1
|
Cusset F, Charrier J, Massé G, Mallory M, Braune B, Provencher J, Guillou G, Massicotte P, Fort J. The consumption of ice-derived resources is associated with higher mercury contamination in an Arctic seabird. ENVIRONMENTAL RESEARCH 2023; 238:117066. [PMID: 37660878 DOI: 10.1016/j.envres.2023.117066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Sea ice plays a fundamental role in Arctic marine environments, by driving primary productivity and sustaining ice-associated ecosystems. Simultaneously, sea ice influences the contamination of Arctic marine organisms, by modifying contaminant cycles or their bioavailability. Changes in sea ice conditions could therefore profoundly impact the functioning of Arctic marine food webs and their contamination. Top predators such as seabirds, which are subject to bioaccumulation and biomagnification of contaminants, are particularly exposed. In this context, the present study aims to investigate the influence of sea ice and of the use of ice-derived resources on the contamination of seabirds by mercury (Hg). To this end, eggs of thick-billed murres (Brünnich's guillemots, Uria lomvia; n = 60) were collected on Prince Leopold Island (Canadian High Arctic) during four years of varying ice conditions (2010-2013). Trophic tracers (i.e., Highly Branched Isoprenoids, HBIs - an indicator of the use of ice-derived resources; carbon and nitrogen stable isotopes - indicators of foraging habitats and trophic status), as well as total Hg concentrations were quantified. Results showed that feeding on ice-derived resources (as indicated by HBI concentrations) was positively correlated to sea ice cover, and both positively influenced Hg concentrations in murre eggs. However, when testing for the best predictor with model selection, sea ice concentration only drove Hg contamination in murres. This work provides new insights into the role of sea ice and ice-derived resources in the contamination by Hg of Arctic wildlife. Further research is now needed to better understand the relationship between sea ice and Hg contamination in Arctic biota and its underlying mechanisms, but also to identify Hg sources in rapidly changing environmental conditions in the Arctic.
Collapse
Affiliation(s)
- Fanny Cusset
- Takuvik International Research Laboratory (IRL 3376) ULaval-CNRS, Biolgy Department, Laval University, 1045 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; LIENSs, UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Julie Charrier
- LIENSs, UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Guillaume Massé
- Takuvik International Research Laboratory (IRL 3376) ULaval-CNRS, Biolgy Department, Laval University, 1045 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; LOCEAN, UMR 7159, CNRS, MNHN, IRD, Sorbonne-Université, Station Marine de Concarneau, BP225, 29900, Concarneau, France
| | - Mark Mallory
- Biology Department, Acadia University, 15 University Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Birgit Braune
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, ON, K1A 0H3, Canada
| | - Jennifer Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, ON, K1A 0H3, Canada
| | - Gaël Guillou
- LIENSs, UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Philippe Massicotte
- Takuvik International Research Laboratory (IRL 3376) ULaval-CNRS, Biolgy Department, Laval University, 1045 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Jérôme Fort
- LIENSs, UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
2
|
Molina A, Duque G, Cogua P. Effect of environmental variables on mercury accumulation in sediments of an anthropogenically impacted tropical estuary (Buenaventura Bay, Colombian Pacific). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1316. [PMID: 37833421 PMCID: PMC10575815 DOI: 10.1007/s10661-023-11721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Estuaries are the main entry areas of mercury to the marine environment and are important to understand the effect of this contaminant on marine organisms, since it accumulates in the sediments becoming available to enter the food trophic chain. This study aims to determine the environmental variables that mainly influence the spatiotemporal dynamics of total mercury accumulation in sediments of tropical estuaries. Sediment samples were collected from interior and exterior areas of the estuary during the dry and rainy seasons, representing the spatiotemporal gradients of the estuary. The grain size, organic matter content (OM), and total mercury concentration (THg) of the sediment samples were determined. In addition, salinity, temperature, dissolved oxygen, and pH of the water column associated with each sediment sample were assessed. The variations in environmental conditions, OM and THg in sediment were in accordance with a gradient which goes from conditions influenced by fresh water in the inner estuary to conditions influenced by sea water in the outer part of the estuary. The OM and THg in sediments presented similar variation patterns; they were higher in the rainy season than in the dry season and in the interior area of the estuary than in the exterior area. Despite the complex dynamic observed in the distribution and accumulation processes of mercury in sediments, these processes could be modeled from OM and salinity parameters. Due to the correlations found, in the process of accumulation of mercury in sediments the OM could represents the pathway of transport and accumulation of THg, and salinity could represent the influence of the hydroclimatic variations and environmental gradients of the estuary.
Collapse
Affiliation(s)
- Andrés Molina
- Grupo de investigación en Ecología y Contaminación Acuática, Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia
| | - Guillermo Duque
- Universidad Nacional de Colombia, Sede Palmira, Facultad de Ingeniería y Administración, Palmira, Colombia.
| | - Pilar Cogua
- Universidad de Santiago de Cali, Facultad de Ciencias Básicas, Cali, Colombia
| |
Collapse
|
3
|
Cusset F, Bustamante P, Carravieri A, Bertin C, Brasso R, Corsi I, Dunn M, Emmerson L, Guillou G, Hart T, Juáres M, Kato A, Machado-Gaye AL, Michelot C, Olmastroni S, Polito M, Raclot T, Santos M, Schmidt A, Southwell C, Soutullo A, Takahashi A, Thiebot JB, Trathan P, Vivion P, Waluda C, Fort J, Cherel Y. Circumpolar assessment of mercury contamination: the Adélie penguin as a bioindicator of Antarctic marine ecosystems. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1024-1049. [PMID: 37878111 DOI: 10.1007/s10646-023-02709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins' diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 μg·g‒1) than adults (0.49 ± 0.23 μg·g‒1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future.
Collapse
Affiliation(s)
- Fanny Cusset
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Alice Carravieri
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Clément Bertin
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Rebecka Brasso
- Department of Zoology, Weber State University, Ogden, UT, USA
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | | | - Louise Emmerson
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Canberra, ACT, Australia
| | - Gaël Guillou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Tom Hart
- Department of Biological and Medicinal Sciences, Oxford Brooke University, Oxford, UK
| | - Mariana Juáres
- Departamento Biología de Predadores Tope, Instituto Antártico Argentino, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Akiko Kato
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
| | | | - Candice Michelot
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
- Institut Maurice-Lamontagne, Pêches et Océans Canada, Mont-Joli, QC, Canada
| | - Silvia Olmastroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
- Museo Nazionale dell'Antartide, Siena, Italy
| | | | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 du CNRS, Université de Strasbourg, 67087, Strasbourg, France
| | - Mercedes Santos
- Departamento Biología de Predadores Tope, Instituto Antártico Argentino, Buenos Aires, Argentina
| | | | - Colin Southwell
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Canberra, ACT, Australia
| | - Alvaro Soutullo
- Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, 041-8611, Japan
| | | | - Pierre Vivion
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Yves Cherel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
4
|
Cusset F, Reynolds SJ, Carravieri A, Amouroux D, Asensio O, Dickey RC, Fort J, Hughes BJ, Paiva VH, Ramos JA, Shearer L, Tessier E, Wearn CP, Cherel Y, Bustamante P. A century of mercury: Ecosystem-wide changes drive increasing contamination of a tropical seabird species in the South Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121187. [PMID: 36736563 DOI: 10.1016/j.envpol.2023.121187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is a highly toxic metal that adversely impacts human and wildlife health. The amount of Hg released globally in the environment has increased steadily since the Industrial Revolution, resulting in growing contamination in biota. Seabirds have been extensively studied to monitor Hg contamination in the world's oceans. Multidecadal increases in seabird Hg contamination have been documented in polar, temperate and subtropical regions, whereas in tropical regions they are largely unknown. Since seabirds accumulate Hg mainly from their diet, their trophic ecology is fundamental in understanding their Hg exposure over time. Here, we used the sooty tern (Onychoprion fuscatus), the most abundant tropical seabird, as bioindicator of temporal variations in Hg transfer to marine predators in tropical ecosystems, in response to trophic changes and other potential drivers. Body feathers were sampled from 220 sooty terns, from museum specimens (n = 134) and free-living birds (n = 86) from Ascension Island, in the South Atlantic Ocean, over 145 years (1876-2021). Chemical analyses included (i) total- and methyl-Hg, and (ii) carbon (δ1³C) and nitrogen (δ15N) stable isotopes, as proxies of foraging habitat and trophic position, respectively, to investigate the relationship between trophic ecology and Hg contamination over time. Despite current regulations on its global emissions, mean Hg concentrations were 58.9% higher in the 2020s (2.0 μg g-1, n = 34) than in the 1920s (1.2 μg g-1, n = 107). Feather Hg concentrations were negatively and positively associated with δ1³C and δ15N values, respectively. The sharp decline of 2.9 ‰ in δ1³C values over time indicates ecosystem-wide changes (shifting primary productivity) in the tropical South Atlantic Ocean and can help explain the observed increase in terns' feather Hg concentrations. Overall, this study provides invaluable information on how ecosystem-wide changes can increase Hg contamination of tropical marine predators and reinforces the need for long-term regulations of harmful contaminants at the global scale.
Collapse
Affiliation(s)
- Fanny Cusset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers-en Bois, France.
| | - S James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers-en Bois, France
| | - David Amouroux
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux (IPREM), UMR, 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Océane Asensio
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux (IPREM), UMR, 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Roger C Dickey
- Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - B John Hughes
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Laura Shearer
- Ascension Island Government Conservation and Fisheries Directorate (AIGCFD), Georgetown, Ascension Island, South Atlantic Ocean, UK
| | - Emmanuel Tessier
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux (IPREM), UMR, 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Colin P Wearn
- The Royal Air Force Ornithological Society (RAFOS), High Wycombe, Buckinghamshire, UK
| | - Yves Cherel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers-en Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
5
|
Bianchini K, Mallory ML, Provencher JF. Trends in hepatic cadmium concentrations in marine bird species from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159959. [PMID: 36343822 DOI: 10.1016/j.scitotenv.2022.159959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a trace element of toxicological concern that has been monitored in marine birds inhabiting the Canadian Arctic since 1975. Despite nearly 50 years of monitoring, research to date has largely evaluated single species, locations, or time points, and there is as of yet no holistic overview that jointly considers all available Cd data. We addressed this information gap by combining and analyzing most of the existing data on hepatic Cd concentrations in marine birds from the Canadian Arctic. Using data collected between 1975 and 2018 from eight seabird species from 12 Arctic breeding colonies, we examined temporal, spatial, and interspecific variation in hepatic Cd levels, and we evaluated possible drivers of marine bird Cd loads. Hepatic Cd concentrations ranged from 1.6 to 124 μg/g dry weight across species, and were highest in thick-billed murres (Uria lomvia) and king eiders (Somateria spectabilis), and lowest in black guillemots (Cepphus grylle), black-legged kittiwakes (Rissa tridactyla), and long-tailed ducks (Clangula hyemalis). All sites with multiple years of data showed interannual fluctuations in Cd, which were correlated with the North Atlantic Oscillation (NAO) index and with the previous year's June sea ice coverage, where marine birds exhibited higher Cd concentrations in positive NAO years and following years with lower sea ice coverage. Climate change is likely to shift the NAO to being more negative and to reduce sea ice coverage, and our results thus identify various ways by which climate change could alter Cd concentrations in marine birds in the Canadian Arctic. Understanding variations in marine bird contaminant burdens, and how these may be alters by other stressors such as climate change, is important for long-term marine bird conservation efforts.
Collapse
Affiliation(s)
- Kristin Bianchini
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Jennifer F Provencher
- Canadian National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada.
| |
Collapse
|
6
|
Bertram J, Kürten N, Bichet C, Schupp PJ, Bouwhuis S. Mercury contamination level is repeatable and predicted by wintering area in a long-distance migratory seabird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120107. [PMID: 36089143 DOI: 10.1016/j.envpol.2022.120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The environmental presence of mercury has dramatically increased over the past century, leading to increased uptake, especially by top predators such as seabirds. Understanding the exact sources of contamination requires an individual-level approach, which is especially challenging for species that migrate. We took such an approach and located the wintering areas of 80 common terns (Sterna hirundo) through tracking, and, across years, collected feathers grown in those areas to assess their mercury levels using atomic absorption spectrometry. Although feathers of males and females did not differ in their mercury level, we found the average feather mercury level to be highest in birds wintering in the Canary Current (3.87 μg g-1), medium in birds wintering in the Guinea Current (2.27 μg g-1) and lowest in birds wintering in the Benguela Current (1.96 μg g-1). Furthermore, we found considerable inter-annual fluctuations in feather mercury levels, a within-individual repeatability of 41%, that the mercury levels of 17% of feather samples exceeded the admitted toxicity threshold of 5 μg g-1, and that the overall mean concentration of 3.4 μg g-1 exceeded that of other published reports for the species. Further studies therefore should assess whether these levels lead to individual-level carry-over effects on survival and reproductive performance.
Collapse
Affiliation(s)
- Justine Bertram
- Institute of Avian Research, An der Vogelwarte 21, D-26386, Wilhelmshaven, Germany.
| | - Nathalie Kürten
- Institute of Avian Research, An der Vogelwarte 21, D-26386, Wilhelmshaven, Germany
| | - Coraline Bichet
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstraße 1, D-26382, Wilhelmshaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, D-26129, Oldenburg, Germany
| | - Sandra Bouwhuis
- Institute of Avian Research, An der Vogelwarte 21, D-26386, Wilhelmshaven, Germany
| |
Collapse
|
7
|
Morris AD, Wilson SJ, Fryer RJ, Thomas PJ, Hudelson K, Andreasen B, Blévin P, Bustamante P, Chastel O, Christensen G, Dietz R, Evans M, Evenset A, Ferguson SH, Fort J, Gamberg M, Grémillet D, Houde M, Letcher RJ, Loseto L, Muir D, Pinzone M, Poste A, Routti H, Sonne C, Stern G, Rigét FF. Temporal trends of mercury in Arctic biota: 10 more years of progress in Arctic monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155803. [PMID: 35561904 DOI: 10.1016/j.scitotenv.2022.155803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Temporal trend analysis of (total) mercury (THg) concentrations in Arctic biota were assessed as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury Assessment. A mixed model including an evaluation of non-linear trends was applied to 110 time series of THg concentrations from Arctic and Subarctic biota. Temporal trends were calculated for full time series (6-46 years) and evaluated with a particular focus on recent trends over the last 20 years. Three policy-relevant questions were addressed: (1) What time series for THg concentrations in Arctic biota are currently available? (2) Are THg concentrations changing over time in biota from the Arctic? (3) Are there spatial patterns in THg trends in biota from the Arctic? Few geographical patterns of recent trends in THg concentrations were observed; however, those in marine mammals tended to be increasing at more easterly longitudes, and those of seabirds tended to be increasing in the Northeast Atlantic; these should be interpreted with caution as geographic coverage remains variable. Trends of THg in freshwater fish were equally increasing and decreasing or non-significant while those in marine fish and mussels were non-significant or increasing. The statistical power to detect trends was greatly improved compared to the 2011 AMAP Mercury Assessment; 70% of the time series could detect a 5% annual change at the 5% significance level with power ≥ 80%, while in 2011 only 19% met these criteria. Extending existing time series, and availability of new, powerful time series contributed to these improvements, highlighting the need for annual monitoring, particularly given the spatial and temporal information needed to support initiatives such as the Minamata Convention on Mercury. Collecting the same species/tissues across different locations is recommended. Extended time series from Alaska and new data from Russia are also needed to better establish circumarctic patterns of temporal trends.
Collapse
Affiliation(s)
- Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, 15 Eddy Street, 14th floor, Gatineau, QC K1A 0H4, Canada.
| | - Simon J Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Rob J Fryer
- Marine Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Philippe J Thomas
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | | | | | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360 Villiers en bois, France
| | | | - Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Marlene Evans
- Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
| | | | - Steven H Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - David Grémillet
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360 Villiers en bois, France; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, QC H2Y 2E7, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Lisa Loseto
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | | | - Amanda Poste
- Norwegian Institute for Water Research (NIVA), NO-9296 Tromsø, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø NO-9296, Norway
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Gary Stern
- Centre for Earth Observation Sciences (CEOS), University of Manitoba, 125 Dysart Road, Winnipeg, MB, Canada
| | - Frank F Rigét
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
8
|
McKinney MA, Chételat J, Burke SM, Elliott KH, Fernie KJ, Houde M, Kahilainen KK, Letcher RJ, Morris AD, Muir DCG, Routti H, Yurkowski DJ. Climate change and mercury in the Arctic: Biotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155221. [PMID: 35427623 DOI: 10.1016/j.scitotenv.2022.155221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Collapse
Affiliation(s)
- Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - John Chételat
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Samantha M Burke
- Minnow Aquatic Environmental Services, Guelph, ON N1H 1E9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 5E7, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC J8X 2V6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - David J Yurkowski
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
9
|
Provencher JF, Thomas PJ, Braune BM, Pauli B, Tomy G, Idowu I, O'Hara P, Mallory ML. Decadal differences in polycyclic aromatic compound (PAC) concentrations in two seabird species in Arctic Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154088. [PMID: 35218844 DOI: 10.1016/j.scitotenv.2022.154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Seabirds are exposed to a variety of environmental contaminants in the Arctic. While the persistence, bioaccumulation, and toxicity of some groups of contaminants have been well-studied in seabirds since the 1970s, there is less known about polycyclic aromatic compounds (PACs). With increased vessel traffic, and potential oil and gas development in the Arctic region, there is a need to understand existing PAC exposure in biota against which to compare potential effects of anticipated increases of PACs in the marine region. Thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) collected in the Baffin Bay - Davis Strait region during the International Polar Year (IPY; 2007-08), and during a recent Strategic Environmental Assessment (2018; SEA) were examined for hepatic PAC concentrations. We found that fulmars generally had higher concentrations of PACs than the murres, but murres and fulmars sampled in 2007/08 had higher concentrations of most groups of PACs compared to birds from 2018. The one exception to this pattern was that the sum of the alkylated congeners of the heterocyclic aromatic compounds containing a sulfur atom (dibenzothiophene; ΣAHET) was significantly higher in murres in the more recent sampling period (2018) as compared to 2007/08. ΣAHETs likely reflect recent exposure to more refined petroleum products associated with small boats, such as diesel, gasoline and motor oil. This work highlights the need for longitudinal studies on PAC concentrations in biota for us to gain a better understanding of how Arctic biota are exposed to this group of contaminants, and the potential deleterious effects associated with PACs.
Collapse
Affiliation(s)
- Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change, Ottawa, Ontario, Canada.
| | - Philippe J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change, Ottawa, Ontario, Canada
| | - Birgit M Braune
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change, Ottawa, Ontario, Canada
| | - Bruce Pauli
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change, Ottawa, Ontario, Canada
| | - Gregg Tomy
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Patrick O'Hara
- Canadian Wildlife Service, Saanich, British Columbia, Canada
| | | |
Collapse
|
10
|
Morris AD, Braune BM, Gamberg M, Stow J, O'Brien J, Letcher RJ. Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabird eggs. ENVIRONMENTAL RESEARCH 2022; 207:112169. [PMID: 34624268 DOI: 10.1016/j.envres.2021.112169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Temporal trends of mercury in Arctic wildlife are inconsistent within and between species and are often insignificant, which limits data interpretation. Recent multivariate analyses have shown that weather and climate factors (e.g. temperatures, sea ice conditions) are related to total Hg (THg) concentrations in wildlife tissues, though relatively few studies have explored these relationships. The present study compared time series of THg concentrations in liver of polar bear (Ursus maritimus, 2007/08-2015/16), eggs of thick-billed murres (Uria lomvia, 1993-2015) and kidney of caribou (Rangifer tarandus groenlandicus, 2006-2015) from the Hudson Bay region of Canada and statistically modelled THg over time with available climate and weather data. Significant temporal trends of THg concentrations were not detected in any species. However, in multivariate models that included time-lagged sea ice freeze up dates, THg concentrations increased 4.4% yr-1 in Qamanirjuaq caribou. Sea ice conditions were also related to THg levels in polar bear liver but not those in eggs of murres, though year was not a signifcant factor. Greater precipitation levels one to two years prior to sampling were associated with greater THg concentrations in polar bears and caribou, likely due to greater deposition, flooding and discharge from nearby wetlands and rivers. Time-lagged Arctic and/or North Atlantic Oscillation (AO/NAO) indices also generated significant, inverse models for all three species, agreeing with relationships in other time series of similar length. The magnitude and direction of many relationships were affected by season, duration of time-lags, and the length of the time series. Our findings support recent observations suggesting that temporal studies monitoring Hg in Arctic wildlife should consider including key climatic or weather factors to help identify consistent variables of influence and to improve temporal analyses of THg time series.
Collapse
Affiliation(s)
- Adam D Morris
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| | - Birgit M Braune
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada.
| | - Mary Gamberg
- Gamberg Consulting, Box 11267, Whitehorse, YT, Y1A 2J2, Canada.
| | - Jason Stow
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.
| | - Jason O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
11
|
Tartu S, Blévin P, Bustamante P, Angelier F, Bech C, Bustnes JO, Chierici M, Fransson A, Gabrielsen GW, Goutte A, Moe B, Sauser C, Sire J, Barbraud C, Chastel O. A U-Turn for Mercury Concentrations over 20 Years: How Do Environmental Conditions Affect Exposure in Arctic Seabirds? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2443-2454. [PMID: 35112833 DOI: 10.1021/acs.est.1c07633] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
- Fram Centre, Akvaplan-niva AS, Tromsø 9296, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, La Rochelle 17000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Claus Bech
- Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jan Ove Bustnes
- Fram Centre, Norwegian Institute for Nature Research (NINA), Tromsø 9296, Norway
| | - Melissa Chierici
- Fram Centre, Institute of Marine Research (IMR), Tromsø 9296, Norway
| | | | | | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, Paris F-75005, France
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway
| | - Christophe Sauser
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Julien Sire
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
12
|
Smith RA, Albonaimi SS, Hennin HL, Gilchrist HG, Fort J, Parkinson KJL, Provencher JF, Love OP. Exposure to cumulative stressors affects the laying phenology and incubation behaviour of an Arctic-breeding marine bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150882. [PMID: 34627894 DOI: 10.1016/j.scitotenv.2021.150882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Wildlife are exposed to multiple stressors across life-history stages, the effects of which can be amplified as human activity surges globally. In Arctic regions, increasing air and ocean temperatures, more severe weather systems, and exposure to environmental contaminants all represent stressors occurring simultaneously. While Arctic vertebrates, including marine birds, are expected to be at risk of adverse effects from these individual stressors, few studies have researched their combined impacts on breeding behaviour and reproductive success. The interactive effects of environmental conditions and mercury (Hg) contamination on laying phenology and incubation behaviour were examined in female common eiders (Somateria mollissima, mitiq, ᒥᑎᖅ ᐊᒪᐅᓕᒡᔪᐊᖅ) nesting at Canada's largest Arctic breeding colony. Conditions with higher pre-breeding air temperatures were linked to females with higher egg Hg concentrations laying earlier than those with lower Hg values. Furthermore, examination of a total of 190 days of incubation behaviour from 61 eiders across two years revealed a negative relationship between wind speed and the frequency of incubation interruptions. Importantly, exposure to higher air temperatures combined with lower Hg concentrations was significantly correlated with increased incubation interruptions. Although previous research has shown that warmer spring temperatures could afford lower quality females more time to improve body condition to successfully lay, results suggest these females may face stronger cumulative fitness costs during incubation in warmer years, potentially in combination with the effects of Hg on physiological stress and hormone secretion. This study highlights how multiple stressors exposure, driven by human-induced environmental changes, can have a complex influence on reproduction.
Collapse
Affiliation(s)
- Reyd A Smith
- University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | | | - Holly L Hennin
- Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario K0A 1H0, Canada
| | - H Grant Gilchrist
- Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario K0A 1H0, Canada
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 17000 La Rochelle, France
| | | | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Ontario K0A 1H0, Canada
| | - Oliver P Love
- University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
13
|
Smith RA, Yurkowski DJ, Parkinson KJL, Fort J, Hennin HL, Gilchrist HG, Hobson KA, Mallory ML, Danielsen J, Garbus SE, Hanssen SA, Jónsson JE, Latty CJ, Magnúsdóttir E, Moe B, Parsons GJ, Sonne C, Tertitski G, Love OP. Environmental and life-history factors influence inter-colony multidimensional niche metrics of a breeding Arctic marine bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148935. [PMID: 34274678 DOI: 10.1016/j.scitotenv.2021.148935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Human industrialization has resulted in rapid climate change, leading to wide-scale environmental shifts. These shifts can modify food web dynamics by altering the abundance and distribution of primary producers (ice algae and phytoplankton), as well as animals at higher trophic levels. Methylmercury (MeHg) is a neuro-endocrine disrupting compound which biomagnifies in animals as a function of prey choice, and as such bioavailability is affected by altered food web dynamics and adds an important risk-based dimension in studies of foraging ecology. Multidimensional niche dynamics (MDND; δ13C, δ15N, THg; total mercury) were determined among breeding common eider (Somateria mollissima) ducks sampled from 10 breeding colonies distributed across the circumpolar Arctic and subarctic. Results showed high variation in MDND among colonies as indicated by niche size and ranges in δ13C, δ15N and THg values in relation to spatial differences in primary production inferred from sea-ice presence and colony migratory status. Colonies with higher sea-ice cover during the pre-incubation period had higher median colony THg, δ15N, and δ13C. Individuals at migratory colonies had relatively higher THg and δ15N, and lower δ13C, suggesting a higher trophic position and a greater reliance on phytoplankton-based prey. It was concluded that variation in MDND exists among eider colonies which influenced individual blood THg concentrations. Further exploration of spatial ecotoxicology and MDND at each individual site is important to examine the relationships between anthropogenic activities, foraging behaviour, and the related risks of contaminant exposure at even low, sub-lethal concentrations that may contribute to deleterious effects on population stability over time. Overall, multidimensional niche analysis that incorporates multiple isotopic and contaminant metrics could help identify those populations at risk to rapidly altered food web dynamics.
Collapse
Affiliation(s)
- Reyd A Smith
- University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | | | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle University, La Rochelle FR-17000, France
| | - Holly L Hennin
- Environment and Climate Change Canada, Ottawa, Ontario K0A 1H0, Canada
| | - H Grant Gilchrist
- Environment and Climate Change Canada, Ottawa, Ontario K0A 1H0, Canada
| | | | - Mark L Mallory
- cadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | | | | | | | - Jón Einar Jónsson
- University of Iceland's Research Centre at Snæfellsnes, Hafnargata 3, 340 Stykkishólmur, Iceland
| | - Christopher J Latty
- Arctic National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, AK 99701, United States
| | - Ellen Magnúsdóttir
- University of Iceland's Research Centre at Snæfellsnes, Hafnargata 3, 340 Stykkishólmur, Iceland
| | - Børge Moe
- Norwegian Institute for Nature Research, Tromsø N-9296, Norway
| | - Glen J Parsons
- Nova Scotia Department of Lands and Forestry, Kentville, Nova Scotia B4N 4E5, Canada
| | | | - Grigori Tertitski
- Institute of Geography of the Russian Academy of Sciences, Moscow 119017, Russia
| | - Oliver P Love
- University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
14
|
Houde M, Taranu ZE, Wang X, Young B, Gagnon P, Ferguson SH, Kwan M, Muir DC. Mercury in Ringed Seals (Pusa hispida) from the Canadian Arctic in Relation to Time and Climate Parameters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2462-2474. [PMID: 33025637 PMCID: PMC7756774 DOI: 10.1002/etc.4865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Mercury is found in Arctic marine mammals that are important in the diet of northern Indigenous peoples. The objectives of the present long-term study, spanning a 45-yr period, were to 1) investigate the temporal trends of total mercury (THg; muscle and liver) and selenium (Se; liver) in ringed seals (Pusa hispida) from different regions of the Canadian Arctic; and 2) examine possible relationships with age, diet, and climate parameters such as air temperature, precipitation, climatic indices, and ice-coverage. Ringed seals were collected by hunters in northern communities in the Beaufort Sea, Central Arctic, Eastern Baffin Island, Hudson Bay, and Ungava/Nunatsiavut regions (Canada) between 1972 and 2017. Mercury levels did not change through time in seal liver, but THg levels in muscle decreased in seals from Hudson Bay (-0.91%/yr) and Ungava/Nunatsiavut (-1.30%/yr). Carbon stable isotope values in seal muscle decreased significantly through time in 4 regions. Selenium-to-THg ratios were found to be >1 for all years and regions. Variation partitioning analyses across regions indicated that THg trends in seals were mostly explained by age (7.3-21.7%), climate parameters (3.5-12.5%), and diet (up to 9%); climate indices (i.e., Arctic and North Atlantic Oscillations, Pacific/North American pattern) explained the majority of the climate portion. The THg levels had a positive relationship with Arctic Oscillation for multiple regions. Associations of THg with air temperature, total precipitation, and sea-ice coverage, as well as with North Atlantic Oscillation and Pacific/North American pattern were found to vary with tissue type and geographical area. Environ Toxicol Chem 2020;39:2462-2474. © 2020 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Fisheries and Oceans Canada.
Collapse
Affiliation(s)
- Magali Houde
- Environment and Climate Change CanadaMontrealQuebecCanada
| | | | - Xiaowa Wang
- Environment and Climate Change CanadaBurlingtonOntarioCanada
| | - Brent Young
- Arctic Aquatic Research DivisionDepartment of Fisheries and OceansWinnipegManitobaCanada
| | - P. Gagnon
- Environment and Climate Change CanadaMontrealQuebecCanada
| | - Steve H. Ferguson
- Arctic Aquatic Research DivisionDepartment of Fisheries and OceansWinnipegManitobaCanada
| | | | - Derek C.G. Muir
- Environment and Climate Change CanadaBurlingtonOntarioCanada
| |
Collapse
|