1
|
Diao H, Lan C, Huang H, Xu F, Dong D, Dong W, Qiu Y, Chen J, Ren Y. Effects of the recovery period after particulate matter pollution events on the dust retention capacity and physiological characteristics of Nerium oleander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174990. [PMID: 39094640 DOI: 10.1016/j.scitotenv.2024.174990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Plants are known for their significant dust retention capacity and are widely used to alleviate atmospheric pollution. Urban green plants are exposed to periodic particulate matter pollution stress, and the time intervals between periods of pollution exposure are often inconsistent. The impact of stress memory and pollution intervals on plant dust retention capacity and physiological characteristics during periodic stress is not yet clear. In this study, the common urban landscaping species Nerium oleander L. was selected as the test plant, and stable isotope (15NH4Cl) tracing technology and aerosol generators were used to simulate periodic PM2.5 pollution. This study included two particulate pollution periods (each lasting 14 days) and one recovery period with three different durations (7, 14, and 21 days). The results indicated that periodic particulate matter pollution-induced stress decreased the dust retention capacity of N. oleander leaf surfaces, but particle adsorption to the wax layer was more stable. As the duration of the recovery period increased, leaf particle absorption, which accounted for the greatest proportion of total dust retention, increased, indicating that leaves are the primary organ for dust retention in Nerium oleander L. Root absorption also increased with increasing recovery periods. Prior pollution stress increased oleander physiological and morphological responses, and the plant's air pollution tolerance significantly improved after a recovery period of >14 days.
Collapse
Affiliation(s)
- Haichen Diao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, China
| | - Chenqiyu Lan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Hanhan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Feifei Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Dubin Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Wen Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Yingying Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Yuan Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an 311300, China.
| |
Collapse
|
2
|
Tomson M, Kumar P, Abhijith KV, Watts JF. Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170950. [PMID: 38360301 DOI: 10.1016/j.scitotenv.2024.170950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
The study investigated inter-species variation in particulate matter (PM) accumulation, wash-off, and retention on green wall plants, with a focus on leaf characteristics. Ten broadleaf plant species were studied in an experimental green wall. Ambient PM concentrations remained relatively stable throughout the measurement period: PM1: 16.60 ± 9.97 μgm-3, PM2.5: 23.27 ± 11.88 μgm-3, and PM10: 39.59 ± 25.72 μgm-3. Leaf samples were taken before and after three rainfall events, and PM deposition was measured using Scanning Electron Microscopy (SEM). Leaf micromorphological traits, including surface roughness, hair density, and stomatal density, exhibited variability among species and leaf surfaces. Notably, I.sempervirens and H.helix had relatively high PM densities across all size fractions. The study underscored the substantial potential of green wall plants for atmospheric PM removal, with higher Wall Leaf Area Index (WLAI) species like A.maritima and T.serpyllum exhibiting increased PM accumulation at plant level. Rainfall led to significant wash-off for smaller particles, whereas larger particles exhibited lower wash-off rates. Leaf micromorphology impacted PM accumulation, although effects varied among species, and parameters such as surface roughness, stomatal density, and leaf size did not consistently affect PM deposition. The composition of deposited particles encompassed natural, vehicular, salt, and unclassified agglomerates, with minimal changes after rainfall. Air Pollution Tolerance Index (APTI) assessments revealed that I.sempervirens displayed the highest air pollution tolerance, while O.vulgare had the lowest. APTI showed a moderate positive correlation with PM deposition across all fractions. The study concluded that the interplay of macro and micromorphology in green wall plant species determines their PM removal potential. Further research is needed to identify the key leaf characteristics for optimal green wall species selection for effective PM removal.
Collapse
Affiliation(s)
- Mamatha Tomson
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom.
| | - K V Abhijith
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - John F Watts
- School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| |
Collapse
|
3
|
Hong J, Park C, Kim K, Jeon J, Son J, Chang H, Park CR, Kim HS. Experimental analysis of PM 2.5 reduction characteristics between Korean red pine (Pinus densiflora) and sawtooth oak (Quercus acutissima) saplings under different densities and arrangement structures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123699. [PMID: 38460588 DOI: 10.1016/j.envpol.2024.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
As global air pollution, particularly fine particulate matter (PM2.5), has become a major environmental problem, various PM2.5 mitigation technologies including green infrastructure have received significant attention. However, owing to spatial constraints on urban greening, there is a lack of management plans for urban forests to efficiently mitigate PM2.5. In this study, we assessed the PM2.5 reduction capabilities of Pinus densiflora (Korean red pine) and Quercus acutissima (sawtooth oak) by measuring the changes of PM2.5 concentrations using an experimental chamber system. In addition, the PM2.5 reduction efficiency in 90 min (PMRE90) and the amount of PM2.5 reduction per leaf area (PMRLA) were compared based on arrangement structures and density levels. The results showed that the PM2.5 reduction by plants was significantly greater than that of the control experiment without any plants, and an additional reduction effect of approximately 1.38 times was induced by a 1.5 m s-1 air flow. The PMRE90 of Korean red pine was the highest at medium density. In contrast, the PMRE90 of sawtooth oak was the highest at high density. The PMRLA of both species was highest at low densities. The different responses of the species to total reduction were well explained by total leaf area (TLA). The PMRE90 of both species was positively correlated with TLA. The PMRLA of sawtooth oak was approximately 2.3 times greater than that of Korean red pine. However, there were no significant differences in both PMRE90 and PMRLA between the arrangement structures. Our findings reveal the potential mechanisms of vegetation in reducing PM2.5 according to arrangement structure and density. This highlights the importance of efficiently using urban green spaces with spatial constraints on PM2.5 mitigation in the future.
Collapse
Affiliation(s)
- Jeonghyun Hong
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanoh Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyeon Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jounga Son
- Urban Forests Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hanna Chang
- Urban Forests Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Chan-Ryul Park
- Urban Forests Division, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Barwise Y, Kumar P, Abhijith KV, Gallagher J, McNabola A, Watts JF. A trait-based investigation into evergreen woody plants for traffic-related air pollution mitigation over time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169713. [PMID: 38163588 DOI: 10.1016/j.scitotenv.2023.169713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
This study investigated influences of leaf traits on particulate matter (PM) wash-off and (re)capture (i.e., net removal) over time. Leaf samples were taken before and after three rainfall events from a range of 10 evergreen woody plants (including five different leaf types), which were positioned with an optical particle counter alongside a busy road. Scanning electron microscopy was used to quantify the density (no./mm2), mass (μg/cm2), and elemental composition of deposited particles. To enable leaf area comparison between scale-like leaves and other leaf types, a novel metric (FSA: foliage surface area per unit branch length) was developed, which may be utilised by future research. Vehicle-related particles constituted 15 % of total deposition, and there was a notable 50 % decrease in the proportion of tyre wear particles after rainfall. T. baccata presented the lowest proportion (11.1 %) of vehicle-related particle deposition but the most consistent performance in terms of net PM removal. Only four of the 10 plant specimens (C. japonica, C. lawsoniana, J. chinensis, and T. baccata) presented effective PM wash-off across all particle size fractions and rainfall intensities, with a generally positive relationship observed between rainfall intensity and wash-off. Mass deposition was more significantly determined by particle size than number density. Interestingly, larger particles were also less easily washed off than smaller particles. Some traits typically considered to be advantageous (e.g., greater hairiness) may in fact hinder net removal over time due to retention under rainfall. Small leaf area is one trait that may promote both accumulation and wash-off. However, FSA was found to be the most influential trait, with an inverse relationship between FSA and wash-off efficacy. This finding poses trade-offs and opportunities for green infrastructure design, which are discussed. Finally, numerous areas for future research are recommended, underlining the importance of systems approaches in developing vegetation management frameworks.
Collapse
Affiliation(s)
- Yendle Barwise
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford, GU2 7XH, Surrey, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland..
| | - K V Abhijith
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - John Gallagher
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland
| | - Aonghus McNabola
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland
| | - John F Watts
- School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
5
|
Wang M, Qin M, Xu P, Huang D, Jin X, Chen J, Dong D, Ren Y. Atmospheric particulate matter retention capacity of bark and leaves of urban tree species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123109. [PMID: 38086509 DOI: 10.1016/j.envpol.2023.123109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Urban vegetation can effectively filter and adsorb particulate matter (PM). However, limited studies have been conducted on the PM retention capacity of tree barks. This study investigated the ability of five common urban tree species in the Yangtze River Delta region to retain PM through their barks and leaves by conducting a 14-day tree PM retention experiment on the five tree species during autumn and winter. The results showed that (1) the PM retention per unit area of bark was 6.9 times and 11.8 times higher than that of leaves during autumn and winter, respectively; (2) when considering total surface area, bark and leaves exhibited comparable PM retention capacities at the whole-plant scale; (3) the ability of bark to retain PM is species-specific, which can be attributed to different bark morphology among different tree species; and (4) bark and leaves exhibited distinct preferences for retaining PM of different particle sizes, even when exposed to similar environmental conditions. This study highlights the remarkable ability of tree bark to PM removal and provides valuable insights into the role of urban trees in mitigating PM pollution. Furthermore, these findings can provide valuable insights into studies on dry deposition modelling, urban planning, and green space management strategies.
Collapse
Affiliation(s)
- Manli Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, China
| | - Man Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Peiji Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Dongming Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Xinjie Jin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, China
| | - Dubin Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Yuan Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, China.
| |
Collapse
|
6
|
Rossini-Oliva S, Montiel de La Cruz JM, Fernández-Espinosa AJ, Fernández-Cañero R, Fernández-Cabanás VM, Pérez Urrestarazu L. Potentially toxic elements capture by an active living wall in indoor environments: Effect of species in air phytoremediation. CHEMOSPHERE 2023; 340:139799. [PMID: 37574085 DOI: 10.1016/j.chemosphere.2023.139799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Indoor air pollution is a serious health problem throughout the world. Plants are known to be able to reduce the effect of air pollution and improve indoor air quality (IAQ). The aim of the present study was to compare the effectiveness of four plant species (Tradescantia zebrina hort. ex Bosse, Philodendron scandens K. Koch & Sello, Ficus pumila L. and Chlorophtytum comosum (Thunb.) Jacques) planted in an active living wall (ALW) for capturing particle pollutants. The ALW was introduced in a glass chamber and exposed to large (10-40 μm) and fine (1.2-10 μm) airborne particles containing a fixed concentration of potentially toxic elements (Al, B, Cd, Co, Cr, Cu, Ni and Pb). The surface particle deposition (sPM) was estimated in the leaves from the four species and the potentially toxic element concentration in the particulate matter (PM) was measured in plants, medium culture and in the ALW support system. The distribution of different particle size fractions differed between species. The capacity to trap particles on leaf surfaces was similar among the species (4.7-13 ng cm-2) except when comparing Tradescantia and Chlorophytum with Ficus, being higher in the latter species. Differences in toxic elements accumulation capacity were observed between species depending on the elements considered. The percentage of reduction in indoor pollution using an ALW was in a range of 65-79% being similar between species. Plants were the most important component of the ALW in terms of accumulation of indoor potentially toxic elements. The data presented here could be used to model the effectiveness of ALW systems schemes in improving IAQ.
Collapse
Affiliation(s)
- S Rossini-Oliva
- Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain; Environmental Analytical Chemistry Research Group, Faculty of Chemistry, University of Seville, 41012, Sevilla, Spain.
| | - J M Montiel de La Cruz
- Urban Greening and Biosystems Engineering Research Group, ETSIA, Departamento de Agronomía, University of Seville, 410133, Sevilla, Spain
| | - A J Fernández-Espinosa
- Department of Analytical Chemistry, University of Seville, Profesor García González 1, 41012, Sevilla, Spain; Environmental Analytical Chemistry Research Group, Faculty of Chemistry, University of Seville, 41012, Sevilla, Spain
| | - R Fernández-Cañero
- Urban Greening and Biosystems Engineering Research Group, ETSIA, Departamento de Agronomía, University of Seville, 410133, Sevilla, Spain
| | - V M Fernández-Cabanás
- Urban Greening and Biosystems Engineering Research Group, ETSIA, Departamento de Agronomía, University of Seville, 410133, Sevilla, Spain
| | - L Pérez Urrestarazu
- Urban Greening and Biosystems Engineering Research Group, ETSIA, University of Seville, 41013, Sevilla, Spain
| |
Collapse
|
7
|
Rodríguez-Rodríguez I, Pérez-Vázquez L, de Pablos-Pons F, Fernández-Espinosa AJ. Toxic metals from atmospheric particulate matter in food species of tomato (Solanum lycopersicum) and strawberry (Fragaria x ananassa) used in urban gardening. A closed chamber study. CHEMOSPHERE 2023; 340:139921. [PMID: 37619746 DOI: 10.1016/j.chemosphere.2023.139921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this work, two plant foods, strawberry and tomato, were subjected to exposure to metals from synthetic airborne particles in a closed chamber experiment. The synthetic particles were obtained in the laboratory. Within the closed chamber, particles were added and recirculated for 4 days in a turbulent air stream, causing deposition on the different parts of the plants. They were evaluated because of their increasingly frequent cultivation in urban gardens of cities. The main objectives were to determine whether the species accumulate metals significantly, which species accumulate the most, and in which parts of the plant. Finally, an attempt was made to differentiate the accumulation of pollutants by surface deposition on leaves and fruits from the adsorbed metals into the leaf or the fruit by their stomata or cuticles. The concentration of heavy metals was quantified in fruits, leaves and the soil after exposure. Metals were evaluated as a whole and individually, both in dry and fresh weight basis. The decrease of particulate matter and metals in the air inside the chamber was also studied in order to evaluate the use of both food species as air purifier by vertical gardens. The concentration of metals in plants (mg kg-1) and airborne particles (mg m-3) was measured by microwave plasma optical emission spectroscopy (MP-AES). For the sake comparison of total amount of metals in the samples concentrations were normalized. Strawberries was the food species that accumulated the largest amount of metals. In a dry weight basis, tomato leaves and strawberry fruits were the parts of the plants with higher accumulation capacity of particles and metals. The potential toxic elements Cd, Ni and Cr in tomato leaves and in strawberry fruits had a higher presence in the interior of the plant system. In a fresh weight basis, the strawberry fruit had the most accumulation capacity for metals.
Collapse
Affiliation(s)
- Ismael Rodríguez-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain
| | - Laura Pérez-Vázquez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain
| | - Fernando de Pablos-Pons
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain; Applied Analysis' FQM347 research Group, Andalucia, Spain
| | - Antonio José Fernández-Espinosa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González 1, 41012, Sevilla, Spain; Environmental Analytical Chemistry' RNM294 research Group, Andalucia, Spain.
| |
Collapse
|
8
|
Hong J, Lee M, Huh W, Kim TK, Jeon J, Lee H, Kim K, Byeon S, Park C, Kim HS. Comparisons of PM 2.5 mitigation with stand characteristics between evergreen Korean pine plantations and deciduous broad-leaved forests in the Republic of Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122240. [PMID: 37482339 DOI: 10.1016/j.envpol.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Owing to industrialization and urbanization in recent decades, fine particulate matter (PM2.5) in the atmosphere has become a major environmental problem worldwide. This environmental issue pushed the use of forests as air filtering tools. However, there is a lack of continuous and long-term forest management to efficiently mitigate PM2.5. In this study, we assessed the potential of different forest types to control air pollution by measuring the seasonal PM2.5 concentrations inside and outside the forest for one year. In addition, the PM2.5 reduction efficiencies (PMREs) of two forest types were compared, and their relationship with stand characteristics was analyzed. The results showed that the average PMRE inside the forests was approximately 18.2%; the seasonal PMRE was highest in winter (approximately 28.1%) and lowest in summer (approximately 9.6%). The average PMRE of the Taehwa deciduous broad-leaved forest (TDF) (approximately 18.8%) was significantly higher than that of the Taehwa coniferous forest (TCF) (approximately 17.5%) (P < 0.001); differences were also observed seasonally. The PMRE in the TCF was higher in spring and summer (P < 0.001), while that in the TDF was higher in autumn and winter (P < 0.001). Furthermore, the PMRE in the TDF was negatively correlated with stand density (P = 0.003) and positively correlated with the average diameter at breast height (DBH) (P = 0.028). However, the PMRE in the TCF did not significantly correlate with stand characteristics. As such, the results of this study revealed the differences in PM2.5 mitigation according to stand characteristics, which should be considered in urban forest management.
Collapse
Affiliation(s)
- Jeonghyun Hong
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minsu Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woojin Huh
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Kyung Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyeon Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hojin Lee
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanoh Park
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Ohta A, Takahashi K, Sase H, Murao N, Takada K, Yamaguchi M, Murakami H, Nakaba S, Watanabe M, Mizukawa K, Takada H, Izuta T. Relationship between the amount of black carbon particles deposited on the leaf surface and leaf surface traits in nine urban greening tree species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023:1-13. [PMID: 37148212 DOI: 10.1080/15226514.2023.2204148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To select urban greening tree species suitable for the purification of the atmosphere polluted by black carbon (BC) particles, it is necessary to clarify the determinants of the amount of BC particles deposited on the tree leaves. In the present study, we investigated the relationship between the amount of BC particles that were deposited from the atmosphere and firmly adhered to the leaf epicuticular wax, and leaf surface traits in seedlings of nine tree species grown for two years under natural conditions (Fuchu, Tokyo, Japan). There was a significant interspecific difference in the maximum amount of BC particles deposited on the leaf surface, and the order was as follows: Ilex rotunda > Cornus florida > Osmanthus fragrans > Cornus kousa > Quercus glauca ≒ Quercus myrsinifolia > Magnolia kobus ≒ Zelkova serrata ≒ Styrax japonicus. In the nine tree species, significant highly positive correlations were observed between the amount of BC particles deposited on the leaf surface, and the hydrophobicity of leaf epicuticular wax determined by its chemical composition. Therefore, we concluded that the hydrophobicity of leaf epicuticular wax is an important determinant of the amount of BC particles deposited on the leaf surface of urban greening tree species.
Collapse
Affiliation(s)
- Akari Ohta
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kei Takahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, Niigata, Japan
| | - Naoto Murao
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Keiichi Takada
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masahiro Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hisashi Murakami
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Satoshi Nakaba
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kaoruko Mizukawa
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hideshige Takada
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
10
|
Kim J, Kim J, Kim Y, Go T, Lee SJ. Accelerated settling velocity of airborne particulate matter on hairy plant leaves. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117313. [PMID: 36716541 DOI: 10.1016/j.jenvman.2023.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Phytoremediation has emerged as an ecofriendly technique to reduce hazardous particulate matter (PM) in the air. Although previous studies have conducted statistical analyses to reveal PM removal capabilities of various plant species according to their leaf characteristics, the underlying physical mechanism of PM adsorption of plants remains unclear. Conventional methodologies for measuring PM accumulation usually require long-term field tests and provide limited understanding on PM removal effects of individual leaf traits of various plants. In this study, we propose a novel methodology which can compare the electrostatic interactions between PMs and plant leaves according to their trichome structures by using digital in-line holographic microscopy (DIHM). Surface characteristics of Perilla frutescens and Capsicum annuum leaves are measured to examine electrostatic effects according to the morphological features of trichomes. 3D settling motions of PMs near the microstructures of trichomes of the two plant species are compared in detail. To validate the PM removal effect of the hairy microstructures, a polydimethylsiloxane (PDMS) replica model of a P. frutescens leaf is fabricated to demonstrate accelerated settling velocities of PMs near trichome-like microstructures. The size and electric charge distributions of PMs with irregular shapes are analyzed using DIHM. Numerical simulation of the PM deposition near a trichome-like structure is conducted to verify the empirical results. As a result, the settling velocities of PMs on P. frutescens leaves and a PDMS replica sample are 12.11 ± 1.88% and 34.06 ± 4.19% faster than those on C. annuum leaves and a flat PDMS sample, respectively. These findings indicate that the curved microstructures of hairy trichomes of plant leaves increase the ability to capture PMs by enhancing the electric field intensity just near trichomes. Compared with conventional methods, the proposed methodology can quantitatively evaluate the settling velocity of PMs on various plant leaves according to the morphological structure and density of trichomes within a short period of time. The present research findings would be widely utilized in the selection of suitable air-purifying plants for sustainable removal of harmful air pollutants in urban and indoor environments.
Collapse
Affiliation(s)
- Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeongju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngdo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Taesik Go
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
11
|
Piccini I, Macrì M, Gea M, Dessì L, Bonetta S, Schilirò T, Santovito A, Bonelli S. Genotoxic effects of particulate matter on larvae of a common and widespread butterfly along an urbanization gradient. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114638. [PMID: 36791502 DOI: 10.1016/j.ecoenv.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Biodiversity is currently declining worldwide. Several threats have been identified such as habitat loss and climate change. It is unknown if and how air pollution can work in addition or in synergy to these threats, contributing to the decline of current species and/or local extinction. Few studies have investigated the effects of particulate matter (PM), the main component of air pollution, on insects, and no studies have investigated its genotoxic effects through Micronucleus assay. Butterflies play an important role in the environment, as herbivores during larval stages, and as pollinators as adults. The aim of this study was to evaluate the genotoxic effects of PM10 from different sites along a gradient of population urbanization, on a common cabbage butterfly species (Pieris brassicae). PM10 was collected from April to September in an urban (Turin, Italy), a suburban (Druento, Italy) and a mountain site (Ceresole Reale, Italy) with different urbanization levels. P. brassicae larvae (n = 218) were reared in the laboratory under controlled conditions (26 °C, L:D 15:9) on cabbage plants (average 9.2 days), and they were exposed to PM10 organic extracts (20 and 40 m3/mL) or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected and cells were used for the Micronucleus (MN) assay. Results showed that all PM extracts induced significant DNA damage in exposed larvae compared to controls, and that increasing the PM dose (from 20 to 40 m3/mL) increased genotoxic effects. However, we did not detect any significant differences between sites with different urbanization levels. In conclusion, PM at different concentrations induced genotoxic effects on larvae of a common butterfly species. More alarmingly, PM could work in addition to and/or in synergy with other compounds (e.g. pesticides) and, especially on species already threatened by other factors (e.g. fragmentation), thus affecting the vitality of populations, leading to local extinctions.
Collapse
Affiliation(s)
- Irene Piccini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Luca Dessì
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Monaci F, Ancora S, Paoli L, Loppi S, Franzaring J. Air quality in post-mining towns: tracking potentially toxic elements using tree leaves. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:843-859. [PMID: 35338402 PMCID: PMC10014763 DOI: 10.1007/s10653-022-01252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, leaves of the evergreen holm oak Quercus ilex were used to assess airborne contamination of potentially toxic elements (PTEs) at five towns located on the slopes of the Mt. Amiata (central Italy), an area with a long history of mining and, more recently, an important district for the industrial exploitation of geothermal energy. PTE composition and covariance of washed and unwashed Q. ilex leaves of three different ages (6, 12 and 24 month-old) were used to identify atmospheric inputs of PTEs at residential areas, evaluate long-term adsorption and retention of PTEs by the leaves, thus providing an indication of potential human exposure. Moreover, the determination of foliar concentrations of major elements (C, N, S and P) allowed an assessment of the nutritional status of the investigated urban tree stands which excluded the existence of stress condition caused by air pollution or other disturbances. Results indicated that overall Pb, Cu, and Cd concentration were low in the investigated urban sites, if compared with similar studies conducted in larger Italian cities, denoting a low contribution of vehicular traffic to the atmospheric pathway. The five urban settlements were characterized by a specific profile of elements (Al, Ba, Hg and Sb) enriched in unwashed leaves, resulting from the distinct geochemical characteristics of the area and from diffuse (i.e., urban activity) and point sources of PTEs emission (i.e., brownfields, geothermal power plants). The latter sources primarily govern the distribution of Hg, whose contamination was found to be very localized close to a major abandoned mining area. Our data provided quantitative evidence of the spectrum of PTEs potentially impacting resident population and may prove useful in support of follow-up instrumental monitoring campaigns of air quality, as well as for human health and ecological risk assessments.
Collapse
Affiliation(s)
- Fabrizio Monaci
- Department of Life Sciences, University of Siena, Via Mattioli 4, Siena, Italy.
| | - Stefania Ancora
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Mattioli 4, Siena, Italy
| | - Luca Paoli
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126, Pisa, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Via Mattioli 4, Siena, Italy
| | - Jürgen Franzaring
- Institute of Landscape and Plant Ecology, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany
| |
Collapse
|
13
|
Zhao K, Liu D, Chen Y, Feng J, He D, Huang C, Wang Z. Trait-mediated leaf retention of atmospheric particulate matter in fourteen tree species in southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33609-33623. [PMID: 36484939 DOI: 10.1007/s11356-022-24638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Particulate air pollution is a serious threat to human health, especially in urban areas, and trees can act as biological filters and improve air quality. However, studies on greening tree species selection are rare. We measured three particular matter adsorption metrics (PM2.5, PM2.5-10, and PM>10 captured per leaf area) and six functional traits for each of fourteen species and estimated their minimum light requirements based on field surveys. We found that shade-tolerant species captured more coarse particles (PM2.5-10) than light-demanding species. For traits, a strong negative correlation was found between photosynthetic capacity and adsorption capacity for all three PM size fractions, indicating that in comparison to acquisitive species, conservative species captured larger amounts of particles. Moreover, denser wood species and smaller leaves were more efficient in capturing large particles (PM>10), while species with "expensive" leaves (high leaf N or P) were more efficient in capturing fine particles (PM2.5), indicating that capturing large and fine particles was related to mechanical stability traits and leaf surface traits, respectively. Our results demonstrated that the metabolism (e.g., photosynthetic capacity) and chemistry (e.g., leaf N and leaf P) of leaves help explain species capacity to capture PM. We encourage future studies to investigate the ecosystem functions and stress tolerance of tree species with the same framework and trait-based methods.
Collapse
Affiliation(s)
- Kangning Zhao
- School of Architecture, University of South China, Hengyang, 421001, China.
| | - Dandan Liu
- School of Architecture, University of South China, Hengyang, 421001, China
| | - Yongfa Chen
- School of Ecology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiayi Feng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510520, China
| | - Dong He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062, China
| | - Chunhua Huang
- School of Architecture, University of South China, Hengyang, 421001, China
| | - Zhiyuan Wang
- School of Architecture, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Avelino J, Gagliardi S, Perfecto I, Isaac ME, Liebig T, Vandermeer J, Merle I, Hajian-Forooshani Z, Motisi N. Tree Effects on Coffee Leaf Rust at Field and Landscape Scales. PLANT DISEASE 2023; 107:247-261. [PMID: 35698251 DOI: 10.1094/pdis-08-21-1804-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although integrating trees into agricultural systems (i.e., agroforestry systems) provides many valuable ecosystem services, the trees can also interact with plant diseases. We demonstrate that a detailed understanding of how plant diseases interact with trees in agroforestry systems is necessary to identify key tree canopy characteristics, leaf traits, spatial arrangements, and management options that can help control plant diseases at different spatial scales. We focus our analysis on how trees affect coffee leaf rust, a major disease affecting one of the world's most significant crop commodities. We show that trees can both promote and discourage the development of coffee leaf rust at the plot scale via microclimate modifications in the understory. Based on our understanding of the role of tree characteristics in shaping the microclimate, we identify several canopy characteristics and leaf traits that can help manage coffee leaf rust at the plot scale: namely, thin canopies with high openness, short base height, horizontal branching, and small, dentate leaves. In contrast, at the edge of coffee farms, having large trees with high canopy volume and small, thick, waxy leaves is more useful to reduce throughflow wind speeds and intercept the airborne dispersal of urediniospores, an important consideration to control disease at the landscape scale. Seasonal pruning can help shape trees into the desired form, and trees can be spatially arranged to optimize desired effects. This case study demonstrates the added value of combining process-based epidemiology studies with functional trait ecology to improve disease management in agroforestry systems.
Collapse
Affiliation(s)
- Jacques Avelino
- CIRAD, UMR PHIM, F-34398 Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - Ivette Perfecto
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Marney E Isaac
- University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Theresa Liebig
- Alliance of Bioversity International and CIAT, CGIAR FOCUS Climate Security, 00054 Rome, Italy
| | - John Vandermeer
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Isabelle Merle
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | | | - Natacha Motisi
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, 00100 Nairobi, Kenya
| |
Collapse
|
15
|
Chen S, Yu H, Teng X, Dong M, Li W. Composition and size of retained aerosol particles on urban plants: Insights into related factors and potential impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158656. [PMID: 36096224 DOI: 10.1016/j.scitotenv.2022.158656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The role of plants in alleviating aerosol pollution has drawn extensive attention. Most studies focus on compositions of aerosol particles on urban plants, while the leaf traits related to particle retention have not yet been intensively studied. This study selected five typical urban plants (Loropetalum chinense, Rhododendron simsii, Euonymus japonicus, Photinia × fraseri, Osmanthus fragrans), and employed scanning electron microscope (SEM) and ion chromatography, aiming to investigate the accumulation features of aerosol particles and the relationships between leaf traits and particle retention. Results show that aerosol particles were mainly retained on the adaxial leaf surface, the fine particles (Φ ≤ 2.5 μm) were the predominant components (77.8 % by number) on the leaves, and the dominant water-soluble ions of particles were Ca2+, SO42-, and NO3-. By comparison, E. japonicus and P. fraseri were efficient in the retention of fine and coarse particles (2.5 <Φ ≤ 10 μm), but L. chinense was capable to retain more large particles (Φ > 10 μm). The correlation analysis indicates that leaf traits are closely related to the accumulation of aerosol particles. The result shows that plant leaves with larger stomatal area, lower stomatal density, smaller specific leaf area and higher in epicuticular wax content can retain more aerosol particles. This result indicates that the leaves are capable of retaining aerosol particles via the synergy of multiple leaf traits, such as higher wax content and the fewer but larger stomata on their leaf surfaces. This study is helpful to understand the interactions between leaf traits and particle retention, and it further contributes to the selection of potential dust-retaining plants, which is of great significance for the alleviation of urban air pollution.
Collapse
Affiliation(s)
- Siqi Chen
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xiaomi Teng
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Wang Y, Xiang L, Wang F, Wang Z, Bian Y, Gu C, Wen X, Kengara FO, Schäffer A, Jiang X, Xing B. Positively Charged Microplastics Induce Strong Lettuce Stress Responses from Physiological, Transcriptomic, and Metabolomic Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16907-16918. [PMID: 36354282 DOI: 10.1021/acs.est.2c06054] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) can enter plants through the foliar pathway and are potential hazards to ecosystems and human health. However, studies related to the molecular mechanisms underlying the impact of foliar exposure to differently charged MPs to leafy vegetables are limited. Because the surfaces of MPs in the environment are often charged, we explored the uptake pathways, accumulation concentration of MPs, physiological responses, and molecular mechanisms of lettuce foliarly exposed to MPs carrying positive (MP+) and negative charges (MP-). MPs largely accumulated in the lettuce leaves, and stomatal uptake and cuticle entry could be the main pathways for MPs to get inside lettuce leaves. More MP+ entered lettuce leaves and induced physiological, transcriptomic, and metabolomic changes, including a decrease in biomass and photosynthetic pigments, an increase in reactive oxygen species and antioxidant activities, a differential expression of genes, and a change of metabolite profiles. In particular, MP+ caused the upregulation of circadian rhythm-related genes, and this may play a major role in the greater physiological toxicity of MP+ to lettuce, compared to MP-. These findings provide direct evidence that MPs can enter plant leaves following foliar exposure and a molecular-scale perspective on the response of leafy vegetables to differently charged MPs.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Wen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | | | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Hellebaut A, Boisson S, Mahy G. Do plant traits help to design green walls for urban air pollution control? A short review of scientific evidences and knowledge gaps. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81210-81221. [PMID: 36215023 DOI: 10.1007/s11356-022-23439-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
It is often claimed that green walls (GW) and living wall systems (LWS) have a positive effect on urban air pollution problems if their plants composition is optimal (design of the LWS). An in-depth review of the knowledge on plants traits maximizing GW effects on air pollution shows that these might be hasty conclusions: there are still some important knowledge gaps. Robust conclusions can only be drawn for particulate matter (PM): the other pollutants are not analyzed by a sufficient number of studies. It can be concluded that leaves with hairs/trichomes are the most effective to capture PM. The rougher and the smaller the leaf is, the more PM it catches. The analysis of the plant composition of six LWS in Belgium indicated that these LWS supported a plant community dominated by only a few species, which do not exhibit in majority the most effective traits to maximize their PM capture. Regarding climbing plants, only three out of seven commonly used creepers in Belgium present hairs/trichomes on their leaves. Studies conducted on other pollutants and other traits are required to optimize the GW plant composition and to maximize their effects on air quality.
Collapse
Affiliation(s)
- Anaïs Hellebaut
- Biodiversity and Landscape Research Team, Terra Research Unit, Gembloux Agrobio-Tech, Liège University, Passage Des Déportés 2, B-5030, Gembloux, Belgium.
| | - Sylvain Boisson
- Biodiversity and Landscape Research Team, Terra Research Unit, Gembloux Agrobio-Tech, Liège University, Passage Des Déportés 2, B-5030, Gembloux, Belgium
| | - Grégory Mahy
- Biodiversity and Landscape Research Team, Terra Research Unit, Gembloux Agrobio-Tech, Liège University, Passage Des Déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|
18
|
Popek R, Mahawar L, Shekhawat GS, Przybysz A. Phyto-cleaning of particulate matter from polluted air by woody plant species in the near-desert city of Jodhpur (India) and the role of heme oxygenase in their response to PM stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70228-70241. [PMID: 35585451 DOI: 10.1007/s11356-022-20769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) is one of the most dangerous pollutants in the air. Urban vegetation, especially trees and shrubs, accumulates PM and reduces its concentration in ambient air. The aim of this study was to examine 10 tree and shrub species common for the Indian city of Jodhpur (Rajasthan) located on the edge of the Thar Desert and determine (1) the accumulation of surface and in-wax PM (both in three different size fractions), (2) the amount of epicuticular waxes on foliage, (3) the concentrations of heavy metals (Cd and Cu) on/in the leaves of the examined species, and (4) the level of heme oxygenase enzyme in leaves that accumulate PM and heavy metals. Among the investigated species, Ficus religiosa L. and Cordia myxa L. accumulated the greatest amount of total PM. F. religiosa is a tall tree with a lush, large crown and leaves with wavy edge, convex veins, and long petioles, while C. myxa have hairy leaves with convex veins. The lowest PM accumulation was recorded for drought-resistant Salvadora persica L. and Azadirachta indica A. Juss., which is probably due to their adaptation to growing conditions. Heavy metals (Cu and Cd) were found in the leaves of almost every examined species. The accumulation of heavy metals (especially Cu) was positively correlated with the amount of PM deposited on the foliage. A new finding of this study indicated a potentially important role of HO in the plants' response to PM-induced stress. The correlation between HO and PM was stronger than that between HO and HMs. The results obtained in this study emphasise the role of plants in cleaning polluted air in conditions where there are very high concentrations of PM.
Collapse
Affiliation(s)
- Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
19
|
Zhang Z, Gong J, Li Y, Zhang W, Zhang T, Meng H, Liu X. Analysis of the influencing factors of atmospheric particulate matter accumulation on coniferous species: measurement methods, pollution level, and leaf traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62299-62311. [PMID: 35397023 DOI: 10.1007/s11356-022-20067-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Urban trees, especially their leaves, have the potential to capture atmospheric particulate matter (PM) and improve air quality. However, the amount of PM deposited on leaf surfaces detected by different methods varies greatly, and quantitative understanding of the relationship between PM retention capacity and various microstructures of leaf surfaces is still limited. In this study, three measurement methods, including the leaf washing (LW) method, aerosol regeneration (AR) method, and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) method, were used to determine the PM retention capacity of leaf surfaces of three coniferous species. Additionally, we analyzed the leaf traits and elemental composition of PM on leaves collected from different sites. The results showed that Pinus tabulaeformis and Abies holophylla were more efficient species in capturing PM than Juniperus chinensis, but different measurement methods could affect the detected results of PM accumulation on leaf surfaces. The concentrations of trace elements accumulated on leaf surfaces differed considerably between different sites. The greatest accumulation of elements that occurred on the leaf surface was at the Shenfu Highway site exposed to high PM pollution levels and the smallest accumulation at the Dongling park site. The stomatal density and contact angle were highly correlated with the PM retention capacity of leaf surfaces of the tested species (Pearson coefficient: r = 0.87, p < 0.01 and r = - 0.70, p < 0.05), while the roughness and groove width were not significantly correlated (Pearson coefficient: r = 0.16 and r = - 0.03). This study suggests that a methodological standardization for measuring PM is urgently required and this could contribute to selecting greening tree species with high air purification capacity.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jialian Gong
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yu Li
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Weikang Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding, and Cultivation of Liaoning Province, Liaoning, 110866, Shenyang, China.
| | - Tong Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Huan Meng
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaowei Liu
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
20
|
Prigioniero A, Zuzolo D, Niinemets Ü, Postiglione A, Mercurio M, Izzo F, Trifuoggi M, Toscanesi M, Scarano P, Tartaglia M, Sciarrillo R, Guarino C. Particulate matter and polycyclic aromatic hydrocarbon uptake in relation to leaf surface functional traits in Mediterranean evergreens: Potentials for air phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129029. [PMID: 35525010 DOI: 10.1016/j.jhazmat.2022.129029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
We explored relationships between particulate matter (PM) and polycyclic aromatic hydrocarbon (PAHs) leaf concentrations, uptake rates and leaf surface functional traits in four Mediterranean evergreen trees (Chamaerops humilis, Citrus × aurantium, Magnolia grandiflora, and Quercus ilex) during a dry month. Pollutant leaf concentration at different dates and uptake rate were correlated. We quantified PM by gravimetric analysis, PAHs were extracted from intact and dewaxed leaves and analyzed by GC-MS, and cuticle thickness, number and surface of stomata (Ns and SS) and trichomes (Nt and St) were determined by optical microscopy. Infrared spectroscopy was used to investigate the leaves surfaces composition and assess esterification index (E). Studied species were characterized by unique combinations of functional traits and pollutant uptake capacities. PM10 uptake scaled positively with SS, St and upper cuticle thickness (Tc,u) across species. PM2.5 uptake scaled positively with Tc,u, and thicker cuticles were also associated with greater shares of uptake of hydrophobic PM fractions. Uptakes of different fractions of PAH were generally weakly related to different leaf functional traits, except for some correlations with E and SS. We conclude that both plant surface morphological and chemical leaf traits influence PM and PAH retention, unveiling their potential role in air phytoremediation.
Collapse
Affiliation(s)
- Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
| | - Alessia Postiglione
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Mariano Mercurio
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Francesco Izzo
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, via Cintia, Naples 80126, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Naples 80126, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, Naples 80126, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento 82100, Italy
| |
Collapse
|
21
|
Takahashi K, Ohta A, Sase H, Murao N, Takada K, Yamaguchi M, Nakaba S, Watanabe M, Izuta T. Seasonal variations in the amount of black carbon particles deposited on the leaf surfaces of nine Japanese urban greening tree species and their related factors. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:252-262. [PMID: 35549775 DOI: 10.1080/15226514.2022.2072808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As black carbon (BC) particles can be deposited on the leaf surfaces, urban greening is considered to be effective in purifying urban air. However, little information on the seasonal variations in the amount of BC particles deposited on the leaf surfaces (BC amount on the leaves) is available in Japanese urban greening tree species. Therefore, we investigated seasonal variations in the BC amount on the leaves of evergreen (Quercus glauca, Quercus myrsinaefolia, Osmanthus fragrans and Ilex rotunda) and deciduous (Zelkova serrata, Styrax japonica, Magnolia kobus, Cornus kousa and Cornus florida) broad-leaved tree species. The BC amount on the leaves tended to increase from April for different periods, and then reached a saturated state in the tree species, excluding M. kobus. In the 4 evergreen broad-leaved trees, the seasonal variation was positively correlated with the atmospheric concentration of BC particle. In the 5 deciduous broad-leaved trees, the seasonal variation was negatively and positively correlated with the water-repellence (water droplet contact angle) and the amount of epicuticular wax on the leaf surface, respectively. Therefore, the BC amounts on the leaves of evergreen and deciduous broad-leaved urban tree species are considered to be mainly regulated by environmental factors and leaf surface characteristics, respectively.
Collapse
Affiliation(s)
- Kei Takahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Akari Ohta
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, Niigata, Japan
| | - Naoto Murao
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keiichi Takada
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masahiro Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Nakaba
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
22
|
Zhou Y, Chen C, Lu T, Zhang J, Chen J. Season impacts on estimating plant's particulate retention: Field experiments and meta-analysis. CHEMOSPHERE 2022; 288:132570. [PMID: 34656623 DOI: 10.1016/j.chemosphere.2021.132570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Plants can effectively remove atmospheric particles, which contribute to air pollution. However, few studies have focused on seasonal variability of plant dust retention, an essential factor to estimate annual dust removal from the atmosphere. This study conducted a field experiment to explore the seasonal variability of particulate retention on evergreen leaved urban greening shrub plants. We performed a meta-analysis to synthesize the available literature on the subject to discuss our findings further. Results showed that particulate matter deposited on leaf surfaces (sPM) in autumn and winter was significantly higher than in spring and summer. In comparison, the particulate matter trapped in epicuticular waxes (wPM) in summer was significantly higher than in the other three seasons. The seasonal differences also existed in both sPM and wPM among particle sizes. The total dust retention of Rhododendron × pulchrum Sweet, Osmanthus fragrans Lour, and Photinia × fraseri Dress were estimated as 360.89 t, 586.66 t, and 448.84 t per year, respectively. They were significantly different from model estimates if only one season was chosen as an estimator. Furthermore, the meta-analysis revealed significant differences among seasons, particle sizes, and different leaf habits (evergreen or deciduous). In contrast, no significant differences were observed between life forms or between growth forms. Our findings both from field experiment and met-analysis highlights that seasonal variation can significantly affect the dust retention capacity of plants, which should be taken into account into particle matter retention capacity evaluations.
Collapse
Affiliation(s)
- Yuanhong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Chuwen Chen
- School of Landscape Architecture, Zhejiang A&F University, Lin'an, 311300, China
| | - Ting Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Jing Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China.
| |
Collapse
|
23
|
Wu J, Luo K, Wang Y, Wang Z. Urban road greenbelt configuration: The perspective of PM 2.5 removal and air quality regulation. ENVIRONMENT INTERNATIONAL 2021; 157:106786. [PMID: 34314980 DOI: 10.1016/j.envint.2021.106786] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The establishment of the road green belt (RGB) is an effective means to reduce particle matter (PM2.5) emissions from road traffic. This study tested the ability of 23 common tree species in Shenzhen to reduce PM2.5 concentrations using field investigations and wind tunnel tests. The association between leaf microstructure and individual reduction ability was also analyzed. Finally, the impact of three RGB configurations (i.e., arbor, shrub, arbor + shrub) on road PM2.5 dispersion and deposition was simulated using the ENVI-met three-dimensional aerodynamic model, based on which an optimal RGB configuration was proposed. There were three key findings of the tests. First, the wind speed was the main factor affecting the PM2.5 concentration (54.2%), followed by vehicle flow (27.7%), temperature (14.2%), and time factor (7.6%). Second, the range of dry deposition velocity (Vd) was 0.04-6.4 m/s, and the dominant dust-retaining plant species were the evergreen trees, Ficus microcarpa and Ficus altissima, and the evergreen shrubs, Codiaeum variegatum and Fagraea ceilanica. A higher proportion of grooves or larger stomata would increase the probability that the blade would capture PM2.5. Third, the shrub RGB demonstrated the best performance in terms of pollutant dispersion; its PM2.5 concentration at the respiratory height (RH, 1.5 m) on the pedestrian crossing was 15-20% lower than the other RGB configurations. In terms of pollutant deposition, the arbor + shrub composite RGB was two-fold better than the other RGB configurations. Moreover, it was more advantageous to plant shrub RGBs in street canyons to achieve a balance between the lowest concentration and the largest deposition of PM2.5 pollutants. The findings of this study will facilitate the RGB configurations with good dust retention ability.
Collapse
Affiliation(s)
- Jiansheng Wu
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Urban Planning and Design, Peking University, Shenzhen 518055, PR China; College of Urban and Environmental Sciences, Peking University, Laboratory for Earth Surface Processes, Ministry of Education, Beijing 100871, PR China
| | - Keyu Luo
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Urban Planning and Design, Peking University, Shenzhen 518055, PR China
| | - Yi Wang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Urban Planning and Design, Peking University, Shenzhen 518055, PR China
| | - Zhenyu Wang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Urban Planning and Design, Peking University, Shenzhen 518055, PR China.
| |
Collapse
|
24
|
Heshmatol Vaezin SM, Juybari MM, Daei A, Avatefi Hemmat M, Shirvany A, Tallis MJ, Hirabayashi S, Moeinaddini M, Hamidian AH, Sadeghi SMM, Pypker TG. The effectiveness of urban trees in reducing airborne particulate matter by dry deposition in Tehran, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:842. [PMID: 34821985 DOI: 10.1007/s10661-021-09616-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Deposition of atmospheric pollution as particulate matter (PM) has become a serious issue in many urban areas. This study measured and estimated the amount of atmospheric PM deposition onto oriental plane (Platanus orientalis L.) trees located in Tehran Megapolis, Iran. PM deposited on the leaves of urban trees during spring and summer was estimated using leaf wash measurements. In addition to direct measurements, the dry deposition velocity and the yearly whole-tree PM deposition were estimated using both field measurements and a theoretical model of deposition flux. We estimated air quality improvement as a result of the trees at respiratory height (1.5 m), tree height (10 m), and boundary layer height (1719 m). Foliar PM deposition during spring and summer was estimated to average 0.05 g/leaf and 41.39 g/tree using direct measurements. The annual PM deposited on the leaves, trunk, and branches of an average urban tree was calculated to be 78.60 g/tree. Trees were estimated to improve air quality at 1.5 m, 10 m, and 1719 m from ground level by 25.8%, 5.8%, and 0.1%, respectively. Hence, oriental plane trees substantially reduce PM at respiratory height.
Collapse
Affiliation(s)
| | | | - Arash Daei
- Department of Forestry and Forest Economics, University of Tehran, Karaj, Iran
| | | | | | - Matthew James Tallis
- University Centre Sparsholt (incorporating Andover College Campus), Sparsholt College Hampshire, Sparsholt, Winchester, SO21 2NF, UK
| | - Satoshi Hirabayashi
- The Davey Institute, The Davey Tree Expert Company, 1 Forestry Drive, Syracuse, NY, USA
| | | | | | - Seyed Mohammad Moein Sadeghi
- Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Şirul Beethoven 1, Brasov, 500123, Romania
- School of Forest Fisheries, and Geomatics Sciences, Newins-Ziegler Hall, University of Florida, Gainesville, FL, USA
| | - Thomas Grant Pypker
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| |
Collapse
|
25
|
Treesubsuntorn C, Setiawan GD, Permana BH, Citra Y, Krobthong S, Yingchutrakul Y, Siswanto D, Thiravetyan P. Particulate matter and volatile organic compound phytoremediation by perennial plants: Affecting factors and plant stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148779. [PMID: 34225152 DOI: 10.1016/j.scitotenv.2021.148779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Air pollution by particulate matter (PM) and volatile organic compounds (VOCs) is a major global issue. Many technologies have been developed to address this problem. Phytoremediation is one possible technology to remediate these air pollutants, and a few studies have investigated the application of this technology to reduce PM and VOCs in a mixture of pollutants. This study aimed to screen plant species capable of PM and VOC phytoremediation and identify plant physiology factors to be used as criteria for plant selection for PM and VOC phytoremediation. Wrightia religiosa removed PM and VOCs. In addition, the relative water content in the plant and ethanol soluble wax showed positive relationships with PM and VOC phytoremediation, with a high correlation coefficient. For plant stress responses, several plant species maintained and/or increased the relative water content after short-term exposure to PM and VOCs. In addition, based on proteomic analysis, most of the proteins in W. religiosa leaves related to photosystems I and II were significantly reduced by PM2.5. When a high water content was achieved in W. religiosa (80% soil humidity), W. religiosa can effectively remove PM. The results suggested that PM can reduce plant photosynthesis. In addition, plants might require a high water supply to maintain their health under PM and VOC stress.
Collapse
Affiliation(s)
- Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Ginting Dwi Setiawan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Yovita Citra
- Department of Biology, Brawijaya University, Malang 65145, Indonesia
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Yodying Yingchutrakul
- Proteomics Research Team, National Omics Center, NSTDA, Pathum Thani 12120, Thailand
| | - Dian Siswanto
- Department of Biology, Brawijaya University, Malang 65145, Indonesia
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
26
|
Redondo-Bermúdez MDC, Gulenc IT, Cameron RW, Inkson BJ. 'Green barriers' for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117809. [PMID: 34329063 DOI: 10.1016/j.envpol.2021.117809] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Finding ways to mitigate atmospheric particulate matter (PM) is one of the key steps towards fighting air pollution and protecting people's health. The use of green infrastructure is one option that could help improving urban air quality and promoting more sustainable cities. Detailed knowledge of how plants capture particulate matter can support plant selection for this purpose. Previous studies have primarily focused on 2D techniques to assess the micromorphology of plant leaves. Here, 3D optical profilometry and SEM imaging (2D) are used to quantify leaf roughness and other micromorphological leaf traits of three contrasting plant species (Hedera helix 'Woerner', Thuja occidentalis 'Smaragd', and Phyllostachys nigra) located within a mixed-species green barrier. These techniques have allowed us to identify the relative distribution of adhered atmospheric PM with respect to the surface topography of leaves, with high spatial resolution. Leaf surface roughness did not show a direct relationship with PM deposition; however, the descriptors width, depth and frequency of the grooves are important to explain PM capture by the leaves. Additionally, the presence of wax on leaves was relevant for PM adherence. All species captured PM, with their overall PM capture efficiency ranked from highest to lowest as follows: Thuja occidentalis > Hedera helix > Phyllostachys nigra. All green barrier species contributed to air quality improvement, through PM capture, regardless of their location within the barrier. Having multiple species in a green barrier is beneficial due to the diverse range of leaf micromorphologies present, thus offering different mechanisms for particulate matter capture.
Collapse
Affiliation(s)
| | - Idris Tugrul Gulenc
- Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK
| | - Ross W Cameron
- Department of Landscape Architecture, The University of Sheffield, The Arts Tower, S10 2TN, Sheffield, UK
| | - Beverley J Inkson
- Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, S1 3JD, Sheffield, UK
| |
Collapse
|
27
|
Kim S, Kim WY, Nam SH, Shin S, Choi SH, Kim DH, Lee H, Choi HJ, Lee E, Park JH, Jo I, Fang NX, Cho YT. Microstructured Surfaces for Reducing Chances of Fomite Transmission via Virus-Containing Respiratory Droplets. ACS NANO 2021; 15:14049-14060. [PMID: 34339604 DOI: 10.1021/acsnano.1c01636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Evaporation-induced particle aggregation in drying droplets is of significant importance in the prevention of pathogen transfer due to the possibility of indirect fomite transmission of the infectious virus particles. In this study, particle aggregation was directionally controlled using contact line dynamics (pinned or slipping) and geometrical gradients on microstructured surfaces by the systematic investigation of the evaporation process on sessile droplets and sprayed microdroplets laden with virus-simulant nanoparticles. Using this mechanism, we designed robust particle capture surfaces by significantly inhibiting the contact transfer of particles from fomite surfaces. For the proof-of-concept, interconnected hexagonal and inverted pyramidal microwall were fabricated using ultraviolet-based nanoimprint lithography, which is considered to be a promising scalable manufacturing process. We demonstrated the potentials of an engineered microcavity surface to limit the contact transfer of particle aggregates deposited with the evaporation of microdroplets by 93% for hexagonal microwall and by 96% for inverted pyramidal microwall. The particle capture potential of the interconnected microstructures was also investigated using biological particles, including adenoviruses and lung-derived extracellular vesicles. The findings indicate that the proposed microstructured surfaces can reduce the indirect fomite transmission of highly infectious agents, including norovirus, rotavirus, or SARS-CoV-2, via respiratory droplets.
Collapse
Affiliation(s)
- Seok Kim
- Department of Mechanical Engineering, Changwon National University, Changwon 51140, South Korea
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon 51140, South Korea
| | - Woo Young Kim
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon 51140, South Korea
| | - Sang-Hoon Nam
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seunghang Shin
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon 51140, South Korea
| | - Su Hyun Choi
- Department of Mechanical Engineering, Changwon National University, Changwon 51140, South Korea
| | - Do Hyeog Kim
- Department of Mechanical Engineering, Changwon National University, Changwon 51140, South Korea
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Hyeok Jae Choi
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Eungman Lee
- Department of Radiation Oncology, College of Medicine, Ewha Womans University, Seoul 07804, South Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, South Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, South Korea
- Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul 07804, South Korea
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Young Tae Cho
- Department of Mechanical Engineering, Changwon National University, Changwon 51140, South Korea
- Department of Smart Manufacturing Engineering, Changwon National University, Changwon 51140, South Korea
| |
Collapse
|
28
|
Lin X, Shu D, Zhang J, Chen J, Zhou Y, Chen C. Dynamics of particle retention and physiology in Euonymus japonicus Thunb. var. aurea-marginatus Hort. with severe exhaust exposure under continuous drought. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117194. [PMID: 33933875 DOI: 10.1016/j.envpol.2021.117194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Frequent drought events and particulate matter pollution from vehicular exhaust seriously affect urban plant growth and provisioning of ecological services. Yet, how plants respond physiologically and morphologically to these two combined stressors remains unknown. Here, we assessed particle retention dynamics and plant morphology and physiology of Euonymus japonicus Thunb. var. aurea-marginatus Hort. under continuous drought with severe exhaust exposure. Our results showed that continuous drought insignificantly lowered particle retention in each of three size fractions by 1.02 μg·cm-2 on average in the first 28 days, but significantly lowered total particle retention by 35.75 μg·cm-2 on the 35th day. We observed evident changes in morphology, leaf mass per area (LMA), pigments, gas exchange in all stressed plants. Compared with single stress, combined drought and pollution caused earlier yellowing and shedding of old leaves, significantly lowered LMA by 1.21 mg·cm-2, caused a greater decline in pigments and net photosynthetic rate (Pn). Large particles may mainly explain pigment reduction, lower weekly LMA increases, and stomatal restriction, while coarse particles may be the main drivers of the decline in Pn. Continuous drought mediated the influence of all three particle sizes on some parameters, such as weakening the impact of total particles on LMA, strengthening the impact of fine particles on photosynthesis. Our findings suggest that drought accelerates the physiological responses of plants to exhaust pollution. Under controlled severe exhaust pollution conditions, the optimal time to maintain high particle retention during continuous drought without decline in physiological conditions for E. japonicus var. aurea-marginatus was 14 days. Some additional interventions after 14 days (it could be postponed appropriately under field conditions) may help ensure healthy growth of plants and retention of particulate matter.
Collapse
Affiliation(s)
- Xintao Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Da Shu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jing Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jian Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yuanhong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chuwen Chen
- School of Landscape Architecture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
29
|
Przybysz A, Popek R, Stankiewicz-Kosyl M, Zhu CY, Małecka-Przybysz M, Maulidyawati T, Mikowska K, Deluga D, Griżuk K, Sokalski-Wieczorek J, Wolszczak K, Wińska-Krysiak M. Where trees cannot grow - Particulate matter accumulation by urban meadows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147310. [PMID: 33932673 DOI: 10.1016/j.scitotenv.2021.147310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
It has already been proven that trees and shrubs, can efficiently remove particulate matter (PM) from air. However, almost nothing is known about PM accumulation by herbaceous plants (grasses and forbs) found in urban meadows. Meadows, unlike trees and shrubs, can be located close to roads, one of the main sources of PM in cites. The aim of this study was to investigate the tolerance to urban condition and PM accumulation in the immediate roads vicinity of selected plants species in urban meadows. PM accumulation of annual and perennial meadows was compared with that of lawns. Results were interpreted in the context of species composition, biomass production, soil conditions and ambient PM concentrations. Of the species grown in annual meadows, the highest PM accumulation was found in Achillea millefolium L., Chenopodium album L. and Echium vulgare L., while Centaurea scabiosa L., Echium vulgare L. and Convolvulus arvensis L. accumulated the largest amounts of PM in perennial meadows. PM deposition on plants was positively correlated with a feathery leaf shape. For species in the annual meadows, a positive correlation was also found between PM accumulation and the wax content on plants. The presence of hairs on leaves, leaf size and plant growth pattern had no effect on PM deposition on plants. PM accumulation in one square metre of urban meadow was on average greater than that of lawn, regardless of meadow species' composition, age and location. The greatest accumulation of PM was found in a perennial meadow with low biodiversity but the greatest biomass. It would appear that the biomass produced by meadows and canopy structure has a crucial impact on the amount of PM accumulated by meadow plants. The results obtained indicate that meadows could be an important element of nature-based solutions for mitigating air pollution in urbanised areas.
Collapse
Affiliation(s)
- A Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - R Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M Stankiewicz-Kosyl
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ch Y Zhu
- Department of Landscape Architecture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - M Małecka-Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - T Maulidyawati
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - K Mikowska
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - D Deluga
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - K Griżuk
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - J Sokalski-Wieczorek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - K Wolszczak
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M Wińska-Krysiak
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
30
|
El-Tanbouly R, Hassan Z, El-Messeiry S. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Front Mol Biosci 2021; 8:709395. [PMID: 34277711 PMCID: PMC8279815 DOI: 10.3389/fmolb.2021.709395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
The last two decades have seen the discovery of novel retroviruses that have resulted in severe negative consequences for human health. In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged with a high transmission rate and severe effects on human health, with 5% infected persons requiring hospitalisation and 3.81 million deaths to date globally. Aerosol particles containing virions are considered the main source of SARS CoV-2 transmission in this pandemic, with increased infection rates in confined spaces. Consequently, public and private institutions had to institute mitigation measures including the use of facial masks and social distancing to limit the spread of the virus. Moreover, the role of air purification and bio-decontamination is understood as being essential to mitigate viral spread. Various techniques can be applied to bio-decontaminate the air such as the use of filtration and radiation; however, these methods are expensive and not feasible for home use. Another method of air purification is where indoor plants can purify the air by the removal of air pollutants and habituated airborne microbes. The use of indoor plants could prove to be a cost-efficient way of indoor air-purification that could be adapted for a variety of environments with no need for special requirements and can also add an aesthetic value that can have an indirect impact on human health. In this review, we discuss the emergence of the COVID-19 pandemic and the currently used air purification methods, and we propose the use of indoor plants as a new possible eco-friendly tool for indoor air purification and for reducing the spread of COVID-19 in confined places.
Collapse
Affiliation(s)
- Rania El-Tanbouly
- Department of Floriculture, Ornamental Horticulture and Landscape Design, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ziad Hassan
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
31
|
Li X, Zhang T, Sun F, Song X, Zhang Y, Huang F, Yuan C, Yu H, Zhang G, Qi F, Shao F. The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144812. [PMID: 33736168 DOI: 10.1016/j.scitotenv.2020.144812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 05/06/2023]
Abstract
Atmospheric particulate matter (PM) is one of the main environmental air pollutants, but it can be retained and adsorbed by plants. To systematically and comprehensively conduct qualitative and quantitative research on the relationship between the leaf PM retention ability and the microstructure of leaf surfaces, this study evaluated the PM retention abilities of ten common tree species (1860 leaf pieces in total) in the greenbelts around the Lin'an toll station of the Hang-Rui Expressway in Hangzhou, China, in October 2019. The leaf surface roughness and contact angle were measured with confocal laser scanning microscopy and a contact angle measuring instrument. Scanning electron microscopy was applied to collect data on the stomata and groove morphology. The PM retention ability of the leaves was assessed by quantifying the PM mass and number density on the leaves. The results revealed that Platanus acerifolia and Sapindus mukorossi had a strong ability to retain particulates of different sizes. The mass of the retained PM2.5 on their leaves accounted for the lowest proportion (mean: 8.12%) among the total retained particulate mass, but the number density of the retained PM2.5 accounted for the highest proportion (mean: 97.49%) among the total number density. A significant negative correlation between the PM2.5 mass and the groove width on the adaxial surface (R2 = 0.746, P < 0.05) and a significant positive correlation between the roughness and the PM number density on the adaxial surface (R2 = 0.702, P < 0.01) were observed. No obvious correlations were found among the groove width, roughness and number density of the retained PM on the abaxial surface. Leaf surfaces with dense and narrow grooves, strip-like projections, high roughness and high wettability had strong retention abilities. This study can provide a theoretical reference for selecting plants with strong PM retention ability for green urban garden design.
Collapse
Affiliation(s)
- Xiaolu Li
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Tianran Zhang
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Fengbin Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Ximing Song
- Wulanchabu Administration Station of Wildlife and Wetland Conservation, Wulanchabu Administration of Forestry and Grassland, Wulanchabu, Neimenggu 012000, China
| | - Yinke Zhang
- Hangzhou Botanical Garden (Hangzhou West Lake Academy of Landscape Science), Hangzhou, Zhejiang 310012, China
| | - Fang Huang
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Chuyang Yuan
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Hui Yu
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Guihao Zhang
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Feng Qi
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Feng Shao
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
32
|
Go T, Kim J, Lee SJ. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124116. [PMID: 33049638 DOI: 10.1016/j.jhazmat.2020.124116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants are considered as a possible modality to reduce particulate matter (PM) particles from ambient air in an ecofriendly manner. A new precise monitoring technique that can explore interactions between individual PM particles and a leaf surface is necessary to understand the underlying mechanisms of PM removal of plant leaves. In this study, a digital in-line holographic microscopy (DIHM) was employed to experimentally investigate the settling motions of PM particles over the leaf surface. The in-plane positions and sizes of opaque PMs with irregular shapes were obtained from the projection images of numerically reconstructed holographic images. The depth positions of PMs were determined by using proper selection of an autofocusing criterion with automatic segmentation method. The edge of a hairy Perilla frutescens leaf was detected by adopting several digital imaging processing techniques. The DIHM technique was applied in this study to accurately detect 3D settling trajectories of PMs with velocity information of PMs in the midair and near leaf surface, simultaneously.
Collapse
Affiliation(s)
- Taesik Go
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
33
|
Evaluating the Effectiveness of Urban Hedges as Air Pollution Barriers: Importance of Sampling Method, Species Characteristics and Site Location. ENVIRONMENTS 2020. [DOI: 10.3390/environments7100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urban hedgerows can act as barriers to roadside particulate air pollution, but details on methodologies to quantify pollutant capture, most efficient species to use, and practical planning advice are still evolving. We aimed to compare three widely used approaches to quantify particulate accumulation and deposition, and to ascertain the most cost-effective and robust approach for the rapid screening of various types of hedges. Secondly, using the most efficient methodology, we screened the summertime deposition of particulates on roadside hedges in Reading (UK), not just on species with differing leaf surface characteristics, but also along a transect of the hedge depth. Finally, we also compared particles’ capture by hedge leaf surfaces in locations with different traffic intensities, to try and ascertain the extent of reduction of particles’ concentration in various hedge types and urban locations. Results suggest that the gravimetric determination of particulate capture was most rapid and cost-effective, while being least technically demanding. We confirmed that hairy and more complex leaves captured most particulates, particularly in the >10 μm range. However, species choice only had a significant impact on the extent of capture on major roads, where the pollutant concentrations were highest. Furthermore, only hedge depths in excess of 2 m were found to noticeably reduce the concentration of fine particles in species with less capacity for particulates’ capture. Findings complement the growing body of knowledge to guide urban and landscape planners in choosing the most appropriate species to mitigate air quality in various urban contexts.
Collapse
|
34
|
Sgrigna G, Baldacchini C, Dreveck S, Cheng Z, Calfapietra C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137310. [PMID: 32088481 DOI: 10.1016/j.scitotenv.2020.137310] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 05/06/2023]
Abstract
Air pollution in the urban environment is widely recognized as one of the most harmful threats for human health. International organizations such as the United Nations and the European Commission are highlighting the potential role of nature in mitigating air pollution and are now funding the implementation of Nature-Based Solutions, especially at the city level. Over the past few decades, the attention of the scientific community has grown around the role of urban forest in air pollution mitigation. Nevertheless, the understanding on Particulate Matter (PM) retention mechanisms by tree leaves is still limited. In this study, twelve tree species were sampled within an urban park of an industrial city. Two techniques were used for leaf analysis: Vacuum/Filtration and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy, in order to obtain a quali-quantitative analysis of the different PM size fractions. Results showed that deposited PM loads vary significantly among species. Different leaf traits, including micro and macromorphological characteristics, were observed, measured and ranked, with the final aim to relate them with PM load. Even if no significant correlation between each single leaf characteristic and PM deposition was observed (p > 0.05), multivariate analysis revealed relationships between clusters of leaf traits and deposited PM. Thus, by assigning a score to each trait, an Accumulation index (Ai) was calculated, which was significantly related to the leaf deposited PM load (p ≤ 0.05).
Collapse
Affiliation(s)
- G Sgrigna
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Marconi 2, 05010 Porano, TR, Italy
| | - C Baldacchini
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Marconi 2, 05010 Porano, TR, Italy; Biophysics and Nanoscience Centre, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - S Dreveck
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Z Cheng
- Brooklyn College, Department of Earth and Environmental Sciences, Brooklyn, NY, United States; Department of Landscape Design and Sustainable Ecosystems, RUDN University, Moscow, Russia
| | - C Calfapietra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Marconi 2, 05010 Porano, TR, Italy; Academy of Sciences of the Czech Republic, v. v. i., Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
35
|
Bi M, He Q, Chen Y. What Roles Are Terrestrial Plants Playing in Global Microplastic Cycling? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5325-5327. [PMID: 32319291 DOI: 10.1021/acs.est.0c01009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Mohan Bi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|