1
|
Yu Y, Xiang J, Meng Z, Jarnda KV, Liu Q, Ding P. Residues of veterinary drugs and heavy metal contamination in livestock and poultry meat from Hunan Province, China. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:360-370. [PMID: 39155447 DOI: 10.1080/19393210.2024.2387708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Livestock and poultry meat consumption play an important role in the dietary structure of Chinese residents. However, the extent of residues of veterinary drugs and heavy metal contamination in livestock and poultry meat and their by-products within Hunan province is not extensively studied. This survey aimed to fill this gap by assessing the presence of 76 veterinary drug residues in Hunan province. Additionally, heavy metals in pork and pig liver were also assessed. The obtained findings suggest that residues of veterinary drugs are still present in livestock and poultry meat, as well as their by-products, within Hunan province. However, the contamination of heavy metals remained within the food safety limits. These results underscore the significance of establishing more refined criteria for assessing human exposure, taking into account factors such as consumption patterns, product varieties and chemical compounds of interest.
Collapse
Affiliation(s)
- Ying Yu
- Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Jun Xiang
- Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
- Food Testing Department, Hunan Testing Institute of Product and Commodity Supervision, Changsha, People's Republic of China
| | - Zongwu Meng
- Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Kermue Vasco Jarnda
- Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Qi Liu
- Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Hou J, Li Y, Liu M, Qu Z, Du Z, An Y, Yang F, Yao Y. Significant effects of bioavailable heavy metals on antibiotic resistome in paddy soils as revealed by metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136587. [PMID: 39579702 DOI: 10.1016/j.jhazmat.2024.136587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Heavy metals (HMs) act as a long-term selective pressure for the emergence and maintenance of antibiotic resistance genes (ARGs) in agricultural soils. However, the effects of HMs on ARG distributions in paddy soils and the underlying mechanisms remain unclear. In this study, 74 soil samples were collected from the paddy fields to explore the impact of HMs on ARG profiles. A total of 468 ARGs were detected in HM-contaminated soils. Variation partitioning analysis (VPA) and redundancy analysis (RDA) demonstrated that the bioavailable HMs contributed more significantly to ARG composition compared to the total HM content (8.59 % vs. 3.97 %). Structural equation models (SEMs) showed that bioavailable HMs affected ARGs mainly by negatively altering the microbial diversity. Furthermore, the co-occurrence analysis of ARGs and metal resistant genes (MRGs) was further performed at the metagenome-assembled genomes (MAGs) level. Consequently, 1145 MAGs that assigned to 29 bacterial phyla were found to concurrently harbor ARGs and MRGs, with the bacterial phyla Pseudomonadota being predominant ARG-MRG-carrying microbes for most coexistence types of ARGs and MRGs, i.e., multidrug-As, polymyxin-Cd, Quinolone-Cd, Beta-lactam-Pb, and multidrug-Zn. Our findings highlight that the extensive coexistence of ARG-MRG in microbial genomes is an important reason for the ARG pollution in HM-contaminated paddy soils.
Collapse
Affiliation(s)
- Jie Hou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ye Li
- School of Environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Mengqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zheng Qu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
3
|
Song J, Xu R, Li D, Jiang S, Cai M, Xiong J. Source apportionment and ecological risk assessment of antibiotics in Dafeng River Basin using PMF and Monte-Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:479. [PMID: 39412531 DOI: 10.1007/s10653-024-02252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024]
Abstract
Antibiotics, prevalent in aquatic ecosystems, pose a grave threat to human health and the ecological well-being. This paper performed a case study on Dafeng River Basin in southern China. Specifically, techniques including positive matrix factorization (PFM) and Monte-Carlo simulation were employed to comprehensively investigate the spatial variations, possible sources, and ecological risks of antibiotics in four groups: sulfonamides (SAs), macrolides (MLs), quinolones (QNs), and tetracyclines (TCs). The major findings were as follows: first, 43 and 39 antibiotics were detected in the surface water and sediments of the basin, respectively, where the respective total content were ND-490.08 ng/L and ND-144.34 μg/kg, and the QNs and TCs were the two dominating groups. Second, the highest antibiotic content in surface water (441.43 ng/L) was observed in the midstream area, whereas the highest concentration in sediments (68.41 μg/kg) was found in the upstream region. Third, the investigation identified five sources of antibiotics discharged to surface water: domestic sewage, agricultural drainage, livestock discharge, sewage treatment plants, and aquaculture; three sources were detected for antibiotics in sediments: aquaculture, sewage treatment plants, and livestock discharge. Fourth, QNs had a significantly higher ecological risk than the other three groups of antibiotics, and livestock discharge (31.4% contribution) and aquaculture (23.4% contribution) were the main sources of risks of antibiotic contamination in Dafeng River Basin. This study is expected to provide some reference for control and risk management of antibiotic pollution in Dafeng River Basin.
Collapse
Affiliation(s)
- Jinqiu Song
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Rongle Xu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Denghui Li
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Shuaifeng Jiang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - MaoMao Cai
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Liu M, Xu R, Cui X, Hou D, Zhao P, Cheng Y, Qi Y, Duan G, Fan G, Lin A, Tan X, Xiao Y. Effects of remediation agents on rice and soil in toxic metal(loid)s contaminated paddy fields: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171656. [PMID: 38490416 DOI: 10.1016/j.scitotenv.2024.171656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Toxic metal(loid)s contamination of paddy soil is a nonnegligible issue and threatens food safety considering that it is transmitted via the soil-plant system. Applying remediation agents could effectively inhibit the soil available toxic metal(loid)s and reduce their accumulation in rice. To comprehensively quantify how remediation agents impact the accumulation of Cd/Pb/As in rice, rice growth and yield, the accumulation of available Cd/Pb/As in paddy soil, and soil characteristics, 50 peer-reviewed publications were selected for meta-analysis. Overall, the application of remediation agents exhibited significant positive effects on rice plant length (ES = 0.05, CI = 0.01-0.08), yield (ES = 0.20, CI = 0.13-0.27), peroxidase (ES = 0.56, CI = 0.18-0.31), photosynthetic rate (ES = 0.47, CI = 0.34-0.61), and respiration rate (ES = 0.68, CI = 0.47-0.88). Among the different types of remediation agents, biochar was the most effective in controlling the accumulation of Cd/Pb/As in all portions of rice, and was also superior in inhibiting the accumulation of Pb in rice grains (ES = -0.59, 95 % CI = -1.04-0.13). This study offers an essential contribution for the remediation strategies of toxic metal(loid)s contaminated paddy fields.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanzhao Cheng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yujie Qi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guodong Fan
- Henan ENERGY Storage Technology Co., Ltd., People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Yong Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
6
|
Liu YQ, Chen Y, Li YY, Ding CY, Li BL, Han H, Chen ZJ. Plant growth-promoting bacteria improve the Cd phytoremediation efficiency of soils contaminated with PE-Cd complex pollution by influencing the rhizosphere microbiome of sorghum. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134085. [PMID: 38522197 DOI: 10.1016/j.jhazmat.2024.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.
Collapse
Affiliation(s)
- Yong-Qi Liu
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yan Chen
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yu-Ying Li
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chuan-Yu Ding
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Bai-Lian Li
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hui Han
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Zhao-Jin Chen
- International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
7
|
Zhang J, Wang X, Li J, Luo J, Wang X, Ai S, Cheng H, Liu Z. Bioavailability (BA)-based risk assessment of soil heavy metals in provinces of China through the predictive BA-models. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133327. [PMID: 38141317 DOI: 10.1016/j.jhazmat.2023.133327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The real biological effect is not generated by the total content of heavy metals (HMs), but rather by bioavailable content. A new bioavailability-based ecological risk assessment (BA-based ERA) framework was developed for deriving bioavailability-based soil quality criteria (BA-based SQC) and accurately assessing the ecological risk of soil HMs at a multi-regional scale in this study. Through the random forest (RF) models and BA-based ERA framework, the 217 BA-based SQC for HMs in 31 Chinese provinces were derived and the BA-based ERA was comprehensively assessed. This study found that bioavailable HMs extraction methods (BHEMs) and total HMs content play the predominant role in affecting HMs (As, Cd, Cr, Cu, Ni, Pb, and Zn) bioavailability by explaining 27.55-56.11% and 9.20-62.09% of the variation, respectively. The RF model had accurate and stable prediction ability for the bioavailability of soil HMs with the mean R2 and RMSE of 0.83 and 0.43 for the test set, respectively. The results of BA-based ERA showed that bioavailability could avoid the overestimation of ecological risks to some extent after reducing the uncertainty of soil differences. This study confirmed the feasibility of using bioavailability for ERA and will utilised to revise the soil environmental standards based on bioavailability for HMs.
Collapse
Affiliation(s)
- Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingjing Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
8
|
Wang C, Deng L, Zhang Y, Zhao M, Liang M, Lee LC, Cristhian CO, Yang L, He T. Farmland phytoremediation in bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119971. [PMID: 38169268 DOI: 10.1016/j.jenvman.2023.119971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/09/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
Phytoremediation is an environmentally friendly, economical, and sustainable technique for restoring farmland. It can remove heavy metals and organic pollutants from the soil through the implementation of hyperaccumulator plants. In recent years, it has garnered significant interest from academic and industrial sectors. This article screened 368 research papers from the Web of Science core collection database related to farmland phytoremediation and conducted a bibliometric analysis of the domain based on CiteSpace. The paper intuitively demonstrates the most influential countries, the most productive institutions, the most contributing groups of authors, and the primary sources of farmland phytoremediation research domain. The findings additionally indicate that the research hotspots include: (1) mechanisms and principles of phytoremediation, (2) the improvement of restoration efficiency, (3) the economic, ecological, and sustainable development of phytoremediation. The exploration of plants with potential to accumulate heavy metals and produce large amounts of biomass is the research frontier within the field of farmland phytoremediation. Additionally, this bibliometric analysis can help scholars willing to work in this research field by concisely understanding the overall research field and frontiers. With the continuous improvement of phytoremediation and its combination with other remediation technologies, the future of farmland remediation will have a promising prospect.
Collapse
Affiliation(s)
- Chaoqun Wang
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China.
| | - Lirong Deng
- College of Resources and Environment, Yangtze University, Wuhan, 430100, PR China.
| | - Yongxiang Zhang
- College of Resources and Environment, Yangtze University, Wuhan, 430100, PR China.
| | - Mingtao Zhao
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China.
| | - Meiqi Liang
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China.
| | - Lien-Chieh Lee
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, PR China.
| | - Chicaiza-Ortiz Cristhian
- School of Environmental Science and Engineering, China-UK·Low-Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Biomass to Resources Group, Universidad Regional Amazónica IKIAM, Tena, Napo, 150150, Ecuador.
| | - Long Yang
- School of Ecology and Environment, Institute of Disaster Prevention, 065201, PR China.
| | - Tonghui He
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|
9
|
Wang F, Shen X, Wu Y, Wang Y, Zhang H, Ding Y, Zhu W. Evaluation of the effectiveness of amendments derived from vermicompost combined with modified shell powder on Cd immobilization in Cd-contaminated soil by multiscale experiments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115166. [PMID: 37348213 DOI: 10.1016/j.ecoenv.2023.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
The widespread heavy metal contamination of agricultural soils poses an enormous challenge to food safety. To evaluate the Cd immobilization potential of vermicompost combined with modified shell powder (VMSP) on Cd-contaminated soil, batch adsorption tests and field experiments were conducted. First, the Cd2+ removal characteristics and adsorption mechanisms of vermicompost (V), vermicompost combined with shell powder (VSP), and VMSP in an aqueous solution were investigated by batch tests. Then, 3 kg·m2 V, VSP, and VMSP doses were applied to Cd-contaminated farmland soils as soil amendments to plant green garlic (Allium sativum L.) and investigate their Cd immobilization effects in Cd-contaminated soils. Batch adsorption tests showed that VMSP was most effective for Cd2+ removal, with adsorption rates as high as 85.7-99.79% and desorption rates of approximately 1.25-1.34%. Combining further characterization analysis of VMSP, it was demonstrated that the adsorption mechanism of Cd2+ was monolayer chemisorption, mainly involving the complexation reaction of Cd2+ with organic functional groups and the precipitation reaction of Cd2+ with mineral elements. The field experiment showed that adding V, VSP, and VMSP effectively inhibited the enrichment of Cd in green garlic, and the Cd content was reduced by 42.18%, 46.88%, and 68.75%, respectively. However, only the Cd content of green garlic treated with VMSP was lower than the national standard for food safety in China (Cd≤ 0.2 mg·kg-1). V, VSP, and VMSP additions improved soil fertility and reduced Cd bioavailability in the soil by 15.5%, 18.9%, and 36.3%, respectively. In addition, V, VSP, and VMSP addition increased bacterial diversity and improved bacterial communities and functions in the soil by improving basic soil properties and reducing Cd-related toxicity. The results indicated that VMSP is a promising amendment for Cd immobilization in Cd-contaminated farmland soils.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xuyang Shen
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - YuKe Wu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - YiFan Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Ding
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiqin Zhu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
10
|
Wang CC, Zhang QC, Yan CA, Tang GY, Zhang MY, Ma LQ, Gu RH, Xiang P. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163361. [PMID: 37068677 DOI: 10.1016/j.scitotenv.2023.163361] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s (HMs) accumulation in agricultural soils, rice, and wheat is of particular concern in China, while the status and spatio-temporal distribution of HMs in the soil-crops system have been rarely reported at the national scale. This study aimed to summarize the overall pollution status, spatiotemporal patterns, and drivers of HMs in agricultural soil, rice, and wheat nationwide. The metal-polluted data from 1030 agricultural soils, rice, and wheat in China were collected from the literature published from 2000 to 2022. The results showed that Cd was the most prevailing contaminant in soils based on its spatiotemporal distribution and accumulation. The pollution cases and severe pollution percentage of Cd (103 %) and Hg (128 %) show an increasing trend pattern. Mining activities are the main anthropogenic sources of agricultural soil HMs in China. Cd and Pb had the highest exceedance rate in rice (33.5 and 32.2 %) and wheat (25.8 and 30.3 %). The rice from Hunan, Fujian, and Guangxi showed the highest average concentration of Cd and Pb, respectively, while wheat samples from Hubei had the greatest exceedance rate of Pb. Besides, HMs in crops was not usually corresponding to soil HMs but increased gradually from north to south areas. Several mitigation strategies and accurate health risk assessments model of HMs based on bioavailability were also proposed and recommended. Collectively, this review provides valuable information to improve the management of farmland nationwide, optimize the accurate risk assessment, and reduce HMs pollution.
Collapse
Affiliation(s)
- Cheng-Chen Wang
- Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qiao-Chu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Chang-An Yan
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650500, China
| | - Guo-Yong Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Meng-Yan Zhang
- Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong-Hui Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ping Xiang
- Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
11
|
Wang F, Huo L, Li Y, Wu L, Zhang Y, Shi G, An Y. A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity calculation and machine learning method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160065. [PMID: 36356739 DOI: 10.1016/j.scitotenv.2022.160065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Soil heavy metal contamination was a global environmental issue that posed adverse impacts on ecological and human health risks. The controlling of soil heavy metal is mainly focused on the emission source and pipe-end treatment, less is known about the intermediate controlling process. The migration route of heavy metals exhibited the spatial evolution of pollutants from the sources to the pipe-end, which provided the more reasonable location for the target-oriented treatment of soil heavy metal. Here, we proposed a new view of heavy metal similarity, which quantitatively expressed how closely of the contaminations between the study area and the test areas. We found that the similarity of different heavy metals was unequally distributed across locations that were related with five main sources, namely agricultural activities, natural sources, traffic emissions, industrial activities, and other sources. Based on the similarity, a state-of-the-art machine learning method was applied to delineate the migration route of soil heavy metals. Thereinto, As was concentrated around livestock farms, and its migration route was close to the water system. Cd migration route was over-dispersed in the areas where located mine fields and chemical plants. Migration routes of Hg and Pb were along rivers, which were related to agricultural activities and natural sources. Overall, the perspective on similarity and migration routes provided theoretical basis and method to alleviate soil heavy metal pollution at regional scale and can be extended across largescale regions.
Collapse
Affiliation(s)
- Feng Wang
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lili Huo
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China
| | - Yue Li
- College of Computer Science, Nankai University, Tianjin 300350, China
| | - Lina Wu
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China
| | - Yanqiu Zhang
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China; College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi An
- Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300071, China.
| |
Collapse
|
12
|
Zhang J, Liu Z, Tian B, Li J, Luo J, Wang X, Ai S, Wang X. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129891. [PMID: 36103763 DOI: 10.1016/j.jhazmat.2022.129891] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Ecological risks can vary dramatically depending on abiotic factors, such as soil properties and the background values of elements. This study developed a framework for an integrated risk assessment system to derive soil quality criteria (SQC) for heavy metals (HMs) applicable to different soil types and to assess ecological risks at a multi-regional scale. Through the construction of normalization and species sensitivity distribution models, 248 SQC values for Cd, Pb, Zn, As, Cu, Cr, Sb, and Ni in 31 Chinese provinces were derived. These SQC considered the soil types and background values of the elements and effectively reduced the uncertainty caused by spatial heterogeneity. Using the derived SQC values, the qualitative and quantitative ecological risks of HMs in the terrestrial environment of China were comprehensively assessed using a three-level ecological risk assessment (ERA) approach. Compared to traditional ERA methods, the new methodology reached a more quantitative conclusion. The mean overall probabilities of ecological risk in China were 2.42 % (Cd), 2.82 % (Pb), 12.17 % (Zn), 14.89 % (As), 10.42 % (Cu), 32.20 %(Cr), and 8.88 % (Ni). The new framework could be useful for the ERA of various soil types.
Collapse
Affiliation(s)
- Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Biao Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingjing Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
13
|
Guan Q, Liu Z, Shao W, Tian J, Luo H, Ni F, Shan Y. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155096. [PMID: 35398134 DOI: 10.1016/j.scitotenv.2022.155096] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Previous studies lacked quantitative evaluation studies of the probability of ecology and human health risks from soil heavy metals. This study assessed heavy metal risk level by collecting topsoil samples from a typical oasis city (Wuwei) in northwest China and then quantitatively evaluating the ecological risk from heavy metals by incorporating the uncertainty of health risk model parameters into the risk assessment. This study found that anthropogenic activities have influenced the accumulation of heavy metals in the study area and that the risk of contamination of soil heavy metals was characterized as light to moderate contamination and low ecological risk. On this basis, the species sensitivity distribution curves of heavy metals were constructed using species acute toxicity data, the predicted no effect concentrations of heavy metals were derived, and a probabilistic ecological risk evaluation was conducted. The results show that the current soil environmental quality standards in China are not effective in protecting species diversity. In addition, the probability of ecological risk for Cr, Ni and As in the study area was 63.3%, 23.8% and 7.1%, however, traditional pollution assessment methods underestimate the hazard of Cr. Monte Carlo simulations have shown that the probability of the carcinogenic risk of Cr (adults: 79.4%; children: 94.5%) and As (adults: 78.9%; children: 94.0%) is high, the probability of the total carcinogenic risk exceeding 1E-06 is 99.0%, the probability of the non-carcinogenic risk is low, and the slope factor and reference dose can significantly affect the evaluation of human health risks.
Collapse
Affiliation(s)
- Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhan Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Tian
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxin Shan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Li P, Hao H, Zhang Z, Mao X, Xu J, Lv Y, Chen W, Ge D. A field study to estimate heavy metal concentrations in a soil-rice system: Application of graph neural networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155099. [PMID: 35398437 DOI: 10.1016/j.scitotenv.2022.155099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Accurate prediction of the concentration of heavy metals is of great significance for assessing the quality of agricultural products and reducing health risks. However, the complexity and interconnectivity of the farmland ecosystem restricts the improvement of the prediction accuracy of traditional methods. This research explored the application potential of graph neural network (GNN) technology, which can extract and learn information in large-scale networks in detail, in the field of heavy metal prediction for the first time. In this study, a heavy metal prediction model for rice, CoNet-GNN, was proposed with 17 environmental factors as input variables using the co-occurrence network and GNN. Experimental results using a dataset from a field study showed that the R2 of CoNet-GNN for predicting Cd, Pb, Cr, As, and Hg had outstanding values of 0.872, 0.711, 0.683, 0.489, and 0.824, respectively. Sensitivity analysis further indicated that CoNet-GNN had good stability and robustness. Compared with random forest, gradient boosting, and multilayer perceptron, CoNet-GNN made a remarkable improvement to the prediction accuracy of all studied heavy metals. Therefore, CoNet-GNN can effectively simulate the rich relationships and laws between various factors in the soil-rice system and effectively characterize the influence diffusion path. Furthermore, it provides new ideas for heavy metal prediction based on network research methods and expands the technical scope of heavy metal evaluation.
Collapse
Affiliation(s)
- Panpan Li
- College of Computer, National University of Defense Technology, Changsha 410005, PR China
| | - Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Zhuo Zhang
- College of Information and Communication Technology, Guangzhou College of Commerce, Guangzhou 510000, PR China.
| | - Xiaoguang Mao
- College of Computer, National University of Defense Technology, Changsha 410005, PR China
| | - Jianjun Xu
- College of Computer, National University of Defense Technology, Changsha 410005, PR China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-product Quality Safety (Changsha), Ministry of Agriculture and Rural Affairs, Changsha 410005, PR China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
15
|
Zhao J, Luo Q, Ding L, Fu R, Zhang F, Cui C. Valency distributions and geochemical fractions of arsenic and antimony in non-ferrous smelting soils with varying particle sizes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113312. [PMID: 35217308 DOI: 10.1016/j.ecoenv.2022.113312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Arsenic and antimony are common toxic metalloids found in associated minerals. These metalloids generally cause high-concentration pollution in non-ferrous metal smelting soils; however, few studies have investigated the pollution characteristics of these two metalloids at non-ferrous smelting sites using varying soil particle sizes. In this study, the valency distributions and geochemical fractions were investigated with varying soil particle sizes (≤ 0.05, 0.05-0.25, 0.25-1, and 1-2 mm). Soils were mainly concentrated in ≤ 0.05 and 0.05-0.25 mm with mass percentages of 32.97% and 29.02%, respectively. The highest total As and Sb concentrations in ≤ 0.05 mm were found to be 20,350 and 3655 mg/kg, respectively. In addition, As(Ⅲ), As(Ⅴ), Sb(Ⅲ), and Sb(Ⅴ) concentrations in this soil particle size were found to be 224, 19,813, 1036, and 24 mg/kg, respectively. The geochemical fractions of As and Sb in varying soil particle sizes were mainly residual, accounting for 50% and 90% in the ≤ 0.05 mm. Soil may bind ≤ 0.25 mm due to the disparity found in the geochemical compositions and valency distributions of arsenic and antimony. X-ray diffraction and scanning electron microscopy/energy dispersive system analysis confirmed that arsenolite accumulated in particle sizes of ≤ 0.05 and 0.05-0.25 mm. The results of this study may provide a scientific reference for risk assessment and restoration strategies for non-ferrous metal smelting soils.
Collapse
Affiliation(s)
- Jianfeng Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qishi Luo
- Shanghai Shenglong Environmental Co., Ltd, Shanghai 200235, China
| | - Lei Ding
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruifeng Fu
- Analytical Application Center, Shimadzu (China), Co., LTD, Shanghai 200233, China
| | - Feng Zhang
- Shanghai Greenment Environment Technology Co., Ltd, Shanghai 200001, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Zheng J, Li M, Tang B, Luo W, Ma Y, Ren M, Yu Y, Luo X, Mai B. Levels, Spatial Distribution, and Impact Factors of Heavy Metals in the Hair of Metropolitan Residents in China and Human Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10578-10588. [PMID: 34296597 DOI: 10.1021/acs.est.1c02001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic exposure to low levels of heavy metals threatens human health. However, few studies evaluated the health effects and spatial distributions of chronic exposure to heavy metals in metropolitan residents throughout mainland China using unified sampling methods and evaluation indicators at the national level. Here, the concentrations and spatial distributions of heavy metals (As, Cd, Cr, Sb, Pb, and Hg) in the hair of 1202 metropolitan residents from mainland China were analyzed, and differences in age and sex were evaluated. Most target metals exhibited higher concentrations in the hair of residents from South Central China. Generally, male hair had higher As and Se concentrations, whereas female hair had higher Cd and Pb levels (p < 0.05). A significant pairwise correlation existed between most metals in hair, especially Cd-Pb (r = 0.638, p < 0.05). The Se/heavy metal molar ratio is used as an indicator to assess the detoxification ability. The results demonstrated that protecting metropolitan residents in South Central China from heavy metals in their daily life is crucial, particularly for Hg, Pb, and Cr with Se/(Hg, Pb, or Cr) molar ratios < 1. This is the first study to comprehensively consider the antagonistic effects of Se and heavy metals using the molar ratio of Se/heavy metals to evaluate health implications and propose health management policies for metropolitan residents in China.
Collapse
Affiliation(s)
- Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
| |
Collapse
|
17
|
Song N, Hursthouse A, McLellan I, Wang Z. Treatment of environmental contamination using sepiolite: current approaches and future potential. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2679-2697. [PMID: 32918158 PMCID: PMC8275560 DOI: 10.1007/s10653-020-00705-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/25/2020] [Indexed: 06/01/2023]
Abstract
To evaluate the potential of sepiolite-based materials to resolve environmental pollution problems, a study is needed which looks at the whole life cycle of material application, including the residual value of material classified as waste from the exploitation of sepiolite deposits in the region or from its processing and purification. This would also maximize value from the exploitation process and provide new potential for local waste management. We review the geographical distribution of sepiolite, its application in the treatment of potentially toxic elements in soil and across the wider landscape, an assessment of modification and compositional variation of sepiolite-based applications within site remediation and wastewater treatment. The potential of sepiolite-based technologies is widespread and a number of processes utilize sepiolite-derived materials. Along with its intrinsic characteristics, both the long-term durability and the cost-effectiveness of the application need to be considered, making it possible to design ready-to-use products with good market acceptance. From a critical analysis of the literature, the most frequently associated terms associated with sepiolite powder are the use of lime and bentonite, while fly ash ranked in the top ten of the most frequently used material with sepiolite. These add improved performance for the inclusion as a soil or wastewater treatment options, alone or applied in combination with other treatment methods. This approach needs an integrated assessment to establish economic viability and environmental performance. Applications are not commonly evaluated from a cost-benefit perspective, in particular in relation to case studies within geographical regions hosting primary sepiolite deposits and wastes that have the potential for beneficial reuse.
Collapse
Affiliation(s)
- Na Song
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
| | - Andrew Hursthouse
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Iain McLellan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Zhenghua Wang
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
18
|
Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111905. [PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Nurul Amirah Che Zakaria
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Afifah Hanun Ismail
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Huang C, Ge Y, Yue S, Qiao Y, Liu L. Impact of soil metals on earthworm communities from the perspectives of earthworm ecotypes and metal bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124738. [PMID: 33316673 DOI: 10.1016/j.jhazmat.2020.124738] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The current study elucidates the impact of soil metal contamination on earthworm communities at the ecotype level. A total of 292 earthworms belonging to 13 species were collected in metal-contaminated soils from Wanshou (WSC), Daxing (DXC) and Lupu (LPC) plots (1.40-6.60, 29.4-126, 251-336 and 91.9-109 mg/kg for soil Cd, Cu, Zn and Pb, respectively) in Hunan Province, southern China. The results showed that the total earthworm density and biomass significantly decreased along the increasing metal-contaminated gradient while epigeic earthworms became more dominant than anecic and endogeic earthworms. Redundancy analysis (RDA) showed that soil pH, total nitrogen and Cd concentration were the primary factors influencing earthworm communities, explaining 33.7%, 29.1% and 26.7% of the total variance, respectively. In addition, epigeic earthworm Metaphire californica bioaccumulated more Cd (0.27-0.60 mmol/kg), while endogeic earthworm Amynthas hupeiensis and anecic earthworm Amynthas asacceus bioaccumulated more Cu (0.55-1.62 mmol/kg) and Zn (2.86-6.46 mmol/kg) from soil, respectively, which were related to their habit soils and showed the species-specific bioaccumulation features. Our study discovered the diverse responses of earthworm ecotypes to metal contamination and their specific features of metal bioaccumulation, provide insight for soil risk assessments and for biodiversity conservation from a niche partitioning perspective. CAPSULE: Earthworms of different ecotypes showed different responses to soil metal contamination and species-specific features of metal bioaccumulation.
Collapse
Affiliation(s)
- Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Ge
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| | - Longsheng Liu
- Hengyang Academy of Agricultural Sciences, Hengyang 421151, China
| |
Collapse
|
20
|
Liu W, Yang X, Duan L, Naidu R, Yan K, Liu Y, Wang X, Gao Y, Chen Y. Variability in plant trace element uptake across different crops, soil contamination levels and soil properties in the Xinjiang Uygur Autonomous Region of northwest China. Sci Rep 2021; 11:2064. [PMID: 33483606 PMCID: PMC7822888 DOI: 10.1038/s41598-021-81764-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
This study investigated contamination status of eight trace elements (As, Cd, Cr, Hg, Pb, Cu, Zn and Ni) in farmland soils and crops at 535 sites across the Xinjiang Uygur Autonomous Region, Northwest China. Land use types of the sampling sites included vegetable patch, grain field and orchard. Our experimental results indicated all farmland soils were considered as trace element contamination based on the Nemerow comprehensive pollution index (NCPI > 1). However, 91.97% of the crop samples were uncontaminated according to the Chinese Risk Control Standard. Soils from the vegetable patch showed higher pollution level comparison with that from grain field and orchard. Health risks for both non-carcinogenic and carcinogenic risks were calculated through crop ingestion exposure pathway. Grain samples showed highest health risks, followed by melon and fruit, and vegetables. The health risks of crops were mainly driven by Cr and Cd. Crop consumption may pose risks for children but not adults. The source of trace element contamination in the different farmland soils varied and may be attributed to the different agricultural activities. Plant type had a greater influence on the trace element accumulation in crops compared with soil trace element contents and physicochemical properties.
Collapse
Affiliation(s)
- Weiguo Liu
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China
| | - Xiaodong Yang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.
- Department of Geography and Spatial Information Technology, Ningbo University, NO.1188 North ring Road, Ningbo, 315211, China.
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Kaihong Yan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Xiyuan Wang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China
| | - Yongchao Gao
- Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250306, China
| | - Yinguang Chen
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
21
|
Han H, Wu X, Yao L, Chen Z. Heavy metal-immobilizing bacteria combined with calcium polypeptides reduced the uptake of Cd in wheat and shifted the rhizosphere bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115432. [PMID: 32841909 DOI: 10.1016/j.envpol.2020.115432] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
In situ stabilization techniques for the "remediation" of heavy metal-contaminated soil are a novel and inexpensive technology. However, the mechanisms underlying the interaction of exogenous passivators with the bacterial community in wheat rhizosphere soil remain unclear. Soil static culture and pot experiments were conducted to evaluate the effects and mechanisms of the heavy metal-immobilizing bacterium Enterobacter bugandensis TJ6 and calcium polypeptides (CPPs) and their association with Cd uptake in wheat, soil quality and the rhizobacterial community structure. The results showed that compared with the control treatment (CK), the TJ6, CPP, and TJ6+CPP treatments significantly decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd (25.2%-60.1%) content and increased the pH, organic matter content and urease activity in the wheat rhizosphere soil, which resulted in decreases in the Cd (21.5%-77.8%) content in wheat tissues (grain, straw, and roots). In particular, the TJ6+CPP treatment was more effective at decreasing Cd accumulation in grains. Furthermore, the TJ6+CPP treatment improved the diversity of the soil bacterial community in the wheat rhizosphere, and the relative abundances of Proteobacteria, Firmicutes, Arthrobacter, Microvirga, Ensifer, Brevundimonas, Devosia and Pedobacter were enriched. These results suggest that the TJ6+CPP treatment decreased the uptake of Cd in wheat by i) providing essential elements (N and C sources), ii) increasing the pH and reducing the bioavailable Cd content in wheat rhizosphere soil, iii) allowing colonization to promote plant growth and Cd-resistant bacteria, and iv) increasing the abundance of genes associated with ABC transporters, carbon metabolism and oxidative phosphorylation in the rhizosphere bacterial community. Our results showed that the heavy metal-immobilizing bacterium TJ6 combined with CPPs decreased the Cd content and increased the bacterial community diversity of wheat rhizosphere soil. Our results also highlight the potential of using heavy metal-immobilizing bacteria and CPPs to ensure the safe production of crops growing on heavy metal-polluted soils.
Collapse
Affiliation(s)
- Hui Han
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xuejiao Wu
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Lunguang Yao
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China.
| |
Collapse
|
22
|
Xie YH, Zhu J, Liu SH, Pan SF, Ji XH. Input and output of cadmium (Cd) for paddy soil in central south China: fluxes, mass balance, and model predictions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21847-21858. [PMID: 32281061 DOI: 10.1007/s11356-020-08519-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
It is important to provide a more comprehensive understanding of cadmium (Cd) input and output in different contamination zones. In this study, we choose 15 sampling areas in three types of contamination zones (industrial and mining, suburb, and rural) to systematically study the inventory of soil Cd input and output in Changzhutan (CZT) urban agglomerations, Hunan Province, China. The results showed that the value of total Cd input in industrial and mining (34.58 g/ha/year) was respectively about 2 and 3 times of that in suburb and in rural. Meanwhile, the total output flux in industrial and mining also presented highest value (38.67 g/ha/year) among the zones. As for the contributions, atmospheric deposition was responsible for 85-89% of the total input fluxes, which was significantly higher than those of irrigation water and fertilizer. Crop harvesting, especially straw removal, was the dominant output pathway, contributing 66-78%. Moreover, Cd annual balance illustrated that the net input fluxes under straw removal scenario were negative in all zones, and it was opposite under straw returning scenario. Further, the changes of soil Cd concentrations under straw returning and straw removal scenario were compared by a dynamic mathematical model. The modeling results presented that the soil Cd content continued to increase under straw returning in 100 years, while it was declining under straw removal scenario. This prediction indicated straw removal was an important remediation for Cd-polluted paddy soil, especially in Hunan. Nevertheless, more treatment measures need to conduct to reach the safety limits in paddy soil.
Collapse
Affiliation(s)
- Yun-He Xie
- Longping Branch of Graduate School of Central South University, Changsha, 410125, China
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Jian Zhu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Sai-Hua Liu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Shu-Fang Pan
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China.
| | - Xiong-Hui Ji
- Longping Branch of Graduate School of Central South University, Changsha, 410125, China.
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China.
| |
Collapse
|
23
|
Regionalization of Soil and Water Conservation Aimed at Ecosystem Services Improvement. Sci Rep 2020; 10:3469. [PMID: 32103046 PMCID: PMC7044334 DOI: 10.1038/s41598-020-60100-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
To effectively control soil erosion, three hierarchies of the National Soil and Water Conservation Regionalization Scheme have been established in China. However, the scheme has its limits, which can be summarized by two points: first, the tertiary hierarchy functional region exhibits obvious heterogeneity; second, the ecosystem function does not influence the regionalization scheme results during the process of regionalization. To enhance the guidance of the regionalization, a new indicator system included soil erosion risk, soil erosion intensity and ecosystem service value was developed to explore the subdivision of the tertiary hierarchy functional region. Moreover a scheme for the subdivision of the tertiary hierarchy functional region was formed. In this scheme, the central Hunan hilly soil conservation and living environmental protection section was divided into three subregions: Luoxiao-Xuefeng Mountain high ecological value section, Xiangjiang middle and downstream medium ecological value section, and Hengyang Basin low ecological value section. Specifically, with regard to soil and water conservation regionalization, the concept of subregions within the tertiary hierarchy-based functional region was proposed and the new indicator system that highlighted ecosystem functions was applied for the first time on a regional scales; this method provides a new way of thinking about other regionalization schemes.
Collapse
|
24
|
Guo Q, Wei D, Zhao H, Du Y. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113460. [PMID: 31685328 DOI: 10.1016/j.envpol.2019.113460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
Benzophenones (BPs), a group of widely used ultraviolet filters, have been frequently detected out in multiple environment matrices even in organism bodies. Although a variety of toxicological effects of BPs have been disclosed recently, it is barely to evaluate the potential ecological risk of BPs due to lack of reference criteria. Therefore, the determination of predicted no-effect concentration (PNEC) values is necessary for assessing ecological risk of BPs and for protecting safety of aquatic organisms. The toxicological data of 14 BPs from both in vivo tests on aquatic organisms and in vitro tests on strains/cell lines were collected from previous reports, and two methods including assessment factor (AF) and species sensitivity distribution (SSD) were applied to calculate PNECs, respectively. Four groups of PNECs were obtained and compared, a final PNEC value was recommended for each BP based on reliable and conservative consideration. With these PNECs values, the risk quotients of 8 BPs from 35 ambient freshwater samples were calculated, the results demonstrated that 3 BPs including 2,2',4,4'-tetrahydroxyl-BP, 2-hydroxyl-4-methoxyl- BP, and 2-hydroxyl-4-methoxyl-5-sulfonic acid-BP exhibited high ecological risk, and the ecological risk posed by BPs in River Tiff in UK was great. It is anticipated that these results would provide useful reference for assessing and managing BP-type compounds, and for selecting toxicity data and methods to derive PNECs for emerging contaminants.
Collapse
Affiliation(s)
- Qiaorong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huimin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|