1
|
Thakur M, Yadav V, Kumar Y, Pramanik A, Dubey KK. How to deal with xenobiotic compounds through environment friendly approach? Crit Rev Biotechnol 2024; 44:1574-1593. [PMID: 38710611 DOI: 10.1080/07388551.2024.2336527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 05/08/2024]
Abstract
Every year, a huge amount of lethal compounds, such as synthetic dyes, pesticides, pharmaceuticals, hydrocarbons, etc. are mass produced worldwide, which negatively affect soil, air, and water quality. At present, pesticides are used very frequently to meet the requirements of modernized agriculture. The Food and Agriculture Organization of the United Nations (FAO) estimates that food production will increase by 80% by 2050 to keep up with the growing population, consequently pesticides will continue to play a role in agriculture. However, improper handling of these highly persistent chemicals leads to pollution of the environment and accumulation in food chain. These effects necessitate the development of technologies to eliminate or degrade these pollutants. Degradation of these compounds by physical and chemical processes is expensive and usually results in secondary compounds with higher toxicity. The biological strategies proposed for the degradation of these compounds are both cost-effective and eco-friendly. Microbes play an imperative role in the degradation of xenobiotic compounds that have toxic effects on the environment. This review on the fate of xenobiotic compounds in the environment presents cutting-edge insights and novel contributions in different fields. Microbial community dynamics in water bodies, genetic modification for enhanced pesticide degradation and the use of fungi for pharmaceutical removal, white-rot fungi's versatile ligninolytic enzymes and biodegradation potential are highlighted. Here we emphasize the factors influencing bioremediation, such as microbial interactions and carbon catabolism repression, along with a nuanced view of challenges and limitations. Overall, this review provides a comprehensive perspective on the bioremediation strategies.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Yatin Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | | |
Collapse
|
2
|
Nath S, Enerijiofi KE, Astapati AD, Guha A. Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:1048-1072. [PMID: 39246015 DOI: 10.1002/jeq2.20625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
The present review discusses the growing concern of microplastics (MPs) and nanoplastics (NPs) in soil, together with their sources, concentration, distribution, and impact on soil microorganisms, human health, and ecosystems. MPs and NPs can enter the soil through various pathways, such as agricultural activities, sewage sludge application, and atmospheric deposition. Once in the soil, they can accumulate in the upper layers and affect soil structure, water retention, and nutrient availability. The presence of MPs and NPs in soil can also have ecological consequences, acting as carriers for pollutants and contaminants, such as heavy metals and persistent organic pollutants. Additionally, the leaching of chemicals and additives from MPs and NPs can pose public health risks through the food web and groundwater contamination. The detection and analyses of MPs and NPs in soil can be challenging, and methods involve spectroscopic and microscopy techniques, such as Fourier-transform infrared spectroscopy and scanning electron microscopy. To mitigate the presence and effects of MPs and NPs in soil, it is essential to reduce plastic waste production, improve waste management practices, and adopt sustainable agricultural practices. Effective mitigation measures include implementing stricter regulations on plastic use, promoting biodegradable alternatives, and enhancing recycling infrastructure. Additionally, soil amendments, such as biochar and compost, can help immobilize MPs and NPs, reducing their mobility and bioavailability. This review article aims to provide a comprehensive understanding of these emerging environmental issues and identify potential solutions to alleviate their impact on soil health, ecosystem functioning, and community health.
Collapse
Affiliation(s)
- Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | - Kingsley Erhons Enerijiofi
- Department of Biological Sciences, College of Basic and Applied Sciences, Glorious Vision University, Ogwa, Edo State, Nigeria
| | | | - Anupam Guha
- Michael Madhusudan Dutta College, Sabroom, Tripura, India
| |
Collapse
|
3
|
Zhan C, Liang C, Zhao L, Jiang S, Zhang Y. Differential responses of crop yields to multi-timescale drought in mainland China: Spatiotemporal patterns and climate drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167559. [PMID: 37802342 DOI: 10.1016/j.scitotenv.2023.167559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
Increasingly frequent and severe droughts pose a growing threat to food security in China. However, our understanding of how different crops respond to multi-timescale drought under varying climatic conditions remains limited, hindering effective drought risk management. To address this knowledge gap, we applied spatial principal component analysis (SPCA) to unveil spatiotemporal patterns in annual yields of major grain crops (rice, wheat, maize) and cotton in response to multi-timescale drought, as indicated by the standardized precipitation evapotranspiration index (SPEI) across China. Subsequently, predictive discriminant analysis (PDA) was employed to identify the primary climatic factors driving these response patterns. The findings indicated that drought-induced interannual variability of crop yields were spatially and temporally heterogeneous, closely tied to the timescale used for drought assessment. Crop types displayed distinct responses to drought, evident in the variations of months and corresponding timescales for their strongest reactions. The initial three principal components, capturing over 65 % of drought-related yield variance, unveiled short- to medium-term patterns for rice, maize, and cotton, and long-term patterns for wheat. Specifically, rice was highly susceptible to drought on a 4-month timescale in September, wheat on a 6-month timescale in May, maize on a 3-month timescale in August, and cotton on a 3-month timescale in September. Moreover, the first three discriminant functions explaining over 90 % of the total variance, effectively distinguish spatiotemporal crop yield response patterns to drought. These patterns primarily stem from seasonal climatic averages, with water balance (precipitation minus potential evapotranspiration) and temperature being the most influential variables (p < 0.05). Interestingly, we observed a weak correlation between drought severity and crop yield in humid conditions, with responses tending to manifest over longer timescales. These findings enhance our comprehension of how drought timescales impact crop yields in China, providing valuable insights for the implementation of rational irrigation management strategies.
Collapse
Affiliation(s)
- Cun Zhan
- State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Chuan Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Lu Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, China.
| | - Shouzheng Jiang
- State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Yaling Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering & College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li J, Geneletti D, Wang H. Understanding supply-demand mismatches in ecosystem services and interactive effects of drivers to support spatial planning in Tianjin metropolis, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165067. [PMID: 37356770 DOI: 10.1016/j.scitotenv.2023.165067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Metropolitan areas are being challenged by the disparity between growing societal needs and dwindling natural resource provision. Understanding the supply-demand mismatches of ecosystem services (ES) and their drivers is essential for landscape planning and decision-making. However, integrating such information into spatial planning remains challenging due to the complex nature of urban ecosystems and their intrinsic interactions. In this study, we first assessed and mapped the supply, demand, and mismatches of six typical ES in Tianjin, China. We then clustered numerous townships based on their corresponding spatial characteristic of ES supply-demand mismatches. We also used Random Forest regression to examine the relative importance of drivers and applied Partial Least Squares structural equation modelling to decouple their interactions. The results showed that, the distribution of ES supply and demand showed obvious spatial heterogeneity, with a common surplus of ES supply in highly natural mountainous region and an excess of demand in urban centre. Additionally, all towns were classified into four spatial clusters with homogeneous states of supply-demand mismatches, serving as basic units for spatial optimization. Moreover, the interactions between drivers affected ES supply-demand mismatches in a coupled manner, including the direct effects of the socioeconomic factor (-0.821) and landscape composition (0.234), as well as the indirect effects of the biophysical factor (0.151) and landscape configuration (0.082). Finally, we discussed the utility of analysing the spatial mismatches between ES supply and demand for integrated territorial planning and coordinated decision-making.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Landscape Architecture, Tianjin University, 300072 Tianjin, China
| | - Davide Geneletti
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77 38123 Trento, Italy
| | - Hongcheng Wang
- Department of Landscape Architecture, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
5
|
Health risk implications of iron in wastewater soil-food crops grown in the vicinity of peri urban areas of the District Sargodha. PLoS One 2022; 17:e0275497. [DOI: 10.1371/journal.pone.0275497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Irrigation using sewage water can be beneficial, as it can increase the productivity of crops but has negative consequences on crops, soil contamination, and human health. It contains a variety of toxins, such as chemicals and heavy metals, which damage the soil and crops. In this regard, the aim of the research was to assess the potential health hazards of iron (Fe) metal in food crops (leafy and root crops) treated with wastewater (T_1), canal water (T_2), and tube well water (T_3). Water, soil, and edible components of food crops were collected at random from three distinct locations. Fe concentration in samples was estimated using atomic absorption spectrophotometer, following wet digestion method. The Fe concentrations, ranged from 0.408 to 1.03 mg/l in water, 31.55 to 187.47 mgkg-1 in soil and 4.09 to 32.583 mgkg-1 in crop samples; which were within permissible limits of the World Health Organization (WHO). There was a positive correlation between soils and crops. The bioconcentration factor, enrichment factor (EF), daily intake of metals (DIM), health risk index (HRI), and target hazard quotient (THQ) all values were <1, except for a pollution load index >1, which indicated soil contamination, but there was no Fe toxicity in crops, no health risk, and no-carcinogenic risk for these food crops in humans. To prevent the excessive accumulation of Fe metal in the food chain, regular monitoring is needed.
Collapse
|
6
|
Oliveira SL, Crusciol CAC, Rodrigues VA, Galeriani TM, Portugal JR, Bossolani JW, Moretti LG, Calonego JC, Cantarella H. Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:887682. [PMID: 35720532 PMCID: PMC9199428 DOI: 10.3389/fpls.2022.887682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
Foliar fertilization has been used as a supplemental strategy to plant nutrition especially in crops with high yield potential. Applying nutrients in small doses stimulates photosynthesis and increases yield performance. The aim of this study was to evaluate the efficiency of foliar application of molybdenum (Mo) to soybean and maize. The treatments consisted of the presence (+Mo) and absence (-Mo) of supplementation. Plant nutritional status, nitrate reductase (NR) activity, gas exchange parameters, photosynthetic enzyme activity (Rubisco in soybean and maize and PEPcase in maize), total soluble sugar concentration, leaf protein content, shoot dry matter, shoot nitrogen accumulated, number of grains per plant, mass of 100 grains, and grain yield were evaluated. For soybean and maize, application of Mo increased leaf NR activity, nitrogen and protein content, Rubisco activity, net photosynthesis, and grain yield. These results indicate that foliar fertilization with Mo can efficiently enhance nitrogen metabolism and the plant’s response to carbon fixation, resulting in improved crop yields.
Collapse
Affiliation(s)
- Sirlene Lopes Oliveira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Vitor Alves Rodrigues
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Tatiani Mayara Galeriani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - José Roberto Portugal
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - João William Bossolani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Luiz Gustavo Moretti
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Juliano Carlos Calonego
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Campinas, Brazil
| |
Collapse
|
7
|
Phosphorus Fertilizers from Sewage Sludge Ash and Animal Blood as an Example of Biobased Environment-Friendly Agrochemicals: Findings from Field Experiments. Molecules 2022; 27:molecules27092769. [PMID: 35566125 PMCID: PMC9100326 DOI: 10.3390/molecules27092769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Wastes of biological origin from wastewater treatment systems and slaughterhouses contain substantial amounts of phosphorus (P) with high recovery potential and can contribute to alleviating the global P supply problem. This paper presents the performance of fertilizer (AF) and biofertilizer (BF) from sewage sludge ash and animal blood under field conditions. BF is AF incorporated with lyophilized cells of P-solubilizing bacteria, Bacillus megaterium. In the experiments with spring or winter wheat, the biobased fertilizers were compared to commercial P fertilizer, superphosphate (SP). No P fertilization provided an additional reference. Fertilizer effects on wheat productivity and on selected properties of soil were studied. BF showed the same yield-forming efficiency as SP, and under poorer habitat conditions, performed slightly better than AF in increasing yield and soil available P. Biobased fertilizers applied at the P rate up to 35.2 kg ha-1 did not affect the soil pH, did not increase As, Cd, Cr, Ni, and Pb content, and did not alter the abundance of heterotrophic bacteria and fungi in the soil. The findings indicate that biobased fertilizers could at least partially replace conventional P fertilizers. Research into strain selection and the proportion of P-solubilizing microorganisms introduced into fertilizers should be continued.
Collapse
|
8
|
A Critical Review of Studies on Water Resources in the Souss-Massa Basin, Morocco: Envisioning a Water Research Agenda for Local Sustainable Development. WATER 2022. [DOI: 10.3390/w14091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most recent studies confirm a decreasing trend in water resources availability in the northern African region; the high competition between the sectors that use this vital resource, and the changing climate are considered as the main factors behind this situation. Under such very dynamic interactions between the natural resources, climate and the socioeconomic sectors, scientists from different perspectives have a challenging task to provide up-to-date and reliable insights to guide potential sustainable management strategies. Through the case of the Souss-Massa, the present study aims to provide state of the art scientific research on water resources. It is based on data from publications in the two databases Scopus and Web of Science, unpublished papers and reports as well as various theses. The Vosviewer data visualization tool was used to analyze different aspects of the publications, including the time distribution of water resources related research, the research topics as well as the different approaches adopted by the authors. In addition, this review summarizes results of previous research investigations carried out on the quantity and quality of water resources in relation to agriculture as well as to climate change and variability. The study showed that the period 2016–2021 was the most significant in terms of the number of research papers published. The maps of publications analyzed showed that researchers working in the area focus more on the study of the quality, chemical processing and the impacts of climate change on the availability of water resources. The results showed that Souss-Massa is a region where an important amount of research on climate and water has been carried out. Hence, to keep up with the rapid evolution of land use and other anthropogenic actions in the basin there remain several gaps in knowledge and constraints to address. In order to provide potential research opportunities in the Souss-Massa basin, in terms of scope and methods, this review identifies several gaps in research namely data quality and availability, as well as gaps in water resources modelling. A detailed discussion has been provided on the possibilities to develop and address the research gaps in the region.
Collapse
|
9
|
Schröder P, Mench M, Povilaitis V, Rineau F, Rutkowska B, Schloter M, Szulc W, Žydelis R, Loit E. Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149844. [PMID: 34525739 DOI: 10.1016/j.scitotenv.2021.149844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
In the EU and world-wide, agriculture is in transition. Whilst we just converted conventional farming imprinted by the post-war food demand and heavy agrochemical usage into integrated and sustainable farming with optimized production, we now have to focus on even smarter agricultural management. Enhanced nutrient efficiency and resistance to pests/pathogens combined with a greener footprint will be crucial for future sustainable farming and its wider environment. Future land use must embrace efficient production and utilization of biomass for improved economic, environmental, and social outcomes, as subsumed under the EU Green Deal, including also sites that have so far been considered as marginal and excluded from production. Another frontier is to supply high-quality food and feed to increase the nutrient density of staple crops. In diets of over two-thirds of the world's population, more than one micronutrient (Fe, Zn, I or Se) is lacking. To improve nutritious values of crops, it will be necessary to combine integrated, systems-based approaches of land management with sustainable redevelopment of agriculture, including central ecosystem services, on so far neglected sites: neglected grassland, set aside land, and marginal lands, paying attention to their connectivity with natural areas. Here we need new integrative approaches which allow the application of different instruments to provide us not only with biomass of sufficient quality and quantity in a site specific manner, but also to improve soil ecological services, e.g. soil C sequestration, water quality, habitat and soil resistance to erosion, while keeping fertilization as low as possible. Such instruments may include the application of different forms of high carbon amendments, the application of macro- and microelements to improve crop performance and quality as well as a targeted manipulation of the soil microbiome. Under certain caveats, the potential of such sites can be unlocked by innovative production systems, ready for the sustainable production of crops enriched in micronutrients and providing services within a circular economy.
Collapse
Affiliation(s)
- Peter Schröder
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit for Comparative Microiome Analysis, D-85764 Neuherberg, Germany.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, UMR 1202, F-33615 Pessac, France
| | - Virmantas Povilaitis
- Lithuanian Research Centre for Agriculture and Forestry, Akademija LT-58344, Kedainiai distr. Lithuania
| | - Francois Rineau
- Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - Beata Rutkowska
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Michael Schloter
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit for Comparative Microiome Analysis, D-85764 Neuherberg, Germany
| | - Wieslaw Szulc
- Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Renaldas Žydelis
- Lithuanian Research Centre for Agriculture and Forestry, Akademija LT-58344, Kedainiai distr. Lithuania
| | - Evelin Loit
- Estonian University of Life Sciences, Chair of Field Crops and Plant Biology, 51006 Tartu, Estonia.
| |
Collapse
|
10
|
Possibilities of Using Organic Waste after Biological and Physical Processing—An Overview. Processes (Basel) 2021. [DOI: 10.3390/pr9091501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With a rapidly increasing amount of waste, waste management is an extremely important issue. Utilising processes such as combustion and biological processing significantly decreases the accumulation and volume of waste. Despite this, huge volumes of resulting waste that still need to be managed remain. This paper identifies various methods of processing organic waste, discussing both thermal and biological techniques for waste management. Additionally, this paper demonstrates that the end products remaining after processing waste are oftentimes functional for agricultural use. These materials are excellent byproducts used to produce various organic, mineral and organomineral fertilisers. For instance, it appears that the production of fertilisers is the most promising method of utilising fly ash that results from the combustion of waste. In order to minimise the environmental risk of polluting soil with heavy metals, waste, as well as ashes resulting from combustion, must meet the criteria for the limit of contaminants.
Collapse
|
11
|
Modeling the ecosystem service of agricultural residues provision for bioenergy production: A potential application in the Emilia-Romagna region (Italy). Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Real M, Facenda G, Celis R. Sorption and dissipation of the allelochemicals umbelliferone and salicylic acid in a Mediterranean soil environment: Effect of olive-mill waste addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145027. [PMID: 33610996 DOI: 10.1016/j.scitotenv.2021.145027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Allelochemicals are receiving much attention as natural alternatives to synthetic pesticides. Very little is known, however, about the processes to which allelochemicals are subjected once they reach the soil environment, despite the fact that it is widely recognized that such processes can dramatically influence their bioactivity and applicability as eco-friendly pesticides. The objectives of this study were to characterize the sorption and dissipation of two phenolic allelochemicals, umbelliferone (UM) and salicylic acid (SA), after their simultaneous application to a Mediterranean agricultural soil and to assess to what extent sorption and dissipation were affected by amending the soil with an agro-industrial organic waste (olive-mill waste, OMW), as a common agronomic practice in Mediterranean agricultural systems. In experiments conducted under standard laboratory conditions, UM (pKa = 7.5) showed greater sorption than SA (pKa = 2.8) and both allelochemicals displayed very short half-lives in the tested soil (DT50 < 1 day). Furthermore, the addition of OMW increased the sorption of UM and the half-lives of both SA and UM in the soil. A field experiment conducted on unamended and OMW-amended soil plots confirmed the ability of OMW to increase the persistence of SA and UM under a real Mediterranean soil environment and showed that, for all treatments, the allelochemicals displayed higher half-lives in the field than under standard laboratory conditions. This was attributed to reduced biodegradation of UM and SA under progressive soil drying, which was thus identified as a factor that can prolong the persistence of allelochemicals in semi-arid soil environments. We highlight the need to test the environmental fate of allelochemicals under specific agro-climatic scenarios and illustrate how management practices can help increase their soil persistence so that their bioactivity can be better expressed.
Collapse
Affiliation(s)
- Miguel Real
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Gracia Facenda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain
| | - Rafael Celis
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
13
|
Johnson AC, Liu J, Reynolds O, Furlong MJ, Mo J, Rizvi S, Gurr GM. Conservation biological control research is strongly uneven across trophic levels and economic measures. PEST MANAGEMENT SCIENCE 2021; 77:2165-2169. [PMID: 33159375 DOI: 10.1002/ps.6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Conservation biological control suppresses pests by promoting established rather than inoculative or mass released natural enemies. Research in this approach has expanded rapidly this century but uptake remains limited. Why? Most of the 150 peer reviewed papers reporting field experiments include results on natural enemies and/or pests. Only a minority report effects on crop damage levels or yield, and very few consider economic consequences. This is despite evidence for potential benefits across this full spectrum of response variables. We argue that the limited scope of work to date constrains the development of a compelling evidence base to demonstrate the field effectiveness of conservation biological control, hampering its uptake so encourage researchers to include the assessment of economic impact in future studies of conservation biological control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anne C Johnson
- Graham Centre for Agricultural Innovation (Charles Sturt University and New South Wales Department of Primary Industries), Orange, NSW, Australia
| | - Jian Liu
- Graham Centre for Agricultural Innovation (Charles Sturt University and New South Wales Department of Primary Industries), Orange, NSW, Australia
| | - Olivia Reynolds
- Graham Centre for Agricultural Innovation (Charles Sturt University and New South Wales Department of Primary Industries), Orange, NSW, Australia
- Cesar Pty Ltd, Parkville, VIC, Australia
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jianhua Mo
- New South Wales Department of Primary Industries, Yanco, NSW, Australia
| | - Syed Rizvi
- Graham Centre for Agricultural Innovation (Charles Sturt University and New South Wales Department of Primary Industries), Orange, NSW, Australia
- School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Orange, NSW, Australia
| | - Geoff M Gurr
- Graham Centre for Agricultural Innovation (Charles Sturt University and New South Wales Department of Primary Industries), Orange, NSW, Australia
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Orange, NSW, Australia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Soonvald L, Loit K, Runno-Paurson E, Astover A, Tedersoo L. Characterising the effect of crop species and fertilisation treatment on root fungal communities. Sci Rep 2020; 10:18741. [PMID: 33127926 PMCID: PMC7603395 DOI: 10.1038/s41598-020-74952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Information about the root mycobiome may improve the overall quality of the plants and contribute to a valuable strategy to enhance sustainable agriculture. Therefore, we assessed differences in fungal community diversity and composition in the roots of potato, wheat and barley grown under mineral nitrogen fertilisation at five rates, with and without farmyard manure amendment. The same factorial combination of treatments has been used since 1989. Species richness and diversity, as well as community composition, of different fungal guilds were characterised using Illumina MiSeq sequencing of the ITS2 region. Crop species was the main factor determining overall fungal richness and diversity, with wheat showing the highest, and potato the lowest, richness and diversity. Pathogen diversity indices were highest in wheat plots amended with farmyard manure, whereas the lowest values were observed for potato roots. Fertilisation treatments and the interaction between crop species and fertilisation had the strongest impact on arbuscular mycorrhiza and saprotroph diversity. Crop species also determined the composition of the overall fungal community and that of fungal guilds, whereas fertilisation treatment had only a minor effect. This study highlights crop species as the main driver in shaping root fungal diversity and composition under the same environmental conditions.
Collapse
Affiliation(s)
- Liina Soonvald
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Kaire Loit
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Chair of Soil Science, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Alar Astover
- Chair of Soil Science, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
15
|
Obermeier MM, Gnädinger F, Durai Raj AC, Obermeier WA, Schmid CAO, Balàzs H, Schröder P. Under temperate climate, the conversion of grassland to arable land affects soil nutrient stocks and bacteria in a short term. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135494. [PMID: 31761356 DOI: 10.1016/j.scitotenv.2019.135494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Projected population growth and climate change will make it inevitable to convert neglected and marginal land into productive arable land. We investigate the influence of agricultural management practices on nutrient stocks and soil functions during the conversion of former extensively used grassland to arable land. Effects of grassland removal, tillage, intercropping with faba bean (Vicia faba) and its later incorporation were studied with respect to soil properties and bacterial community structure. Therefore, composite samples were collected with a core sampler from the topsoil (0-20 cm) in (a) the initial grassland, (b) the transitional phase during the vegetation period of V. faba, (c) after ploughing the legume in, and (d) untreated controls. In all samples, nitrate-N, ammonium-N, dissolved organic carbon (DOC) and total nitrogen bound (TNb) were analyzed and comparisons of the bacterial community structure after 16S-amplicon sequencing were performed to assess soil functions. Mineralization after grassland conversion followed by the biological nitrogen fixation of broad beans enhanced the nitrate-N content in bulk soil from 4 to almost 50 μg N g-1dw. Bacterial community structure on phylum level in bulk soil was dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes and remained almost stable. However, alpha and beta-diversity analysis revealed a change of the bacterial composition at the final state of the conversion. This change was primarily driven by increasing abundances of the genera Massilia and Lysobacter, both members of the Proteobacteria, after the decay of the leguminous plant residues. Furthermore, increasing abundances of the family Gaiellaceae and its genus Gaiella fostered this change and were related to the decreasing carbon to nitrogen ratio. In short, gentle management strategies could replace the input of mineral fertilizer with the aim to contribute to future sustainable and intensified production even on converted grassland.
Collapse
Affiliation(s)
- Michael M Obermeier
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Friederike Gnädinger
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Abilash C Durai Raj
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Wolfgang A Obermeier
- Ludwig-Maximilians-Universität München, Research and Teaching Unit for Physical Geography and Land Use Systems, Luisenstraße 37, 80333 München, Germany
| | - Christoph A O Schmid
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Helga Balàzs
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Peter Schröder
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|