1
|
Bang Truong H, Nguyen THT, Ba Tran Q, Son Lam V, Thao Nguyen Nguyen T, Cuong Nguyen X. Algae-constructed wetland integrated system for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 406:131003. [PMID: 38925406 DOI: 10.1016/j.biortech.2024.131003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Integrating algae into constructed wetlands (CWs) enhances wastewater treatment, although the results vary. This review evaluates the role of algae in CWs and the performance of different algae-CW (A-CW) configurations based on literature and meta-analysis. Algae considerably improve N removal, although their impact on other parameters varies. Statistical analysis revealed that 70 % of studies report improved treatment efficiencies with A-CWs, achieving average removal rates of 75 % for chemical oxygen demand (COD), 74 % for total nitrogen and ammonium nitrogen, and 79 % for total phosphorus (TP). This review identifies hydraulic retention times, which average 3.1 days, and their varied impact on treatment efficacy. Mixed-effects models showed a slight increase in COD and TP removal efficiencies of 0.6 % every ten days in the A-CWs. Future research should focus on robust experimental designs, adequate algal storage and separation techniques, and advanced modeling to optimize the treatment potential of algae in CWs.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Viet Nam
| | - T Hong Tinh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Quoc Ba Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Vinh Son Lam
- HUTECH Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - T Thao Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Zhao Y, Naeth MA, Wilkinson SR, Dhar A. Potential of biochar and humic substances for phytoremediation of trace metals in oil sands process affected water. CHEMOSPHERE 2024; 361:142375. [PMID: 38772514 DOI: 10.1016/j.chemosphere.2024.142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Oil sands process affected water (OSPW) is produced during bitumen extraction and typically contains high concentrations of trace metals. Constructed wetlands have emerged as a cost effective and green technology for the treatment of metals in wastewaters. Whether the addition of amendments to constructed wetlands can improve metal removal efficiency is unknown. We investigated the synergistic effects of carbon based amendments and wetland plant species in removal of arsenic, cadmium, cobalt, chromium, copper, nickel, and selenium from OSPW. Three native wetland species (Carex aquatilis, Juncus balticus, Scirpus validus) and two amendments (canola straw biochar, nano humus) were investigated in constructed wetland mesocosms over 60 days. Amendment effect on metal removal efficiency was not significant, while plant species effect was. Phytoremediation resulted in removal efficiencies of 78.61-96.31 % for arsenic, cadmium, and cobalt. Carex aquatilis had the highest removal efficiencies for all metals. Amendments alone performed well in removing some metals and were comparable to phytoremediation for cadmium, cobalt, copper, and nickel. Metals were primarily distributed in roots with negligible translocation to shoots. Our work provides insights into the role of plants and amendments during metal remediation and their complex interactions in constructed treatment wetlands.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - Sarah R Wilkinson
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - Amalesh Dhar
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| |
Collapse
|
3
|
Mu X, Zhang S, Lu J, Huang Y, Ji J. Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:133740. [PMID: 38569335 DOI: 10.1016/j.jhazmat.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.
Collapse
Affiliation(s)
- Xiaoying Mu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianhui Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianghao Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Zeng L, Liu X, Ma J, Yang J, Yang J, Zhou Y. Current progress on manganese in constructed wetlands: Bibliometrics, effects on wastewater treatment, and plant uptake. ENVIRONMENTAL RESEARCH 2024; 249:118382. [PMID: 38331160 DOI: 10.1016/j.envres.2024.118382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Constructed wetlands (CWs) are a pollutant treatment design inspired by natural wetlands and are widely utilized for the removal of common pollutants. The research focus lies in the circulation of manganese (Mn) in the environment to enhance pollutant removal within CWs. This paper provides a comprehensive review of recent advancements in understanding the role and effects of Mn in chemical weapons, based on literature retrieval from 2002 to 2021. Ecological risk assessment and heavy metals within CWs emerge as current areas of research interest. Mn sources within CWs primarily include natural deposition, heavy metal wastewater, and intentional addition. The cycling between Mn(II) and Mn(IV) facilitates enhanced wastewater treatment within CWs. Moreover, employing a Mn matrix proves effective in reducing ammonia nitrogen wastewater, organic pollutants, as well as heavy metals such as Cd and Pb, thereby addressing complex pollution challenges practically. To comprehensively analyze influencing factors on the system's performance, both internal factors (biological species, design parameters, pH levels, etc.) and external factors (seasonal climate variations, precipitation patterns, ultraviolet radiation exposure, etc.) were discussed. Among these factors, microorganisms, pollutants, and temperature are the most important influencing factors, which emphasizes the importance of these factors for wetland operation. Lastly, this paper delves into plant absorption of Mn along with coping strategies employed by plants when faced with Mn poisoning or deficiency scenarios. When utilizing Mn for the regulation of constructed wetlands, it is crucial to consider the tolerance levels of associated plant species. Furthermore, the study predicts future research hotspots encompass high-efficiency catalysis techniques, matrix-filling approaches, and preparation of resource utilization methods involving Mn nanomaterials.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, Hunan Province, 410013, China.
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
5
|
Munir R, Muneer A, Sadia B, Younas F, Zahid M, Yaseen M, Noreen S. Biochar imparted constructed wetlands (CWs) for enhanced biodegradation of organic and inorganic pollutants along with its limitation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:425. [PMID: 38573498 DOI: 10.1007/s10661-024-12595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, 38000, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Yaseen
- Department of Physics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Irshad S, Xie Z, Qing M, Ali H, Ali I, Ahmad N, Rizwan Khan M, Nawaz A. Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123597. [PMID: 38369096 DOI: 10.1016/j.envpol.2024.123597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Coconut shell activated carbon (CNSAC) was applied as a filter layer in hybrid vertical subsurface flow constructed wetland (H-VSSF-CW), in order to enhance the multi-metal removal efficiency of the constructed wetland (CW) and to reduce heavy metal accumulation on Salvinia cucullata. Treatment P + AC, (having CNSAC filter layer), showed 32, 21 and 34% more Cd, Cr, and Pb removal efficiency than treatment P (without CNSAC layer). CNSAC activated carbon adsorbed Cd and Pb and Cr by functional groups -NH, -NO2, -C-O, -OH and -CO, and significantly reduced Cd and Pb exposure to S. cucullate. Chromium adsorption by CNSAC filter layer was half (just 25% of total input) of the Cd and Pb. In treatment P, due to high Cd, Pb and Cr accumulation in S. cucullate, the antioxidant defense mechanism of the plant was collapsed and cell death was observed, which in turn has resulted reduced biomass gain (5% reduction). On the other hand, in treatment P + AC, an antioxidant defense mechanism was active in the form significantly (p ≤ 0.05) increased of SOD, CAT and proline content while reduced MDA, EL, %EB and soluble sugar. So, the application of CNSAC increased the heavy metal removal efficiency of H-VSSF-CW by adsorption of a considerable share of heavy metal and hence, reduced the heavy metal load/exposure to S. cucullate.
Collapse
Affiliation(s)
- Sana Irshad
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mao Qing
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan.
| | - Ijaz Ali
- CAMB, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199, Yongzhou, Hunan, China.
| |
Collapse
|
7
|
Liang F, Shi Z, Wei S, Yan S. Biogas slurry purification-lettuce growth nexus: Nutrients absorption and pollutants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164383. [PMID: 37216991 DOI: 10.1016/j.scitotenv.2023.164383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
As a main by-product of anaerobic digestion in biogas plants, biogas slurry contains a high concentration of mineral elements (such as ammonia‑nitrogen and potassium) and chemical oxygen demand (COD). So determining how to dispose the biogas slurry in a harmless and value-added ways is crucial from the perspective of ecological and environmental protections. This study explored a novel nexus between biogas slurry and lettuce, in which the biogas slurry was concentrated and saturated with carbon dioxide (CO2) to serve as a hydroponic solution for lettuce growth. Meanwhile, the lettuce was used to purify the biogas slurry through removing pollutants. Results showed that when concentrating the biogas slurry, the total nitrogen and ammonia nitrogen contents in the biogas slurry decreased with the increase of concentration factor. The CO2-rich 5-time-concentrated biogas slurry (CR-5CBS) was screened as the most suitable hydroponic solution for lettuce growth after comprehensively considering the nutrient element balance, energy consumption of concentrating the biogas slurry and CO2 absorption performance. The quality of lettuce cultivated in CR-5CBS was comparable to that of the Hoagland-Arnon nutrient solution in terms of physiological toxicity, nutritional quality, and mineral uptake. Obviously, the hydroponic lettuce could effectively utilize the nutrients in CR-5CBS to purify CR-5CBS, meeting the standard of reclaimed water quality for agricultural reuse. Interestingly, when the same yield of lettuce is targeted, using CR-5CBS as the hydroponic solution to cultivate lettuce can save about US $151/m3-CR-5CBS for lettuce production compared to the Hoagland-Arnon nutrient solution. This study might provide a feasible method for high-value utilization and harmless disposal of biogas slurry.
Collapse
Affiliation(s)
- Feihong Liang
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China; College of Life Science, Yulin University, Yilin 719000, PR China
| | - Zhan Shi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, PD 350207, Italy
| | - Shihui Wei
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuiping Yan
- Technology & Equipment Center for Carbon Neutrality in Agriculture, College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
8
|
Kumwimba MN, Huang J, Dzakpasu M, Ajibade FO, Li X, Sanganyado E, Guadie A, Şenel E, Muyembe DK. Enhanced nutrient removal in agro-industrial wastes-amended hybrid floating treatment wetlands treating real sewage: Laboratory microcosms to field-scale studies. CHEMOSPHERE 2023; 330:138703. [PMID: 37100253 DOI: 10.1016/j.chemosphere.2023.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
The use of natural agro-industrial materials as suspended fillers (SFs) in floating treatment wetlands (FTWs) to enhance nutrient removal performance has recently been gaining significant attention. However, the knowledge concerning the nutrient removal performance enhancement by different SFs (alone and in mixtures) and the major removal pathways is so far inadequate. The current research, for the first time, carried out a critical analysis using five different natural agro-industrial materials (biochar, zeolite, alum sludge, woodchip, flexible solid packing) as SFs in various FTWs of 20 L microcosm tanks, 450 L outdoor mesocosms, and a field-scale urban pond treating real wastewater over 180 d. The findings demonstrated that the incorporation of SFs in FTWs enhanced the removal performance of total nitrogen (TN) by 20-57% and total phosphorus (TP) by 23-63%. SFs further enhanced macrophyte growth and biomass production, leading to considerable increases in nutrient standing stocks. Although all the hybrid FTWs showed acceptable treatment performances, FTWs set up with mixtures of all five SFs significantly enhanced biofilm formation and enriched the abundances of the microbial community related to nitrification and denitrification processes, supporting the detected excellent N retention. N mass balance assessment demonstrated that nitrification-denitrification was the major N removal pathway in reinforced FTWs, and the high removal efficiency of TP was attributable to the incorporation of SFs into the FTWs. Nutrient removal efficiencies ranked in the following order among the various trials: microcosm scale (TN: 99.3% and TP: 98.4%) > mesocosm scale (TN: 84.0% and TP: 95.0%) > field scale (TN: -15.0-73.7% and TP: -31.5-77.1%). These findings demonstrate that hybrid FTWs could be easily scaled up for the removal of pollutants from eutrophic freshwater systems over the medium term in an environmentally-friendly way in regions with similar environmental conditions. Moreover, it demonstrates hybrid FTW as a novel way of disposing of significant quantities of wastes, showing a win-win means with a huge potential for large-scale application.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Faculty of Agronomy, University of Lubumbashi, Democratic Republic of Congo
| | - Jinlou Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fidelis Odedishemi Ajibade
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Civil and Environmental Engineering, Federal University of Technology, Akure, PMB 704, Nigeria
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, 21, Ethiopia
| | - Engin Şenel
- Hitit University Faculty of Medicine, Department of Dermatology, Çorum, Turkey
| | - Diana Kavidia Muyembe
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
9
|
Sahu JN, Kapelyushin Y, Mishra DP, Ghosh P, Sahoo BK, Trofimov E, Meikap BC. Utilization of ferrous slags as coagulants, filters, adsorbents, neutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review. CHEMOSPHERE 2023; 325:138201. [PMID: 36863629 DOI: 10.1016/j.chemosphere.2023.138201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Solid waste is currently produced in substantial amounts by industrial activities. While some are recycled, the majority of them are dumped in landfills. Iron and steel production leaves behind ferrous slag, which must be created organically, managed wisely and scientifically if the sector is to remain more sustainably maintained. Ferrous slag is the term for the solid waste that is produced when raw iron is smelted in ironworks and during the production of steel. Both its specific surface area and porosity are relatively high. Since these industrial waste materials are so easily accessible and offer such serious disposal challenges, the idea of their reuse in water and wastewater treatment systems is an appealing alternative. There are many components such as Fe, Na, Ca, Mg, and silicon found in ferrous slags, which make it an ideal substance for wastewater treatment. This research investigates the potential of ferrous slag as coagulants, filters, adsorbents, neutralizers/stabilizers, supplementary filler material in soil aquifers, and engineered wetland bed media to remove contaminants from water and wastewater. Ferrous slag may provide a substantial environmental risk before or after reuse, so leaching and eco-toxicological investigations are necessary. Some study revealed that the amount of heavy metal ions leached from ferrous slag conforms to industrial norms and is exceedingly safe, hence it may be employed as a new type of inexpensive material to remove contaminants from wastewater. The practical relevance and significance of these aspects are attempted to be analyzed, taking into account all recent advancements in the fields, in order to help in the development of informed decisions about future directions for research and development related to the utilization of ferrous slags for wastewater treatment.
Collapse
Affiliation(s)
- J N Sahu
- University of Stuttgart, Institute of Chemical Technology, Faculty of Chemistry, D-70550 Stuttgart, Germany; South Ural State University (National Research University), Chelyabinsk, 454080, Russian Federation.
| | - Y Kapelyushin
- South Ural State University (National Research University), Chelyabinsk, 454080, Russian Federation
| | - Devi Prasad Mishra
- Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India
| | - B K Sahoo
- Research & Development Centre for Iron & Steel, SAIL, Ranchi, Jharkhand, Pin-834002, India
| | - E Trofimov
- South Ural State University (National Research University), Chelyabinsk, 454080, Russian Federation
| | - B C Meikap
- Department of Chemical Engineering, Indian Institute of Technology (IIT), Kharagpur, West Bengal, 721302, India
| |
Collapse
|
10
|
Wang X, Wang W, Wang W, Dong L, Zhai T, Gao Z, Wang K, Wang W, Wang S, Kong F. Enhanced effect and mechanism of nano Fe-Ca bimetallic oxide modified substrate on Cu(II) and Ni(II) removal in constructed wetland. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131689. [PMID: 37245372 DOI: 10.1016/j.jhazmat.2023.131689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
In this study, Fe2O3 nanoparticles (Fe2O3 NPs) and CaO NPs were loaded on the zeolite sphere carrier to create nano Fe-Ca bimetallic oxide (Fe-Ca-NBMO) modified substrate, which was introduced into constructed wetland (CW) to remove Cu(II) and Ni(II) via constructing "substrate-microorganism" system. Adsorption experiments showed that the equilibrium adsorption capacities of Fe-Ca-NBMO modified substrate for Cu(II) and Ni(II) were respectively 706.48 and 410.59 mg/kg at an initial concentration of 20 mg/L, 2.45 and 2.39 times of gravel. The Cu(II) and Ni(II) removal efficiencies in CW with Fe-Ca-NBMO modified substrate respectively reached 99.7% and 99.9% at an influent concentration of 100 mg/L, significantly higher than those in gravel-based CW (47.0% and 34.3%). Fe-Ca-NBMO modified substrate could promote Cu(II) and Ni(II) removal by increasing electrostatic adsorption, chemical precipitation, as well as the abundances of resistant microorganisms (Geobacter, Desulfuromonas, Zoogloea, Dechloromonas, and Desulfobacter) and functional genes (copA, cusABC, ABC.CD.P, gshB, and exbB). This study provided an effective method to enhance Cu(II) and Ni(II) removal of electroplating wastewater by CW with Fe-Ca-NBMO modified substrate.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zijing Gao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Kang Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenshu Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Chen D, Samwini AMN, Manirakiza B, Addo FG, Numafo-Brempong L, Baah WA. Effect of erythromycin on epiphytic bacterial communities and water quality in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159008. [PMID: 36162586 DOI: 10.1016/j.scitotenv.2022.159008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of antibiotics such as erythromycin (ERY) under macrolide group, has long been acknowledged for negatively affecting ecosystems in freshwater environments. However, the effects of ERY on water quality and microbial communities in epiphytic biofilms are poorly understood. Here, Scanning Electron Microscopy (SEM), High-throughput sequencing, and physicochemical analytical methods were employed to unravel the impact of ERY on the water quality and bacterial morphology, biodiversity, composition, interaction, and ecological function in epiphytic biofilms attached to Vallisneria natans and artificial plants in mesocosmic wetlands. The study showed that ERY exposure significantly impaired the nutrient removal capacity (TN, TP, and COD) and altered the epiphytic bacterial morphology of V. natans and artificial plants. ERY did not affect the bacterial α-diversity. Notwithstanding ERY decreased the bacterial composition, but the relative abundance of Proteobacteria and Patescibacteria spiked by 62.2 % and 54 %, respectively, in V. natans, while Desulfobacteria and Chloroflexi increased by 8.9 % and 11.2 %, respectively, in artificial plants. Notably, ERY disturbed the food web structure and metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, cofactor and vitamin metabolism, membrane transport, and signal transduction. This study revealed that ERY exposure disrupted the bacterial morphology, composition, interaction or food web structure, and metabolic functions in epiphytic biofilm. These data underlined that ERY negatively impacts epiphytic bacterial communities and nutrient removal in wetlands.
Collapse
Affiliation(s)
- Deqiang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Abigail Mwin-Nea Samwini
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lydia Numafo-Brempong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Wambley Adomako Baah
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
12
|
Kumwimba MN, Li X, Huang J, Muyembe DK, Dzakpasu M, Sanganyado E. Performance of various fillers in ecological floating beds planted with Myriophyllum aquaticum treating municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156827. [PMID: 35750173 DOI: 10.1016/j.scitotenv.2022.156827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The performance of different suspended fillers (zeolite, drinking water treatment residual, biochar, woodchip and stereo-elastic packing) and their combinations in treating municipal wastewater in ecological floating beds (Eco-FBs) planted with Myriophyllum aquaticum was assessed. Six sets of enhanced Eco-FBs were developed to assess the individual and synergistic effects of combinations of the various fillers and microorganisms on nutrient elimination. The results demonstrated mean TN, NH4-N, TP and COD purification efficiencies of 99.2 ± 11.2 %, 99.82 ± 16.4 %, 98.3 ± 14.3 %, and 96.1 ± 12.3 %, respectively in the Eco-FBs strengthened with all five fillers. The corresponding purification rates were 0.89 ± 0.14, 0.75 ± 0.12, 0.08 ± 0.016, and 7.05 ± 1.09 g m-2 d-1, which were 2-3 times higher than those of the conventional Eco-FB system. High-throughput sequencing showed that some genera related to nutrient transformation, including Proteobacteria (24.13-51.95 %), followed by Chloroflexi (5.64-25.01 %), Planctomycetes (8.48-14.43 %) and Acidobacteria (2.29-11.65 %), were abundantly enriched in the strengthened Eco-FBs. Enhancement of the Eco-FBs with various fillers significantly increased microbial species richness and diversity as demonstrated by Chao1, Shannon and Simpson's indexes, particularly when all the five fillers were combined. Therefore, introducing suspended fillers into Eco-FBs is an appropriate approach for improving nutrient elimination from municipal wastewater.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agronomy, University of Lubumbashi, Democratic Republic of Congo
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlou Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Diana Kavidia Muyembe
- Institute of Food Science & Technology, Chinese Academy of Agricultural Sciences, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
13
|
Biochar: Production, Applications, and Market Prospects in Portugal. ENVIRONMENTS 2022. [DOI: 10.3390/environments9080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar produced during the thermochemical decomposition of biomass is an environmentally friendly replacement for different carbon materials and can be used for carbon sequestration to mitigate climate change. In this paper, current biochar production processes and top market applications are reviewed, as well as emerging biochar uses gaining momentum in the market. Various application fields of biochar, including agricultural applications (e.g., soil conditioning), adsorption (for soil and water pollutants), carbon sequestration, catalysis, or incorporation into composites or construction materials, are also presented and discussed. According to this literature overview, slow pyrolysis is the preferred process for biochar production, whereas agricultural applications (for soil conditioning and fertilization) are the most studied and market-ready solutions for biochar use. The Alentejo region (Portugal) shows tremendous potential to be a major player in the developing biochar market considering feedstock availability and large areas for biochar agricultural application. Biochar’s production potential and possible benefits were also estimated for this Portuguese region, proving that agricultural application can effectively lead to many environmental, economic, and social gains.
Collapse
|
14
|
Maqsood A, Khan ZI, Ahmad K, Akhtar S, Ashfaq A, Malik IS, Sultana R, Nadeem M, Alkahtani J, Dwiningsih Y, Elshikh MS. Quantitative evaluation of zinc metal in meadows and ruminants for health assessment: implications for humans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21634-21641. [PMID: 34767165 DOI: 10.1007/s11356-021-17264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution in soil, forage, and animals is serious concern nowadays. Current research was conducted in Sargodha to find out the relationship of animals related to the forages and soil pollution. Three sites were selected with three different treatments; site I irrigated with ground water, site II irrigated with the canal water, and site III irrigated with the wastewater. Samples of soil, forage, and animals (blood, hair, feces) were collected from selected sites and were analyzed for metal analysis using atomic absorption spectroscopy. Results indicated that Zn in soil ranged from 24.12 to 37.39 mg/kg; forage, 31.98-44.47 mg/kg; blood of animals, 1.49-2.72 mg/L; hair of animals, 1.37-2.41 mg/kg; and feces of animals, 1.06-2.97 mg/kg. The concentration of zinc in soil and forage was less than permissible limit, but concentration in blood of animals was greater than critical limit suggesting the presence of metal. Bio-concentration factor indicated that metal was accumulated in forages growing at irrigated site. HRI concentration (2.024 mg/kg/day) suggests the accumulation of zinc in animal tissues. Pollution load index and enrichment factor were within the range.
Collapse
Affiliation(s)
- Ayesha Maqsood
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan.
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Shahzad Akhtar
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Asma Ashfaq
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | | | - Razia Sultana
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yheni Dwiningsih
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Atugoda T, Gunawardane C, Ahmad M, Vithanage M. Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: Kinetics, isotherm and thermodynamics. CHEMOSPHERE 2021; 281:130676. [PMID: 34020185 DOI: 10.1016/j.chemosphere.2021.130676] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Modification of biochar for efficient removal of antibiotics from water could be a valuable approach in the environmental applications. In this study, a brown seaweed (Sargassum crassifolium) was pyrolyzed at 500 °C and the obtained biochar (SWBC) was modified with zeolite through the slurry method maintaining the ratio at 1:5 (zeolite: biochar) (SWBC-Z). Batch adsorption experiments were conducted to evaluate the adsorption tendency of SWBC and SWBC-Z for the removal of ciprofloxacin (CPX) from water via pH edge, kinetics, isotherm and thermodynamic experiments. The highest adsorption was in the pH range of 6.5-8, supported by the electrostatic attractions and hydrogen bonding with zwitterionic CPX. Experimental kinetics data was well-fitted to the pseudo-second-order and Elovich models (R2 of 0.992 and 0.976, respectively), while the Langmuir and Freundlich isotherm models best described the isotherm data (R2 of 0.954 and 0.976, respectively). The maximum adsorption capacity of 93.65 mg g-1 was recorded for the SWBC-Z. The models predicted chemisorption and physisorption interactions on the heterogenous biochar surface. Well-defined peaks of silanol groups in the FTIR spectrum of SWBC-Z and its electron microscopy confirmed the incorporation of zeolite minerals. Post adsorption FTIR analysis elucidated the changes in the surface functional groups of the SWBC-Z. Thermodynamic data revealed spontaneous and exothermic reaction between CPX and both the biochars. It was concluded that modification of pristine biochar with zeolite imparted greater surface area and additional active sites, which subsequently enhanced the overall CPX adsorption by the SWBC-Z.
Collapse
Affiliation(s)
- Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chaminda Gunawardane
- National Institute of Post Harvest Management, Jayanthi Mawatha, Anuradhapura, Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
16
|
Ohore OE, Zhang S, Guo S, Manirakiza B, Addo FG, Zhang W. The fate of tetracycline in vegetated mesocosmic wetlands and its impact on the water quality and epiphytic microbes. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126148. [PMID: 34229400 DOI: 10.1016/j.jhazmat.2021.126148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
The fate of antibiotics and their impact on antibiotic resistance genes (ARGs) and microbial communities are far from clear in wetlands. The fate and impact of tetracycline (TC) on the nutrient degradation of wetlands and epiphytic microbes were investigated. This study showed that after TC spiking, 99.7% of TC were removed from the surface water of wetlands containing Vallisneria spiralis within 4 days post-treatment. TC spiking impaired the nutrient removal capacity and disrupted epiphytic microbial community structure while enhancing the abundance of 11 ARGs subtypes, including tetracycline resistance genes, tetX, tetM, tetO, tetQ, tetS, and tet36. TC decreased bacterial biodiversity but amplified the relative abundance of Proteobacteria and Firmicutes by 4% and 61%, respectively, and increased eukaryotic diversity. 16 metabolic pathways including Carbohydrate, Energy, Amino acid, 'cofactor and vitamins' metabolisms were significantly (p < 0.01) increased in TC treatment. Phylogenetic, functional prediction analysis indicated that Flavobacterium was positively related with xenobiotics, cell motility, 'terpenoids and polyketides' metabolism but negatively related to nucleotide metabolism, while Rhodobacter showed a reverse trend but positively related with nucleotide and 'glycan biosynthesis' and metabolism. These data highlighted that TC has negative impacts on epiphytic microbial community and nutrients removal in wetlands.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Wenzjun Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
17
|
Lu H, Xiao L, Wang T, Lu S, Wang H, Guo X, Li J. The application of steel slag in a multistage pond constructed wetland to purify low-phosphorus polluted river water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112578. [PMID: 33965685 DOI: 10.1016/j.jenvman.2021.112578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effect of a constructed wetland (CW) with steel slag as the filler on water contaminated by low phosphorus levels, a multistage pond CW system was designed in this study. Low-phosphorus polluted river water was used as the research object. This study explored the effects of using steel slag as a CW filler on phosphorus removal and the total phosphorus (TP) purification effect of the wetland system. The results showed that the TP removal rates in the ecological pond, oxidation pond, surface flow wetlands and submerged plant pond were 5.17%, 8.02%, 21.56%, and 16.31%, respectively. Intermittent increases in phosphorus concentration were observed in the reactors and were caused by the decay of plant tissues, which released pollutants. Because steel slag was added to the filler, the TP concentrations in the effluent of the first- and second-level horizontal subsurface CWs increased by 151.13% and 16.29%, respectively, compared to the influent concentration. The 20th to 40th days of the test run was a period of rapid phosphorus release of the system. The use of steel slag has a potential risk of phosphorus release when applied in CWs used to purify low-phosphorus contaminated water bodies.
Collapse
Affiliation(s)
- Hongbin Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR, China
| | - Liping Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Tao Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Huanhua Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jiaxin Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu(SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
18
|
Cheng J, Zhang X, Tang Y, Song Z, Jiang Y, Xu Z, Jin X. Nitrogen removal from domestic wastewater using core-shell anthracite/Mg-layered double hydroxides (LDHs) in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38349-38360. [PMID: 33733402 DOI: 10.1007/s11356-021-13422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
To investigate the mechanism of nitrogen removal by anthracites and enhance the nitrogen removal efficiency in constructed wetland, three kinds of layered double hydroxides (MgFe-LDHs, MgCo-LDHs, MgAl-LDHs) were prepared by co-precipitation under alkaline conditions and coated in situ on the surface of anthracites to synthesize core-shell anthracites/Mg-LDHs composites. Experiments with different treatments (columns loaded with original anthracites and anthracite/Mg-LDH composites) were conducted to study the nitrogen removal efficiency of domestic wastewater in constructed wetlands. The results of nitrogen removal experiments showed that the anthracite/MgAl-LDH composite had the best performance with average removal rates of 53.69%, 72.91%, and 47.43% for TN, NH4+-N, and organic nitrogen, respectively. Modification changed the denitrification mode of the anthracites. The data of adsorption isothermal experiments were fitted better with the Freundlich model. The amount of ammonifier, nitrosobacteria, nitrobacter, and denitrifier on the surface of the Mg-LDH-modified anthracite was higher than that of the original anthracite. The performance of the anthracite in removing nitrogen was attributed to physical interception, chemical adsorption, and biological degradation. Moreover, the modified anthracites were superior to the original anthracite in the chemical adsorption and biodegradation, which indicated that coating the Mg-LDHs on the surface of common anthracite was a potential method to improve the nitrogen removal efficiency of domestic wastewater and to restore the eutrophic water body.
Collapse
Affiliation(s)
- Jing Cheng
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China.
| | - Yuqi Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Zan Song
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| | - Xi Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, 122, Luoshi Road, Hongshan District, Wuhan, 430070, China
| |
Collapse
|
19
|
Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111986. [PMID: 33486195 DOI: 10.1016/j.jenvman.2021.111986] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change (MoEFCC), Indira Paryavaran Bhavan, New Delhi, India
| |
Collapse
|
20
|
Alengebawy A, Jin K, Ran Y, Peng J, Zhang X, Ai P. Advanced pre-treatment of stripped biogas slurry by polyaluminum chloride coagulation and biochar adsorption coupled with ceramic membrane filtration. CHEMOSPHERE 2021; 267:129197. [PMID: 33338710 DOI: 10.1016/j.chemosphere.2020.129197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Biogas slurry retention is a critical problem that cannot be solved by using the reuse method. Therefore, a new approach was taken to compensate for the shortcomings in the reuse method. In this study, after ammonia stripping, the ammonia nitrogen concentration in the stripped biogas slurry (SBS) still cannot reach the effluent standard (80 mg/L), so a variety of processes were needed to treat the SBS. Polyaluminum chloride (PAC) and rice husk biochar (B) were used to pretreat SBS. The effect of different pre-treatments on the COD value, ammonia nitrogen concentration, turbidity, total phosphorus (TP), and other indicators was investigated. After different pre-treatments by PAC and biochar, the pretreated SBS was filtered by a ceramic membrane, and the indicators of SBS were removed in the next step. After adding PAC and biochar together, ammonia nitrogen concentration was decreased to 68.09 mg/L, with a removal rate of 63%. The total phosphorus (TP) was also decreased, and its removal rate reached 92.5%. When the SBS was pretreated with PAC and biochar and then filtered through a ceramic membrane under different operating pressures, the removal rates of COD, total nitrogen (TN), turbidity, and suspended solids (SS) reached 81%, 88%, 96%, and 99% respectively. Moreover, by increasing the pressure from 0.1 to 0.3 MPa, the membrane flux was improved from 45 to 100.6 L/m2·h. This study proves that the combined pre-treatments of PAC and biochar can comprehensively remove various indicators from SBS while ensuring membrane flux during the membrane filtration process.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keda Jin
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ran
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Risk Assessment Lab of the Quality Safety of Biomass Fermentation Products (Chengdu), Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Jingjing Peng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuzhi Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
21
|
Varma M, Gupta AK, Ghosal PS, Majumder A. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142540. [PMID: 33038812 DOI: 10.1016/j.scitotenv.2020.142540] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 05/12/2023]
Abstract
Constructed wetlands (CWs) are one of the most promising and sustainable alternatives for wastewater treatment that are being successfully implemented in several countries, especially in tropical and sub-tropical regions. The predominant mechanisms of removal of contaminants in CWs are microbial degradation, phytodegradation, phytoextraction, filtration, sedimentation, and adsorption, etc. Vertical flow subsurface CWs and hybrid CWs demonstrated promising results in terms of TN, BOD, and COD removal, while horizontal flow subsurface CWs were proficient in removal of TP. The performance of the CWs depends upon a various factors, such as hydraulic loading rate, pH, dissolved oxygen, temperature, etc. Among these, low temperature had the most antagonistic effect on the performance of the CWs because freezing ambient temperature lead to ice formation, hydraulic imperfections, malfunctioning of biotic and abiotic components, etc. Over the past three decades, thousands of studies have been conducted involving treatment of wastewater using CWs, among which only few have addressed the issues and concerns of cold climate representing a significant research gap in this field. Furthermore, the performance of CWs in terms of TN, TP, and COD removal was significantly lower in cold climates than that in tropical and sub-tropical climates. In order to find suitable remedies to overcome the challenges faced in cold climate various modifications, such as incorporating greenhouse structure, providing insulating materials, bio-augmentation, identification of suitable macrophytes, etc., in around 20 different scenarios have been studied. Greenhouse construction led to 20% increase in removal of TN and COD, while plant collocation accounted for up to 18% increase in the removal of COD. Artificial aeration, insulation and bio-augmentation also enhanced the performance of the CWs in low temperatures.
Collapse
Affiliation(s)
- Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
22
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang X, Zhang S, Luo G, Liu Y. Impacts of hydraulic retention time on a continuous flow mode dual-chamber microbial fuel cell for recovering nutrients from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139220. [PMID: 32450396 DOI: 10.1016/j.scitotenv.2020.139220] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Nutrients recovery has become a meaningful solution to address shortage in the fertilizer production which is the key issue of nations' food security. The concept of municipal wastewater is based on its ability to be a major potential source for recovered nutrients because of its vast quantity and nutrient-rich base. Microbial fuel cell (MFC) has emerged as a sustainable technology, which is able to recover nutrients and simultaneously generate electricity. In this study a two-chambered MFC was constructed, and operated in a continuous flow mode employing artificial municipal wastewater as a substrate. The effects of hydraulic retention time (HRT) on the recovery of nutrients by MFC were studied. The COD removal rates were insignificantly influenced by varying HRT from 0.35 to 0.69 d, that were over 92%. Furthermore, the recovery rate of nutrients was insignificantly affected while increasing the HRT, which fluctuates from 80% to 90%. In contrast, the maximum power generation declined when HRT increased and the lowest one was 510.3 mV at the HRT of 0.35 d. These results demonstrate that the lab-scale double chamber MFC using municipal wastewater as the substrate can provide a highly effective removal strategy for organic matter, nutrients recovery and electricity output when operating at a specific HRT.
Collapse
Affiliation(s)
- Yuanyao Ye
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
23
|
刘 远. Differences among Wetland Plants Species in Lead Accumulation and Distribution from Lead-Polluted Wastewater in Constructed Wetlands. INTERNATIONAL JOURNAL OF ECOLOGY 2020. [DOI: 10.12677/ije.2020.92023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|