1
|
Bai M, Lei J, Li F, Wang X, Fu H, Yan Z, Zhu Y. Short-Chain Chlorinated Paraffins May Induce Ovarian Damage in Mice via AIM2- and NLRP12-PANoptosome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39754571 DOI: 10.1021/acs.est.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Humans may intake 0.02 mg/kg/day of short-chain chlorinated paraffins (SCCPs), and no study is available on mammalian ovarian damage caused by low-level SCCPs. In this study, four groups of 5-week-old female Institute of Cancer Research (ICR) mice were orally administered 0, 0.01, 0.1, and 1.0 mg/kg/day SCCPs for 21 consecutive days, and serum and ovaries were collected 20 h after the last SCCPs-administration. SCCPs at ≥0.1 mg/kg/day were found to reduce follicle counts at each stage, induce dose-dependent oxidative stress in mice, and lower serum E2 and ovarian anti-Müllerian hormone levels. The data indicated that cellular PANoptosis increased in the ovaries of all SCCP-treated mice. Furthermore, AIM2- and NLRP12-PANoptosome gene and protein levels were considerably elevated. Female germline stem cells (FGSCs) in the cortical portion of the ovary exhibited substantial damage in all SCCP groups, additionally, the expression of FGSC marker genes and major marker proteins was diminished in the ovaries. Oral administration of SCCPs with 0.01, 0.1, and 1.0 mg/kg/day to mice resulted in PANoptosis of the ovaries. Therefore, it was suggested that the oral administration of ≥0.1 mg/kg/day of SCCPs suppressed ovarian function, which may be attributed to the fact that SCCPs induced the generation of AIM2- and NLRP12-PANoptosome in ovary cells.
Collapse
Affiliation(s)
- Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Jiawei Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
2
|
Chen L, Tang C, Yu Z, Zeng Y, Mai B, Luo X. A comprehensive characterization biotransformation of chlorinated paraffin by human and carp liver microsomes via liquid chromatography-high-resolution mass spectrometry and screening algorithm. ENVIRONMENT INTERNATIONAL 2024; 195:109235. [PMID: 39733590 DOI: 10.1016/j.envint.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
The chlorinated paraffin (CP) monomer 1,2,5,6,9,10-Hexachlorodecane (CP-4) was subjected to in vitro biotransformation using human and carp liver microsomes. Five types of CP-4 metabolites (OH-, keto-, enol-, aldehyde- and carboxy-CP-4) were identified in human liver microsomer while only mono-OH-CP-4 was found in the carp liver microsomes. Kinetic studies revealed that the formation of mono-, di-, tri-hydroxylated CP-4, keto-, enol-, and aldehyde-CP-4 in human liver microsomes was best described by substrate inhibition models, whereas the formation of carboxylated CP-4 metabolites best fit the Michaelis-Menten model. Notably, keto-CP-4, enol-CP-4 and aldehyde-CP-4 were the predominant metabolites. The estimated Vmax values for these metabolites were significantly higher in the human liver microsomes than in the carp liver microsomes. The intrinsic hepatic clearance (CLint) of CP-4 was higher in humans than in carp, indicating species-specific differences in its metabolism. This study also highlighted potential toxicity concerns, with computational predictions showing varying degrees of acute oral toxicity for CP-4 and its metabolites. These findings indicate significant species-specific differences in the biotransformation of CP-4, emphasizing the potential health and environmental risks associated with chlorinated paraffins and their metabolites, and underscore the need for further research to address these concerns.
Collapse
Affiliation(s)
- Liujun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MacaoChina Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
3
|
Huang JW, He WT, Zhang YT, Yang M, Jin NX, Leskinen A, Komppula M, Roponen M, Lin LZ, Gui ZH, Liu RQ, Dong GH, Jalava P. Chlorinated paraffins in particulate matter associated with asthma and its relative symptoms in school-aged children and adolescents: A cross-sectional survey in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178112. [PMID: 39700980 DOI: 10.1016/j.scitotenv.2024.178112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter (PM) and contaminants attached to PM can increase the risk of respiratory diseases. However, the health risk assessment of chlorinated paraffins (CPs), an emerging pollutant occupying a high proportion of persistent organic pollutants (POPs) in PM, remains scarce. This study aimed to evaluate the association between PM2.5-bound CPs and asthma, along with relative symptoms, in school-aged children and adolescents. A large sample size cross-sectional study (n = 131,304) was conducted in the Pearl River Delta (PRD). The results showed that increased quantiles of ∑CPs were associated with odds ratios (ORs) of 1.22 (95%CI: 1.20-1.25), 1.38 (95%CI: 1.35-1.41), 1.17 (95%CI: 1.15-1.19), 1.52 (95%CI: 1.48-1.56), 1.66 (95%CI: 1.61-1.71), and 1.33 (95%CI: 1.30-1.37) for ever diagnosed asthma, current asthma, wheeze, current wheeze, persistent phlegm, and persistent cough, respectively. Additionally, C11-, C12-SCCPs and C14-, C17-MCCPs contributed the most positive weight to the risk of asthma and relative symptoms. These findings provide cutting-edged evidence for the health risk assessment of CPs, which is crucial for developing effective CPs management strategy.
Collapse
Affiliation(s)
- Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China; Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Mo Yang
- Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Nan-Xiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Pasi Jalava
- Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
4
|
Zhu C, Cao Z, Hu B, Li Z, Huang S, Han X, Luo X, Yuan H, Li L. Human bare and clothing-covered skin exposure to chlorinated paraffins for the general populations: Exposure pattern differential and significance of indirect dermal exposure via clothing-to-skin transport. ENVIRONMENT INTERNATIONAL 2024; 192:109068. [PMID: 39406162 DOI: 10.1016/j.envint.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
To investigate human exposure to short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) through dermal and oral intake via hand-to-mouth contact, wipes from the face, forearm, hand, and foot of 30 volunteers were sampled. The concentration of ∑SCCPs and ∑MCCPs ranged from 0.66 to 119 and 0.71 to 565 µg/m2, respectively. Hands exhibited significantly higher ∑CPs concentrations than other skin areas, indicating that direct contact with indoor surfaces contributed considerable CP levels on this bare skin area. Gender differences in CP levels were observed in wipes from all locations, except for the hands, possibly because of the significant variability in residuals on the hands. A significant positive relationship was found between CP levels on the hands and faces, and the CP ratios of the hands/faces were related to log KOA. Bare skin showed more significant variations in CP partitioning among related congeners and between genders than skin covered by clothing, as elucidated by the linear analysis of RSD and log KOA. Although concentrations on clothing-covered areas were relatively lower than on bare skin, the median estimated dermal absorption doses of ∑SCCPs and ∑MCCPs (152 and 737 ng/kg bw/day, respectively) for the entire body were approximately 1-2 orders of magnitude higher than those for oral ingestion (1.62 and 7.94 ng/kg bw/day, respectively), emphasizing indirect dermal uptake as a significant exposure pathway for humans.
Collapse
Affiliation(s)
- Chunyou Zhu
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Beibei Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhi Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Simin Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xu Han
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haoran Yuan
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
5
|
Bai M, Lei J, Li F, Wang X, Fu H, Yan Z, Huang X, Zhu Y. Short-chain chlorinated paraffins may induce thymic aging in mice by activating PERK-CHOP. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124438. [PMID: 38942270 DOI: 10.1016/j.envpol.2024.124438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Humans indirectly consume approximately 0.02 mg/kg/day of short-chained chlorinated paraffins (SCCPs) through the environment; however, the thymic senescence/damage induced by SCCPs has not been assessed. In this study, 16 female mice (4-week-old) per group were orally administered 0, 0.01, 0.1, and 1 mg/kg/day of SCCPs for 21 days, and the phenotypes and levels of superoxide dismutase (SOD), malondialdehyde (MDA), Tβ4, αβ TCR, SA-β-Gal, GRP78, PERK/CHOP, P53/P21, and CASPASE-1 of the thymus were assessed as indicators. Another group comprising 16 mice was killed at 4-week-old and these indicators were assessed. Thereafter, the thymuses cultured in vitro were exposed to 0, 14, 140, and 1400 μg/L SCCPs, respectively, and the above indicators were measured after 7-day. Based on the results, the oral administration of ≥0.01 mg/kg/day SCCPs to mice and ≥14 μg/L of SCCPs in medium caused thymic aging features, such as a decrease in the ratio of cortex to medulla, gradual blurring of the boundary between the cortex and medulla, dose-dependent oxidative stress (decreased SOD and increased MDA), and decreased levels of Tβ4 and αβ TCRs in the thymus. The oral administration of ≥1 mg/kg/day of SCCPs also impeded the growth and development of female mice and their thymuses. Exposure to the low levels of SCCPs activated PERK-CHOP in the mouse thymus, which modulated increases in SA-β-Gal, IL-1β, P53, and CASPASE-1 in vivo and in vitro. Overall, environmental levels and human blood concentrations (14.8-1400 μg/L) of SCCPs may induce mouse thymus senescence by activating PERK-CHOP in vivo and in vitro, respectively.
Collapse
Affiliation(s)
- Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Jiawei Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Xin Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha, 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Huang JW, Bai YY, Wang DS, He WT, Zhang JL, Tu HX, Wang JY, Zhang YT, Wu QZ, Xu SL, Huang HH, Yang M, Jin NX, Gui ZH, Liu RQ, Jalava P, Dong GH, Lin LZ. Positive association between chlorinated paraffins and the risk of allergic diseases in children and adolescents. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134226. [PMID: 38593665 DOI: 10.1016/j.jhazmat.2024.134226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.
Collapse
Affiliation(s)
- Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ya-Ying Bai
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Sen Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Lin Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Xin Tu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Yao Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Department of Environmental and School Hygiene Supervision, Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - He-Hai Huang
- Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Nan-Xiang Jin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Liao H, Li X, Zhou Y, Wu Y, Cao Y, Yang J, Zhang J. Biomonitoring, exposure routes and risk assessment of chlorinated paraffins in humans: a mini-review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1588-1603. [PMID: 37655634 DOI: 10.1039/d3em00235g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chlorinated paraffins (CPs), which were conventionally classified into short- (SCCPs), medium- (MCCPs) and long- (LCCPs) chain CPs, have received growing attention due to their wide usage and extensive detection in environmental samples and biota. The number of studies regarding the biomonitoring of CPs in human beings increased rapidly and their health risk gained great concern. This review summarized their occurrence and homologue patterns in human matrices including blood/serum, placenta, cord serum and breast milk. As the production and usage of SCCPs was progressively banned after being listed in Annex A of the Stockholm Convention, the production of MCCPs and LCCPs was stimulated. Accordingly, the ratio of MCCPs/SCCPs in human samples has increased rapidly in the last 5 years. The current understanding of exposure routes and risk assessments of CPs was also reviewed. Oral dietary intake is the most predominant source of daily CP intake, but dust ingestion, inhalation and dermal exposure is also nonnegligible, especially for MCCPs and LCCPs. Furthermore, the reported upper bound of the estimated daily intakes (EDIs) in various risk assessment studies was close to or exceeded the tolerable daily intakes (TDIs). Considering the bioaccumulation and long-lasting exposure of CPs, their health impacts on humans and the ecosystem required continuous monitoring and evaluation.
Collapse
Affiliation(s)
- Hanyu Liao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xue Li
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yuanyuan Zhou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yinyin Wu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yifei Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jun Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jianyun Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
8
|
Li Q, Cheng L, Jin X, Liu L, Shangguan J, Chang S, Sun R, Shang Y, Lv Q, Li J, Zhang G. Chlorinated paraffins in multimedia during residential interior finishing: Occurrences, behavior, and health risk. ENVIRONMENT INTERNATIONAL 2023; 178:108072. [PMID: 37406371 DOI: 10.1016/j.envint.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Though with bioaccumulation and toxicity, chlorinated paraffins (CPs) are still high produced and widely utilized in various daily necessities for extender plasticization and flame retardation. CPs can be released during the reprocessing processes of finishing materials and distributed in multi-environmental media. Herein, concentrations and compositions of CPs in four representative media including interior finishing materials, PM10, total suspended particulate (TSP), and dust samples collected from eight interior finishing stages were studied. Unexpectedly, CP concentrations in ceramic tiles was found to be high with a mean value of 7.02 × 103 μg g-1, which could be attributed to the presence of CPs in the protective wax coated on ceramic tiles surfaces. Furthermore, the pollution characteristics of short-chain and medium-chain CPs (SCCPs and MCCPs) in those samples were inconsistent. According to the investigation regarding Kdust-TSP and [Formula: see text] , the occurrence and distribution of CPs in indoor atmospheric particles (PM10 and TSP) and dust were highly affected by reprocessing processes (cutting, hot melting, etc.) compared to that in the finishing materials. Moreover, dermal contact was the primary pathway of CP exposure for the occupational population (interior construction workers) for most interior finishing stages, and the interior finishing process is the prime CP exposure period for the occupational groups. As suggested by our assessment, though hardly posing an immediate health risk, CPs exposure still presents unneglected adverse health effects, which calls for adequate personal protections during interior finishing, especially in developing countries.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China.
| | - Lei Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Xinjie Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Linjie Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Shixiang Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Ruoxi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yihan Shang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Chen S, Gong Y, Luo Y, Cao R, Yang J, Cheng L, Gao Y, Zhang H, Chen J, Geng N. Toxic effects and toxicological mechanisms of chlorinated paraffins: A review for insight into species sensitivity and toxicity difference. ENVIRONMENT INTERNATIONAL 2023; 178:108020. [PMID: 37354881 DOI: 10.1016/j.envint.2023.108020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
Chlorinated paraffins (CPs), a group of chlorinated alkane mixtures, are frequently detected in various environmental matrices and human bodies. Recently, CPs have garnered considerable attention owing to their potential to induce health hazards in wildlife and human. Several reviews have discussed short-chain CPs (SCCPs) induced ecological risk; however, a comprehensive understanding of the underlying toxic mechanisms and a comparison among SCCPs, medium-, and long-chain CPs (MCCPs and LCCPs, respectively) are yet to be established. This review summarizes the latest research progress on the toxic effects and the underlying molecular mechanisms of CPs. The main toxicity mechanisms of CPs include activation of several receptors, oxidative stress, disturbance of energy metabolism, and inhibition of gap junction-mediated communication. The sensitivity of different species to CP-mediated toxicities varies markedly, with aquatic organisms exhibiting the highest sensitivity to CP-induced toxicity. The toxicity comparison analysis indicated that MCCPs may be unsafe as potential substitutes for SCCPs.
Collapse
Affiliation(s)
- Shuangshuang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiajia Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Zhang J, Liao H, Chen Y, Li X, Chen R, Han S, Liu S, Yin S. Concentrations and homologue patterns of SCCPs and MCCPs in the serum of the general population of adults in Hangzhou, China. CHEMOSPHERE 2023:139131. [PMID: 37285971 DOI: 10.1016/j.chemosphere.2023.139131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Due to their ubiquitous presence in the environment and humans, chlorinated paraffins (CPs) are a major environmental and public health concern. CPs are known to persist, bioaccumulate and potentially threaten human health, but reports on their internal exposure in the adult general population are still scarce. In this study, serum samples collected from adults living in Hangzhou, China, were quantified for SCCPs and MCCPs using GC-NCI-MS methods. A total of 150 samples were collected and subjected to analysis. ∑SCCPs were detected in 98% of the samples with a median concentration of 721 ng/g lw. MCCPs were found in all serum samples with a median concentration of 2210 ng/g lw, indicating that MCCPs were the dominant homologous group. For SCCPs and MCCPs, ∑C10 and ∑C14 were found to be the dominant carbon chain length homologues. Our results showed that age, BMI and lifestyle were not found to be significantly associated with internal exposure to CPs for the samples in this study. Based on PCA analysis, an age-specific distribution of CP homologues was observed. This suggests that internal exposure to CPs in the general population is related to exposure scenarios and history. The results of this study may contribute to a better understanding of the internal exposure to CPs in the general population and may provide a direction for the investigation of the source of exposure to CPs in the environment and daily life.
Collapse
Affiliation(s)
- Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hanyu Liao
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanhong Chen
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xue Li
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Chen
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufen Han
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China; Toxicological Centre, Universiteit Antwerpen, Wilrijk, 2610, Belgium.
| |
Collapse
|
11
|
Mu YW, Cheng D, Zhang CL, Zhao XL, Zeng T. The potential health risks of short-chain chlorinated paraffin: A mini-review from a toxicological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162187. [PMID: 36781137 DOI: 10.1016/j.scitotenv.2023.162187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 μg/kg bw/d) and the UK Committee on Toxicity (COT, 30 μg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.
Collapse
Affiliation(s)
- Ying-Wen Mu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Yin S, McGrath TJ, Cseresznye A, Bombeke J, Poma G, Covaci A. Assessment of silicone wristbands for monitoring personal exposure to chlorinated paraffins (C 8-36): A pilot study. ENVIRONMENTAL RESEARCH 2023; 224:115526. [PMID: 36813067 DOI: 10.1016/j.envres.2023.115526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.
Collapse
Affiliation(s)
- Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
13
|
Simond AÉ, Ross PS, Cabrol J, Lesage V, Lair S, Woudneh MB, Yang D, Peng H, Colbourne K, Brown TM. Declining concentrations of chlorinated paraffins in endangered St. Lawrence Estuary belugas (Delphinapterus leucas): Response to regulations or a change in diet? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161488. [PMID: 36626992 DOI: 10.1016/j.scitotenv.2023.161488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Very high levels of industrial contaminants in St. Lawrence Estuary (SLE) beluga whales represent one of the major threats to this population classified as endangered under the Species at Risk Act in Canada. Elevated concentrations of short-chained chlorinated paraffins (SCCPs) were recently reported in blubber of adult male SLE belugas. Recent regulations for SCCPs in North America, combined with their replacement by medium- (MCCPs) and long-chained chlorinated paraffins (LCCPs), highlight the importance of tracking this toxic chemical class. The objectives of this study were to evaluate (1) levels and profiles of chlorinated paraffins (CPs) in samples obtained from carcasses of adult male, adult female, juvenile, newborn, and fetus beluga, and (2) trends in adult male belugas between 1997 and 2018. Factors potentially influencing CP temporal trends such as age, feeding ecology and sampling year were also explored. SCCPs dominated (64 to 100%) total CP concentrations across all age and sex classes, MCCPs accounted for the remaining proportion of total CPs, and LCCPs were not detected in any sample. The chlorinated paraffin homolog that dominated the most in beluga blubber was C12Cl8. Adult male SCCP concentrations from this study were considerably lower (> 2000-fold) than those recently reported in Simond et al. (2020), likely reflecting a previously erroneous overestimate due to the lack of a suitable analytical method for SCCPs at the time. Both SCCPs and total CPs declined over time in adult males in our study (rate of 1.67 and 1.33% per year, respectively), presumably due in part to the implementation of regulations in 2012. However, there is a need to better understand the possible contribution of a changing diet to contaminant exposure, as stable isotopic ratios of carbon also changed over time.
Collapse
Affiliation(s)
- Antoine É Simond
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada; Simon Fraser University, Pacific Science Enterprise Centre, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Peter S Ross
- Raincoast Conservation Foundation, W̱SÁNEĆ Territory, P.O. Box 2429, Sidney, BC V8L 3Y3, Canada.
| | - Jory Cabrol
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| | - Véronique Lesage
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St Hyacinthe, QC J2S 2M2, Canada.
| | - Million B Woudneh
- SGS AXYS Analytical Services Ltd., 2045 Mills Road West, Sydney, BC V8L 5X2, Canada.
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Hui Peng
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada; School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Katerina Colbourne
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Tanya M Brown
- Fisheries and Oceans Canada, Pacific Science Enterprise Center, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada; Simon Fraser University, Pacific Science Enterprise Centre, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| |
Collapse
|
14
|
Chronic oral exposure to short chain chlorinated paraffins induced testicular toxicity by promoting NRF2-mediated oxidative stress. Toxicol Lett 2023; 376:1-12. [PMID: 36642205 DOI: 10.1016/j.toxlet.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
As a widespread environmental contaminant, short chain chlorinated paraffins (SCCPs) has attracted great attention. However, the toxicity of SCCPs on male reproductive system remains ambiguous. In this study, we treated mice with SCCPs by gavage and investigated the toxic effects of SCCPs on testis. According to the results, the sperm parameters of mice were significantly reduced after exposure to 1, 10, 100 mg/kg body mass per day SCCPs for 35 days. SCCPs resulted in disorderly arranged seminiferous epithelium and increased apoptotic cells in testes. Both in vivo and in vitro experiments indicated that the oxidative stress was induced after SCCPs exposure, and dysfunction of nuclear factor erythroid-related factor (NRF2) signaling pathway played a role in this process. Moreover, resveratrol, an NRF2 activator, could alleviate the damage of SCCPs onmale reproductive system. Our study indicated that oxidative stress is the key point for explaining the testicular toxicity caused by SCCPs, and NRF2 could be used as a potential target for clinical treatment to alleviate the reproductive toxicity induced by SCCPs.
Collapse
|
15
|
Ding W, Zhao Z, Zheng Y, Wang R, Zhang Z, Zhang Z, Wang X, Yu S, Liu L, Huang R, Zhao X, Wu Q. Exposure to short-chain chlorinated paraffins induces astrocyte activation via JAK2/STAT3 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114268. [PMID: 36375367 DOI: 10.1016/j.ecoenv.2022.114268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In the last few decades, short-chain chlorinated paraffins (SCCPs) have become the most heavily produced monomeric organohalogen compounds, and have been reported to induce multiple organ toxicity. However, the effects of SCCPs on the central nervous system are unknown. In the present study, we show that SCCP exposure induced astrocyte proliferation and increased the expression of two critical markers of astrocyte activation, glial fibrillary acidic protein and inducible nitric oxide synthase, in vivo and in vitro. SCCP exposure also increased inflammatory factory gene expression. Moreover, SCCP treatment triggered Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signalling, as shown by increased phosphorylation and STAT3 translocation to the nucleus. Both JAK2 and STAT3 inhibition effectively attenuated SCCP-induced astrocyte activation. Finally, JAK2 inhibition significantly rescued STAT3 phosphorylation and nuclear translocation. Taken together, JAK2/STAT3 pathway activation contributed to SCCP-induced astrocyte activation. These data will help elucidate the molecular mechanism underlying SCCP-induced neurotoxicity.
Collapse
Affiliation(s)
- Wenjie Ding
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yudan Zheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zeyao Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziyang Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226006, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226006, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Xue D, Wei J, Lu W, Xia B, Li S, Liu D, Liu N, Wang X, Lin G. BDE-47 disturbs the immune response of lymphocytes to LPS by downregulating NF-κB pathway. CHEMOSPHERE 2022; 308:136562. [PMID: 36152834 DOI: 10.1016/j.chemosphere.2022.136562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/22/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The health risks associated with 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) have become an increasing concern due to its widespread presence in the environment and biological samples. To date, the potential toxicity of BDE-47 to immune system remains unclear. In this study, we aimed to study the immunotoxicity of BDE-47 using spleen-derived lymphocytes in vitro and BALB/c mice in vivo. In vitro results showed that lymphocytes exposed to 12.5-100 μM BDE-47 exhibited unchanged cell viability but decreased release of IL-6 and TNF-α when responding to lipopolysaccharide (LPS). The expression levels of p-p65, p-IκBα, TrkA and p-Akt involved in NF-κB pathway were obviously decreased, and NF-κB activator PMA could recover the BDE-47-induced inhibitory effect on IL-6 and TNF-α release by lymphocytes in response to LPS. In vivo data showed that BDE-47 orally administered to mice (1 mg/kg, 10 mg/kg, 100 mg/kg per day, 30 days) did not significantly affect body weight, organ index and histomorphology of spleen. However, ELISA assay showed that serum IL-6 and TNF-α levels from BDE-47-treated mice after intraperitoneal injection of LPS were significantly reduced, and high-throughput mouse cytokines screening found 13 more cytokines down-regulated in the serum. Transcriptomic sequencing of spleens identified 488 differential expressed genes (DEGs). GO enrichment analysis of these DEGs suggested that the GO term of response to LPS (GO: 0032,496) was significantly involved. KEGG enrichment analysis showed that the down-regulated DEGs significantly enriched in multiple immune-related signaling pathways including the NF-κB signaling pathway (mmu04064). Overall, these data suggested that BDE-47 could negatively regulate NF-κB signaling pathways to inhibit the immune response of lymphocytes to LPS, suggesting that exposures to BDE-47 may disturb the immune balance and increase the body's susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Dahui Xue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Jinhua Wei
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Wencan Lu
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Beibei Xia
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Shasha Li
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Dongmeng Liu
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518071, China
| | - Guimiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
17
|
Lei Y, Jiang T, He L, Liu Y, Sun Z, Deng W, Huang L, Zhang Z. Ellagic acid attenuates beryllium sulphate-induced oxidative stress and histopathological alterations of spleen in rats. PHARMACEUTICAL BIOLOGY 2022; 60:1047-1054. [PMID: 35649705 PMCID: PMC9176415 DOI: 10.1080/13880209.2022.2074051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Ellagic acid (EA) is a phenolic constituent in certain fruits and has largely been recognized for its role as an antioxidant compound. OBJECTIVE To evaluate the effect of EA on beryllium sulphate-induced splenic toxicity in rats. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups. The first group was used as control. Group 2 was exposed to BeSO4 (12 mg/kg, b.w.). Groups 3 and 4 were treated with EA (100 and 300 mg/kg, b.w.) daily for 6 weeks after exposing to BeSO4 (12 mg/kg, b.w.). Various biochemical and molecular biomarkers were assessed in blood and spleen. RESULTS BeSO4-intoxicated rats showed significant higher WBC (6.74 ± 0.20 × 109/L vs. 11.02 ± 1.31 × 109/L, p < 0.05), Neu (1.14 ± 0.11 × 109/L vs. 2.45 ± 0.42 × 109/L, p < 0.05), Lym (3.80 ± 0.83 × 109/L vs. 9.64 ± 1.99 × 109/L, p < 0.05), and PLT (868.4 ± 43.2 × 109/L vs. 1408 ± 77.57 × 109/L, p < 0.05) than normal control animals. Moreover, an increase in MDA with depletion of GSH and SOD activity (all p < 0.05) occurred in the spleen of rats treated with BeSO4. Furthermore, BeSO4-treated rats displayed significantly higher levels of apoptotic markers (Bax, Caspase-3, PARP) (all p < 0.05). EA administration resulted in a significant reversal of hematological and apoptotic markers in beryllium sulphate-intoxicated rats. DISCUSSION AND CONCLUSIONS Our results suggest EA treatment exerts a significant protective effect on BeSO4-induced splenic toxicity in rats.
Collapse
Affiliation(s)
- Yuandi Lei
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianyi Jiang
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liqin He
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yanping Liu
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhanbing Sun
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihua Deng
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lian Huang
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhaohui Zhang
- Department of Preventive Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
18
|
Nevondo V, Okonkwo OJ. Status of short-chain chlorinated paraffins in matrices and research gap priorities in Africa: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52844-52861. [PMID: 34478051 PMCID: PMC8476396 DOI: 10.1007/s11356-021-15924-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Chlorinated paraffins (CPs) have been applied as additives in a wide range of consumer products, including polyvinyl chloride (PVC) products, mining conveyor belts, paints, sealants, adhesives and as flame retardants. Consequently, CPs have been found in many matrices. Of all the CP groups, short-chain chlorinated paraffins (SCCPs) have raised an alarming concern globally due to their toxicity, persistence and long-range transportation in the environment. As a result, SCCPs were listed in the Stockholm Convention on Persistent Organic Pollutants (POPs) in May 2017. Additionally, a limit for the presence of SCCPs in other CP mixtures was set at 1% by weight. CPs can be released into the environment throughout their life cycle; therefore, it becomes crucial to assess their effects in different matrices. Although about 199 studies on SCCP concentration in different matrices have been published in other continents; however, there are scarce/or limited studies on SCCP concentration in Africa, particularly on consumer products, landfill leachates and sediment samples. So far, published studies on SCCP concentration in the continent include SCCPs in egg samples, e-waste recycling area and indoor dust in Ghana and South Africa, despite absence of any production of SCCPs in Africa. However, there still remains a huge research gap in the continent of Africa on SCCPs. Consequently, there is a need to develop robust SCCP inventories in Africa since the Stockholm Convention has already developed guidance document in this respect. This review, therefore, examines the state of knowledge pertaining to the levels and trends of these contaminants in Africa and further provides research gaps that need to be considered in order to better understand the global scale of the contaminant.
Collapse
Affiliation(s)
- Vhodaho Nevondo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, 175 Nelson Mandela Drive, Pretoria Central, 0001 South Africa
| |
Collapse
|
19
|
Xue Z, Zhu J, Wang X, Yang C, Fu Z. Evaluation of the immunomodulatory effects of C9-13-CPs in macrophages. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1154-1165. [PMID: 34355237 DOI: 10.1093/abbs/gmab094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Short-chain chlorinated paraffins (SCCPs) have been listed as a new class of persistent organic pollutants by the Stockholm Convention. SCCPs exhibit carcinogenic-, endocrine-, and metabolism-disrupting effects. However, the knowledge of the immunomodulatory effects of SCCPs and their underlying mechanisms, especially in specific immune cells, remains limited. In addition to SCCPs, C9-13-CPs have also been detected in humans. In this study, murine RAW264.7 macrophages were exposed to C9-13-CPs at environmentally relevant concentrations to investigate whether or how C9-13-CPs exhibit immunomodulatory effects. The results showed that the exposure of RAW264.7 cells to C9-13-CPs increased cell viability, as assayed by MTT analysis at 490 nm, and also promoted cell proliferation, as indicated by EdU uptake assay, which was measured at excitation and emission wavelengths of 488 and 512 nm, respectively. In addition, exposure to C9-13-CPs not only led to elevated ATP level and intracellular Ca2+ level but also caused AMPK signaling activation and NF-κB signaling inhibition. Moreover, molecular docking showed that the β2-AR receptor could bind to C9-13-CPs. Taken together, these results suggest that the immune dysfunction of RAW264.7 cells caused by C9-13-CPs is closely related to the β2-AR/AMPK/NF-κB signaling axis.
Collapse
Affiliation(s)
- Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
20
|
Zhao N, Fang X, Zhang S, Zhu Y, Ding L, Xu C. Male renal functions are associated with serum short- and medium-chain chlorinated paraffins in residents from Jinan, China. ENVIRONMENT INTERNATIONAL 2021; 153:106514. [PMID: 33799231 DOI: 10.1016/j.envint.2021.106514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlorinated paraffins (CPs) are contaminants ubiquitously detected in environmental samples, and reports addressing CPs in human samples are expanding. While CP exposure was suggested to impair kidney function by in vivo/in vitro experiments, epidemiological evidence is lacking. OBJECTIVE To examine the associations between serum total short-chain CP and medium-chain CP concentrations (∑SCCPs and ∑MCCPs) with human kidney function. METHODS The study samples were obtained from 387 participants living in Jinan, North China. We quantified ∑SCCPs and ∑MCCPs in serum samples and evaluated the kidney function of included subjects by estimated glomerular filtration rate (eGFR). The associations between serum ∑SCCPs, ∑MCCPs and eGFR were estimated using multivariable linear regression and logistic regression. The possible gender-dependent effects were studied by stratified analysis. RESULTS After adjusting for age, education, smoking status, drinking status, body mass index (BMI), family history of chronic kidney disease (CKD), fasting serum glucose, systolic blood pressure and diastolic blood pressure, higher concentrations of serum ∑SCCPs and ∑MCCPs were associated with higher male eGFR (β = 3.13 mL/min/1.73 m2 per one ln-unit increase of serum ∑SCCPs, 95%CI: 1.72, 4.54, p = 0.016; β = 3.52 mL/min/1.73 m2 per one ln-unit increase of serum ∑MCCPs, 95%CI: 1.89, 5.17, p = 0.011). Associations between serum ∑SCCPs, ∑MCCPs and female eGFR were null. Comparing higher (above the median serum CP levels) vs. lower exposure groups, serum ∑SCCPs and ∑MCCPs were associated with an elevated risk of glomerular hyperfiltration (GH, eGFR ≥ 135 mL/min/1.73 m2), which was associated with glomerular damage and represented as an early stage of chronic kidney disease (OR = 2.98; 95% CI: 1.24, 4.71 for SCCPs; OR = 3.25; 95% CI: 1.20, 5.29 for MCCPs). CONCLUSIONS Our study suggests that male serum ∑SCCPs and ∑MCCPs are associated with an increased risk of GH, indicating early-stage kidney impairment.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Xinxin Fang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yuting Zhu
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Caihong Xu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
21
|
Yuan B, Tay JH, Padilla-Sánchez JA, Papadopoulou E, Haug LS, de Wit CA. Human Exposure to Chlorinated Paraffins via Inhalation and Dust Ingestion in a Norwegian Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1145-1154. [PMID: 33400865 PMCID: PMC7880561 DOI: 10.1021/acs.est.0c05891] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Very-short- (vSCCPs, C6-9), short- (SCCPs, C10-13), medium- (MCCPs, C14-17), and long-chain chlorinated paraffins (LCCPs, C>17) were analyzed in indoor air and dust collected from the living rooms and personal 24 h air of 61 adults from a Norwegian cohort. Relatively volatile CPs, i.e., vSCCPs and SCCPs, showed a greater tendency to partition from settled indoor dust to paired stationary indoor air from the same living rooms than MCCPs and LCCPs, with median logarithmic dust-air partition ratios of 1.3, 2.9, 4.1, and 5.4, respectively. Using the stationary indoor air and settled indoor dust concentrations, the combined median daily exposures to vSCCPs, SCCPs, MCCPs, and LCCPs were estimated to be 0.074, 2.7, 0.93, and 0.095 ng/kg bw/d, respectively. Inhalation was the predominant exposure pathway for vSCCPs (median 99%) and SCCPs (59%), while dust ingestion was the predominant exposure pathway for MCCPs (75%) and LCCPs (95%). The estimated inhalation exposure to total CPs was ∼ 5 times higher when the personal 24 h air results were used rather than the corresponding stationary indoor air results in 13 paired samples, indicating that exposure situations other than living rooms contributed significantly to the overall personal exposure. The 95th percentile exposure for CPs did not exceed the reference dose.
Collapse
Affiliation(s)
- Bo Yuan
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Joo Hui Tay
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Eleni Papadopoulou
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public
Health, NO-0213 Oslo, Norway
| | - Line Småstuen Haug
- Section
for Environmental Exposure and Epidemiology, Norwegian Institute of Public
Health, NO-0213 Oslo, Norway
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
22
|
Sun Y, Cui H, Li T, Tao S, Hu J, Wan Y. Protein-affinity guided identification of chlorinated paraffin components as ubiquitous chemicals. ENVIRONMENT INTERNATIONAL 2020; 145:106165. [PMID: 33053452 DOI: 10.1016/j.envint.2020.106165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) have been extensively examined to identify their components. Short-chain CPs with a carbon number of 10-13 have been strictly restricted or banned due to their addition to the list of Persistent Organic Pollutants in the world. However, more constituents with potential toxicities in these complicated mixtures are still unclear. In the present study, a purification method based on the protein affinity of thyroid hormone-related proteins (transthyretin and thyroid receptor) was established. The protein-based affinity extraction coupled with high-throughput scanning successfully discover a new group of chlorinated compounds (CP(O2)) in commercial CP mixtures. The CP(O2)s were purified from the commercial mixtures and identified to be chlorinated fatty acid methyl esters (CFAMEs) with a carbon chain length of 17-19 and 3-11 chlorines by a combination of liquid-liquid extraction, hydrolysis, Fourier transform infrared spectrometry and Orbitrap mass spectrometry. The newly identified CFAMEs were found to be ubiquitous in the environmental matrices, and concentration ratios of ∑CFAMEs/∑CPs ranged from 0.01 to 35 in air, soil and food samples. CFAMEs were also detected in blood samples of general populations, and accumulated in humans through dietary uptake. CFAMEs can compete with T4 for binding TTR with higher potencies than CPs, possibly leading to disruptions of thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Yibin Sun
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tong Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Fernie KJ, Karouna-Renier NK, Letcher RJ, Schultz SL, Peters LE, Palace V, Henry PFP. Endocrine and physiological responses of hatchling American kestrels (Falco sparverius) following embryonic exposure to technical short-chain chlorinated paraffins (C 10-13). ENVIRONMENT INTERNATIONAL 2020; 145:106087. [PMID: 32950788 DOI: 10.1016/j.envint.2020.106087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are complex mixtures of polychlorinated n-alkanes, shown to bioaccumulate but with unknown effects in wild birds. The present study examined development-related effects of SCCPs on captive American kestrels (Falco sparverius) treated in ovo on embryonic day (ED) 5 by injection with technical Chloroparaffin® (C10-13, 55.5% Cl) at environmentally relevant nominal (measured) concentrations of 10 (10), 50 (29) or 100 (97) ng ΣSCCP/g egg ww, and artificially incubated until hatching (ED27-ED29). The SCCP concentrations measured in the yolk sacs of the hatchling kestrels bracketed concentrations reported in the eggs of wild birds. Uptake and deposition of these SCCPs differed between male and female hatchlings, with only males showing differences in SCCP concentrations, being highest in the high-dose males than each of the other male groups. Embryonic exposure to SCCPs suppressed glandular total thyroxine (TT4) (20-33%) and reduced circulating triiodothyronine (TT3) (37-40%) in male hatchlings only when compared to control males, but had no effect on glandular TT3 or circulating TT4 in male or female kestrels. Histological assessments of thyroid glands showed that both sexes experienced significant structural changes indicative of gland activation. These thyroid glandular changes and the variations in SCCP concentrations were related to circulating TT3 in female hatchlings. Hepatic deiodinase enzyme (D1, D2) activities were stable and no SCCP-related changes were observed in hatching success, hatchling size, or immune organ size. However, several of the thyroid function indicators were correlated with hatchling size and smaller bursas and spleens, possibly indirectly through SCCP-induced changes in thyroid function. Because changes in thyroid function were evident at concentrations measured in wild bird eggs, similar changes may occur in wild nestlings. The potential impact of these changes on thyroid-mediated growth and survival in wild birds requires further investigation.
Collapse
Affiliation(s)
- K J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - N K Karouna-Renier
- USGS Patuxent Wildlife Research Center, BARC, East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - R J Letcher
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment Canada, 1125 Colonel By Drive, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - S L Schultz
- USGS Patuxent Wildlife Research Center, BARC, East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - L E Peters
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - V Palace
- International Institute of Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| | - P F P Henry
- USGS Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| |
Collapse
|
24
|
Wu Y, Gao S, Ji B, Liu Z, Zeng X, Yu Z. Occurrence of short- and medium-chain chlorinated paraffins in soils and sediments from Dongguan City, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114181. [PMID: 32806426 DOI: 10.1016/j.envpol.2020.114181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
As a group of emerging organic pollutants, chlorinated paraffins (CPs) have attracted rising global attention due to their persistence and toxicity. In this study, we have investigated the concentration levels and profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in soils and sediments from Dongguan City, an industrial area in South China, and have also screened very short-chain chlorinated paraffins (vSCCPs) by means of ultra-high resolution liquid chromatograph coupled with an Orbitrap Fusion Tribrid mass spectrometer. The results indicated that total SCCP concentrations ranged from 6.75 to 993 ng/g (mean 172 ng/g) in soils and from 4.00 to 613 ng/g (mean 153 ng/g) in sediments, respectively. Higher MCCP levels were observed with a range of 23.9-2427 ng/g (mean 369 ng/g) in soils and 14.0-1581 ng/g (mean 493 ng/g) in sediments, respectively. The results indicated that MCCPs dominated over SCCPs in the studied region. The dominant homologues in soils and sediments were C13Cl6-7 and C14Cl7-8, C13Cl7, and C14Cl7-8, respectively. Furthermore, six vSCCP homologues (C8Cl7-8 and C9Cl5-8) in soils and four vSCCPs (C9Cl5-8) in sediments have been identified. Because of their higher detection frequencies, further studies should focus on the transformation mechanisms and toxicities of these vSCCPs in environmental media and biota.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bingjing Ji
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyang Liu
- Institute of Atmospheric Environment, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
25
|
Ding L, Luo N, Liu Y, Fang X, Zhang S, Li S, Jiang W, Zhao N. Short and medium-chain chlorinated paraffins in serum from residents aged from 50 to 84 in Jinan, China: Occurrence, composition and association with hematologic parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:137998. [PMID: 32361102 DOI: 10.1016/j.scitotenv.2020.137998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 05/22/2023]
Abstract
Human exposure to chlorinated paraffins (CPs) has been expected and assessed by external pathways considering their pervasive environmental occurrence. However, the deficiency of external exposure assessment in characterizing human burden is unavoidable. In addition, the associations between health outcomes and CP contents in human biospecimen are rarely assessed. In this study, we reported the occurrence and homologue profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in serum samples from 145 residents aged from 50 to 84 in Jinan, Shandong Province of China using quadrupole time-of-flight high-resolution mass spectrometry coupled with atmospheric pressure chemical ionization source operated in negative ion mode (APCI-qTOF-HRMS). The associations between serum CP concentrations and hematologic parameters were further analyzed by linear regression. We identified high level of ∑SCCPs (median = 107 ng/g wet weight, ww; 13,800 ng/g lipid, lw), ∑MCCPs (median = 134 ng/g ww; 15,200 ng/g lw) and elevated ∑MCCPs/∑SCCPs (median = 1.12) in serum of the studied population. C13-CPs and C14-CPs were the most abundant SCCP and MCCP groups, respectively. While the predominant chlorine homologues among SCCPs and MCCPs were Cl7-8-CPs. ∑SCCPs, ∑MCCPs, ∑MCCPs/∑SCCPs and the homologue patterns presented no significant variance among age, sex and BMI groups. Further explorations suggested that perturbation of hematologic homeostasis could be induced by CP exposure in a sex-specific way, reflected by significant negative associations of serum SCCP and MCCP concentrations in lipid weight basis with sex-specific hematologic parameters. This study suffered from some limitations and should be interpreted with caution. However, the CP burdens of residents in China and the subsequent health risks must be underscored.
Collapse
Affiliation(s)
- Lei Ding
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Nana Luo
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Yi Liu
- School of Public Health, Shandong University, Jinan 250012, China
| | - Xinxin Fang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Shiwen Zhang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Shixue Li
- School of Public Health, Shandong University, Jinan 250012, China
| | - Wei Jiang
- Environmental Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
26
|
Simond AE, Houde M, Lesage V, Michaud R, Verreault J. Metabolomic profiles of the endangered St. Lawrence Estuary beluga population and associations with organohalogen contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137204. [PMID: 32065898 DOI: 10.1016/j.scitotenv.2020.137204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The endangered beluga (Delphinapterus leucas) population residing in the St. Lawrence Estuary (SLE; Eastern Canada) is declining. The elevated tissue concentrations of a wide range of organohalogen contaminants might play a role in the non-recovery of this whale population. Organohalogens have been reported to impair the regulation of several metabolic products from cellular reactions in mammals such as amino acids and fatty acids. The objective of this study was to investigate a suite of organohalogens including polychlorinated biphenyls, organochlorine pesticides, short-chain chlorinated paraffins (SCCPs), polybrominated diphenyl ethers, and selected emerging flame retardants in blubber (biopsy) collected from 40 SLE male belugas, and their relationships to skin concentrations of targeted metabolites (i.e., 21 amino acids, 22 biogenic amines, 18 fatty acids, and 17 energy metabolites). A cluster analysis based on metabolomic profiles distinguished two main subgroups of belugas in the upper and lower sector of their summer habitat in the SLE. These results indicate that ecological factors such as local prey availability and diet composition played a role in shaping the metabolite profiles of belugas. Moreover, SCCP concentrations in SLE male belugas correlated negatively with those of four unsaturated fatty acids (C16:1ω7, C22:5ω3c1, C22:5ω3c2, and C22:6ω3), and positively with those of acetylornithine (biogenic amine). These findings suggest that biological functions such as lipid metabolism represent potential targets for organohalogens in this population, and further our understanding on potential health risks associated with elevated organohalogen exposure in cetaceans. Our results also underscore the necessity of considering ecological factors (e.g., diet and habitat use) in metabolomic studies.
Collapse
Affiliation(s)
- Antoine E Simond
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Véronique Lesage
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, P.O. Box 1000, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Robert Michaud
- Groupe de Recherche et d'Éducation sur les Mammifères Marins (GREMM), 870 avenue Salaberry, Bureau R24, Québec, QC G1R 2T9, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
27
|
Zheng X, Sun Q, Wang S, Li X, Liu P, Yan Z, Kong X, Fan J. Advances in Studies on Toxic Effects of Short-Chain Chlorinated Paraffins (SCCPs) and Characterization of Environmental Pollution in China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:501-512. [PMID: 32123944 DOI: 10.1007/s00244-020-00723-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were included in the Stockholm Convention in 2017. SCCPs have persistence, bioaccumulation, long-range environmental mobility and biological toxicity, significant toxicity to aquatic organisms, and potential carcinogenicity. Little study was on the progress research on the current environmental pollution in China. We reviewed the pollution conditions of SCCPs in air, soil, and water and their accumulation in food and organisms in China, especially for the contaminations of aquatic ecosystem. Meanwhile, we summarize the recent studies on the toxic effects and toxicological mechanisms of SCCPs on aquatic organisms and mammals. Finally, the further direction and trends for SCCP research were proposed. More efforts are necessary to conduct a comprehensive risk assessment and evaluate the relative importance of the various exposure routes.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| |
Collapse
|
28
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Brüschweiler B, Leonards P, Rose M, Binaglia M, Horváth Z, Ramos Bordajandi L, Nielsen E. Risk assessment of chlorinated paraffins in feed and food. EFSA J 2020; 18:e05991. [PMID: 32874241 PMCID: PMC7447893 DOI: 10.2903/j.efsa.2020.5991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of chlorinated paraffins in feed and food. The data for experimental animals were reviewed and the CONTAM Panel identified the liver, kidney and thyroid as the target organs for the SCCP and MCCP mixtures tested in repeated dose toxicity studies. Decreased pup survival and subcutaneous haematoma/haemorrhage were also identified as critical effects for an MCCP mixture. For the LCCP mixtures tested, the liver was identified as the target organ. The Panel selected as reference points a BMDL 10 of 2.3 mg/kg bw per day for increased incidence of nephritis in male rats, and of 36 mg/kg bw per day for increased relative kidney weights in male and female rats for SCCPs and MCCPs, respectively. For LCCPs, a reference point relevant for humans could not be identified. Due to the limitations in the toxicokinetic and toxicological database, the Panel concluded that derivation of a health-based guidance value was not appropriate. Only limited data on the occurrence of SCCPs and MCCPs in some fish species were submitted to EFSA. No data were submitted for LCCPs. Thus, a robust exposure assessment and consequently a complete risk characterisation could not be performed. A preliminary risk characterisation based only on the consumption of fish was performed, and the calculated margins of exposure suggested no health concern for this limited scenario. The Panel noted that dietary exposure will be higher due to the contribution of CPs from other foods. The Panel was not able to identify reference points for farm animals, horses and companion animals. No occurrence data for feed were submitted to EFSA. Therefore, no risk characterisation could be performed for any of these animal species.
Collapse
|
29
|
Wang X, Zhu J, Xue Z, Jin X, Jin Y, Fu Z. The environmental distribution and toxicity of short-chain chlorinated paraffins and underlying mechanisms: Implications for further toxicological investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133834. [PMID: 31416033 DOI: 10.1016/j.scitotenv.2019.133834] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 05/20/2023]
Abstract
Short-chain chlorinated paraffin (SCCP) pollution has become a global threat. Much attention has been paid to their environmental occurrence and toxicity. In this review, we summarized the wide distribution of SCCPs in various environmental matrices and biota, including human beings. Toxicokinetics and the toxicities of SCCPs, including lethality, hepatotoxicity, developmental toxicity, carcinogenicity, endocrine- and metabolism-disrupting effects, and immunomodulatory effects have been considered. The mechanisms of SCCP toxicity are mainly related to oxidative stress, metabolic disturbance, endocrine disruption and binding to biomacromolecules. In the future, further studies of SCCPs should focus on searching for their novel toxicity targets, and uncovering their toxic effects using transcriptomics, proteomics, metabolomics, and mutigenerational toxicity.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|