1
|
Jaichuedee J, Musikavong C. Adsorption kinetics, isotherms, and selectivity of trihalomethanes and haloacetonitriles by granular activated carbon. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:369-378. [PMID: 39268891 DOI: 10.1080/10934529.2024.2399453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The performance capability of granular activated carbon (GAC) adsorption in terms of disinfection by-product (DBPs) removal was investigated with synthetic water containing 1) trihalomethanes (THMs), 2) haloacetronitriles (HANs), and 3) Mix-THMs & HANs. The initial 20 min of adsorption resulted in the maximum adsorption rate, with the total THMs, total HANs, and total Mix-THMs & HANs being 4.972, 2.071, and 6.460 µg/gGAC-min, respectively. GAC dosage affects the adsorption selectivity of THMs and HANs. Under a low GAC dosage, the selectivity of GAC adsorbs more bromo-THMs than chloro-THMs. The adsorption selectivity of THMs on GAC following bromoform > dibromochloromethane > bromodichloromethane > chloroform was investigated. As the GAC concentration increased, the selectivity of THM adsorption by GAC became comparable. Chloro-HAN, in contrast to THMs, has a higher adsorption selectivity than bromo-HAN. Trichloroacetonitrile was removed by GAC more rapidly than the other HAN species when the GAC dose was increased. The toxin of bromoform was primarily eliminated through GAC adsorption, caused by a greater removal rate than that of the other THMs. As an implemented measure, GAC is introduced to reduce THMs and HANs and the toxic contents associated with THMs and HANs.
Collapse
Affiliation(s)
- Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
2
|
Shen Q, Zhao T, Wawryk NJP, Chau KNM, Zhang D, Carroll K, Chu W, Huan T, Li XF. Nontargeted Analysis of Reactive Nitrogenous Compounds in Suwannee River Standard Reference Materials and Authentic River Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15807-15815. [PMID: 39163399 PMCID: PMC11375767 DOI: 10.1021/acs.est.4c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Concerns over toxic nitrogenous disinfection byproducts (N-DBPs) necessitate identifying their precursors in source water. Natural organic amino compounds are known precursors to N-DBPs. Three Suwannee River (SR) standard reference materials (SRMs), humic acids (HA), fulvic acids (FA), and natural organic matter (NOM), are commonly used to study DBP formation, but the chemical makeup of amino compounds in SRSRMs remains largely unknown. To address this, we combined stable hydrogen/deuterium isotope labeling, HDPairFinder bioinformatics, and nontargeted high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) to characterize these compounds in SRSRMs. This method classifies reactive amines, provides accurate masses and MS/MS spectra, and quantifies intensities. We identified 2707 high-quality features with primary and/or secondary amines in SRSRMs and 75% of them having an m/z < 300. Across all three SRSRMs, 327 amino features were detected, while 856, 794, and 200 unique features were found in SRNOM, SRHA, and SRFA, respectively. In North Saskatchewan River (NSR) samples, a total of 6449 amino features were detected, 818 of them matched those in SRSRMs, and 87% of them were different between the two rivers. Using chemical standards, we confirmed 10 compounds and tentatively identified 5 more. This study highlights similarities and differences in reactive N-precursors in SRSRMs and local river water, enhancing the understanding of geo-differences in reactive N-precursors in different source waters.
Collapse
Affiliation(s)
- Qiming Shen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - K N Minh Chau
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Di Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kristin Carroll
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
3
|
He H, Sun N, Li L, Ai J, Zhou H, Yang X, Yang X, Wang D, Zhang W. Effects of dissolved organic matter removal and molecular transformation in different water treatment processes on formation of disinfection byproducts. WATER RESEARCH 2023; 245:120626. [PMID: 37713793 DOI: 10.1016/j.watres.2023.120626] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Alterations in molecular composition of dissolved organic matter (DOM) during water treatments can influence the composition and toxicity of disinfection by-products (DBPs) in subsequent chlorination disinfection process. In this study, the impacts of DOM composition after various water treatment techniques (coagulation, adsorption, nanofiltration, biological aerated filter (BAF), and their integrated processes) on the generation mechanisms of DBPs were comprehensively explored by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in combination with GC-MS and LC-MS analysis. The results indicated that coagulation preferentially removed unsaturated (low H/C) and oxidized (high O/C) compounds, whereas adsorption was prone to remove the reduced (low O/C) component that was more reactive with chlorine, leading to lower yields (μg DBP/mg DOC) of trihalomethanes (THMs) and haloacetic acids (HAAs) during subsequent chlorination. The coagulation-adsorption technique exhibited a relatively high removal of both known and unknown DBPs, demonstrating that coagulation and adsorption were complementary for DOM removal at the molecular level. Nanofiltration selectively removed molecules with relatively high O/C, however, those with very low O/C that were more reactive with chlorine could pass through the nanofiltration membrane, resulting in the highest yields of THMs and HAAs. Although BAF was inefficient in removing DBPs precursors, it could convert molecules with low degree of oxidation and unsaturation into highly oxidized and unsaturated ones, thereby significantly enhancing the removal of DBPs precursors in the subsequent coagulation-adsorption process. These findings are instrumental in developing and selecting more effective techniques to minimize the formation of DBPs in water treatment.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Niannian Sun
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Alternative Ecosorbent for the Determination of Trihalomethanes in Aqueous Samples in SPME Mode. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248653. [PMID: 36557786 PMCID: PMC9787470 DOI: 10.3390/molecules27248653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
A new sorbent material based on modified clay with ionic liquid immobilized into an agarose film was developed as part of this study. It was applied to determine organochlorine pollutants, like disinfection byproducts, through headspace solid-phase microextraction-gas chromatography-electron capture detection (HS-SPME-GC-ECD). The disinfection byproducts determined in this study were used as model molecules because they were volatile compounds, with proven severe effects on human health. Their presence in aquatic environments is in trace concentrations (from pg L-1 to mg L-1). They are classified as emergent pollutants and their determination is a challenge for analytical chemists. The parameters which affected the extraction efficiency, i.e., number and distance between SPME discs, salt concentration, the temperature of extraction, extraction time, and desorption time, were optimized. A wide linear dynamic range of 10-1000 ng mL-1 and coefficients of determination better than 0.997 were achieved. The limits of detection and the limits of quantitation were found in the ranges of (1.7-3.7) ng mL-1 and (5.6-9.9) ng mL-1, respectively. The precision, expressed as relative standard deviation (RSD), was better than 8%. The developed sorbent exhibits good adsorption affinity. The applicability of the proposed methodology for the analysis of trihalomethanes in environmental and water samples showed recoveries in the range of 86-95%. Finally, the newly created method fully complied with the principles of green chemistry. Due to the fact that the sorbent holder was made of agarose, which is a wholly biodegradable material, sorbent clay is a widespread material in nature. Moreover, the reagents intercalated into the montmorillonite are new green solvents, and during the whole procedure, low amounts of organic solvents were used.
Collapse
|
5
|
Hua LC, Tsia SR, Ngo DNG, Huang C. Bromide-intrusion into Chlorella sp. and Microcystis aeruginosa growing environments: Its impacts on algal growth and the formation potential of algal-derived DBPs upon chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148772. [PMID: 34247079 DOI: 10.1016/j.scitotenv.2021.148772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Due to the negative impact of climate change and anthropogenic activities, bromide intrusion into algae-impacted freshwater becomes a new challenge for safe drinking water supply worldwide, as bromide and algal organic matter are important disinfection byproduct (DBP) precursors. However, the influences of this phenomenon on algal precursor dynamic and their derived DBPs have to date received little attention. This study examined the effects of bromide intrusion on algal intra- (IOM) and extra-cellular (EOM) precursors during the growth of two freshwater algae Chlorella sp. and Microcystis aeruginosa. Both algae were well-adapted to Br-intrusion, and no significant effect on their growth and their IOM and EOM precursor characteristics was statistically found (p > 0.05). Notwithstanding, this phenomenon apparently added bromide ions into the algal-EOM solution, which resulted in a linear uptake of bromide by IOM. Under Br-intrusion from 0-4 mg/L (Br0-Br4), 15-60% (on average) of the initial bromide additions remained in the algal EOM. By contrast, only an average of ~1.5-2.4% of the additional bromide was taken up by the IOM, resulting in an elevation of brominated DBPs (Br-DBPs) upon chlorination, especially for those samples collected in the late exponential and declined growth phases. When Br0 shifted to Br4, the %Br-DBP yields from both IOM and EOM increased by more than 75%, with a corresponding increasing the total DBP yield of ~30%. The toxic potencies of all chlorinated Br-containing IOM/EOM were thus magnified, by over one order magnitude greater than the non-Br IOM/EOM at Br0. These results are highly significant for understanding the potential risks of Br-intrusion and algal blooming in raw water quality prior to chlorination.
Collapse
Affiliation(s)
- Lap-Cuong Hua
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Shian Rong Tsia
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Dinh Ngoc Giao Ngo
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chihpin Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Chen WH, Huang JR, Lin CH, Huang CP. Catalytic degradation of chlorpheniramine over GO-Fe 3O 4 in the presence of H 2O 2 in water: The synergistic effect of adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139468. [PMID: 32479961 DOI: 10.1016/j.scitotenv.2020.139468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Chlorpheniramine is a pharmaceutical widely used and found in water environments. Besides hormone disruption and adverse environmental effects, chlorpheniramine forms carcinogenic nitrosamines during disinfection. We have demonstrated previously the efficient adsorption of chlorpheniramine from aqueous solution onto graphene oxide-magnetite composite (GO-Fe3O4). The present study focused on the elimination of chlorpheniramine and the formation of nitrosamine byproducts during reaction with H2O2 over GO-Fe3O4 catalyst. The effects of the morphology of GO-Fe3O4 in terms of iron fraction, pH, concentrations of H2O2 and organic matters on chlorpheniramine removal in the GO-Fe3O4-H2O2 system were investigated. Chlorpheniramine was efficiently removed at pH 9 when GO-Fe3O4 had a higher micropore volume and surface area. Kinetics study showed that both oxidation (k = 5.1(±0.2) × 10-3 (mg g-1)-1 min-1) and adsorption reactions (k = 2.7(±0.1) × 10-3 (mg g-1)-1 min-1) fitted well with the second-order kinetics model. The adsorption sites on the GO-Fe3O4 surface could be different from those involved during catalytic oxidation. Chlorpheniramine removal decreased by 44.9% in the 5th cycle without regeneration due to the structural fracture of GO-Fe3O4. A tentative pathway of chlorpheniramine degradation and nitrosamine formation by GO-Fe3O4-H2O2 was proposed. GO-Fe3O4 was an adsorbent and effective catalyst in chlorpheniramine degradation by H2O2 that exhibited limited nitrosamine formation at moderate reaction time.
Collapse
Affiliation(s)
- Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Jhang-Ruei Huang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Hsien Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, DE, USA
| |
Collapse
|
7
|
Zusman OB, Kummel ML, De la Rosa JM, Mishael YG. Dissolved organic matter adsorption from surface waters by granular composites versus granular activated carbon columns: An applicable approach. WATER RESEARCH 2020; 181:115920. [PMID: 32505889 DOI: 10.1016/j.watres.2020.115920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/08/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Many new sorbents have been introduced as an alternative for granular activated carbon (GAC), the most common sorbent for dissolved organic matter (DOM) removal. In the current study, we developed an applicable granular composite based on a flocculant commonly employed for drinking water treatment adsorbed to montmorillonite. DOM adsorption from surface waters, Lake Kinneret and Suwannee River, with low and high specific ultraviolet absorption (SUVA), respectively, by composite and GAC columns, was studied. Adsorption of DOM from Suwannee River was significantly higher by the composite column, in comparison to the GAC column, while an opposite trend was obtained for the adsorption of DOM from Lake Kinneret. In-situ regeneration of the columns with a brine solution was extremely efficient and inefficient for the composite and GAC columns, respectively. Adsorption, of both waters, post-regeneration by the composite column was not compromised, while GAC effectiveness decreased. The opposite trend in DOM adsorption from Suwannee River and Lake Kinneret was explained by the different affinities of the sorbents towards various DOM molecules. Distinguishing between different DOM components adsorbed by GAC and the composite was supported by 13C NMR and direct pyrolysis-GC-MS measurements. Furthermore, we demonstrated that the kinetics and adsorption at the equilibrium of five organic molecules to the composite and GAC can be correlated to their chemical-physical properties. Indeed, combining the properties of both sorbents, by integrating them into a single column, yielded higher DOM removal than by the individual columns. Furthermore, since DOM removal by GAC and by the composite, increases, and decreases with temperature, respectively, the integrated column, mitigates the changes in removal, stabilizing the adsorption performance. Such an integrated filter may minimize additional seasonal and water quality fluctuations.
Collapse
Affiliation(s)
- Ofri B Zusman
- Department of Soil and Water Science, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Mario L Kummel
- Department of Soil and Water Science, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - José M De la Rosa
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Yael G Mishael
- Department of Soil and Water Science, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|