interaction, and the adsorption of Cu2+ on membrane surface were the main contributing factors for the high rejection efficiencies. Altogether, the as-prepared FO membrane holds great potential for simultaneously removing heavy metals, antibiotics, and resistance genes in real wastewater.
Collapse
Affiliation(s)
- Jili Guo
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|