1
|
Baumgart A, Haluza D, Prohaska T, Trimmel S, Pitha U, Irrgeher J, Wiedenhofer D. In-use dissipation of technology-critical elements from vehicles and renewable energy technologies in Vienna, Austria: A public health matter? JOURNAL OF INDUSTRIAL ECOLOGY 2024; 28:1857-1870. [PMID: 39722869 PMCID: PMC11667654 DOI: 10.1111/jiec.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The rollout of electric vehicles and photovoltaic panels is essential to mitigate climate change. However, they depend on technology-critical elements (TCEs), which can be harmful to human health and whose use is rapidly expanding, while recycling is lacking. While mining has received substantial attention, in-use dissipation in urban areas has so far not been assessed, for example, corrosion and abrasion of vehicle components and weather-related effects affecting thin-film photovoltaic panels. Therefore, the question arises to which extent TCEs dissipate during use and which potential non-occupational human health impacts could occur. We assessed the available information on urban in-use dissipation and human health concerns and conducted exploratory modeling of in-use technology stocks, in- and outflows, and in-use dissipation of neodymium, dysprosium, lanthanum, praseodymium, cerium, gallium, germanium, and tellurium contained in 21 vehicle and renewable energy technologies, for Vienna, Austria. In prospective scenarios, TCE dynamics in a trend-continuation vis à vis official city policy plans and a more ambitious transition scenario were then assessed. We find that electrifying the vehicle fleet without demand-reduction is the main driver of TCE consumption, effectively doubling cumulative end-of-life outflows to 3,073 [2,452-3,966] t and cumulative in-use dissipation to 9.3 [5.2-15.7] t by the year 2060. Sufficiency-based measures could reduce demand and in-use dissipation well below levels with continued trends, thus highlighting the need to combine decarbonization with demand-reducing measures. These results help assess potential future in-use dissipation dynamics and inform discussions about potential public health hazards associated with exposure to TCEs accumulating in the urban environment.
Collapse
Affiliation(s)
- André Baumgart
- Institute of Social EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Daniela Haluza
- Department for Environmental Health, Center for Public HealthMedical University of ViennaViennaAustria
| | - Thomas Prohaska
- Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria
| | - Simone Trimmel
- Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria
| | - Ulrike Pitha
- Institute of Soil Bioengineering and Landscape ConstructionUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Johanna Irrgeher
- Chair of General and Analytical ChemistryMontanuniversität LeobenLeobenAustria
| | - Dominik Wiedenhofer
- Institute of Social EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| |
Collapse
|
2
|
Qiu F, Zhang H, Cui Y, Zhang L, Zhou W, Huang M, Xia W, Xu S, Li Y. Associations of maternal urinary rare earth elements individually and in mixtures with neonatal size at birth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123163. [PMID: 38104763 DOI: 10.1016/j.envpol.2023.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Prenatal rare earth elements (REEs) exposure is linked to unfavorable health consequences. Epidemiologic research on repeated measurements of REEs during gestation correlated with fetal growth is exiguous. Until now, few studies have characterized exposure characteristics of REEs in pregnant women. We aimed to ascertain the characteristics and predictors of REEs exposure over three trimesters among pregnant women and examine the possible effects of prenatal REEs exposure on size at birth. Urinary REEs concentrations exhibited considerable within-subject variation with intraclass correlation coefficients ranging from 0.16 to 0.58. Maternal age, household income, gestational weight gain, passive smoking during pregnancy, parity, and neonatal gender were associated with maternal urinary REEs concentrations. Elevated maternal urinary holmium and thulium concentrations in the 3rd trimester were significantly related to reductions in birth weight. Weighted quantile sum (WQS) regression model identified that urinary REEs mixture in the 3rd trimester were negatively related to birth weight (WQSREEs β = -26.22; 95% confidence interval [CI]: -47.62, -4.82), with holmium (40%) and thulium (24%) receiving the highest weights. Male infants received the most weight (>50%) related to decreased birth weight. This study revealed a significant association between individual and mixture REE exposure in late pregnancy with a reduction in birth weight.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wensi Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Gasull M, Camargo J, Pumarega J, Henríquez-Hernández LA, Campi L, Zumbado M, Contreras-Llanes M, Oliveras L, González-Marín P, Luzardo OP, Gómez-Gutiérrez A, Alguacil J, Porta M. Blood concentrations of metals, essential trace elements, rare earth elements and other chemicals in the general adult population of Barcelona: Distribution and associated sociodemographic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168502. [PMID: 37977377 DOI: 10.1016/j.scitotenv.2023.168502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Very little information is available on the population distribution and on sociodemographic predictors of body concentrations of rare earth elements (REE) and other chemicals used in the manufacturing of high-tech devices. OBJECTIVES To analyze the distribution and associated sociodemographic factors of blood concentrations of chemical elements (including some metals, essential trace elements, rare earth elements and other minority elements) in a representative sample of the general population of Barcelona (Spain). METHODS A sample of participants in the Barcelona Health Survey of 2016 (N = 240) were interviewed face-to-face, gave blood, and underwent a physical exam. Concentrations of 50 chemical elements were analyzed by ICP-MS in whole blood samples. RESULTS All 50 chemicals studied, including 26 REE and minority elements, were detected. Lead, silver, arsenic, cadmium, mercury, antimony, strontium, thallium and six essential trace elements were detected in more than 70% of the population. The most frequently detected REE and minority elements were europium (62%), thulium (56%), gold (41%), indium (31%), ruthenium (24%), and tantalum (20%). Less affluent occupational social classes had higher percentages of detection of some REE. Median concentrations of silver, arsenic, cadmium and mercury were: 0.091, 3.01, 0.309, and 3.33 ng/mL, respectively. Women had lower median concentrations than men of lead (1.47 vs. 2.04 μg/dL, respectively), iron and zinc, and higher concentrations of copper and manganese. The influence of sociodemographic characteristics on chemical concentrations differed by sex. CONCLUSIONS While well-known contaminants as lead, mercury, cadmium, or arsenic were detected in the majority of the population, numerous individuals had also detectable concentrations of chemicals as europium, indium, thulium, or gold. Sociodemographic and physical characteristics (sex, age, social class, weight change) influenced concentrations of some chemicals.
Collapse
Affiliation(s)
- Magda Gasull
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Judit Camargo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Pumarega
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Laura Campi
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Manuel Contreras-Llanes
- Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente, Universidad de Huelva, Huelva, Spain
| | - Laura Oliveras
- Qualitat i Intervenció Ambiental, Agència de Salut Pública de Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Patricia González-Marín
- Qualitat i Intervenció Ambiental, Agència de Salut Pública de Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Gómez-Gutiérrez
- Qualitat i Intervenció Ambiental, Agència de Salut Pública de Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Juan Alguacil
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente, Universidad de Huelva, Huelva, Spain
| | - Miquel Porta
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Pumarega J, Gasull M, Koponen J, Campi L, Rantakokko P, Henríquez-Hernández LA, Aguilar R, Donat-Vargas C, Zumbado M, Villar-García J, Rius C, Santiago-Díaz P, Vidal M, Jimenez A, Iglesias M, Dobaño C, Moncunill G, Porta M. Prepandemic personal concentrations of per- and polyfluoroalkyl substances (PFAS) and other pollutants: Specific and combined effects on the incidence of COVID-19 disease and SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2023; 237:116965. [PMID: 37652221 DOI: 10.1016/j.envres.2023.116965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To investigate the specific and combined effects of personal concentrations of some per- and polyfluoroalkyl substances (PFAS), other persistent organic pollutants (POPs), and chemical elements -measured in individuals' blood several years before the pandemic- on the development of SARS-CoV-2 infection and COVID-19 disease in the general population. METHODS We conducted a prospective cohort study in 240 individuals from the general population of Barcelona. PFAS, other POPs, and chemical elements were measured in plasma, serum, and whole blood samples, respectively, collected in 2016-2017. PFAS were analyzed by liquid chromatography-triple quadrupole mass spectrometry. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or antibody serology in blood samples collected in 2020-2021. RESULTS No individual PFAS nor their mixtures were significantly associated with SARS-CoV-2 seropositivity or COVID-19 disease. Previously identified mixtures of POPs and elements (Porta et al., 2023) remained significantly associated with seropositivity and COVID-19 when adjusted for PFAS (all OR > 4 or p < 0.05). Nine chemicals comprised mixtures associated with COVID-19: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, other DDT-related compounds, manganese, tantalum, and aluminium. And nine chemicals comprised the mixtures more consistently associated with SARS-CoV-2 seropositivity: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, gold, and (protectively) selenium, indium, and iron. CONCLUSIONS The PFAS studied were not associated with SARS-CoV-2 seropositivity or COVID-19. The results confirm the associations between personal blood concentrations of some POPs and chemical elements and the risk of COVID-19 and SARS-CoV-2 infection in what remains the only prospective and population-based cohort study on the topic. Mixtures of POPs and chemical elements may contribute to explain the heterogeneity in the risks of SARS-CoV-2 infection and COVID-19 in the general population.
Collapse
Affiliation(s)
- José Pumarega
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Magda Gasull
- Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Laura Campi
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Carolina Donat-Vargas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; ISGlobal, Campus Mar, Barcelona, Spain; Cardiovascular and Nutritonal Epidemiology Unit, Institut of Enviornmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | | | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mar Iglesias
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Miquel Porta
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Henríquez-Hernández LA, Zumbado M, Rodríguez-Hernández Á, Duarte-Lopes E, Lopes-Ribeiro AL, Alfama PM, Livramento M, Díaz-Díaz R, Bernal-Suárez MDM, Boada LD, Ortiz-Andrelluchi A, Serra-Majem L, Luzardo OP. Human biomonitoring of inorganic elements in a representative sample of the general population from Cape Verde: Results from the PERVEMAC-II study. CHEMOSPHERE 2023; 339:139594. [PMID: 37480946 DOI: 10.1016/j.chemosphere.2023.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Inorganic elements such as heavy metals and other potentially toxic elements are frequently detected in humans. The aim of the present study was to analyze the blood concentrations of 49 inorganic elements in a cohort of 401 subjects from Cape Verde. The study was performed in the frame of the Pesticide Residues in Vegetables of the Macaronesia project (PERVEMAC-II). Concentration of inorganic elements, including elements in the ATSDR's priority pollutant list and rare earth elements (RREs) were measured by ICP-MS in the whole blood of participants. A total of 20 out of 49 elements (40.8%) were detected in ≥20% of participants. Arsenic, copper, mercury, lead, selenium, strontium and zinc were detected in ≥99% of samples. Among the REEs, 7 showed detection frequencies above 20%. The median number of different elements detected was 15. In the present series, 77.0, 99.2 and 33.4% of the participants showed values of arsenic, mercury and lead higher than Reference Values 95%. These percentages were much higher than those reported in similar studies. Niobium and tantalum showed the highest median concentrations: 1.35 and 1.34 ng/mL, suggesting an environmental source of these valuable REEs in Cape Verde. Age appeared as the most important factor influencing the blood levels of inorganic elements. Lifestyle had an effect on the concentration of some of these elements. Those subjects whose water source was pond water had significantly higher arsenic levels. The concentration of ∑REEs was significantly higher among individuals who purchase their food in supermarkets (P = 0.013). These variables are of relevance since they can be controlled individually to reduce exposure to these contaminants. Our results may be useful for the implementation of public health measures by the competent authorities.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde.
| | - Manuel Zumbado
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Ángel Rodríguez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Edna Duarte-Lopes
- Research, Science and Innovation Department, Instituto Nacional de Saúde Pública, Chã de Areia, CP nº 719, Cidade da Praia, Cabo Verde
| | - Ailton Luis Lopes-Ribeiro
- Research, Science and Innovation Department, Instituto Nacional de Saúde Pública, Chã de Areia, CP nº 719, Cidade da Praia, Cabo Verde
| | - Patricia Miranda Alfama
- Food Regulation Directorate, Independent Health Regulatory Authority, Av. Cidade de Lisboa, CP 296, Spain
| | - Miriam Livramento
- Food Regulation Directorate, Independent Health Regulatory Authority, Av. Cidade de Lisboa, CP 296, Spain
| | - Ricardo Díaz-Díaz
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - María Del Mar Bernal-Suárez
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/ Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - Luis D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Adriana Ortiz-Andrelluchi
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| | - Octavio P Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, University of Las Palmas de Gran Canaria, Madrid, Cabo Verde
| |
Collapse
|
6
|
Stojsavljević A, Lakićević N, Pavlović S. Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis. TOXICS 2023; 11:753. [PMID: 37755763 PMCID: PMC10536388 DOI: 10.3390/toxics11090753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Environmental pollutants, particularly toxic trace metals with neurotoxic potential, have been related to the genesis of autism. One of these metals that stands out, in particular, is lead (Pb). We conducted an in-depth systematic review and meta-analysis of peer-reviewed studies on Pb levels in biological materials retrieved from autistic children (cases) and neurotypical children (controls) in this work. A systematic review was conducted after the careful selection of published studies according to established criteria to gain a broad insight into the higher or lower levels of Pb in the biological materials of cases and controls, and the findings were then strengthened by a meta-analysis. The meta-analysis included 17 studies (hair), 13 studies (whole blood), and 8 studies (urine). The overall number of controls/cases was 869/915 (hair), 670/755 (whole blood), and 344/373 (urine). This meta-analysis showed significantly higher Pb levels in all three types of biological material in cases than in controls, suggesting a higher body Pb burden in autistic children. Thus, environmental Pb exposure could be related to the genesis of autism. Since no level of Pb can be considered safe, the data from this study undoubtedly point to the importance of regularly monitoring Pb levels in autistic children.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
7
|
Henríquez-Hernández LA, Acosta-Dacal AC, Boada LD, Zumbado M, Serra-Majem L, Luzardo OP. Concentration of Essential, Toxic, and Rare Earth Elements in Ready-to-Eat Baby Purees from the Spanish Market. Nutrients 2023; 15:3251. [PMID: 37513669 PMCID: PMC10384816 DOI: 10.3390/nu15143251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The infant population is particularly sensitive, so the risk posed by their diet must be analyzed. The aims of the present study were (i) to determine the contents of 38 elements in 159 samples of ready-to-eat baby food sold in Spain and (ii) to estimate the dietary intakes and risk assessments of these elements in name brands and store brands in infants ranging between 6 and 12 months of age. METHODS A list of essential, non-essential/toxic elements, rare earth elements (REEs), and other hi-tech-related elements that are currently considered as emerging environmental pollutants were measured in ready-to-eat baby foods by ICP-MS. RESULTS Fish purees showed the highest concentrations of mercury (28.1 ng/g) and arsenic (346.2 ng/g). The levels of manganese, molybdenum, and chromium exceed the adequate intake, being higher in the case of store brands. The acute hazard index was above 1 for molybdenum and manganese. A risky consumption of thallium and mercury was observed, being higher among name brands. The risk associated with the consumption of REEs was low, although its presence should be highlighted. CONCLUSIONS This is the first time that these chemical elements have been measured in ready-to-eat purees for babies. The presence of some of them, such as mercury, should be sufficient to monitor the levels of these contaminants in food intended for such a sensitive population as children.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
- Spanish Bimedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Andrea Carolina Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
- Spanish Bimedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
- Spanish Bimedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Lluis Serra-Majem
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
- Spanish Bimedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
- Spanish Bimedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| |
Collapse
|
8
|
Martín-León V, Rubio C, Rodríguez-Hernández Á, Zumbado M, Acosta-Dacal A, Henríquez-Hernández LA, Boada LD, Travieso-Aja MDM, Luzardo OP. Evaluation of Essential, Toxic and Potentially Toxic Elements in Leafy Vegetables Grown in the Canary Islands. TOXICS 2023; 11:toxics11050442. [PMID: 37235256 DOI: 10.3390/toxics11050442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Forty-seven elements in leafy green vegetables were studied to estimate the daily intakes from this food category in different scenarios (average and high consumers) and age groups of the Canary Islands population. The contribution of the consumption of each type of vegetable to the reference intakes of essential, toxic and potentially toxic elements was assessed and the risk-benefit ratio was evaluated. The leafy vegetables that provide the highest levels of elements are spinach, arugula, watercress and chard. While spinach, chard, arugula, lettuce sprouts and watercress were the leafy vegetables with the highest concentrations of essential elements (38,743 ng/g of Fe in spinach, 3733 ng/g of Zn in watercress), the high levels of Mn in chard, spinach and watercress are noteworthy. Among the toxic elements, Cd is the element with the highest concentration, followed by As and Pb. The vegetable with the highest concentration of potentially toxic elements (Al, Ag, Be, Cr, Ni, Sr and V) is spinach. In average adult consumers, while the greatest contribution of essential elements comes from arugula, spinach and watercress, insignificant dietary intakes of potentially toxic metals are observed. Toxic metal intakes from the consumption of leafy vegetables in the Canary Islands do not show significant values, so the consumption of these foods does not pose a health risk. In conclusion, the consumption of leafy vegetables provides significant levels of some essential elements (Fe, Mn, Mo, Co and Se), but also of some potentially toxic elements (Al, Cr and Tl). A high consumer of leafy vegetables would see their daily nutritional needs regarding Fe, Mn, Mo, and Co covered, although they are also exposed to moderately worrying levels of Tl. To monitor the safety of dietary exposure to these metals, total diet studies on those elements with dietary exposures above the reference values derived from the consumption of this food category, mainly Tl, are recommended.
Collapse
Affiliation(s)
- Verónica Martín-León
- Public Health Laboratory of Las Palmas, Canary Islands Government Health Service, 35004 Las Palmas de Gran Canaria, Spain
| | - Carmen Rubio
- Toxicology Department, Universidad de La Laguna, S/C de Tenerife, 38071 La Laguna, Spain
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - María Del Mar Travieso-Aja
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| |
Collapse
|
9
|
Porta M, Pumarega J, Gasull M, Aguilar R, Henríquez-Hernández LA, Basagaña X, Zumbado M, Villar-García J, Rius C, Mehta S, Vidal M, Jimenez A, Campi L, Lop J, Pérez Luzardo OL, Dobaño C, Moncunill G. Individual blood concentrations of persistent organic pollutants and chemical elements, and COVID-19: A prospective cohort study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 223:115419. [PMID: 36740154 PMCID: PMC9898057 DOI: 10.1016/j.envres.2023.115419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.
Collapse
Affiliation(s)
- Miquel Porta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - José Pumarega
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Magda Gasull
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Xavier Basagaña
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal - PSMar - PRBB, Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Sneha Mehta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; Columbia Mailman School of Public Health, New York, USA
| | - Marta Vidal
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Campi
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Lop
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain
| | - Octavio L Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Carlota Dobaño
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
10
|
Freire C, Iribarne-Durán LM, Gil F, Olmedo P, Serrano-Lopez L, Peña-Caballero M, Hurtado-Suazo JA, Alvarado-González NE, Fernández MF, Peinado FM, Artacho-Cordón F, Olea N. Concentrations and predictors of aluminum, antimony, and lithium in breast milk: A repeated-measures study of donors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120901. [PMID: 36565913 DOI: 10.1016/j.envpol.2022.120901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al), antimony (Sb), and lithium (Li) are relatively common toxic metal(oid)s that can be transferred into breast milk and potentially to the nursing infant. This study assessed concentrations of Al, Sb, and Li in breast milk samples collected from donor mothers and explored the predictors of these concentrations. Two hundred forty-two pooled breast milk samples were collected at different times post-partum from 83 donors in Spain (2015-2018) and analyzed for Al, Sb, and Li concentrations. Mixed-effect linear regression was used to investigate the association of breast milk concentrations of these elements with the sociodemographic profile of the women, their dietary habits and utilization of personal care products (PCPs), the post-partum interval, and the nutritional characteristics of milk samples, among other factors. Al was detected in 94% of samples, with a median concentration of 57.63 μg/L. Sb and Li were detected in 72% and 79% of samples at median concentrations of 0.08 μg/L and 0.58 μg/L, respectively. Concentrations of Al, Sb, and Li were not associated with post-partum time. Al was positively associated with total lipid content of samples, weight change since before pregnancy, and coffee and butter intakes and inversely with meat intake. Li was positively associated with intake of chocolate and use of face cream and eyeliner and inversely with year of sample collection, egg, bread, and pasta intakes, and use of hand cream. Sb was positively associated with fatty fish, yoghurt, rice, and deep-fried food intakes and use of eyeliner and inversely with egg and cereal intakes and use of eyeshadow. This study shows that Al, Sb, and Li, especially Al, are widely present in donor breast milk samples. Their concentrations in the milk samples were most frequently associated with dietary habits but also with the lipid content of samples and the use of certain PCPs.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | - Fernando Gil
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 108016, Granada, Spain.
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 108016, Granada, Spain.
| | - Laura Serrano-Lopez
- Neonatology Unit, Virgen de las Nieves University Hospital, 18014, Granada, Spain.
| | - Manuela Peña-Caballero
- Neonatology Unit, Virgen de las Nieves University Hospital, 18014, Granada, Spain; Human Milk Bank, Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | | | - Nelva E Alvarado-González
- Instituto Especializado de Análisis (IEA), Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain.
| | - Francisco M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| |
Collapse
|
11
|
Wang S, Sun J, Gu L, Wang Y, Du C, Wang H, Ma Y, Wang L. Association of Urinary Strontium with Cardiovascular Disease Among the US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey. Biol Trace Elem Res 2022:10.1007/s12011-022-03451-9. [PMID: 36282469 DOI: 10.1007/s12011-022-03451-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022]
Abstract
Previous studies have demonstrated the effects of environmental metals on the cardiovascular system. However, the relationship of strontium (Sr) to cardiovascular disease (CVD) in the general population has not been established. This cross-sectional study aimed to investigate the association between urinary Sr (U-Sr) and CVD in the US adults using data of 5255 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2016. Multivariable logistic regression and restricted cubic spline (RCS) regression were performed to assess the association between U-Sr and CVD. After multivariable adjustments, compared to the lowest quartile, the adjusted odds ratios (ORs) of CVD with 95% confidence intervals (CIs) across the quartiles were 0.65 (0.46, 0.92), 0.87 (0.61, 1.25), and 0.78 (0.55, 1.10). RCS plot revealed a nonlinear relationship between U-Sr levels and CVD (P for nonlinearity = 0.004). Threshold effect analysis identified the inflection point of U-Sr for the curve was 90.18 μg/g urinary creatinine (μg/g UCr). Each 1-unit increase in U-Sr was associated with a 1.1% decrease in CVD (OR 0.989; 95% CI 0.980-0.998) on the left side of the inflection point, but no significant association was observed on the right side of the inflection point. This study suggests a nonlinear association of U-Sr with CVD prevalence in the US general adults. These findings may have positive implications for the determination of appropriate Sr levels for public cardiovascular health. Given the cross-sectional study design, further prospective studies are warranted.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lingfeng Gu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yaxin Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chong Du
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
12
|
Choe KY, Gajek R, Waldman J, She J. Evaluation of trace-element contamination from serum collection tubes used by the California Biobank Program. J Trace Elem Med Biol 2022; 71:126946. [PMID: 35180596 DOI: 10.1016/j.jtemb.2022.126946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Serum samples archived by the California Biobank Program (CBP) can be a valuable resource to researchers with multiple benefits: affordability, relatively large sample sizes, and racial and geographical representativeness. However, there has been little attention given to the reliability of CBP samples for trace-element analysis. The objectives of this study are to estimate the contamination levels from the serum separation tubes (SST, BD 367983) utilized by the CBP for 13 trace elements (Cr, Mn, Co, As, Se, Sr, Mo, Cd, Sb, Hg, Tl, Pb and U) and to evaluate the feasibility of the use of CBP serum samples for biomonitoring trace elements in human body. METHODS Serum separation tubes were tested using deionized (DI) water and whole blood and compared with two alternative sampling devices, plasma separation tubes (PST, BD 365047) and acid-cleaned blood tubes (ABT, BD 367856). RESULTS AND CONCLUSIONS The leaching tests for SSTs with DI water demonstrated that detectable levels of Cr, Mn, Co, Sr, Sb, Pb and U were measured, while Sb was elevated. Tests of PSTs also revealed contamination of Mn, Co, Sr and Sb, with Co and Sr being much higher than those found from SSTs. As a more direct approach to estimate trace element contamination, a 45-day time series was conducted using human blood. The differences in elemental concentrations leached into serum/plasma was not considerable between the three types of sampling tubes for Cr, As, Se, Mo, Cd, Hg and Tl. However, SSTs had far greater concentrations than the ABTs for Mn, Co, Sr, Sb and U. For Co and Sr, the PSTs had higher concentrations throughout the experiment than both ABTs and SSTs. Pb showed lower concentrations from the PSTs than the other tubes; we speculate this may be due to re-suspension of settled cellular materials that are elevated in Pb, or re-dissolution of Pb from these materials. Trace-element measurements from 200 samples archived by the CBP using SSTs suggest that SST contamination was negligible for Se and Mo. For Mn, As, Sr, Cd and Hg, based on our leaching results, only a fraction of these samples had considerably high concentrations (e.g., > 10×) compared to the contamination from the SST. For Cr, Co, Sb, Tl, Pb and U, analyte levels were too low in most samples compared to the contamination from the SSTs. Our study also demonstrated that the PSTs could be a "cleaner" alternative to SSTs for analytes such as Cr, As, Cd, Hg, Tl, Pb and U.
Collapse
Affiliation(s)
- Key-Young Choe
- California Department of Public Health, Environmental Health Laboratory, 850 Marina Bay Parkway, MS G365, Richmond, CA 94804, USA.
| | - Ryszard Gajek
- California Department of Public Health, Environmental Health Laboratory, 850 Marina Bay Parkway, MS G365, Richmond, CA 94804, USA
| | - Jed Waldman
- California Department of Public Health, Environmental Health Laboratory, 850 Marina Bay Parkway, MS G365, Richmond, CA 94804, USA
| | - Jianwen She
- California Department of Public Health, Environmental Health Laboratory, 850 Marina Bay Parkway, MS G365, Richmond, CA 94804, USA
| |
Collapse
|
13
|
Cirtiu CM, Valcke M, Gagné M, Bourgault MH, Narame C, Gadio S, Poulin P, Ayotte P. Biological monitoring of exposure to rare earth elements and selected metals in the Inuit population of Nunavik, Canada. CHEMOSPHERE 2022; 289:133142. [PMID: 34863726 DOI: 10.1016/j.chemosphere.2021.133142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
In Nunavik (Northern Quebec, Canada), some mining projects are envisioned, that could increase the contamination of the environment by various chemicals, including rare earth elements (REEs), and implicitly Inuit population exposure. The objective of this study was to determine the baseline biological exposure of the population to these elements, before the potential mining development occurs. In the framework of the 2017 Qanuilirpitaa? Inuit health survey, urine samples were obtained from a representative sample of the adult Nunavik population, which were used to constitute 30 pooled samples according to age, sex and Nunavik subregions. Pooled samples were analyzed using sensitive and accurate methods involving ICP-MS platforms to quantify urinary concentrations of 17 REEs and 7 elements of interest in Nunavik (arsenic, antimony, chromium, cobalt, nickel, thallium and uranium). REEs were mostly not detected in pooled samples from this population. Detectable concentrations were found in some samples for cerium (range: 0.5-0.7 nmol/L; 27% > method detection limit (MDL) and lanthanum (range: 0.2-0.4 nmol/L; 33% > MDL). As for the other elements of interest, antimony, arsenic, cobalt and thallium were detected in 100% of the samples, whereas chromium and nickel were detected in 83% and 80% of the samples, respectively. Concentrations of arsenic (geometric mean (GM) = 0.5 μmol/L) and cobalt (GM = 5.2 nmol/L) were greater than in the general Canadian population; the opposite was observed for nickel (GM = 8.9 nmol/L). Arsenic concentrations increased significantly with age, whereas the opposite trend was observed for nickel and thallium. In this first biomonitoring study focusing on REEs and carried out in a representative sample of the Nunavik population, we found no evidence of significant exposure from pooled samples analysis. These results could eventually be used as baseline values in future studies aiming to assess temporal trends of exposure to REEs.
Collapse
Affiliation(s)
- Ciprian Mihai Cirtiu
- Centre de toxicologie du Québec, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 945 Avenue Wolfe, Quebec City, Quebec, G1V 5B3, Canada.
| | - Mathieu Valcke
- Unité Évaluation et soutien à la gestion des risques, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 190, boulevard Crémazie Est, Montréal, Quebec, H2P 1E2, Canada; Département de santé environnementale et de santé au travail, École de santé publique de l'Université de Montréal, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec, H3C 3J7, Canada
| | - Michelle Gagné
- Unité Évaluation et soutien à la gestion des risques, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 190, boulevard Crémazie Est, Montréal, Quebec, H2P 1E2, Canada
| | - Marie-Hélène Bourgault
- Unité Évaluation et soutien à la gestion des risques, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 190, boulevard Crémazie Est, Montréal, Quebec, H2P 1E2, Canada
| | - Céline Narame
- Centre de toxicologie du Québec, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 945 Avenue Wolfe, Quebec City, Quebec, G1V 5B3, Canada
| | - Souleymane Gadio
- Bureau d'information et d'études en santé des populations, Institut national de santé publique du Québec, 945 Avenue Wolfe, Quebec City, Quebec, G1V 5B3, Canada
| | - Patrick Poulin
- Unité Évaluation et soutien à la gestion des risques, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 945 avenue Wolfe, Quebec City, Quebec, G1V 5B3, Canada
| | - Pierre Ayotte
- Centre de toxicologie du Québec, Direction de la santé environnementale et de la toxicologie, Institut national de santé publique du Québec, 945 Avenue Wolfe, Quebec City, Quebec, G1V 5B3, Canada; Département de médecine sociale et préventive, Faculté de médecine, Université Laval, 1050, avenue de la Médecine, Quebec City, Québec, G1V 0A6, Canada; Axe santé des populations et pratiques optimales en santé, Centre de Recherche du CHU de Québec, 1050 Chemin Sainte-Foy, Quebec City, Quebec, G1S 4L8, Canada
| |
Collapse
|
14
|
Kahl VFS, da Silva J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503418. [PMID: 34798938 DOI: 10.1016/j.mrgentox.2021.503418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.
Collapse
Affiliation(s)
- Vivian F Silva Kahl
- The University of Queensland Diamantina Institute, The University of Queensland, Faculty of Medicine, 37 Kent Street, Woolloongabba, Queensland 4102, Australia; Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil, Av Farroupilha 8001, Canoas, Rio Grande do Sul, 92425-900, Brazil; LaSalle University (UniLaSalle), Av Victor Barreto 2288, Canoas, Rio Grande do Sul, 92010-000, Brazil.
| |
Collapse
|
15
|
Rodrigo Sanz M, Millán Gabet V, Gonzalez JL. Inputs of Total and Labile Dissolved Metals from Six Facilities Continuously Discharging Treated Wastewaters to the Marine Environment of Gran Canaria Island (Canary Islands, Spain). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111582. [PMID: 34770100 PMCID: PMC8583637 DOI: 10.3390/ijerph182111582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
The presence of ten metals (Cd, Ni, Pb, Cr, Cu, Zn, Al, Fe, Mn, and Co) was investigated in the final discharge of six facilities, including four wastewater treatment plants, which were continuously discharging treated wastewater to the coastal environment in Gran Canaria Island. A four-day sampling campaign was carried out at each facility in July 2020, in which both the spot samplings technique and the diffusive gradient in thin-film technique (DGT) were carried out to measure total dissolved metals and the in situ labile metal fraction, respectively. After the necessary sample preparation steps, measurements were carried out by ICP-MS for both samplings. Raw data referred to the spot total dissolved and DGT-labile metal concentrations were reported. In general, the average metal concentrations were dispersed in a broad range. As expected, the highest metal contents were found in those facilities with larger industrial contributions. The values of annual average environmental quality standards (AA-EQS) were used to assess the total dissolved metal concentrations for every metal in every final discharge. In only one of the studied facilities, some metals (Ni and Zn) exceeded these EQS within the receiving waterbody, highlighting the need for more efficient treatment targeted towards a specific discharging-water quality. In addition, the total dissolved and labile metal daily fluxes of discharge were calculated to estimate the contribution of every effluent to the receiving water bodies.
Collapse
Affiliation(s)
- Marta Rodrigo Sanz
- Water Department, Instituto Tecnológico de Canarias (ITC), Pozo Izquierdo, s/n, 35019 Santa Lucía, Spain
- Correspondence: (M.R.S.); (V.M.G.); Tel.: +34-928-727-524 (M.R.S.)
| | - Vanessa Millán Gabet
- Water Department, Instituto Tecnológico de Canarias (ITC), Pozo Izquierdo, s/n, 35019 Santa Lucía, Spain
- Correspondence: (M.R.S.); (V.M.G.); Tel.: +34-928-727-524 (M.R.S.)
| | - Jean-Louis Gonzalez
- Unit of Biogeochemistry and Ecotoxicology, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), 83507 La Seyne-sur-Mer, France;
| |
Collapse
|
16
|
Jagodić J, Rovčanin B, Borković-Mitić S, Vujotić L, Avdin V, Manojlović D, Stojsavljević A. Possible zinc deficiency in the Serbian population: examination of body fluids, whole blood and solid tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47439-47446. [PMID: 33893588 PMCID: PMC8064886 DOI: 10.1007/s11356-021-14013-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Studies indicate that the soil, water and consequently foodstuffs in Serbia are significantly poor in zinc (Zn), and thus, it is likely that there is a Zn deficiency in the Serbian population. This study examined the Zn status in multiple clinical samples, including body fluids (serum, cerebrospinal fluid), whole blood and Zn-rich solid tissues (thyroid and brain tissue). Differences between sex and age were also considered, and comparative analysis of Zn status with other world populations was performed. Serum samples from a large number of Serbian adults approximately had twofold lower Zn amounts when compared to other populations. A similar trend was obtained for whole blood. Males had significantly higher amounts of Zn in serum, whole blood and thyroid tissue samples than females. Higher amounts of Zn were observed in the group older than 50 years. Importantly, in thyroid and brain tissues, Zn was 10- and 20-fold lower, respectively, than reported in the literature. Our results indicate that the population in Serbia could be considered Zn deficient. Therefore, adequate oral Zn supplementation and/or foodstuff fortification should be considered to prevent the deleterious effects caused by Zn deficiency.
Collapse
Affiliation(s)
- Jovana Jagodić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Branislav Rovčanin
- Faculty of Medicine, University of Belgrade, Clinical Centre of Serbia, Belgrade, Serbia
- Centre for Endocrine Surgery, Clinical Centre of Serbia, Koste Todorovica 8, Belgrade, Serbia
| | - Slavica Borković-Mitić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Ljiljana Vujotić
- Faculty of Medicine, University of Belgrade, Clinical Centre of Serbia, Belgrade, Serbia
| | - Viacheslav Avdin
- South Ural State University, Chelyabinsk, Lenin Prospect, 76, Russia
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
- South Ural State University, Chelyabinsk, Lenin Prospect, 76, Russia
| | - Aleksandar Stojsavljević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia.
- Department of Analytical Chemistry, Innovation Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia.
| |
Collapse
|
17
|
Çamur D, Topbaş M, İlter H, Albay M, Ayoğlu FN, Can M, Altın A, Demirtaş Y, Somuncu BP, Aydın F, Açıkgöz B. Heavy Metals and Trace Elements in Whole-Blood Samples of the Fishermen in Turkey: The Fish/Ermen Heavy Metal Study (FHMS). ENVIRONMENTAL MANAGEMENT 2021; 67:553-562. [PMID: 33284414 DOI: 10.1007/s00267-020-01398-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Selected heavy metal-trace element (Ag, As, Ba, Cd, Cu, Hg, Pb, Sb, Se, Sr, and V) levels were determined by the ICP-MS method in whole-blood samples of fishermen and control group who accommodate in four provinces of the Marmara Sea. Mercury (1.267 ± 1.061 µg/L to 0.796 ± 0.853 µg/L) and lead (17.8 ± 9.0 µg/L to 12.0 ± 6.83 µg/L) levels were higher in the fishermen group than that of control group (p < 0.001 for both). There was no difference between the fishermen group and the control group in terms of whole-blood levels of other elements. Total monthly fish consumption was 9340.4 gr in the fishermen group and 326.4 gr in the control group, and the difference between the groups was significant (p < 0.001). There was no difference between the groups in terms of having amalgam dental filling (p > 0.05). The results suggest that consuming high amounts of sea products caught from the Marmara Sea is a source for some heavy metals such as mercury and lead, which poses a public health risk. Unlike the control group, the positive correlation between arsenic, copper, and strontium levels and age in fishermen can also be evaluated as an indicator of chronic exposure.
Collapse
Affiliation(s)
- Derya Çamur
- Department of Public Health, Faculty of Gülhane Medicine, Health Sciences University, Ankara, Turkey.
| | - Murat Topbaş
- Department of Public Health, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hüseyin İlter
- Provincial Health Directorate, Ministry of Health, Ankara, Turkey
| | - Meriç Albay
- Faculty of Aquatic Sciences, İstanbul University, Istanbul, Turkey
| | - Ferruh Niyazi Ayoğlu
- Department of Public Health, Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - Murat Can
- Department of Biochemistry, Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - Ahmet Altın
- Department of Environmental Engineering, Bülent Ecevit University, Zonguldak, Turkey
| | - Yusuf Demirtaş
- Department of Public Health, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Büşra Parlak Somuncu
- Department of Public Health, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Fatih Aydın
- Faculty of Aquatic Sciences, İstanbul University, Istanbul, Turkey
| | - Bilgehan Açıkgöz
- Department of Public Health, Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
18
|
Ben Salem D, Barrat JA. Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta 2021; 221:121589. [PMID: 33076124 DOI: 10.1016/j.talanta.2020.121589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
A simple ICP-MS procedure for the determination of trace element concentrations in GBCAs is described here. Abundances of most of the REEs, Y, Ba and Pb concentrations were determined. We confirm that GBCAs contain traces of non-Gd REEs, Y, Ba and Pb. REE patterns of the five GBCAs actually administered in France have been obtained. They display specific shapes that make it possible to identify the different Gd oxides oxides used by pharmaceutical laboratories to produce them. Our method enables us to quickly evaluate the quantities of impurities in these products and, if necessary, to follow the evolution of their quality in the future. The presence of small but not negligible quantities of Y and REEs other than Gd cannot be ignored in these products, and their behaviour in the human body must be considered. The concentrations measured for Pb and Ba, on the other hand, are much lower and do not pose any particular problems.
Collapse
Affiliation(s)
- Douraied Ben Salem
- LaTIM (INSERM UMR 1101) Université de Bretagne Occidentale. 22, Avenue C. Desmoulins, 29238, Brest Cedex 3, France.
| | - Jean-Alix Barrat
- Univ Brest, CNRS, UMR 6539 (Laboratoire des Sciences de L'Environnement Marin), LIA BeBEST, Institut Universitaire Européen de La Mer (IUEM), Place Nicolas Copernic, 29280, Plouzané, France
| |
Collapse
|
19
|
Henríquez-Hernández LA, Ortiz-Andrelluchi A, Álvarez-Pérez J, Acosta-Dacal A, Zumbado M, Martínez-González MA, Boada LD, Salas-Salvadó J, Luzardo OP, Serra-Majem L. Human biomonitoring of persistent organic pollutants in elderly people from the Canary Islands (Spain): A temporal trend analysis from the PREDIMED and PREDIMED-Plus cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 758:143637. [PMID: 33248780 DOI: 10.1016/j.scitotenv.2020.143637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
The population of the Canary Islands has been exposed to high levels of persistent organic pollutants (POPs). Biomonitoring studies are essential to know the temporal trend in residue levels, particularly of substances banned decades ago. The purpose of this study was to analyze the distribution of plasma concentrations of 59 POPs in 175 participants from the PREDIMED-Plus trial (2014-2016), and to compare them with the distribution of these POPs in 343 participants in the PREDIMED trial (2006-2009). All participants had metabolic syndrome. No difference in the distribution of age, gender or BMI was observed between trials. POPs were determined by gas chromatography-mass spectrometry. Density plots -POP Geoffrey Rose curves- were used to represent the full population distribution of each compound. Three out of 59 POPs were detected and quantified in ≥95% of the samples (p,p'-DDE, median = 694.7 ng/g lipid; HCB, median = 57.0 ng/g lipid; and β-HCH, median = 75.7 ng/g lipid). PCB congeners 138, 153 and 180 were detected in 64.6, 40.0 and 88.0% of the samples. Females showed highest concentrations of organochlorine pesticides and those subjects who lost ˃ 5 kg showed significant higher plasma concentrations of POPs. In a range of 6-14 years, plasma concentrations of POPs decreased 3.3-21.6 fold, being notable the decrease of 28.7-fold observed for HCB among women. Despite this sharp decline, levels of POPs are still higher than those reported in other regions, since one third of the subjects included in the present report had high concentration of more than three pollutants. Continuous biomonitoring studies are required to know the evolution of the levels of residues and to evaluate the effectiveness of environmental policies.
Collapse
Affiliation(s)
- L A Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - A Ortiz-Andrelluchi
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - J Álvarez-Pérez
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - A Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - M Zumbado
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - M A Martínez-González
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - L D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - J Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Human Nutrition Unit, Biochemistry and Biotechnology Department, IISPV, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - O P Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - L Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
20
|
Medina-Estévez F, Zumbado M, Luzardo OP, Rodríguez-Hernández Á, Boada LD, Fernández-Fuertes F, Santandreu-Jimenez ME, Henríquez-Hernández LA. Association between Heavy Metals and Rare Earth Elements with Acute Ischemic Stroke: A Case-Control Study Conducted in the Canary Islands (Spain). TOXICS 2020; 8:toxics8030066. [PMID: 32887274 PMCID: PMC7560340 DOI: 10.3390/toxics8030066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
The role of inorganic elements as risk factors for stroke has been suggested. We designed a case-control study to explore the role of 45 inorganic elements as factors associated with stroke in 92 patients and 83 controls. Nineteen elements were detected in >80% of patients and 21 were detected in >80% of controls. Blood level of lead was significantly higher among patients (11.2 vs. 9.03 ng/mL) while gold and cerium were significantly higher among controls (0.013 vs. 0.007 ng/mL; and 18.0 vs. 15.0 ng/mL). Lead was associated with stroke in univariate and multivariate analysis (OR = 1.65 (95% CI, 1.09–2.50) and OR = 1.91 (95% CI, 1.20–3.04), respectively). Gold and cerium showed an inverse association with stroke in multivariate analysis (OR = 0.81 (95% CI, 0.69–0.95) and OR = 0.50 (95% CI, 0.31–0.78)). Future studies are needed to elucidate the potential sources of exposure and disclose the mechanisms of action.
Collapse
Affiliation(s)
- Florián Medina-Estévez
- Rehabilitation Service, Complejo Hospitalario Insular-Materno Infantil (CHUIMI), Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; (F.M.-E.); (F.F.-F.); (M.E.S.-J.)
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Octavio P. Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Luis D. Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
| | - Fernando Fernández-Fuertes
- Rehabilitation Service, Complejo Hospitalario Insular-Materno Infantil (CHUIMI), Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; (F.M.-E.); (F.F.-F.); (M.E.S.-J.)
| | - María Elvira Santandreu-Jimenez
- Rehabilitation Service, Complejo Hospitalario Insular-Materno Infantil (CHUIMI), Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; (F.M.-E.); (F.F.-F.); (M.E.S.-J.)
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; (M.Z.); (O.P.L.); (Á.R.-H.); (L.D.B.)
- Correspondence:
| |
Collapse
|